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Abstract
Identification through heteroskedasticity in heteroskedastic simultaneous equations mod-
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1 Introduction

Identifying the parameters in a simultaneous equations model (SEM) is typically a crucial

step when employing SEMs for economic analysis. The identifying assumptions are often

controversial and sometimes economic theory does not provide sufficiently many restric-

tions to fully identify all parameters. Econometricians have responded to this problem

by developing methods for partially identified models (e.g., Phillips (1989), Choi and

Phillips (1992)) or techniques for integrating extraneous information, e.g., in the form

of extraneous instruments (e.g., Judge, Griffiths, Hill, Lütkepohl and Lee (1985)). The

latter approach has the drawback that the instrumental variables (IV) may be weak which

severely hampers inference. The weak instrument problem was pointed out by several au-

thors (e.g., Staiger and Stock (1997), Dufour (2003)). One response has been to develop

identification robust methods (e.g., Beaulieu, Dufour and Khalaf (2013), Doko Tcha-

toka and Dufour (2014)). Another option is to consider other types of information or

data features such as heteroskedasticity or non-Gaussianity for identification (e.g., Lew-

bel (2012), Klein and Vella (2010), Farré, Klein and Vella (2013), Rigobon (2003), Lanne

and Lütkepohl (2008)). In fact, Lewbel (2012) traces back related ideas to the work of

Wright (1928).

In the present study we focus on heteroskedastic SEMs (HSEMs) which are identified

through (conditional) heteroskedasticity while explicitly allowing for partial identification.

In other words, only a subset of the structural parameters may be identified through het-

eroskedasticity while the remaining parameters may not be identified at all. A number

of studies consider point inference in fully-identified HSEMs (see Klein and Vella (2010),

Lewbel (2012), and Milunovich and Yang (2013) among others). However, in practice only

a subset of the parameters in a HSEM can be identified through heteroskedasticity when

an insufficient number of structural innovations exhibit heteroskedasticity. Therefore,

in this article, we examine the partially-identified HSEM in the framework of Gaussian

quasi maximum likelihood (QML), where only some of the structural equations are point

identified. Within this context, a sequential procedure is proposed to estimate the iden-

tified equations. We find that the estimators of the identified parameters are consistent

and asymptotically normal. Our simulation experiments indicate that the QML estimator

performs well in finite samples and its root mean squared error decreases when the sample

size increases.

Given that the question of which of the parameters are identified is central in our
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approach, we also develop tests for identification. More precisely, we consider tests for

the heteroskedasticity rank of a HSEM which is a measure for the heterogeneity in the

second moments of the structural errors and turns out to correspond to the number

of structural equations which can be identified via heteroskedasticity. The tests are an

instance of Davies’ testing problem, where nuisance parameters are present only under the

alternative hypothesis. We use the methods suggested by Hansen (1996) and Andrews and

Ploberger (1994) to construct suitable tests for our purposes. In particular, the asymptotic

null distributions of sup-LR and sup-LM test statistics for the hypotheses of interest in

the present context are derived. In addition we propose a pragmatic residual-based test to

sequentially determine the heteroskedasticity rank of HSEMs. Our simulation experiments

show that the asymptotic null distributions of the tests are good approximations to their

finite sample distributions, and that the tests exhibit powers which increase with the

sample size.

Our approach is closely related to the methods used by Lanne and Saikkonen (2007)

and Lütkepohl and Milunovich (2016) in a time series context for estimating a multivariate

factor GARCH model and for testing identification in structural VAR-GARCH models,

respectively. Although our approach is applicable to time series data, it is tilted towards

cross-sectional data and does not cover the GARCH-type conditional heteroskedasticity

considered by Lanne and Saikkonen (2007) and Lütkepohl and Milunovich (2016). Nev-

ertheless, it does cover a wide range of conditional variance specifications. Our results

complement the latter papers. We also present Monte Carlo evidence that our asymptotic

results are a good indicator for the small sample properties of the estimators.

Our approach is statistics-based and does not depend on a priori economic restric-

tions on the parameter space, but instead relies on statistical properties of the model.

Of course, economic information is still needed to interpret the equations and parameters

properly. If the economic theory does not provide a fully identified model, the identi-

fying restrictions from heteroskedasticity may complement the economic information. If

the combined information from economic theory and heteroskedasticity is overidentifying,

the restrictions can even be tested against the data. In particular, if the HSEM is fully

identified through heteroskedasticity, any additional restrictions from economic consider-

ations can be tested with statistical tools. Specifically, competing economic theories can

be tested against the data if identification is provided through heteroskedasticity. We will

illustrate the usefulness and significance of our approach by reconsidering the problem of

whether openness of an economy has an impact on inflation. This issue has been studied
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by Romer (1993) who argues that openness reduces inflation. Using our approach we can

resolve endogeneity problems in his study.

The structure of our study is as follows. In the next section we present the model

setup and in Section 3 we discuss estimation procedures and asymptotic properties of

the estimators. Testing the heteroskedasticity rank is considered in Section 4 and small

sample Monte Carlo results are presented in Section 5. Section 6 considers the empirical

illustration and Section 7 concludes. All proofs are collected in the Appendix.

2 The Model

We consider the structural-form simultaneous equation model

Ayi = Cxi + εi, i = 1, . . . , n, (1)

where i is the observation index, n is the number of observations, yi and xi are K and

Kx dimensional observable vectors of endogenous and exogenous variables respectively, A

(invertible) and C are coefficient matrices of dimensions K×K and K×Kx respectively.

The K-dimensional structural error vector εi is assumed to have the following properties:

E(εi|Wi) = 0, var(εi|Wi) = Hi, (2)

where Wi is the set of all observable exogenous or predetermined variables (including xi),

Hi =

 Λi 0

0 IK−r

 , Λi = diag[σ2
1,i, . . . , σ

2
r,i], E(Λi) = Ir,

σ2
k,i = exp{Fk(zi, βk)} with zi ∈ Wi. The function Fk(zi, βk) is twice continuously differ-

entiable with respect to βk for k = 1, . . . , r and 0 ≤ r ≤ K. Note that Hi = Λi when

r = K and Hi = IK when r = 0.

Our model allows for the possibility that K−r of the structural errors are homoskedas-

tic and r errors are conditionally heteroskedastic. The structural form is set up such that

the first r errors are (conditionally) heteroskedastic while the last K − r errors are (con-

ditionally) homoskedastic. The standardization of the conditional variances of these last

errors to be one does not entail a loss of generality because we do not impose restrictions

on the structural coefficient matrix A. In particular, the diagonal of A is not normalized

to be a unit diagonal. Thus, the K equations in (1) may not directly provide economically

meaningful interpretations. In practice, however, there may be restrictions or at least some
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features of the structural parameters that make the equations structurally interpretable.

We explicitly do not impose such restrictions at this point because we are interested in

studying to what extent identification comes from conditional heteroskedasticity and how

much is needed in addition from other sources. If all parameters turn out to be identified

through conditional heteroskedasticity, then any other identification restrictions become

overidentifying and can be tested against the data. This is an important advantage of

our approach, provided that there is enough identifying information from the covariance

structure.

Our main interest is in the cases with 1 ≤ r < K − 1, where only a subset of the

parameters in (1) and (2) is point identified. We assume that the conditional variances

in Λi are linearly independent, and will call r the heteroskedasticity rank. The struc-

tural error εi can then be written as εi = H
1/2
i ηi, where the standardized error satisfies

E(ηi|Wi) = 0 and var(ηi|Wi) = IK . Note that in this setting the unconditional variance

of εi is normalized as the identity matrix, i.e., var(εi) = IK .

The reduced-form for model (1) is given by

yi = Dxi + ui, ui = Bεi, D = BC, B = A−1. (3)

The unconditional variance matrix of the reduced-form error is var(ui) = Ω = BB′.

The parameters of the reduced-form model, D and Ω, can be consistently estimated by

ordinary least squares (OLS) applied to each equation separately.

Following Lanne and Saikkonen (2007) and Lütkepohl and Milunovich (2016), we use

the partitioning B = [B1, B2], where B1 and B2 are respectively the first r columns and

the last K − r columns of B. Conformably, A′ = [A′1, A
′
2]. As ui = B1ε

(1:r)
i + B2ε

(r+1:K)
i ,

where ε
(1:r)
i and ε

(r+1:K)
i denote respectively the first r and the last K − r elements of εi,

the conditional variance of ui is

Ωi = var(ui|Wi) = B1ΛiB
′
1 +B2B

′
2 = Ω +B1(Λi − Ir)B′1.

For Gaussian quasi maximum likelihood (QML) estimation, the conditional probability

density function (pdf) for the reduced-form error ui = yi −Dxi is given by

pdf(ui|Wi) = (2π)−
K
2 det(Ωi)

− 1
2 exp

{
−1

2
u′iΩ

−1
i ui

}
.

Because det(Ωi) = det(Ω)det(Hi) and Ω−1
i = A′H−1

i A = Ω−1 + A′1(Λ−1
i − Ir)A1, the
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conditional pdf becomes

pdf(ui|Wi) = (2π)−
K
2 det(Ω)−

1
2 det(Λi)

− 1
2

× exp

{
−1

2
u′iΩ

−1ui

}
exp

{
−1

2
u′iA

′
1(Λ−1

i − Ir)A1ui

}
, (4)

which is also valid for r = K with A1 being equal to A. If r ≥ K − 1 and the conditional

variances are not proportional, then A is fully identified (see Milunovich and Yang (2013)).

However, for r < K − 1, A2 is unidentified as it is absorbed into Ω. Thus, if r < K − 1,

the structural form is only partially identified. More precisely, only the parameters in the

first r quations are identified by heteroskedaticity if the heteroskedasticity rank is less

than K − 1.

3 Estimation

The log quasi likelihood (apart from the constant 1
2
nK ln(2π)) is given by

Ln = −nK
2

ln |Ω| − 1

2

n∑
i=1

[
u′iΩ

−1ui + ln |Λi|+ u′iA
′
1(Λ−1

i − Ir)A1ui

]
, (5)

where ln denotes the natural logarithm. At this point we assume that D is known or

ui is observable. We will show later on that our results hold when ui is replaced by the

reduced-form OLS residual ûi. For any given (A1, β1, . . . , βr), where βk is the parameter

vector in σ2
k,i, (5) is maximized by Ω̂ = n−1

∑n
i=1 uiu

′
i. Substituting Ω̂ into (5) yields

Ln = −nK
2

(ln |Ω̂|+ 1) +
n

2

r∑
k=1

`k,n, (6)

`k,n = − 1

n

n∑
i=1

[
ln(σ2

k,i) + a′kuiu
′
iak(σ

−2
k,i − 1)

]
, k = 1, . . . , r,

where a′k is the kth row of A1. The estimators of (A1, β1, . . . , βr) are the maximizers of

(6), subject to the restriction A1Ω̂A′1 = Ir. With this restriction, (6) is also valid for the

case where r = K. The estimators of (A1, β1, . . . , βr) are the maximizers of (6). They

may be obtained by maximizing `k,n for k = 1, . . . , r sequentially. In a time series context,

Lanne and Saikkonen (2007) sequentially maximize `k,n to obtain starting values for the

overall maximization of their quasi likelihoods. Our setup differs from their setup in that

the parameters in ak are variation free from those in σ2
k,i. Thus, sequential maximization

of the `k,n results in the overall maximum.

We now describe the estimation procedure and show that the estimators obtained are

consistent for the columns of A′1 and β = [β′1, . . . , β
′
r]
′ at the true parameter point.
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3.1 Estimation Procedure

First, we estimate (a1, β1) by maximizing `1,n. For a given σ2
1,i (or β1), the quadratic

form a′1n
−1
∑n

i=1 uiu
′
i(σ
−2
1,i − 1)a1, with the restriction a′1Ω̂a1 = 1, is minimized by the

eigenvector â1 associated with the smallest generalized eigenvalue µ̂1 in

(Ψ1,n − µ1Ω̂)a1 = 0, (7)

where Ψ1,n = n−1
∑n

i=1 uiu
′
i(σ
−2
1,i − 1) and a′1Ω̂a1 = 1. Then, the concentrated objective

function

`1,n(β1) = − 1

n

n∑
i=1

ln(σ2
1,i)− µ̂1,

is maximized, where both σ1,i and µ̂1 are functions of β1. The estimator of β1 is β̂1 =

arg maxβ1 `1,n(β1). The estimator of a1, denoted as â1, is the eigenvector obtained from

(7), where all unknown quantities are evaluated at β1 = β̂1. For a given β1, â1 is

completely determined by (7). Hence, the evaluation of `1,n(β) may be carried out

in two steps: (a) the smallest eigenvalue µ̂1 from (7) is computed for a given β1; (b)

`1,n(β1) = −n−1
∑n

i=1 ln(σ1,i)− µ̂1 is computed. The numerical maximization is done over

the space of β1 only.

Once (â1, β̂1) are obtained, the estimators of (a2, β2) are the maximizers of `2,n, subject

to the restrictions a′1Ω̂a2 = 0 and a′2Ω̂a2 = 1. Let the matrix [â1, Q2] contain all the

eigenvectors of (7) evaluated at β̂1, where Q2 is a K×(K−1) matrix satisfying â′1Ω̂Q2 = 0

and Q′2Ω̂Q2 = IK−1. To implement the first restriction, a2 is written as a2 = Q2ρ2, where

ρ2 is a (K − 1)-dimensional vector satisfying ρ′2ρ2 = 1. The objective function can then

be expressed as

`2,n = − 1

n

n∑
i=1

[
ln(σ2

2,i) + ρ′2Q
′
2uiu

′
iQ2ρ2(σ−2

2,i − 1)
]
.

For given σ2
2,i (or β2), the quadratic form ρ′2Q

′
2uiu

′
iQ2ρ2(σ−2

2,i − 1), subject to ρ′2ρ2 = 1, is

minimized by the eigenvector ρ̂2 associated with the smallest eigenvalue µ̂2 in

(Q′2Ψ2,nQ2 − µ2IK−1)ρ2 = 0, (8)

where Ψ2,n = 1
n

∑n
i=1 uiu

′
i(σ
−2
2,i − 1). Then the concentrated objective function

`2,n(β2) = − 1

n

n∑
i=1

ln(σ2
2,i)− µ̂2
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is maximized to obtain the estimator β̂2 = arg maxβ2 `2,n(β2). The restriction a2 = Q2ρ2

ensures that µ̂2 > µ̂1 at the maximizer β̂2. Let the matrix [ρ̂2, R3] contain all the eigen-

vectors of (8) evaluated at β̂2 and let Q3 = Q2R3. Then, a3 should be estimated from

the space spanned by Q3, i.e., a3 = Q3ρ3. This way, we can further estimate (ak, βk) for

k = 3, . . . , r. The last column of A′1 is estimated by âr = Qrρ̂r. Let the matrix [ρ̂r, Rr+1]

contain all the eigenvectors of the rth eigen equation evaluated at β̂r. It follows that

Â′2 = Qr+1 = QrRr+1 estimates the space spanned by A′2. In the case of r = K − 1,

the model is fully-identified and [â1, . . . , âr, Â2] estimates all columns in A′. We reiter-

ate that this sequential procedure is equivalent to simultaneously maximizing (6) over

(A1, β1, . . . , βr), subject to the restrictions A1Ω̂A′1 = Ir. We summarize the estimation

procedure as follows.

(a) Set k = 1 and Q1 = Ω̂−1/2, which is the upper triangular Cholesky factor satisfying

Q′1Q1 = Ω̂−1.

(b) Find β̂k = arg maxβk
{
− 1

n

∑n
i=1 ln(σ2

k,i)− µ̂k
}

over the space of βk, where µ̂k is the

smallest eigenvalue in

(Q′kΨk,nQk − µIK−k+1) ρ = 0 with Ψk,n =
1

n

n∑
i=1

uiu
′
i(σ
−2
k,i − 1).

Find âk = Qkρ̂k, where ρ̂k is the eigenvector associated with the smallest eigenvalue

µ̂k evaluated at β̂k. Set Qk+1 = QkRk+1, where the columns of Rk+1 are eigenvectors

associated with the K − k largest eigenvalues evaluated at β̂k.

(c) If k < r, set k = k + 1 and go to (b). Otherwise, set Â′2 = Qk+1 and stop.

We note that this procedure is valid for all r, 1 ≤ r ≤ K.

3.2 Consistency

To examine the asymptotic behavior of the QML estimator of θ = [vec(A′1)′, β′1, . . . , β
′
r]
′,

we list a set of assumptions below. We define fk,i = ∂Fk(zi, βk)/∂βk and we use an in-

nermost subscript 0 to indicate that the associated quantities are evaluated at the true

parameter point θ0. For instance, σ2
0k,i is σ2

k,i evaluated at θ0, and a0k is the kth row of

A01. Furthermore, we define Fi to be the sigma-field generated by {(Wj, uj) : j = 1, . . . , i}.
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Assumption A

A1 The observable arrays {yi,Wi}ni=1 are drawn from the data generating process (DGP)

specified in equations (1)-(2).

A2 The standardised errors ηi = H
−1/2
i εi are independent draws from a distribution

with mean zero and variance IK . The elements of Wi have finite second moments.

The matrix E(xix
′
i) is of full rank.

A3 The arrays {yi,Wi}ni=1 are independent across i for cross-sectional data, or are

strictly stationary and ergodic for time series data (or for panel data in the time

dimension).

A4 In a neighborhood of the true parameter point θ0, Nθ0 , the log conditional variance

lnσ2
k,i = Fk(zi, βk) is bounded by a function g(·) such that supNθ0

|Fk(zi, βk)| ≤ g(zi)

for k ∈ {1, . . . , r}. Further, Eg(zi), E[u′iui exp{g(zi)}], and E[x′ixi exp{g(zi)}] are

finite.

A5 Let vi be a Kv-dimensional Fi-measurable random vector. For any Kv-dimensional

constant vector c 6= 0,

(i) E(c′vi|Fi−1) = 0;

(ii) E[(maxi≤n |c′vi|)2]/n is finite uniformly over n;

(iii) maxi≤n |c′vi|/n1/2 p−→ 0;

(iv)
∑n

i=1(c′vi)
2/n converges in probability to a positive constant.

Here, A1 simply asserts that the model considered is the data generating process. A2

and A3 are needed for applying the weak law of large numbers (WLLN) to the second

moments of the data. A3 and A4 are technical conditions that enable us to apply a

uniform WLLN to `k,n. A5 spells out the requirements for applying the central limit

theorem (CLT) of McLeish (1974) to the vector vi via the Cramér-Wold device (Cramér

and Wold (1936)). In our context, vi will be either vec(uix
′
i) or the score of the log quasi

likelihood, which involves quantities (σ−2
0k,i − 1)uiu

′
ia0k and (1 − σ−2

0k,ia
′
0kuiu

′
ia0k)f0k,i. In

A5, with vi being either vec(uix
′
i) or the score, condition (i) holds for cross-sectional data

when the data are random draws from a population and (i) holds for time series data

quite generally. The following proposition states the consistency of our estimators under

Assumption A.
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Proposition 1. If Assumptions A1-A4 hold and A5 holds for vi ≡ vec(uix
′
i) and for

vi ≡ vec(uix
′
i)σ
−2
k,i in Nθ0, the estimators (âk, β̂k) for k = 1, . . . , r obtained from the

sequential procedure described in this section are consistent in the following sense:

β̂k
p−→ β0lk , âk

p−→ ±a0lk , k = 1, . . . , r,

where (a0lk , β0lk) are the true parameters associated with the lk
th equation in model (1), and

lk ∈ {1, . . . , r}. Further, the order of lk is determined by E ln(σ2
0lk,i

), i.e., E ln(σ2
0l1,i

) ≤
E ln(σ2

0l2,i
) ≤ · · · ≤ E ln(σ2

0lr,i
). The above results also hold when ui is replaced by the

reduced-form residual ûi. 2

The proposition is proven in the Appendix. There are two notable features in Propo-

sition 1. First, âk is consistent for a row of A01 up to the scale ±1. This feature reflects

the fact that the model described by (1) and (2) can only define each row of A01 up to

the scale ±1, as multiplying a row of A01 by −1 will lead to an observationally equiva-

lent system. Second, the estimators (âk, β̂k) are consistent for the true parameters in the

equation with the kth smallest mean of the log conditional variance (k ∈ {1, . . . , r}). Put

differently, âk is a consistent estimator of the row in A0 with the kth smallest mean log

conditional error variance.

3.3 Asymptotic Distribution

In what follows, without loss of generality, we assume that

E ln(σ2
01,i) ≤ E ln(σ2

02,i) ≤ · · · ≤ E ln(σ2
0r,i),

i.e., (1) is arranged such that the mean log conditional variance of the first equation is

the smallest and that of the rth equation is the largest. As mentioned before, there is

an indeterminancy of A′01 in the model (multiplying −1 to a column of A′01 gives rise

to an observationally-equivalent system). To avoid this indeterminacy, without loss of

generality, we define the columns of A′01 as the probability limit of the QML estimator

[â1, . . . , âr]. Let β = [β′1, . . . , β
′
r]
′ with dimension Kβ and θ = [vec(A′1)′, β′1, . . . , β

′
r]
′ with

dimension Kθ = rK + Kβ. We write the Lagrangian for the maximization of the log

likelihood in (6) as

Ln = − 1

2n

n∑
i=1

(
ln |Λi|+ u′iA

′
1(Λ−1

i − Ir)A1ui
)

+
1

2
µ′vech(A1Ω̂A′1 − Ir),

=
1

n
Ln(θ) + µ′φ(θ), (9)
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where φ(θ) = 1
2
vech(A1Ω̂A′1 − Ir), µ′ = [µ11, . . . , µr1, µ22, . . . , µr2, . . . , µrr] is the vector of

Lagrangian multipliers, which can be viewed as the vectorization of a symmetric (r × r)
matrix.

To find the derivatives of Ln and the Jacobian of φ(θ), we note that

u′iA
′
1(Λ−1

i − Ir)A1ui = vec(A′1)′
(
(Λ−1

i − Ir)⊗ uiu′i
)
vec(A′1),

µ′vech(A1Ω̂A′1) = µ′D+
r vec(A1Ω̂A′1) = vec(M)′vec(A1Ω̂A′1)

= tr(MA1Ω̂A′1) = vec(A′1)′(M⊗ Ω̂)vec(A′1),

(M⊗ Ω̂)vec(A′1) = (Ir ⊗ Ω̂A′1)vec(M) = (Ir ⊗ Ω̂A′1)D+′
r µ,

where D+
r = (D′rDr)

−1D′r and Dr is the r2 × (r + 1)r/2 duplication matrix, defined such

that Drvech(Ψ) = vec(Ψ) for any (r× r) symmetric matrix Ψ, and M = [mij] is a (r× r)
symmetric matrix with entries being mij = µij if i = j and mij = .5µij if i > j. The first

derivatives of Ln are given by

∂Ln
∂vec(A′1)

= − 1

n

n∑
i=1

(
(Λ−1

i − Ir)⊗ uiu′i
)

vec(A′1) + (Ir ⊗ Ω̂A′1)D+′
r µ,

∂Ln
∂β

= − 1

2n

n∑
i=1


(1− σ−2

1,i a
′
1uiu

′
ia1)f1,i

...

(1− σ−2
r,i a

′
ruiu

′
iar)fr,i

 .
The second derivatives of Ln are given by

∂2Ln
∂vec(A′1)∂vec(A′1)′

= − 1

n

n∑
i=1

(
(Λ−1

i − Ir)⊗ uiu′i
)

+ (M⊗ Ω̂),

∂2Ln
∂vec(A′1)∂β′

=
1

n

n∑
i=1

(Λ−1
i ⊗ uiu′i)


a1f

′
1,i · · · 0

...
. . .

...

0 · · · arf
′
r,i

 ,

∂2Ln
∂β∂β′

= − 1

2n

n∑
i=1

diag




(1− σ−2
1,i a

′
1uiu

′
ia1)∂f1,i/∂β

′
1

...

(1− σ−2
r,i a

′
ruiu

′
iar)∂fr,i/∂β

′
r

+


(σ−2

1,i a
′
1uiu

′
ia1)f1,if

′
1,i

...

(σ−2
r,i a

′
ruiu

′
iar)fr,if

′
r,i


 .

We denote the negative score by Sn(θ) = −n−1∇θLn, the negative Hessian by Jn(θ) =
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−n−1∂2Ln/∂θ∂θ
′, and J0 = EJn(θ0). It can be verified that

J0 =

 J0,11 J0,12

J ′0,12 J0,22


= E

(Λ−1
0i −Ir)⊗B0H0iB

′
0 −(Λ−1

0i ⊗B0H0iB
′
0)diag(a01f

′
01,i, . . . , a0rf

′
0r,i)

J ′0,12
1
2
diag(f01,if

′
01,i, . . . , f0r,if

′
0r,i)

.(10)

When J0,22 is invertible, J0 is invertible if and only if J0,11 − J0,12J
−1
0,22J

′
0,12 is invertible.

The latter quantity can be expressed as

J0,11 − J0,12J
−1
0,22J

′
0,12 = (Ir ⊗B0)

(
E
[
(Λ−1

0i − Ir)⊗H0i

]
− 2diag(G1, . . . , Gr)

)
(Ir ⊗B′0),

where Gk = ekKe
k ′
KE(f0k,i)

′[E(f0k,if
′
0k,i)]

−1E(f0k,i) and ekK is the kth column of IK for k ∈
{1, . . . , r}. The kth (diagonal) block of E

[
(Λ−1

0i − Ir)⊗H0i

]
is

E
[
(σ−2

0k,i − 1)diag(σ2
01,i, . . . , σ

2
0r,i, 1, . . . , 1)

]
, k ∈ {1, . . . , r},

which is a diagonal matrix with one zero at the kth diagonal position. Therefore, when

J0,22 is invertible and E(f0k,i) 6= 0 for every k, J0 is invertible. However, J0 is not positive

definite. The negative score at θ0 is given by

Sn(θ0) =

 −
∂Ln

∂vec(A′1)

−∂Ln

∂β


θ0

=
1

n

n∑
i=1

si(θ0) =
1

n

n∑
i=1



(
(Λ−1

0i − Ir)⊗ uiu′i
)

vec(A′01)

1
2
(1− σ−2

01,ia
′
01uiu

′
ia01)f01,i

...

1
2
(1− σ−2

0r,ia
′
0ruiu

′
ia0r)f0r,i

 ,

where si(θ0) is defined as

si(θ0) =



(
(Λ−1

0i − Ir)⊗ uiu′i
)

vec(A′01)

1
2
(1− σ−2

01,ia
′
01uiu

′
ia01)f01,i

...

1
2
(1− σ−2

0r,ia
′
0ruiu

′
ia0r)f0r,i

 .

It can be verified that E
(
si(θ0)

)
= 0.

There are Kφ = r(r + 1)/2 restrictions in φ(θ). We write φ(θ)′ = [φ1(θ), . . . , φKφ(θ)]

and Φ(θ) = ∇θφ(θ)′ = [∇θφ1(θ), . . . ,∇θφKφ(θ)], where∇θ ≡ ∂
∂θ

. From the first derivatives

of the Lagrangian Ln, the Jacobian of the constraints is seen to be

Φ(θ) = ∇θφ(θ)′ =

 (Ir ⊗ Ω̂A′1)D+′
r

0

 ,
12



where 0 denotes a Kβ ×Kφ zero matrix. The Taylor expansion of φ(θ̂) = 0 at θ0 gives

0 = φ(θ̂) = φ(θ0) + Φ(θ̄)′(θ̂ − θ0) = Φ(θ̄)′(θ̂ − θ0),

where θ̄ is a point between θ̂ and θ0. This implies, as n→∞, Φ(θ0)′
√
n(θ̂− θ0)

p−→ 0, i.e.,

the asymptotic variance of
√
n(θ̂−θ0) is singular. We describe the asymptotic distribution

of θ̂ in the following proposition.

Proposition 2. Suppose that the assumptions in Proposition 1 hold. Assume further that

A5 holds for vi ≡ si(θ0) and that E(f0k,if
′
0k,i) is of full rank for k = 1, . . . , r. Then,

√
n(θ̂ − θ0)

d−→ N(0,Σθ),

where the asymptotic covariance matrix is

Σθ = Φ0⊥(Φ′0⊥J0Φ0⊥)−1Φ′0⊥ΣSΦ0⊥(Φ′0⊥J0Φ0⊥)−1Φ′0⊥,

ΣS = var
(√

nSn(θ0)
)
, Φ0 = Φ(θ0), and Φ0⊥ is the orthogonal complement of Φ0 (i.e.,

Φ′0⊥Φ0 = 0 and [Φ0⊥,Φ0] is invertible). The above results also hold when ui in si(θ0) is

replaced by ûi. 2

The proposition is proven in the Appendix. Note that the asymptotic covariance Σθ

is of reduced rank. Its rank is at most that of Φ0⊥, rK − r(r + 1)/2 + Kβ. When J0 is

invertible (which requires E(f0k,i) 6= 0 for all k), it can alternatively be expressed as

Σθ =
[
J−1

0 − J−1
0 Φ0(Φ′0J

−1
0 Φ0)−1Φ′0J

−1
0

]
ΣS

[
J−1

0 − J−1
0 Φ0(Φ′0J

−1
0 Φ0)−1Φ′0J

−1
0

]
.

This formula can be used when J0 is singular, by replacing J0 with J0+ = J0 + Φ0Φ′0,

as suggested by Silvey (1959). It can be shown that the above formula with J0+ is also

equivalent to the formula given in Proposition 2 (see Lemma 3 in the Appendix and note

that Φ′0⊥J0+Φ0⊥ = Φ′0⊥J0Φ0⊥). The matrix Φ0 is naturally estimated by Φ(θ̂), i.e.,

Φ(θ̂) =

 (Ir ⊗ Ω̂Â′1)D+′
r

0

 .
Furthermore, Φ0⊥ can be estimated explicitly as

Φ⊥(θ̂) =

 (Ir ⊗ Â′1)Dr⊥ (Ir ⊗ Â′2) 0

0 0 IKβ

 ,
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where Dr⊥ is the orthogonal complement of Dr. When r = 1, Φ(θ̂) and Φ⊥(θ̂) simplify to

Φ(θ̂) =

 Ω̂â1

0

 and Φ⊥(θ̂) =

 Â′2 0

0 IKβ

 .
When r = K (with A1 = A), Φ(θ̂) and Φ⊥(θ̂) become

Φ(θ̂) =

 (IK ⊗ Ω̂Â′)D+′
K

0

 and Φ⊥(θ̂) =

 (IK ⊗ Â′)DK⊥ 0

0 IKβ

 .
It can be shown that Φ′0⊥J0Φ0⊥ is block diagonal and positive definite when J0,22 in (10)

is invertible (see Lemma 1 in the Appendix). The structure of Dr⊥ is also given in the

Appendix.

Under the assumptions of Proposition 2, the asymptotic covariance matrix of Sn(θ0),

ΣS, is consistently estimated by the outer product form Σ̂S = n−1
∑n

i=1 si(θ̂)si(θ̂)
′. Hence,

the asymptotic covariance of θ̂ is consistently estimated by

Σ̂θ = Φ̂⊥(Φ̂′⊥ĴΦ̂⊥)−1Φ̂′⊥Σ̂SΦ̂⊥(Φ̂′⊥ĴΦ̂⊥)−1Φ̂′⊥, (11)

where Φ̂⊥ = Φ⊥(θ̂), and

Ĵ =
1

n

n∑
i=1

 (Λ−1
i −Ir)⊗ uiu′i −(Λ−1

i ⊗ uiu′i)diag(a1f
′
1,i, . . . , arf

′
r,i)

−(Λ−1
i ⊗ uiu′i)diag(f1,ia

′
1, . . . , fr,ia

′
r)

1
2
diag(f1,if

′
1,i, . . . , fr,if

′
r,i)


evaluated at θ̂. This is clearly a “sandwich” form that takes into account the singularity

of ΣS.

For a heteroskedasticity rank r < K − 1, the following proposition shows that Â2, as

defined in the estimation procedure at the end of Section 3.1, converges to a rotation of

A02 at the rate of n−1/2.

Proposition 3. Suppose that the assumptions of Proposition 2 hold. Assume further that

A5 holds for vi ≡ vech(uiu
′
i−Ω0). Then, Â2 is asymptotically normal and its distribution

is determined by

√
n(Â′2d̂

−1
2 − A′02) = −A′01(Â1Ω̂A′01)−1

√
n
[
(Â1 − A01)Ω̂ + A01(Ω̂− Ω0)

]
A′02,

where Â′1 = [â1, . . . , âr] and d̂2 = (A02Ω0Â
′
2). This result also holds when ui is replaced by

ûi in computing Ω̂. 2
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This proposition is also proven in the Appendix. We note that d̂2 does not necessarily

converge to an identity matrix because A′02 is not identified and Â′2 can only estimate

the space spanned by the columns of A′02. Because d̂2 is unknown in practice, this result

cannot be used for point inference about A02. However, it can be used to make inference

about the space spanned by the columns of A′02. In particular, Proposition 3 implies that

Â2ui = d̂′2A02ui +Op(n
−1/2)A01ui = d̂′2ε

(r+1:K)
i +Op(n

−1/2)ε
(1:r)
i , which will be used in the

residual-based heteroskedasticity rank test discussed in Section 4.

3.4 Inference about Coefficients on xi

As Â1 and D̂ are consistent estimators of A01 and D0 = A−1
0 C0 respectively, the first r

rows of C0, denoted as C01, can be consistently estimated by Ĉ1 = Â1D̂. Given the joint

asymptotic distribution of (Â1, D̂), the delta method delivers the asymptotic distribution

of Ĉ1.

Proposition 4. Suppose that the assumptions of Proposition 2 hold. Then, the asymptotic

distribution of Ĉ1 is given by

√
n vec(Ĉ ′1 − C ′01)

d−→ N(0,TΣT′),

where T = [(Ir ⊗ D′), 0, (A1 ⊗ IKx)] is the Jacobian of C ′1 = D′A′1 with respect to

[θ′, vec(D′)′]′ with 0 being a rKx ×Kβ zero matrix corresponding to the [β′1, . . . , β
′
r]
′ part

of θ, and Σ is the joint asymptotic covariance of
√
n[(θ̂ − θ0)′, vec(D̂′ −D′0)′]′. 2

The joint asymptotic covariance of
√
n[(θ̂ − θ0)′, vec(D̂′ −D′0)′]′ may be estimated by

Σ̂ =

 Σ̂θ Σ̂θD

Σ̂′θD Σ̂D

 , (12)

where Σ̂θ is given by (11),

Σ̂D =

[
IK ⊗

( 1

n

n∑
i=1

xix
′
i

)−1
][

1

n

n∑
i=1

(uiu
′
i ⊗ xix′i)

][
IK ⊗

( 1

n

n∑
i=1

xix
′
i

)−1
]
,

Σ̂θD = Φ̂⊥(Φ̂′⊥ĴΦ̂⊥)−1Φ̂′⊥

[
1

n

n∑
i=1

si(θ̂)vec(xiu
′
i)

][
IK ⊗

( 1

n

n∑
i=1

xix
′
i

)−1
]
.

For K = 1, Σ̂D is the conventional heteroskedasticity-robust variance estimate in a scalar

linear regression model. Clearly, the asymptotic covariance of
√
n vec(Ĉ ′1 − C ′01) is esti-

mated by Σ̂C = T̂Σ̂T̂′ with T̂ = [(Ir ⊗ D̂′), 0, (Â1 ⊗ IKx)]. Inference on C01 proceeds in a

standard manner.
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4 Testing for the Heteroskedasticity Rank

For the model defined by (1) and (2), a key parameter is the heteorskedasticity rank r,

which is the number of linearly independent conditional variances in the structural error

εi. It determines the number of rows in A that can be consistently estimated. Given

the importance of the heteroskedasticity rank in our model, we now consider testing

hypotheses about r. Specifically, we derive tests for the pair of hypotheses H0 : r = r0

versus H1 : r > r0. Under H0, the parameter βk is constrained at a particular point

βH0 , typically zero, such that σ2
k,i = 1. Hence H0 is equivalent to βk = βH0 for all

k ∈ {r0 + 1, . . . , K}. Under H0, the criterion functions

`k,n(βk, ak) = − 1

n

n∑
i=1

[
ln(σ2

k,i) + a′kuiu
′
iak(σ

−2
k,i − 1)

]
, k = r0 + 1, . . . , K,

are equal to zero and unrelated to A′2 = [ar0+1, . . . , aK ]. Thus, A2 is unidentified under

H0, although Â1ΩA′2 = 0 and A2ΩA′2 = IK−r0 must hold for Â′1 = [â1, . . . , âr0 ]. This

falls into the class of testing problems considered by Davies (1977, 1987), where the

nuisance parameter A2 is present only under H1. Davies’ problem in general settings is

considered by Hansen (1996) and Andrews and Ploberger (1994, 1995). We use these

ideas to develop likelihood based tests in the following. As these tests may be difficult

to implement in practice, we also consider simpler residual-based tests which are easy to

conduct in practice.

4.1 Likelihood-Based Tests

In what follows, let k = r0 + 1 and denote the parameter space of ak as Πk = {a :

a = Qkρ, ρ
′ρ = 1}, where Qk = Â′2. Under H0, Lemma 4 in the Appendix shows that

Πk converges in probability to Π0k = {a : a = A′02ρ, ρ
′ρ = 1} in that A01Ω0Qk

p−→ 0

and A02Ω0Qk
p−→ δ, where δ is an orthogonal matrix. Here, `k,n implicitly depends on

θ̂ = [vec(Â′1)′, β̂′1, . . . , β̂
′
r0

]′ as Πk depends on θ̂.

The likelihood ratio statistic is the sup-LR test discussed by Hansen (1996) and An-

drews and Ploberger (1995). In our setting, it is simply the maximum of n`k,n(βk, ak),

supLRn = max
βk,a∈Πk

n`k,n(βk, a) = max
βk,a∈Πk

{
−

n∑
i=1

[
ln(σ2

k,i) + a′uiu
′
ia(σ−2

k,i − 1)
]}

,

which is readily obtained from the procedure discussed in Section 3. We also define
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supLMn = supa∈Πk
LMn(a) with LMn(a) = nS(βH0 , a)′[Vn(βH0 , a)]−1S(βH0 , a),

Sn(βk, a) = −∂`k,n
∂βk

=
1

n

n∑
i=1

(
1− σ−2

k,i a
′uiu

′
ia
)
fk,i,

and

Vn(βk, a) =
1

n

n∑
i=1

(
1− σ−2

k,i a
′uiu

′
ia
)2
fk,if

′
k,i,

where a ∈ Πk. Under H1, we find that, at θ0 (the true parameter point of the first r0

equations in (1)), EVn(βH0 , a) is positive definite and

ESn(βH0 , a) = E
(
1− ρ′A02uiu

′
iA
′
02ρ
)
f0k,i = E

(
1− ρ′ε(r0+1:K)

i ε
(r0+1:K)′
i ρ

)
f0k,i 6= 0

for any a ∈ Π0k, as ε
(r0+1:K)
i is heteroskedastic. It follows that supLMn diverges to

infinity in probability as n→∞. Under H1, the results of Section 3 imply that supLRn

also diverges to infinity as n → ∞. Thus, the main goal of this subsection is to find the

asymptotic null distributions of supLRn and supLMn.

For given ak = a, β̂k(a) = arg maxβk `k,n(βk, a) is a function of a, and so are the like-

lihood ratio statistic LRn(a) = maxβk n`k,n(βk, a) and the LM statistic LMn(a). Asymp-

totically, LRn(a) and LMn(a) converge weakly to stochastic processes indexed by a.

Then the asymptotic null distributions of supLRn = maxa∈Πk LRn(a) and supLMn =

maxa∈Πk LMn(a) are the distributions of the suprema of these stochastic processes. The

general distribution theory under high-level assumptions is given by Andrews and Ploberger

(1994, 1995) for correctly specified likelihoods, and by Hansen (1996) for possibly mis-

specified likelihoods. Andrews and Ploberger (1995) show that supLRn is an admissible

test when the likelihood is correctly specified.

Andrews and Ploberger (1994) also consider the following version of the test statistic,

expLRn = (1 + c)−
1
2
Kβk

∫
Πk

exp
( c

2(1 + c)
LRn(a)

)
dW(a),

where Kβk is the dimension of βk, W is a weight function over Πk and c > 0 is a scalar

that controls whether the power is directed toward remote (large c) or local (small c)

alternatives. Andrews and Ploberger (1994) show optimality properties of the test based

on expLRn. When c → ∞, expLRn is equivalent to ln
∫

Πk
exp

(
1
2
LRn(a)

)
dW(a). The

expLRn test is closely related to the Bayes factor for Davies’ problem (see Yang (2014)).

For a correctly specified likelihood, the optimality of expLRn carries over to the similar

version of the LM (or Wald) statistic.
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To derive the asymptotic null distribution of supLRn and supLMn with primitive con-

ditions in our context, we apply WLLN to (Jn,Vn) and CLT to Sn, where Jn is defined

in the Appendix. The required conditions are listed below, where ‖ · ‖ stands for the

Euclidean norm and NβH0
is a compact neighborhood of βH0 at θ0.

Assumption B

B1 A4 holds for k = r0 + 1.

B2 There exist functions g1(zi) and g2(zi) such that ‖fk,if ′k,i‖ ≤ g1(zi) and ‖∂fk,i/∂β′k‖ ≤
g2(zi) for all βk ∈ NβH0

. E
[
u′iui exp(g(zi))g2(zi)

]
and E

[
(u′iui)

2 exp(2g(zi))g1(zi)
]

are

finite, where g(zi) is as defined in A4. Furthermore, E(f0k,if
′
0k,i) is invertible.

B3 A5 holds for vi ≡
(
1− a′uiu′ia

)
f0k,i for any a ∈ Π0k, where f0k,i is fk,i evaluated at

βH0 .

B4 A5 holds for vec(uix
′
i)f

(j)
k,i σ

−2
k,i , vec(uix

′
i)f

(j)
k,i f

(l)
k,iσ

−2
k,i and vec(uix

′
i)(∂f

(j,l)
k,i /∂β

′
k)σ
−2
k,i for

all βk ∈ NβH0
, where f

(j)
k,i is the jth element of fk,i and ∂f

(j,l)
k,i /∂β

′
k is the (j, l)th

element of ∂fk,i/∂β
′
k.

Here, B1 and B2 are needed to apply the uniform WLLN to `k,n and (Jn,Vn) respectively.

B3 allows us to apply a CLT to Sn. The effect of replacing ui by ûi in our analysis becomes

negligible under B4. The asymptotic null distributions of supLRn and supLMn are given

in the following proposition which is proven in the Appendix.

Proposition 5. Suppose that the assumptions of Proposition 3 hold. Assume further that

B1, B2, and B3 hold. Then, under H0,

(a)
√
nSn(βH0 , a)⇒ S(a) on a ∈ Π0k, where S(a) is a zero-mean Gaussian process with

covariance function K(a, b) = nE
[
Sn(βH0 , a)Sn(βH0 , b)

′];
(b) LRn(a)⇒ 1

2
S(a)′[E(f0k,if

′
0k,i)]

−1S(a) on a ∈ Π0k;

(c) supLRn
d−→ supa∈Π0k

1
2
S(a)′[E(f0k,if

′
0k,i)]

−1S(a);

(d) LMn(a)⇒ S(a)′[K(a, a)]−1S(a) on a ∈ Π0k;

(e) supLMn
d−→ supa∈Π0k

S(a)′[K(a, a)]−1S(a).

Moreover, under B4, the above results hold when ui is replaced by ûi. 2
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The asymptotic null distributions of expLRn and other test statistics suggested by

Andrews and Ploberger (1994) can be readily obtained under the assumptions of the

above proposition. For example,

expLRn
d−→ (1 + c)−

1
2
Kβk

∫
Π0k

exp
( c

4(1 + c)
S(a)′[E(f0k,if

′
0k,i)]

−1S(a)
)
dW(a).

For our setting, the covariance of S(a) can be expressed as

K(a, b) = E
[
(1− a′uiu′ia)f0k,if

′
0k,i(1− b′uiu′ib)

]
, a, b ∈ Π0k.

In particular, the variance of S(a) can be simplified as

K(a, a) = E
[(

1 + (ρ′ε
(r0+1:K)
i )4 − 2(ρ′ε

(r0+1:K)
i )2

)
f0k,if

′
0k,i

]
, ρ′ρ = 1.

When the likelihood is correctly specified with ηi = H
−1/2
i εi ∼ N(0, IK), the variance is

K(a, a) = 2E(f0k,if
′
0k,i) and the process 1

2
S(a)′[E(f0k,if

′
0k,i)]

−1S(a) becomes a χ2 process on

Π0k, which is a χ2 random variable for any given a ∈ Π0k. However, for the QML where

ηi is non-normal, 1
2
S(a)′[E(f0k,if

′
0k,i)]

−1S(a) is generally not a χ2 process. On the other

hand, the asymptotic version of LMn(a), S(a)′K(a, a)−1S(a), is always a χ2 process on

Π0k. The sup-Wald statistic has the same asymptotic null distribution as supLMn when

the sandwich-form covariance matrix is used. The LM test is particularly simple for our

purpose as it can be carried out without estimating βk. The asymptotic null distribution

of supLRn (or supLMn) depends on nuisance parameters (i.e., A2). Tabulating critical

values is not feasible. Hansen (1996) suggests a simulation procedure to compute the

asymptotic p-value of supLMn, which is summarized for our setting as follows.

For any a ∈ Πk, let vi(a) =
(
1 − a′uiu

′
ia
)
f0k,i be the (observable) summand in

Sn(βH0 , a). Draw an independent sample {ωi}ni=1 from N(0, 1). Construct the simu-

lated process S̃n(a) = n−1/2
∑n

i=1 vi(a)ωi, which is a zero-mean Gaussian process with

covariance K̃(a, b) = n−1
∑n

i=1 vi(a)vi(b)
′, conditional on Fn. Find the simulated test

statistic T̃
(1)
n = maxa∈Πk S̃n(a)′[K̃(a, a)]−1S̃n(a). Repeat this procedure N times to obtain

{T̃ (t)
n }Nt=1. Compute p̃ = N−1

∑N
t=1 1(T̃

(t)
n > supLMn) as the p-value estimate, where 1(·)

is the indicator function.

The procedure is valid because K̃(a, b)
p−→ K(a, b) and S̃n(a) ⇒ S(a). The implemen-

tation of supLMn requires a maximization over Πk for each simulated sample. Clearly,

these tests are difficult to conduct in practice. More pragmatic tests are considered in the

following.
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4.2 Residual-Based Tests

In this subsection we use the notation ε
(1)
i = ε

(1:r0)
i , ε

(2)
i = ε

(r0+1:K)
i , and τ = K −

r0. Under H0, A02ui = ε
(2)
i is the homoskedastic part of the structural error εi and

E(A02uiu
′
iA
′
02|Wi) = Iτ does not depend on Wi. Defining ξi = vech(A02uiu

′
iA
′
02) =

vech(ε
(2)
i ε

(2)′
i ), the parameter α1 in the “ideal” regression

ξi = α0 + α1wi + ζi, (13)

is zero, i.e. α1 = 0, under H0. Here the regressor wi ∈ Wi is a vector of exogenous

non-constant variables and ζi is the error term. The vector wi typically contains known

functions of xi or zi. Under H0, α0 = vech(Ir) and ζi = vech(ε
(2)
i ε

(2)′
i − Iτ ). Under H1,

E(ξi|Wi) contains non-trivial conditional variances of ε
(2)
i . Hence, the estimator of α1

converges in probability to zero under H0, and to a non-zero constant matrix under H1

when wi is properly chosen and correlated with the conditional variances. Thus, a Wald

test is informative on the hypothesis α1 = 0. Clearly, a rejection of α1 = 0 is a rejection

of H0. However, not rejecting α1 = 0 does not imply that H0 cannot be rejected, unless

cov(ξi, wi) 6= 0 under H1.

As A02 is unknown, we may replace it with Â2, which is defined in Section 3 (also see

Proposition 3). Let ξ̂i = vech(Â2uiu
′
iÂ
′
2), where we still use ui instead of ûi. The effect of

using ûi will be assessed later on. We consider the feasible OLS estimator of α = [α0, α1]

in (13), using ξ̂i,

α̂ = [α̂0, α̂1] =
( n∑
i=1

ξ̂iZ
′
i

)( n∑
i=1

ZiZ
′
i

)−1

,

where Z ′i = [1, w′i]. The asymptotic covariance of vec(α̂) is estimated as

V̂α =
( 1

n

n∑
i=1

ZiZ
′
i

)−1

⊗
( 1

n

n∑
i=1

ζ̂iζ̂
′
i

)
,

where ζ̂i = ξ̂i − α̂0 − α̂1wi. Let Kw be the dimension of wi and h = [0, IKw ]′ such that

α̂h = α̂1. Then the Wald statistic for testing α1 = 0 can be expressed as

Wald1,n = n vec(α̂h)′

[
h′
( 1

n

n∑
i=1

ZiZ
′
i

)−1

h⊗
( 1

n

n∑
i=1

ζ̂iζ̂
′
i

)]−1

vec(α̂h).

An alternative regression for testing H0 is obtained by using the sum of the squared

errors ε
(2)′
i ε

(2)
i = u′iA

′
2A2ui = q′ξi as the dependent variable. Here q = [e1′

τ , . . . , e
1′
2 , 1]′,

where e1
k is the first column of Ik for k ∈ {τ, τ − 1, . . . , 2}. Using the univariate regression

q′ξi = q′α[1, w′i]
′ + q′ζi,
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the coefficients on wi are zero under H0 and nonzero under H1, provided cov(q′ξi, wi) 6= 0.

We again substitute ξ̂i for ξi for actually performing the regression and computing the

Wald statistic for q′α1 = 0. The Wald statistic in this scalar regression can alternatively

be written as

Wald2,n = n (q′α̂h)

[
h′
( 1

n

n∑
i=1

ZiZ
′
i

)−1

h⊗ q′
( 1

n

n∑
i=1

ζ̂iζ̂
′
i

)
q

]−1

(q′α̂h)′.

This expression is useful for finding the asymptotic properties of the test statistic Wald2,n

via those of α̂. The following proposition provides the asymptotic properties of α̂ and the

Wald tests.

Proposition 6. Suppose that the assumptions of Proposition 3 hold. Assume further that

VZ = E(ZiZ
′
i) is invertible, A5 holds for vi ≡ vec

(
vec(ε

(1)
i ε

(2)′
i )Z ′i

)
and vi ≡ vec

(
ζiZ

′
i

)
,

where ζi = vech(ε
(2)
i ε

(2)′
i − Iτ ). Then the following results hold.

(a) Under H0,
√
n vec

(
[α̂0, α̂1]−Mn[α0, α1]

)
d−→ N(0, Vα), where Vα = V −1

Z ⊗M0VζM
′
0,

Vζ = var(ζi), Mn = D+
τ (d̂′2⊗d̂′2)Dτ , M0 = D+

τ (δ′⊗δ′)Dτ , d̂2 is defined in Proposition

3, δ is an orthogonal matrix, α1 = 0 and α0 = E(ξi).

(b) Under H0, V̂α
p−→ Vα.

(c) Under H0, Wald1,n
d−→ χ2

(
1
2
τ(τ + 1)Kw

)
and Wald2,n

d−→ χ2(Kw).

(d) Under H1, [α̂0, α̂1]
p−→ M0[α0, α1], where α1 = Cξ,wV

−1
w , α0 = E(ξi) − α1E(wi),

Vw = var(wi) and Cξ,w = cov(ξi, w
′
i).

(e) Under H1, V̂α
p−→ V −1

Z ⊗M0(Vξ − Cξ,wV −1
w C ′ξ,w)M ′

0, where Vξ = var(ξi).

(f) Under H1, n−1Wald1,n
p−→ c1 and n−1Wald2,n

p−→ c2, where (c1, c2) are constants,

c1 > 0 if Cξ,w 6= 0, and c2 > 0 if q′Cξ,w 6= 0.

Moreover, if E
(
vec(xixi)Z

′
i

)
is finite and A5 holds for vi ≡ vec

(
vec(uixi)Z

′
i

)
, then the

above results hold when ui is replaced by ûi. 2

Because Â2 can only be used to estimate the space spanned by the rows of A02, using

ξ̂i = vech(Â2uiu
′
iÂ
′
2) in (13) is markedly different from using the ideal ξi = vech(A02uiu

′
iA
′
02).

This difference is reflected in the presence of the matrices Mn and M0 in Proposition 6

(a) and (d), respectively. Fortunately, this difference does not hinder testing the restric-

tion α1 = 0 because α̂1
p−→ 0 under H0 and converges to a constant, which is non-zero if
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cov(ξi, w
′
i) 6= 0, under H1. The residual-based Wald tests are pragmatic in the sense that

the test statistics are easy to compute and they have standard asymptotic null distribu-

tions (χ2), as indicated in (c). Hence, these tests are easy to implement as they do not

require simulation to compute critical values or p-values, whereas simulation is needed for

supLMn. The results in (f) imply that the residual-based Wald tests are consistent under

H1 as long as wi is chosen such that cov(ξi, w
′
i) 6= 0 and q′cov(ξi, w

′
i) 6= 0.

We note that Davies’ problem does not show up in the residual-based tests. The

proposed tests can be carried out in the standard manner despite the fact that A2 is not

point identified under H0. The reason is that the implication of H0 in (13) depends on A2

via the definition of ξi. In other words, in the framework of (13), A2 is not absent under

H0 as ξi is defined in terms of the estimable space spanned by the rows of A2.

5 Monte Carlo Investigation

We carry out simulation experiments to investigate the finite-sample properties of the

proposed QML estimator and heteroskedasticity rank tests. The data generating process

(DGP) is inspired by the empirical application in Section 6. Our experiments cover sample

sizes n = 50, 100, 200 and 500, encompassing the sample size of the data set (n = 114) in

Section 6. The DGP is the model detailed in (1) and (2) with the dimension K = 3 and

the exponential functional form is employed to specify the conditional variances. Each

sample is generated according to the following steps.

1. Draw independent scalar random numbers {wi}ni=1 from the standard normal dis-

tribution N(0, 1) and set xi = [1, wi]
′ and zi = wi for all i.

2. Draw 3-dimensional independent random vectors {ηi}ni=1 from the χ2(9) distribution,

where the elements of ηi = [η1,i, η2,i, η3,i]
′ are independent and normalized to have

mean 0 and variance 1.

3. Generate the conditional variances σ2
k,i = exp(βkzi)/E exp(βkzi) and the structural

error terms εk,i = σk,iηk,i for k = 1, 2, 3. Set εi = [ε1,i, ε2,i, ε3,i]
′ for i = 1, . . . , n.

4. Endogenous variables are generated from the reduced-form system yi = Dxi+A−1εi

based on (1), where yi = [y1,i, y2,i, y3,i]
′.

Here, we use χ2(9) variates as the standardized structural error term ηi to demonstrate

that our QML approach works for non-Gaussian data. The unconditional variances of
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(ε1,i, ε2,i, ε3,i) in the DGP are normalized to be unity as defined in (1) and (2). The

normalizing factor here is E exp(βkzi) = exp(1
2
β2
k). In estimation or testing, we use

the specification σ2
k,i = exp(βkzi)/[

1
n

∑n
i=1 exp(βkzi)] to impose the normalization rule

E(σ2
k,i) = 1.

The parameter matrices for the DGP are

A =


1.604 2.542 0.252

−0.280 0.604 0.896

−0.490 5.206 −0.259

 , D =


0.0 0.2

0.0 −0.1

0.0 −0.2

 .
In particular, the instantaneous impact matrix A is the point estimate from the empirical

example in Section 6. In the reduced-form coefficient matrix D, the first column cor-

responds to the intercept and the second to the exogenous variable wi. While the first

column of D is set to zero in the DGP, the intercept is always included in estimation and

testing. Hence, changing the values in the first column of D does not alter the results

reported below. We use two sets of values for the parameters in the conditional variances:

(β1, β2, β3) = (1, 0, 0) and (1, 0.5, 0). The first is the case with the heteroskedasticity rank

r = 1, for which the model is partially identified. The second is the case with r = 2, for

which the model is fully identified. All of our experiments consist of 1,500 replications,

from which point estimates and test statistics are recorded.

To examine the properties of the QML estimator, we estimate the parameters in the

conditional variances and the three rows of A from each sample, and compute bias and

root mean squared error (RMSE) from 1,500 replications.2 Since the estimator of a row

in A, âk, is consistent up to the scale ±1, we insist on nonnegative first, third and second

elements of â1, â2 and â3, respectively. For example, if the third element of â2 is negative,

we will record −â2 instead of â2 itself. In maximizing the criterion function over the space

of βk, the initial value for the maximization routine is fixed at 0.1.

The estimation results are reported in Tables 1 and 2 for partially and fully identified

models respectively. In Table 1, as the model is partially identified, only the first row of

A, a′1 = [a11, a12, a13], can be consistently estimated. Indeed, the bias and RMSE of the

QML estimator for the first row of A are small and generally decrease as the sample size

increases. On the other hand, the bias and RMSE for the second and third rows of A,

which are not identified, are large and do not decrease as the sample size increases. We

2The computations of the simulation experiments is carried out in R (see R-Team (2016)). Maximiza-

tions are done using the BFGS method in the optimization function optim of R.
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also note that the bias and RMSE are dependent on the magnitude of the true parameter

value. For instance, the bias and RMSE of â12 are larger than those of â13. In Table

2, as expected from a fully identified model, we observe that the bias and RMSE for all

parameters are small and decrease as the sample size increases. Interestingly, for this DGP

the element a22 appear to be difficult to estimate, having largest RMSE. It corresponds

to a coefficient estimate in the application in Section 6, which is the only statistically

insignificant element in A (see Table 5).

Table 1: Estimation Bias and RMSE for Partially Identified Model (r = 1)

True n = 50 n = 100 n = 200 n = 500

value Bias RMSE Bias RMSE Bias RMSE Bias RMSE

a11 1.604 0.065 0.343 0.072 0.252 0.027 0.177 0.013 0.114

a12 2.542 0.093 1.129 0.126 0.669 0.044 0.416 0.020 0.262

a13 0.252 0.008 0.180 0.014 0.108 0.006 0.065 0.004 0.039

β1 1.000 -0.052 0.245 -0.049 0.185 -0.030 0.132 -0.016 0.088

a21 -0.280 0.238 0.675 0.233 0.544 0.215 0.481 0.201 0.451

a22 0.604 -1.231 4.143 -1.384 4.011 -1.303 3.896 -1.245 3.834

a23 0.896 -0.283 0.435 -0.287 0.419 -0.295 0.423 -0.293 0.417

β2 0.000 0.097 0.337 0.099 0.229 0.068 0.166 0.046 0.107

a31 -0.490 0.162 0.493 0.154 0.381 0.159 0.326 0.150 0.287

a32 5.206 -1.712 2.572 -1.791 2.534 -1.846 2.553 -1.823 2.499

a33 -0.259 0.185 0.735 0.187 0.701 0.182 0.689 0.165 0.670

β3 0.000 -0.188 0.270 -0.128 0.186 -0.084 0.130 -0.050 0.078

To investigate the finite-sample properties of three proposed tests (Wald1, Wald2, su-

pLM), we employ the setup that the first equation in the model is always heteroskedastic.

In this scenario, we test H0 : r = 1 against H1 : r > 1. Samples from the DGP with

(β1, β2, β3) = (1, 0, 0) and (1, 0.5, 0) respectively are used to examine the size and power

properties of the tests. A single exogenous variable, wi, is included in (13) to compute

Wald1 and Wald2. For the supLM statistic, 100 bootstraps are used to compute its p-

value. In maximizing the LM(a) statistic, the initial value for the maximization routine

is fixed at 0.1. The rejection rates of the three tests are reported in Table 3, where the

first panel (r = 1) corresponds to (β1, β2, β3) = (1, 0, 0) and the second and third panels

(r = 2) correspond to (β1, β2, β3) = (1, 0.5, 0). The first and second panels consist of
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Table 2: Estimation Bias and RMSE for Fully Identified Model (r = 2)

True n = 50 n = 100 n = 200 n = 500

value Bias RMSE Bias RMSE Bias RMSE Bias RMSE

a11 1.604 -0.101 0.440 -0.023 0.300 -0.007 0.195 0.004 0.114

a12 2.542 -0.198 1.203 -0.037 0.757 -0.009 0.440 0.006 0.266

a13 0.252 -0.034 0.369 -0.008 0.263 0.002 0.156 0.003 0.083

β1 1.000 -0.022 0.223 -0.037 0.175 -0.025 0.129 -0.015 0.087

a21 -0.280 0.157 0.885 0.053 0.638 0.002 0.386 -0.003 0.208

a22 0.604 -0.117 2.582 -0.006 1.733 -0.007 1.052 -0.006 0.598

a23 0.896 -0.109 0.310 -0.052 0.207 -0.013 0.115 -0.003 0.058

β2 0.500 -0.049 0.226 -0.022 0.162 -0.012 0.121 -0.001 0.080

a31 -0.490 0.033 0.482 0.009 0.294 0.002 0.170 -0.003 0.102

a32 5.206 -0.271 1.469 -0.084 0.904 -0.017 0.507 0.011 0.266

a33 -0.259 0.025 0.435 0.001 0.280 0.003 0.175 -0.002 0.094

β3 0.000 -0.121 0.267 -0.047 0.178 -0.022 0.132 -0.010 0.081

rejection rates based on χ2 critical values for Wald1 and Wald2, and the bootstrap p-value

for supLM. The third panel (Power*) contains the size-corrected rejection rates, where the

5% and 10% critical values are the empirical critical values obtained from the simulation

in the first panel (under H0). These entries would be true powers based on the correct

(rather than estimated) critical values. They are useful for gauging power distortions

caused by size distortions of the tests.

In the first panel of Table 3, the sizes of the three tests are reasonably precise even

with the small sample size n = 50, indicating that the asymptotic null distributions are

good approximations to the finite sample null distributions in this setup. In the second

panel of Table 3, we observe that the power of the tests increases toward one as the sample

size increases. In terms of power, Wald1 is ranked best, supLM the second, and Wald2

the third. An exception is that Wald2 outperforms supLM at the 5% level when n = 50.

In the third panel of Table 3, the size-corrected powers do not deviate much from the

powers reported in the second panel. This is an indication that the size distortions shown

in the first panel do not lead to large power distortions in our simulation experiments.

In summary, the simulation experiments demonstrate that our QML estimator per-

forms effectively in finite samples. They also show that the asymptotic null distributions of
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Table 3: Rejection Rates for Testing H0 : r = 1

n = 50 n = 100 n = 200 n = 500

Nominal size 5% 10% 5% 10% 5% 10% 5% 10%

r = 1 Wald1 0.077 0.142 0.067 0.119 0.059 0.117 0.054 0.107

(Size) Wald2 0.058 0.106 0.051 0.105 0.054 0.102 0.057 0.108

supLM 0.048 0.105 0.049 0.104 0.035 0.091 0.048 0.095

r = 2 Wald1 0.263 0.367 0.513 0.632 0.841 0.911 0.999 0.999

(Power) Wald2 0.175 0.252 0.377 0.497 0.682 0.795 0.977 0.987

supLM 0.138 0.261 0.410 0.593 0.759 0.885 0.979 0.995

r = 2 Wald1 0.206 0.291 0.462 0.593 0.838 0.898 0.999 0.999

(Power*) Wald2 0.164 0.245 0.375 0.492 0.663 0.792 0.973 0.987

supLM 0.147 0.269 0.423 0.595 0.808 0.891 0.985 0.993

the tests are good approximations to the finite-sample null distributions. Finally, Wald1,

in addition to being easy to implement, has superior power in this setup.

6 Empirical Illustration

We apply our method to re-examine the empirical evidence on openness, inflation and real

income provided in Romer (1993). Romer argues that models, in which the absence of

precommitment in monetary policy causes excessive inflation, lead to the conclusion that

more open economies experience lower average inflation rates. Romer (1993) conducts a

cross-country analysis and uses single equation models, where inflation is the dependent

variable and openness, real per capita income and possibly other variables serve as ex-

planatory variables. He accounts for potential endogeneity of the explanatory variables by

employing instrumental variables (IV) estimation in some of his regressions, and provides

evidence in support of this hypothesis. Our aim is to re-cast the analysis in the context

of a SEM which allows for possible endogeneity between the three variables. Given that

we find conditional heteroskedasticity in the errors, we use our approach to circumvent

identification problems.

The relationship between country openness, inflation, and real income is of interest

for two reasons. First, Romer (1993) proposes the idea of endogenous openness whereby

not only is inflation a function of openness, but these two variables are jointly determined
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through protectionist policies. Extending this argument, one may also conjecture that

real income is jointly determined with inflation and openness, and hence is itself endoge-

nous – a possibility not explored in Romer (1993). Second, the analysis is conducted

by controlling for a number of exogenous variables, such as the country land area and

regional dummy variables, which are used to account for geographical variation in the

mean equations. We extend the study by suggesting that these exogenous variables may

also drive the conditional variance processes. If that is indeed the case then we may cast

the analysis in the HSEM framework described in (1) – (2), which will fully account for

any endogeneity that may exist between the three variables. We start the analysis by

providing a brief description of the data and testing for the number of heteroskedastic

structural innovations, i.e. the heteroskedasticity rank.

Our dataset is obtained from Romer (1993) and consists of several key variables for

a cross section of 114 countries. It includes the following three (possibly) endogenous

variables:

• πi – inflation as computed by the average annual change in the log GDP or GNP

deflator (depending on the availability of data) between 1973 and 1991;

• oi – country openness measured by the average share of imports in GDP or GNP

(depending on the availability of data) between 1973 and 1991;

• ryi – real income recorded as the 1980 real income per capita in U.S. dollars.

In addition, we also have data on three exogenous variables:

(i) Landi – country land area measured as the natural logarithm of the total square

miles area for each country;

(ii) IAmi – a geographical indicator variable set to one for countries located in the Amer-

icas region and zero otherwise;

(iii) IOili – oil-producing country indicator variable taking the value of one for oil-

producing countries and zero otherwise.

Let yi = [πi, oi, ryi]
′

and xi = [1, Landi, I
Oil
i , IAmi ]

′
. In the first step we estimate the

reduced-form system (3), and apply our tests for the heteroskedasticity rank, r, on the

residuals ûi = yi−D̂xi as discussed in Section 4, where D̂ is obtained via OLS. The log con-

ditional variances, Fk(zi, βk), are specified as a linear function of zi = [Landi, I
Oil
i , IAmi ]

′
.
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Table 4: Testing for Heteroskedsticity Rank (r)

Test H0 : r = 0 H0 : r = 1

Wald1
Statistic 47.749 31.285

p-value 0.000 0.000

Wald2
Statistic 11.984 8.933

p-value 0.007 0.030

supLM
Statistic 23.753 22.823

p-value 0.000 0.000

Notes: In the construction of the test statistics for testing H0 : r = 0 we set ε̂
(2)
i described in

Section 4.2 equal to ûi. Conditional variance equations are specified as exponential functions

of the exogenous vector zi.

The sample means of the conditional variances are normalized to one in our estimation.

Test results for the multivariate (Wald1) and univariate (Wald2) Wald tests, as well as

the supLM test are reported in Table 4.

Considering the first column of the above table we strongly reject the null hypothesis

of no heteroskedasticity in the structural system according to all three tests. This leads

us to infer that the heteroskedasticity rank is at least one. Similarly, the results presented

in the second column of the table provide evidence against the null hypothesis of one

heteroskedastic component (r = 1) in favour of the heteroskedasticity rank being at least

two (r ≥ 2), at the 5% level. These results suggest that there is heterogeneity in the

variances that can be used for identification. Given that a 3-dimensional system is fully

identified with r ≥ 2, we proceed to estimate all rows of the A matrix using the procedure

described in Section 3.1. The estimates are presented in Table 5.

As illustrated in Table 5, all but one coefficient are statistically significant, at the 1%

level, which confirms our conjecture that the variable ryt is indeed determined jointly

with πi and oi. While each equation of (1) can be consistently estimated in the order of

the mean log conditional variances as explained in Sections 3.1 and 3.2, its interpretation

depends on the underlying economics. Specifically, to compare our estimates to the results

of Romer (1993), we need to decide which of the estimated equations corresponds to his

inflation equation. Of course, since we have three equations none of which is economically

identified so far, there are three possibilities for the inflation equation. A choice should

be based on economic arguments.
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Table 5: Estimated Rows of A

Estimated Row Inflation Openness Real Income

Row 1
1.604 2.542 0.252
[0.000] [0.000] [0.000]

Row 2
0.280 −0.604 −0.896
[0.000] [0.167] [0.000]

Row 3
0.490 −5.206 0.259
[0.000] [0.000] [0.006]

Notes: p-values of t-statistics are provided in square brackets.

Following Romer’s (1993) argument that inflation is negatively related to openness

in his inflation equation, we label the first row of Â in Table 5 as the inflation equation

because it is the only row where the coefficients of inflation and openness have the same

sign. Thus, if we standardize the coefficient of inflation to one and use that variable as

left-hand side variable with all other variables on the right-hand side, we get an equation

where openness reduces inflation. Clearly, the first equation is the only one that gives

rise to a negative relationship between inflation and openness. Further, in the absence

of additional knowledge about the signs of the coefficients on the endogenous variables,

we use a normalization such that the coefficient on real income in the second row is one

and the coefficient on openness in the third row is one. This normalization is mainly

motivated by the statistical significance of the estimated coefficients. As the coefficient

on openness in the second row of A is statistically insignificant, it cannot justifiably be

normalized to one. Under this normalization, the results are presented in the first panel

of Table 6, where p-values are computed using the delta method.

In Table 6 we also report the results of single equation IV estimation of the inflation

equation obtained by utilizing Landi as an instrument for openness as in Romer (1993).

Since this is the only instrument available to Romer, he assumes that income is exogenous

in his single-equation model. Note that the p-values of the IV estimates are based on

heteroskedasticity-adjusted standard errors.

Considering the coefficients on the openness variable in the two estimated inflation

equations, and the associated p-values, we conclude that there is strong support for the

hypothesis investigated in Romer (1993), namely that higher levels of economic openness

lead to lower inflation rates on average. Negative estimates, statistically significant at
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Table 6: Estimated Normalized Structural Relationships

Estimation Left-hand Right-hand side variables White Test on
method side variable Inflation Openness Real Income Standardized Residuals

System Inflation – −1.585 −0.157 0.226
– [0.000] [0.000] [0.973]

Openness 0.094 – 0.050 0.023
[0.000] – [0.022] [0.999]

Real Income 0.313 −0.674 – 0.732
[0.002] [0.256] – [0.866]

IV Inflation – −1.145 −0.090 –
– [0.000] [0.126] –

Notes: p-values are provided in square brackets. The covariance matrix of Â∗ computed by
sequential estimation is obtained by the delta method from the estimated covariance matrix of
Â. The last column of the table provides White’s heteroskedasticity test applied to standardized
structural residuals (see White (1980)).

the 1% level, are obtained with both estimation methods. Regarding the magnitude of

the estimates, we see that the normalized coefficient of −1.585 obtained with our system

estimation method is larger in absolute value than the IV estimate of −1.145. These

estimates are roughly in line with the results provided in Romer (1993) which range from

−0.827 to −1.395, depending on whether or not endogeneity of openness is taken into

account and which variables are included in the equation.

The question of whether openness is indeed endogenous can be addressed by examining

the estimated coefficient of the inflation variable in the openness equation. As seen in

the second row of Table 6, the parameter of inflation is statistically significant at the 1%

level in the openness equation, which, taken together with corresponding results from the

inflation equation, implies that openness and inflation are indeed jointly determined.

Turning to the relationship between inflation and real income we note substantial

differences in the estimated income coefficients in the inflation equation, depending on

the estimation method used. The estimate from the system estimation method differs

distinctly from the estimate obtained by IV. The system approach estimates a negative

and statistically significant (at the 1% level) effect of real income on inflation. While

the parameter estimated by IV is also negative, it is almost half the magnitude of the

coefficient obtained via the system method and has a much higher p-value of 0.126. The

IV finding is similar to the evidence presented in Romer (1993), where the coefficient

of real income in the inflation equation is not statistically significant. A reason for this

discrepancy can be seen in Table 6, where the system estimates clearly suggest endogeneity
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of income. The IV estimator ignores the possible endogeneity of income, since the only

instrument available in the study is used to instrument openness. This highlights the

usefulness of our approach in situations where insufficient identifying information from

conventional sources is available. Although the two last equations of our system are

not necessarily economically identified and, hence, any economic interpretation can be

problematic, they do provide evidence of endogeneity of the income variable.

Lastly, we point out that modeling structural conditional variance equations as expo-

nential functions of exogenous variables accounts for heteroskedasticity adequately. This

is judged by White’s test for heteroskedasticity (see White (1980)) which is applied here

to the standardized structural residuals. The test statistics are small and the associated

p-values in excess of 0.850, as reported in the last column of Table 6. This provides

confidence in our identification and the estimation approach.

7 Conclusions

This paper presents a complete framework for analysing HSEMs that may be partially

identified through (conditional) heteroskedasticity. An estimation method is developed

that provides consistent and asymptotically normal estimates of the identified parameters.

These results are useful because they can be combined with traditional identification re-

strictions. In other words, identification through heteroskedasticity can complement iden-

tification restrictions from economics. Thus, identification through heteroskedasticity can

make up for insufficient identifying economic information. If the combined identifica-

tion restrictions from traditional sources and heteroskedasticity are overidentifying, this

feature can be used to test competing economic hypotheses against the data.

Because identification through heteroskedasticity is linked to the heterogeneity in the

variances of the structural errors which we measure by the heteroskedasticity rank, we

also develop tests for the heteroskedasticity rank. Thus, we effectively develop tests for

identification which inform about the identified equations in the model. These tests can

be used even in underidentified or partially identified models. Two alternative asymptotic

approaches are used to derive such tests. The first approach is based on Gaussian quasi-

likelihood methods and uses techniques that account for nuisance parameters that are

only present under the alternative hypothesis. Unfortunately, these tests may not be very

practical in many situations because they have nonstandard asymptotic distributions

under the null hypothesis and may require a substantial computational effort. Therefore
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we also derive more practical tests based on Wald principles that have standard asymptotic

χ2-distributions under the null hypothesis and are easy to compute. We compare the two

types of tests in a Monte Carlo study and find that the quasi-likelihood based supLM test

does not have better power than a Wald type test in small samples. Hence, it may not

warrant the additional effort in conducting the supLM type tests, in particular, if full or

sufficient identification is found already with the Wald type tests.

We illustrate our approach by reconsidering the question whether openness of an

economy is linked to inflation. This issue has been discussed in the literature without

fully accounting for possible endogeneity problems related to the variables. Using our

approach we can account for the possible endogeneity of the variables. We find support

for the theory-based view that openness is negatively related to inflation. In other words,

more openness leads to lower inflation.

Although our results are very general and cover general HSEMs, they are likely to be

more useful in a setting with cross-sectional data because we are not allowing explicitly

for some popular time series models for conditional heteroskedasticity. For example,

we do not allow for GARCH type heteroskedasticity. Indeed, for some of the volatility

models typically used in structural vector autoregressive analysis, no general tests for

identification seem to be available. Developing such tests based on the ideas of the present

paper may be worthwhile in future research.

A Appendix

A.1 Proof of Proposition 1

When any of the equations in (1) is multplied by −1, an observationally equivalent system

results. Hence, any row in A01 can only be identified up to the scale ±1. Accordingly, we

define the true parameter point θ0 = [a′1, . . . , a
′
r, β

′
01, . . . , β

′
0r]
′ only up to the scale ±1 for

(a1, . . . , ar). In a compact neighborhood of θ0, Nθ0 , under stated assumptions, we show

that the uniform weak law of large numbers (WLLN) documented in Newey and McFadden

(1994, Lemma 2.4) applies to uiu
′
i and ln σ2

k,i + a′kuiu
′
iak(σ

−2
k,i − 1) for k = 1, . . . , r. First,

as each element in uiu
′
i is bounded by u′iui and E(u′iui) < E[(u′iui) exp{g(zi)}] is finite,

the WLLN applies and Ω̂
p−→ B0B

′
0, where B0 is B = A−1 at the true parameter point.
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Second,

| lnσ2
k,i + a′kuiu

′
iak(σ

−2
k,i − 1)| ≤ |Fk(zi, β)|+ |a′kui|2(exp{g(zi)}+ 1)

≤ g(zi) +ma(u
′
iui)(exp{g(zi)}+ 1)|, k = 1, . . . , r,

where ma = supNθ0
‖ak‖2 and the Chauchy-Schwarz inequality implies that |a′kui|2 ≤

‖ak‖(u′iui). Under A4, E[g(zi) +ma(u
′
iui)(exp{g(zi)}+ 1)|] is finite and independent of θ.

It follows that the uniform WLLN holds, i.e., as functions of (ak, βk),

`k,n
p−→ E(`k,n) = −E

[
ln(σ2

k,i) + a′kB0H0iB
′
0ak(σ

−2
k,i − 1)

]
, k = 1, . . . , r, (14)

uniformly over Nθ0 when n→∞. Here H0i is Hi evaluated at θ0.

We then consider the consistency of (â1, β̂1). Given (14), we only need to show that

E(`1,n) is uniquely maximized at θ0. Clearly, for given σ2
1,i (or β1), the quadratic form

a′1B0H0iB
′
0a1(σ−2

1,i − 1) in (`1,i), subject to a′1B0B
′
0a1 = 1, is minimized by the eigenvector

a∗1 associated with the smallest eigenvalue µ∗1 in

B0

[
E
(
H0i(σ

−2
1,i − 1)

)
− µ1IK

]
B′0a1 = 0. (15)

Given that H0i = diag[σ2
01,i, . . . , σ

2
0r,i, 1, . . . , 1], the eigenvalue is µ∗1 = E(σ2

0k,i(σ
−2
1,i − 1)) for

some k ∈ {1, . . . , K}, where σ2
0k,i is σ2

k,i evaluated at θ0 for k = 1, . . . , r and σ2
0k,i = 1 for

k = r + 1, . . . , K. Then the concentrated objective function satisfies

E(`1,n) = −E
[

ln(σ2
1,i)
]
− µ∗1

= −E
[

ln(σ2
1,i) + σ2

0k,i(σ
−2
1,i − 1)

]
≤ −E

[
ln(σ2

0k,i) + σ2
0k,i(σ

−2
0k,i − 1)

]
= −E ln(σ2

0k,i), (16)

because the function ln(x) + x0(x−1 − 1) is uniquely minimized at x = x0. This result

implies that the unique maximizer is σ2
1,i = σ2

0k,i for a k ∈ {1, . . . , K}. Furthermore,

as E ln(σ2
0k,i) < ln(1) for k ∈ {1, . . . , r} by Jensen’s inequality, the maximizer must be

σ2
1,i = σ2

0k1,i
with

k1 = arg min
k∈{1,...,r}

E ln(σ2
0k,i). (17)

Here, the maximizer σ2
0k1,i

is unique in the sense below. As E ln(σ2
0k1,i

) ≤ E ln(σ2
0k,i) for

all k 6= k1 and {σ2
01,i, . . . , σ

2
0r,i} are linearly independent, Jensen’s inequality leads to

ln[E(σ2
0k,i/σ

2
0k1,i

)] > E[ln(σ2
0k,i/σ

2
0k1,i

)] = E ln(σ2
0k,i)− E ln(σ2

0k1,i
) ≥ 0,

i.e., E(σ2
0k,i/σ

2
0k1,i

) > 1 or E
(
σ2

0k,i(σ
−2
0k1,i
− 1)

)
> 0 for all k 6= k1. Consequently, at the

maximum, σ2
1,i = σ2

0k1,i
, the only zero (smallest) element on the diagonal of E

(
H0i(σ

−2
1,i−1)

)
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in (15) is at position k1. It follows that µ∗1 = µ0k1 = 0 and B′0a
∗
1 = δ1e

k1
K , where a∗1 =

δ1A
′
0e
k1
K = δ1a0k1 is the kth

1 column of A′0 up to the scale δ1 = ±1 and ejK is the jth column

of IK . Given that E(`1,n) is continuous and uniquely maximized at (δ1a0k1 , β0k1), Theorem

2.1 of Newey and McFadden (1994) applies, i.e., (â1, β̂1)
p−→ (a∗1, β

∗
1) = (δ1a0k1 , β0k1). The

uniqueness of (δ1a0k1 , β0k1) implies identification.3

We use the same argument to show the consistency of (â2, β̂2). To implement the

restriction a′2B0B
′
0a1 = 0, we let a2 = Q02ρ2, where Q02 is a K × (K − 1) matrix such

that the augmented matrix [a∗1, Q02] contains the full set of eigenvectors of (15). Under

the uniform WLLN, we have

`2,n
p−→ E(`2,n) = −E

[
ln(σ2

2,i) + ρ′2Q
′
02B0H0iB

′
0Q02ρ2(σ−2

2,i − 1)
]
,

uniformly in Nθ0 when n → ∞. The quadratic form ρ′2Q
′
02B0H0iB

′
0Q02ρ2(σ−2

2,i − 1) is

minimized subject to ρ′2ρ2 = 1 by the vector ρ∗2 associated with the smallest eigenvalue

µ∗2 in

Q′02B0

[
E
(
H0i(σ

−2
2,i − 1)

)
− µ2IK

]
B′0Q02ρ2 = 0.

Clearly, µ∗2 = E
(
σ2

0k,i(σ
−2
2,i − 1)

)
for a k ∈ {1, . . . , K} and k 6= k1. Then

E(`2,n) = −E
[

ln(σ2
1,i) + σ2

0k,i(σ
−2
2,i − 1)

]
≤ −E

[
ln(σ2

0k,i) + σ2
0k,i(σ

−2
0k,i − 1)

]
= −E ln(σ2

0k,i) (18)

implies that the maximizer is σ2
2,i = σ2

0k,i and the maximum is−E ln(σ2
0k,i). As E ln(σ2

0k,i) <

ln(1) for k ∈ {1, . . . , r}, the maximizing k must be k2 = arg mink∈{1,...,r},k 6=k1 E ln(σ2
0k,i).

Correspondingly, µ∗2 = µ0k2 = 0, B′0Q02ρ
∗
2 = δ2ek2 and a∗2 = Q02ρ

∗
2 = δ2A

′
0ek2 = δ2a0k2 ,

where δ2 = ±1. Hence E(`2,n) is uniquely maximized by (a∗2, β
∗
2) = (δ2a0k2 , β0k2) and

(â2, β̂2)
p−→ (δ2a0k2 , β0k2). Similarly, it follows that (âj, β̂j)

p−→ (δja0kj , β0kj) for j = 3, . . . , r,

where δj = ±1.

We now assess the impact of using D̂ and ûi = yi − D̂xi instead of D and ui =

yi − Dxi, respectively. Under A5, the central limit theorem (CLT) of McLeish (1974)

applies to vec(uix
′
i) via the Cramér-Wold device. The OLS estimator satisfies D̂ = D0 +

(
∑n

i=1 uix
′
i)(
∑n

i=1 xix
′
i)
−1 = D0 + Op(n

−1/2). As ûi = ui + Ḋxi with Ḋ = (D0 − D̂) =

Op(n
−1/2), we find

1

n

n∑
i=1

ûiû
′
i =

1

n

n∑
i=1

(
uiu
′
i + Ḋxiu

′
i + uix

′
iḊ
′ + Ḋxix

′
iḊ
′) =

1

n

n∑
i=1

uiu
′
i +Op(n

−1)

3 It is easy to see that this result will break down if some of {σ2
01,i, . . . , σ

2
0r,i} are proportional, in

which case there will be two or more non-zero elements in B′0a
∗
1. For example, if σ2

01,i = σ2
02,i and

E ln(σ2
01,i) = mink∈{1,...,r} E ln(σ2

0k,i), then (â1, β̂1)
p−→ (a∗1, β

∗
1) = (δ1a01 + δ2a02, β01), where δ21 + δ22 = 1.
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because
∑n

i=1 uix
′
i = Op(n

1/2). Under A4, the elements in E|xix′iσ−2
k,i | ≤ E|xix′ieg(zi)|

are finite, where | · | signifies element-wise absolute values. As the CLT also applies to

vec(uix
′
i)σ
−2
k,i , it follows that

1

n

n∑
i=1

ûiû
′
iσ
−2
k,i =

1

n

n∑
i=1

(
uiu
′
i + Ḋxiu

′
i + uix

′
iḊ
′ + Ḋxix

′
iḊ
′)σ−2

k,i =
1

n

n∑
i=1

uiu
′
iσ
−2
k,i +Op(n

−1)

for k = 1, . . . , r. Thus the feasible objective function is related to the “ideal” one via

ˆ̀
k,n = − 1

n

n∑
i=1

[
ln(σ2

k,i) + a′kûiû
′
iak(σ

−2
k,i − 1)

]
= `k,n +Op(n

−1), k = 1, . . . , r,

which holds uniformly over a compact neighborhood of θ0 and implies ˆ̀
k,n

p−→ E(`k,n).

Hence, our consistency argument also applies to the maximizers of ˆ̀
k,n. 2

A.2 The Structure of Dr⊥

We explicitly present the r2 × 1
2
r(r + 1) duplication matrix as

Dr =



Ir 0 · · · 0 0

E12
r Ir,−(1:1) · · · 0 0

E13
r E23

r,−(1:1)

. . . 0 0
...

...
...

...

E
1(r−1)
r E

2(r−1)
r,−(1:1) · · · Ir,−(1:r−2) 0

E1r
r E2r

r,−(1:1) · · · E
(r−1)r
r,−(1:r−2) Ir,−(1:r−1)


,

where Ir,−(1:l) is the identity matrix Ir with its (1, . . . , l)th columns being removed, Ejk
r is

the r × r matrix with 1 in the (j, k)th position and 0 elsewhere, Ejk
r,−(1:l) is Ejk

r with its

(1, . . . , l)th columns being removed. Let M be a r × r symmetric matrix with the lower

triangular part of its kth column denoted by mh
k, i.e., vech(M) = [mh′

1 ,m
h′
2 , . . . ,m

h′
r ]′. It

can be verified that the kth block of vec(M) = Drvech(M), or the kth column of M , is

mk =
k−1∑
j=1

Ejk
r,−(1:j−1)m

h
j + Ir,−(1:k−1)m

h
k, k = 1, . . . , r,

where Ejk
r,−(1:0) is defined to be Ejk

r . The elements of Dr are either 0 or 1, where r columns,

namely the first, the r+1th, the r+(r−1)+1th, . . . , the 1
2
r(r+1)th, have only one 1, while

the remaining r(r − 1)/2 columns have two ones. The matrix Dr⊥ can be constructed as

the matrix consisting of the r(r − 1)/2 columns of Dr that have two ones and, in each
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column, one of the ones (say the second one) is turned to −1. For example, when r = 2

and 3,

D2 =


1 0 0

0 1 0

0 1 0

0 0 1

, D2⊥ =


0

1

−1

0

, D3 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1



, D3⊥ =



0 0 0

1 0 0

0 1 0

−1 0 0

0 0 0

0 0 1

0 −1 0

0 0 −1

0 0 0



.

In general, Dr⊥ can be expressed as

Dr⊥ =



Ir,−(1:1) 0 · · · 0

−E12
r,−(1:1) Ir,−(1:2) · · · 0

−E13
r,−(1:1) −E23

r,−(1:2)

. . . 0
...

...
...

−E1(r−1)
r,−(1:1) −E

2(r−1)
r,−(1:2) · · · Ir,−(1:r−1)

−E1r
r,−(1:1) −E2r

r,−(1:2) · · · −E(r−1)r
r,−(1:r−1)


.

As the non-zero elements of any column are in different positions in Dr⊥, it follows that

D′r⊥Dr⊥ = 2Ir(r−1)/2. 2

A.3 Invertibility of Φ′0⊥J0Φ0⊥

Lemma 1. Φ′0⊥J0Φ0⊥ is block diagonal and positive definite when J0,22 is invertible. 2

Proof of Lemma 1 We write

Φ′0⊥J0Φ0⊥ = Γ =


Γ11 Γ12 Γ13

Γ′12 Γ22 Γ23

Γ′13 Γ′23 Γ33

 ,
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and find

Γ11 = D′r⊥(Ir ⊗ A01)J0,11(Ir ⊗ A′01)Dr⊥ = E
(
D′r⊥(Λ−1

0i − Ir)⊗ Λ0iDr⊥
)
,

Γ12 = D′r⊥(Ir ⊗ A01)J0,11(Ir ⊗ A′02) = E
(
D′r⊥(Λ−1

0i − Ir)⊗ A01B0H0iB
′
0A
′
02

)
= 0,

Γ13 = D′r⊥(Ir ⊗ A01)J0,12 = −E
(
D′r⊥(Λ−1

0i ⊗ A01B0H0iB
′
0)diag(a01f

′
01,i, . . . , a0rf

′
0r,i)
)

= 0,

Γ22 = (Ir ⊗ A02)J0,11(Ir ⊗ A′02) = E
(
(Λ−1

0i − Ir)⊗ IK−r
)
,

Γ23 = (Ir ⊗ A02)J0,12 = −E
(
(Λ−1

0i ⊗ A02B0H0iB
′
0)diag(a01f

′
01,i, . . . , a0rf

′
0r,i)
)

= 0,

Γ33 = J0,22.

The above results are easy to verify except the expressions for Γ11 and Γ13. The case for

r = 1 is covered by the lower 2× 2 block sub-matrix of Γ. Hence, for r > 1, we only show

Γ13 = 0 and that Γ11 is a positive definite diagonal matrix. For Γ13, it is easily verified

(using the definition B0 = A−1
0 ) that

Γ13 = E
(
D′r⊥diag[e1

r, . . . , e
r
r]diag[f ′01,i, . . . , f

′
0r,i]
)
,

where ekr is the kth column of Ir. The fact that diag[e1
r, . . . , e

r
r] consists of r columns of

Dr implies Γ13 = 0. For Γ11, noting that ΛiE
jk
r,−(1:l) = σ2

j,iE
jk
r,−(1:l), the kth block row of

D′r⊥(Λ−1
0i − Ir)⊗ Λ0i is given by

[0, . . . , 0, I ′r,−(1:k)gk,iΛ0i, −Ek(k+1) ′
r,−(1:k)gk+1,iσ

2
0k,i, . . . ,−Ekr ′

r,−(1:k)gr,iσ
2
0k,i], k = 1, . . . , r − 1,

where there are k − 1 zero blocks and gk,i = (σ−2
0k,i − 1). Furthermore, the (k, k)th and

(k, j)th blocks of D′r⊥(Λ−1
0i − Ir)⊗ Λ0iDr⊥ are given, respectively, by

I ′r,−(1:k)gk,iΛ0iIr,−(1:k) + E
k(k+1) ′
r,−(1:k)E

k(k+1)
r,−(1:k)gk+1,iσ

2
0k,i + · · ·+ Ekr ′

r,−(1:k)E
kr
r,−(1:k)gr,iσ

2
0k,i

= gk,iΛ0i,(k+1:r) + E
(k+1)(k+1)
r−k gk+1,iσ

2
0k,i + · · ·+ Err

r−kgr,iσ
2
0k,i

= diag(gk,iσ
2
0k+1,i+gk+1,iσ

2
0k,i, . . . , gk,iσ

2
0r,i+gr,iσ

2
0k,i)

and

I ′r,−(1:k)gk,iΛ0iE
jk
r,−(1:j) + E

k(k+1) ′
r,−(1:k)E

j(k+1)
r,−(1:j)gk+1,iσ

2
0k,i + · · ·+ Ekr ′

r,−(1:k)E
jr
r,−(1:j)gr,iσ

2
0k,i

= I ′r,−(1:k)gk,iσ
2
0j,iE

jk
r,−(1:j) = 0 for j < k,

where the fact that Ekl ′
r,−(1:k)E

kl
r,−(1:k) = Ell

r−k and Ekl ′
r,−(1:k)E

jl
r,−(1:j) = 0 for l = k + 1, . . . , r,

is used and Λ0i,(k+1:r) ≡ diag(σ2
0k+1,i, . . . , σ

2
0r,i). It follows that Γ11 = E diag(γ1, . . . , γr−1)

is diagonal, where

γk = diag(gk,iσ
2
0k+1,i+gk+1,iσ

2
0k,i, . . . , gk,iσ

2
0r,i+gr,iσ

2
0k,i︸ ︷︷ ︸

r − k entries

)
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for k = 1, . . . , r − 1. A typical diagonal entry in Γ11 is

E(gk,iσ
2
0j,i + gj,iσ

2
0k,i) = E

(
σ2

0j,i

σ2
0k,i

+
σ2

0k,i

σ2
0j,i

− σ2
0j,i − σ2

0k,i

)
= E

[(
σ0j,i

σ0k,i

− σ0k,i

σ0j,i

)2
]
> 0

because E(σ2
0j,i) = 1, and σ2

0j,i and σ2
0k,i are not proportional for j 6= k. This proves our

claim. 2

A.4 Proof of Proposition 2

We first show an intermediate result and then turn to the proof of Proposition 2.

Lemma 2. Suppose that the assumptions of Proposition 1 hold. Assume further that A5

holds for vi = si(θ0). Then,
√
nSn(θ0)

d−→ N(0,ΣS), ΣS = var
(√

nSn(θ0)
)
. This statement

is also true when ui in si(θ0) is replaced by ûi.

Proof of Lemma 2 Denote Sn = Sn(θ0) and si = si(θ0). Under A5, the CLT of

McLeish (1974) applies to c′si. The Cramér-Wold device then implies that
√
nSn

d−→
S ∼ N(0,ΣS). If A5 (iv) does not hold, i.e., there exists some constant vector p such

that n−1
∑n

i=1(p′si)
2 p−→ 0, let the space of all such p be spanned by a Kθ × Kp matrix

P , where Kp < Kθ. Let P⊥ be the orthogonal complement of P . As A5 (iv) holds for

P ′⊥si,
√
nP ′⊥Sn

d−→ V ∼ N(0,ΣV ). It follows that
√
nSn

d−→ S ∼ N(0,ΣS) holds with

ΣS = P⊥(P ′⊥P⊥)−1ΣV (P ′⊥P⊥)−1P ′⊥. When ui in si is replaced by ûi, as shown at the end

of the proof of Proposition 1, Sn
∣∣
ûi

= Sn + Op(n
−1) because Λ0i and f0k,i are bounded.

The Lemma follows because
√
nSn

∣∣
ûi

=
√
nSn +Op(n

−1/2). 2

Proof of Proposition 2. The first-order conditions for maximizing (9) are

Sn(θ̂)− Φ(θ̂)µ̂ = 0. (19)

Taylor-expanding Sn(θ̂) and φ(θ̂) = 0 at θ0, we have

Jn(θ̄)(θ̂ − θ0)− Φ(θ̂)µ̂ = −Sn(θ0),

Φ(θ̄)′(θ̂ − θ0) = 0, (20)

where θ̄ is a point between θ0 and θ̂. Denote Φ0 = Φ(θ0), Φ̄ = Φ(θ̄), Φ̂ = Φ(θ̂), Sn =

Sn(θ0), Ŝn = Sn(θ̂), and J̄n = Jn(θ̄). As Φ̄⊥(Φ̄′⊥Φ̄⊥)−1Φ̄′⊥ + Φ̄(Φ̄′Φ̄)−1Φ̄′ = IKθ and

(θ̂ − θ0) = Φ̄⊥(Φ̄′⊥Φ̄⊥)−1Φ̄′⊥(θ̂ − θ0), the first equation in (20) can be written as

Φ̄′⊥(θ̂ − θ0) = (Φ̄′⊥Φ̄⊥)(Φ̄′⊥J̄nΦ̄⊥)−1Φ̄′⊥(Φ̂µ̂− Sn).
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Solving the above equation together with the second equation in (20) gives

(θ̂ − θ0) = Φ̄⊥(Φ̄′⊥J̄nΦ̄⊥)−1Φ̄′⊥(Φ̂µ̂− Sn)

= Φ̄⊥(Φ̄′⊥J̄nΦ̄⊥)−1Φ̄′⊥[Φ̂(Φ̂′Φ̂)−1Φ̂′Ŝn − Sn]

because, from (19), µ̂ = (Φ̂′Φ̂)−1Φ̂′Ŝn. Using Φ̂(Φ̂′Φ̂)−1Φ̂′ + Φ̂⊥(Φ̂′⊥Φ̂⊥)−1Φ̂′⊥ = IKθ and

Ŝn = Sn + J̄n(θ̂ − θ), we find

(θ̂ − θ0) = −[I − ψ]−1Φ̄⊥(Φ̄′⊥J̄nΦ̄⊥)−1Φ̄′⊥[Φ̂⊥(Φ̂′⊥Φ̂⊥)−1Φ̂′⊥Sn],

where ψ = Φ̄⊥(Φ̄′⊥J̄nΦ̄⊥)−1Φ̄′⊥[Φ̂(Φ̂′Φ̂)−1Φ̂′J̄n]. As n → ∞, Φ̄
p−→ Φ0, Φ̂

p−→ Φ0, Φ̄⊥
p−→ Φ0⊥,

Φ̂⊥
p−→ Φ0⊥, ψ

p−→ 0, and J̄n
p−→ J0. Using Lemma 2 and the continuous mapping theorem,

these results imply Proposition 2.

It remains to prove the alternative expression for Σθ below Proposition 2. If J0 is

invertible, the following result is implied by Lemma 3 below. Because Φ0 is of full column

rank, (20) can be solved for (θ̂ − θ0) and µ̂,

(θ̂ − θ0) = −
[
J̄−1
n − J̄−1

n Φ̂(Φ̄′J̄−1
n Φ̂)−1Φ̄′J̄−1

n

]
Sn, µ̂ = (Φ̄′J̄−1

n Φ̂)−1Φ̄′J̄−1
n Sn,

which lead to the alternative expression for Σθ below Proposition 2. 2

Lemma 3. Suppose that J is invertible. If U satisfy Φ′⊥JU = Φ′⊥ and Φ′U = 0, then

U = Φ⊥(Φ′⊥JΦ⊥)−1Φ′⊥. 2

Proof of Lemma 3 We only need to note that Φ′⊥J

Φ′

U =

 Φ′⊥

0

 and

 Φ′⊥J

Φ′

−1

= [Φ⊥(Φ′⊥JΦ⊥)−1, J−1Φ(Φ′J−1Φ)−1].

2

A.5 Proof of Proposition 3

We again prove an intermediate result before turning to the proof of Proposition 3.

Lemma 4. Suppose that the assumptions of Proposition 2 hold. Then the space spanned

by the columns of Â′2 is consitent for the space spanned by the columns of A′02 in the sense

that

A01Ω0Â
′
2

p−→ 0 and A02Ω0Â
′
2

p−→ R,

where R is an orthogonal (K − r) × (K − r) matrix. This result also holds when Ω0 is

replaced by Ω̂. 2
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Proof of Lemma 4

As defined in Section 3, Â′2 = Qr[ρ̂2, . . . , ρ̂K−r+1] consists of the eigenvectors associated

with the K − r largest eigenvalues in the system

(Q′rΨr,nQr − µIK−r+1)ρ = 0,

where Ψr,n = n−1
∑n

i−1 uiu
′
i(σ̂
−2
r,i − 1) and σ̂2

r,i is σ2
r,i evaluated at β̂r. These eigenvalues

(being continuous functions of Ψr,n) converge in probability to the largest K−r (positive)

eigenvalues in

Q′0rB0

[
E
(
H0i(σ

−2
0r,i − 1)

)
− µIK

]
B′0Q0rρ = 0.

The associated eigenvectors satisfy B′0Q0r[ρ2, . . . , ρK−r+1] = [0, R]′, for some orthogonal

(K − r) × (K − r) matrix R. Hence the space spanned by the columns of Â′2 converges

in probability to the space spanned by Q0r[ρ2, . . . , ρK−r+1] = A′02R in that A01Ω0Â
′
2

p−→ 0

and A02Ω0Â
′
2

p−→ R, although each column of Â2 does not converge to a particular column

of A′02. The last statement of the lemma holds because Ω̂
p−→ Ω0. 2

Proof of Proposition 3

As IK = A′02A02Ω0 + A′01A01Ω0, we may write

Â′2 = A′02A02Ω0Â
′
2 + A′01A01Ω0Â

′
2 ≡ A′02d̂2 + A′01d̂1.

Lemma 4 shows that d̂2
p−→ R is invertible. This leads to Â′2d̂

−1
2 − A′02 = A′01d̂1d̂

−1
2 . Since

0 = Â1Ω̂Â′2 = Â1Ω̂A′02d̂2 + Â1Ω̂A′01d̂1, the Proposition 3 follows from

d̂1d̂
−1
2 = −(Â1Ω̂A′01)−1Â1Ω̂A′02 = −(Â1Ω̂A′01)−1

[
(Â1 − A01)Ω̂ + A01(Ω̂− Ω0)

]
A′02,

where A01Ω0A
′
02 = 0 is used, and the result that both

√
n(Â1−A01) and

√
n(Ω̂−Ω0) are

asymptotically normal under the stated assumptions. This result also holds when ui is

replaced by ûi in computing Ω̂, as Ω̂|ûi = Ω̂ +Op(n
−1). 2

A.6 Proof of Proposition 4

Proposition 4 holds because
√
n vec(Ĉ ′1 − C ′01) can be expressed as

√
n vec(Ĉ ′1 − C ′01) = T

√
n[(θ̂ − θ0)′, vec(D̂′ −D′0)′]′ + op(1).

Further, the asymptotic covariance matrix of
√
n vec(D̂′ −D′0) is clearly the probability

limit of the covariance matrix ofIK ⊗( 1

n

n∑
i=1

xix
′
i

)−1
 1√

n

n∑
i=1

vec(xiu
′
i),
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while the asymptotic covariance matrix of
√
n(θ̂ − θ0) is equivalent to the covariance

matrix of

Φ0⊥(Φ′0⊥J0Φ0⊥)−1Φ′0⊥
1√
n

n∑
i=1

si(θ0).

Hence, as vec(xiu
′
i) = ui ⊗ xi, the joint covariance matrix is found to be

Σ =

 Σθ ΣθD

Σ′θD ΣD

 ,
where Σθ is defined in Proposition 2,

ΣD =
[
IK ⊗ E(xix

′
i)
−1
]
E(uiu

′
i ⊗ xix′i)

[
IK ⊗ E(xix

′
i)
−1
]
,

and

ΣθD = Φ0⊥(Φ′0⊥J0Φ0⊥)−1Φ′0⊥

[
E
(
si(θ̂)vec(xiu

′
i)
)][

IK ⊗ E(xix
′
i)
−1
]
,

which lead to the estimator of Σ in (12). 2

A.7 Proof of Proposition 5

Let β̂k(a) = arg maxβk `k,n(βk, a) and define

Jn(βk, a) = − ∂2`k,n
∂βk∂β′k

=
1

n

n∑
i=1

[(
1− σ−2

k,i a
′uiu

′
ia
)∂fk,i
∂β′k

+ σ−2
k,i a

′uiu
′
iafk,if

′
k,i

]
,

where a ∈ Πk. To use the distribution theory given by Hansen (1996) and Andrews and

Ploberger (1995), we need to verify the following five results:

(i) β̂k(a)
p−→ βH0 uniformly in Π0k;

(ii) Jn(βk, a)
p−→ J0(βk, a) that is uniformly continuous in NβH0

× Π0k;

(iii) Vn(βk, a)
p−→ V0(βk, a) that is uniformly continuous in NβH0

× Π0k;

(iv) J0(βH0 , a) and V0(βH0 , a) are uniformly positive definite in Π0k;

(v)
√
nSn(βH0 , a)⇒ S(a) on a ∈ Π0k.

By B1, the uniform WLLN applies to `k,n under H0 (see Proof of Proposition 1), i.e.,

`k,n(βk, a)
p−→ E(`k,n) = −E

[
ln(σ2

k,i) + a′B0H0iB
′
0a(σ−2

k,i − 1)
]

= −E
[

ln(σ2
k,i) + (σ−2

k,i − 1)
]
,

uniformly in NβH0
for any a ∈ Π0k. Clearly, E(`k,n) is uniquely maximized by σ2

0k,i = 1 or

βk = βH0 . Hence β̂k(a)
p−→ βH0 for any a ∈ Π0k. Since Π0k is compact, this convergence is

uniform, i.e., supak∈Πk
‖β̂k(a)− βH0‖

p−→ 0, which verifies (i).
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To verify (ii), (iii), and (iv), let J(i) be the ith summand of Jn(βk, a), and similarly V(i).

It can be seen that both are bounded by quantities with finite means, because by B2,∥∥J(i)

∥∥ =

∥∥∥∥(1− σ−2
k,i a

′uiu
′
ia
)∂fk,i
∂β′k

+ σ−2
k,i a

′uiu
′
iafk,if

′
k,i

∥∥∥∥ ,
≤

[
1 +mau

′
iui exp(g(zi))

]
g2(zi) +mau

′
iui exp(g(zi))g1(zi),∥∥V(i)

∥∥ =
∥∥(1− σ−2

k,i a
′uiu

′
ia
)2
fk,if

′
k,i

∥∥
≤

[
1 + 2mau

′
iui exp(g(zi)) +m2

a(u
′
iui)

2 exp(2g(zi))
]
g1(zi),

where ma = maxa∈Π0k
‖a‖2. Hence, the uniform WLLN of Newey and McFadden (1994)

applies:

Jn(βk, a)
p−→ J0(βk, a) = E

[(
1− σ−2

k,i a
′B0H0iB

′
0a
)∂fk,i
∂β′k

+ σ−2
k,i a

′B0H0iB
′
0afk,if

′
k,i

]
= E

[(
1− σ−2

k,i

)∂fk,i
∂β′k

+ σ−2
k,i fk,if

′
k,i

]
,

Vn(βk, a)
p−→ V0(βk, a) = E

[(
1− σ−2

k,i a
′uiu

′
ia
)2
fk,if

′
k,i

]
= E

[(
1 + σ−4

k,i (ρ
′ε

(r0+1:K)
i )4 − 2σ−2

k,i (ρ
′ε

(r0+1:K)
i )2

)
fk,if

′
k,i

]
,

uniformly in NβH0
× Π0k, where ρ′ρ = 1. Clearly, J0(βk, a) and V0(βk, a) are uniformly

continuous. J0(βH0 , a) = E(f0k,if
′
0k,i) and V0(βH0 , a) = E

[(
(ρ′ε

(r0+1:K)
i )4 − 1

)
f0k,if

′
0k,i

]
are

uniformly positive definite in Π0k under B2.

To verify (v), we need to show that
√
nSn(βH0 , a) obeys the CLT for any a ∈ Π0k and

that
√
nSn(βH0 , a) is stochastically equicontinuous in a. Under H0 (σ2

0k = 1) and at θ0,

Sn(βH0 , a) =
1

n

n∑
i=1

(
1− ρ′A02uiu

′
iA
′
02ρ
)
f0k,i

=
1

n

n∑
i=1

ρ′
(
IK−r0 − ε

(r0+1:K)
i ε

(r0+1:K)′
i

)
ρf0k,i

and E Sn(βH0 , a) = 0 as E
(
ε

(r0+1:K)
i ε

(r0+1:K)′
i

∣∣Wi

)
= IK−r0 . The CLT of McLeish (1974)

applies to
√
nSn(βH0 , a) for any a ∈ Π0k by B3. Let the matrix νi = [νjl,i] = IK−r0 −

ε
(r0+1:K)
i ε

(r0+1:K)′
i . For a, b ∈ Π0k, we write a = A′02ρ, b = A′02% and

Sn(βH0 , b)− Sn(βH0 , a) =

K−r0∑
j=1

K−r0∑
l=1

1

n

n∑
i=1

νjl,if0,i(%j + ρj)(%l − ρl).
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It follows that

sup
‖%−ρ‖<ϕ

∥∥√n(Sn(βH0 , b)− Sn(βH0 , a)
)∥∥

≤ sup
‖%−ρ‖<ϕ

K−r0∑
j=1

K−r0∑
l=1

∥∥∥∥∥ 1√
n

n∑
i=1

νjl,if0,i

∥∥∥∥∥ |%j + ρj| · |%l − ρl|

≤
K−r0∑
j=1

K−r0∑
l=1

∥∥∥∥∥ 1√
n

n∑
i=1

νjl,if0,i

∥∥∥∥∥ 2ϕ.

Then, for any τ > 0 and ζ > 0, there exists a ϕ > 0 such that

lim sup
n→∞

P

(
sup

‖%−ρ‖<ϕ

∥∥√n(Sn(βH0 , b)− Sn(βH0 , a)
)∥∥ > ζ

)

≤ lim sup
n→∞

P

(
K−r0∑
j=1

K−r0∑
l=1

∥∥∥∥∥ 1√
n

n∑
i=1

νjl,if0,i

∥∥∥∥∥ > ζ

2ϕ

)
< τ,

as n−1/2
∑n

i=1 νjl,if0,i converges in distribution and is hence uniformly tight. This ver-

ifies that
√
nSn(βH0 , a) is stochastically equicontinuous in Π0k and, consequently, that

√
nSn(βH0 , a) ⇒ S(a), a zero-mean Gaussian process on Π0k (see Andrews (1994), p.

2251).

Furthermore, a Taylor expansion of Sn(β̂k(a), a) at βH0 gives

√
n(β̂k(a)− βH0) = −Jn(β̄k(a), a)−1

√
nSn(βH0 , a)⇒ −J0(βH0 , a)−1S(a),

where β̄k(a) is a point between β̂k(a) and βH0 . The Taylor expansion of `k,n
(
β̂k(a), a

)
−

`k,n(βH0 , a) at β̂(a) leads to

n`k,n(β̂k(a), a) =
n

2

(
β̂k(a)− βH0

)′
Jn
(
β̄k(a), a

)(
β̂k(a)− βH0

)
⇒ 1

2
S(a)′J0(βH0 , a)−1S(a),

which delivers the results in (a)-(c) of Proposition 5. Moreover, Proposition 5 (d)-(e)

follow from the continuous mapping theorem.

To show that the impact of using ûi instead of ui is negligible, let Ŝn be the version of

Sn(βk, a) using ûi, similarly Ĵn and V̂n. B4 and the fact that ûi = ui + (D0− D̂)xi lead to

‖
√
n
(
Ŝn − Sn(βk, a)

)
‖ = Op(n

−1/2), ‖Ĵn − Jn(βk, a)‖ = Op(n
−1), and ‖V̂n − Vn(βk, a)‖ =

Op(n
−1) uniformly over NβH0

× Π0k, which concludes the proof of Proposition 5. 2

A.8 Proof of Proposition 6

Under both H0 and H1, Proposition 3 implies

Â2ui = (d̂′2A02 + d̂′1A01)ui = d̂′2ε
(2)
i + d̂′1ε

(1)
i ,
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where d̂2 converges in probability to an orthogonal matrix R and d̂1 = Op(n
−1/2). Then,

Â2uiu
′
iÂ
′
2 = d̂′2ε

(2)
i ε

(2)′
i d̂2 + d̂′2ε

(2)
i ε

(1)′
i d̂1 + d̂′1ε

(1)
i ε

(2)′
i d̂2 + d̂′1ε

(1)
i ε

(1)′
i d̂1

holds, which leads to

ξ̂i = D+
τ vec(Â2uiu

′
iÂ
′
2)

= D+
τ (d̂′2 ⊗ d̂′2)Dτξi

+D+
τ (d̂′1 ⊗ d̂′2)vec(ε

(2)
i ε

(1)′
i ) + D+

τ (d̂′2 ⊗ d̂′1)vec(ε
(1)
i ε

(2)′
i ) + D+

τ (d̂′1 ⊗ d̂′1)vec(ε
(1)
i ε

(1)′
i ).

It follows that, with Mn = D+
τ (d̂′2 ⊗ d̂′2)Dτ and Z ′i = [1, w′i],

n∑
i=1

ξ̂iZ
′
i = Mn

n∑
i=1

ξiZ
′
i +Op(1)

since E(ε
(2)
i ε

(1)′
i

∣∣Wi) = 0 and the CLT applies to vec
(
vec(ε

(1)
i ε

(2)′
i )Z ′i

)
. Under both H0 and

H1, the feasible OLS estimator can then be expressed as

[α̂0, α̂1] = Mn

( n∑
i=1

ξiZ
′
i

)( n∑
i=1

ZiZ
′
i

)−1

+Op(n
−1). (21)

Under H0,

[α̂0, α̂1]−Mn[α0, 0] = Mn

( n∑
i=1

ζiZ
′
i

)( n∑
i=1

ZiZ
′
i

)−1

+Op(n
−1).

Because the CLT applies to ζiZ
′
i, the asymptotic distribution in Proposition 6 (a) is

verified, i.e.,
√
n vec

(
[α̂0, α̂1]−Mn[α0, 0]

)
d−→ N(0, Vα),

where Vα = V −1
Z ⊗M0VζM

′
0, Vζ = var(ζi), VZ = E(ZiZ

′
i), and M0 is the probability limit

of Mn. Since ξ̂i − Mnξi = Op(n
−1/2), ζ̂i = Mnζi + (ξ̂i − Mnξi) + (Mnα − α̂)Zi, and

ζ̂iζ̂
′
i = Mnζiζ

′
iM
′
n +Op(n

−1/2), we find

V̂α =
( 1

n

n∑
i=1

ZiZ
′
i

)−1

⊗
( 1

n

n∑
i=1

ζ̂iζ̂
′
i

)
p−→ V −1

Z ⊗M0VζM
′
0

as claimed in Proposition 6 (b). The results in Proposition 6 (c) follow directly from (a)

and (b). Under H1, applying the WLLN to (21) implies the result in Proposition 6 (d),

where α = E(ξiZ
′
i)E(ZiZ

′
i)
−1. Under H1, the residual can be written as

ζ̂i = Mn(ξi − αZi) + (ξ̂i −Mnξi) + (Mnα− α̂)Zi = Mn(ξi − αZi) + op(1).
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Using the WLLN and noting the values of α0 and α1, we verify Proposition 6 (e),

1

n

n∑
i=1

ζ̂iζ̂
′
i =

1

n

n∑
i=1

Mn(ξi − αZi)(ξi − αZi)′M ′
n + op(1)

p−→M0(Vξ − Cξ,wV −1
w C ′ξ,w)M ′

0.

The results in Proposition 6 (f) follow from (d) and that the matrix in Proposition 6 (e)

is invertible.

To assess the effect of using ûi, let ξ̄i = vech(Â2ûiû
′
iÂ
′
2). It holds that

ξ̄i = ξ̂i + D+
τ (Â2Ḋ ⊗ Â2)vec(uix

′
i) + D+

τ (Â2 ⊗ Â2Ḋ)vec(xiu
′
i)

+D+
τ (Â2Ḋ ⊗ Â2Ḋ)vec(xix

′
i),

where Ḋ = D0−D̂ = Op(n
−1/2). Because a CLT applies to vec

(
vec(uix

′
i)Z
′
i

)
and a WLLN

applies to vec(xix
′
i)Z
′
i, we have

n∑
i=1

ξ̄iZ
′
i =

n∑
i=1

ξ̂iZ
′
i +Op(1) = Mn

n∑
i=1

ξiZ
′
i +Op(1),

i.e.,
∑n

i=1 ξ̄iZ
′
i is asymptotically equivalent to

∑n
i=1 ξ̂iZ

′
i, which proves the last statement

of Proposition 6. 2
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