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Abstract

I propose a method of moments estimator of revealed comparative advantage based on a

flexible specification of trade flows that is consistent with a large class of gravity models of

international trade. I show that this estimator has many desirable properties. It is theoretically

consistent with the classical notion of Ricardian comparative advantage and is easily computed,

even for very large samples. Statistical inference is straightforward, and it is closely related to a

commonly-used estimator in the gravity literature that is known to be robust to various forms

of heteroskedasticity and measurement error common to trade data.
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1 Introduction

The Ricardian model of international trade is perhaps the most influential and celebrated theory

in the discipline of economics. However, it has been employed in empirical analyses with mixed

success.1 Meanwhile, gravity models have been an important empirical tool since Tinbergen (1962),

but only more recently were they underpinned by rigourous theoretical foundations.2 In this paper,

I propose a simple method of moments estimator of “revealed comparative advantage” (RCA) that

is consistent with a wide range of structural multi-sector and product-level gravity models and

with the classical Ricardian defintion of comparative advantage. This estimator has a number

of desirable properties which make it a useful complement to the regression-based estimator of

Costinot et al. (2012) and the simple but atheoretic RCA indexes following Balassa (1965).

2 Specification

A large class of trade models imply that sectoral bilateral trade flows follow a gravity equation.3

In keeping with this literature, I make the following assumption:

Assumption 1. Bilateral trade flows of product k to destination n from source i take the following

form:

E[Xnik] = ψik · φ̃nk · d−ηnik, (1)

where ψik and φ̃nk represent exporter-product- and importer-product-specific variables, dnik > 1 is

an “iceberg” trade cost, and η is the elasticity of trade flows with respect to trade costs.

This specification allows Xnik to be observed with error, either due to measurement errors or

unobserved shocks to bilateral trade flows.4

French (forthcoming) shows that, in a class of models consistent with (1), ψki constitutes a

measure of RCA in that
P̄ik
P̄ik′

<
P̄i′k
P̄i′k′

⇐⇒ ψik
ψik′

>
ψi′k
ψi′k′

,

where P̄ik is the autarky price of good k in country i. In words, whether country i has a comparative

advantage in producing product k, compared to country i′ and product k′, according to the classical

Ricardian definition, is determined by its relative value of ψik. Thus, a valid estimator for these

parameters is a theoretically-consistent indicator of RCA.

As specified, the parameters of (1) cannot be uniquely identified without imposing some addi-

tional structure on the form of trade costs. In the gravity literature, trade costs are often taken vary

only bilaterally (dnik = dni) and are parameterized as a function of observable variables, such as

1See Costinot et al. (2012) for a discussion of the empirical applications of Ricardian theory.
2See Head and Mayer (2014) a review of history of gravity models.
3See Anderson and van Wincoop (2004) for a rigourous development of the economic theory of gravity and

Anderson (2011) and Head and Mayer (2014) for summaries of recent developments in the literature.
4Note that these shocks do not include unobserved trade costs, which Egger and Nigai (2015) point out may cause

ψik and φ̃nk to be endogenous.
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bilateral distance and indicators for a shared border, common language, etc. I take a less restrictive

approach and make the following assumption:

Assumption 2. Trade costs can be separated into a bilateral component and an importer-product-

specific component:

dkni = dnidnk, ∀n 6= i. (2)

The first component captures all country-pair-specific trade costs, including the effects of most

variables included in a typical gravity estimation. The second component captures product-specific

trade barriers in each import market, such as customs requirements and import tariffs. While (2) is

unlikely to hold precisely in the data, it is reasonable to suggest that it captures the vast majority

of variation in trade costs across countries and products. It is much less restrictive than is typically

assumed in gravity estimations, and it is consistent with the Most Favored Nation principle of the

World Trade Organization regarding import tariffs.5

Together, assumptions 1 and 2 imply that trade flows of product k are given by

E[Xnik] = ψik · φnk · δni, ∀n 6= i, (3)

where φnk = φ̃nkd
−θ
nk and δni = d−θni .

3 A Method of Moments Estimator

The form of (3) suggests an intuitive method of moments estimator based on the the moment

condition E[Xnik − ψikφnkδni] = 0, which implies the following sample moment conditions:

m̄ik ≡
1

N − 1

∑
n6=i

(
Xnik − ψ̂ikφ̂nkδ̂ni

)
= 0, ∀i, k

m̄nk ≡
1

N − 1

N∑
i 6=n

(
Xnik − ψ̂ikφ̂nkδ̂ni

)
= 0, ∀n, k

m̄ni ≡
1

K

K∑
k=1

(
Xnik − ψ̂ikφ̂nkδ̂ni

)
= 0, ∀n 6= i.

(4)

Because this estimator is exactly identified – comprising a system of J = 2NK+N(N−1) equations

and unknowns, up to 2N +K− 1 normalizations – there is a set of parameters, θ̂ = {ψ̂, φ̂, δ̂}, that

gives and exact solution to the set of J moment equations, m̄ = 0.6

5This specification does allow bilateral trade costs to be asymmetric – i.e., dni 6= din.
6It is easy to verify that, if {ψ̂k

i , φ̂
k
n, δ̂ni} is a solution to (4), then {ψ̃k

i , φ̃
k
n, δ̃ni} is also a solution to (4) if ψ̃k

i =
(αi/α

k)ψ̂k
i , φ̃k

n = (αk/αn)φ̂k
n, and δ̃ni = (αn/αi)δ̂ni, for any set of positive constants {αn}, {αi}, and {αk}.
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3.1 Relation to Gravity

I refer to the estimator defined by (4) as the “gravity-based” estimator of θ because it imposes

the same adding-up constraints as structural gravity models. To see this, note that by combining

(3) and (4), we can express the fitted values of trade flows as X̂nik = ψ̂ikφ̂nkδ̂ni, where estimated

parameter values solve the following system of equations:

ψ̂ik =
Eik∑

n 6=i φ̂nkδ̂ni
, φ̂nk =

Mnk∑
i 6=n ψ̂ikδ̂ni

, δ̂ni =
Xni∑
k ψ̂ikφ̂nk

, (5)

where Eik =
∑

n6=iXnik, Mnk =
∑

i 6=nXnik, and Xni =
∑

kXnik.
7

To make the equivalence with structural gravity clear, take the value of δni as given and define

Φnk ≡Mnk/φ̂nk and Ψik ≡ Eik/ψ̂ik. Then, we have that

X̂nik =
Eik
Ψik

Mnk

Φnk
δni,

where

Ψik =
∑
n 6=i

δniMnk

Φnk
and Φnk =

∑
i 6=n

δniMnk

Ψik

are the “multilateral resistance” terms defined by Anderson and van Wincoop (2003). Note that,

while structural gravity equations are more typically expressed in terms of output and expenditure,

rather than exports and imports, French (2017) shows that this specification is fully consistent with

structural gravity which allows for missing data on domestic trade flows.

3.2 Relation to Poisson PML

It is straightforward to show that the gravity-based estimator is identical to a Poisson pseudo-

maximum likelihood (PML) estimator with (only) importer-product, exporter-product, and importer-

exporter fixed effects. To see this, note that first-order conditions of the Poisson PML estimator

are
n∑
n=1

N∑
i=1

k∑
k=1

(
Xnik − ex

′
nikβ

)
xnik = 0. (6)

If xnik is a vector of importer-product-, exporter-product-, and importer-exporter-specific dummy

variables, then the solution to these first-order conditions is identical to θ̂. Gourieroux et al. (1984)

show that, if a solution to (6) exists, it is unique. Thus, θ̂ is the unique solution to (4). Further,

this implies that, when the dataset is not too large, this estimator can be computed by estimating

a Poisson regression with the appropriate set of dummy variables, which is straightforward using a

number of standard statistical programs.8

7This result is closely linked to the findings of Fally (2015) and Arvis and Shepherd (2013) that the Poisson PML
estimator with importer and exporter fixed effects implicitly imposes the structural gravity constraints.

8Santos Silva and Tenreyro (2011) suggest using Stata’s user-written ppml command or the glm command (and
not the poisson command).
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3.3 Relation to OLS

If, instead of (1), we assume that

E[lnXnik] = lnψik + ln φ̃nk + ln d−ηnik, (7)

the empirical moment conditions analogous to (4) are

m̄ik ≡
1

N − 1

∑
n6=i

(
lnXnik − ln ψ̂ik − ln φ̂nk − ln δ̂ni

)
= 0, ∀i, k

m̄nk ≡
1

N − 1

N∑
i 6=n

(
lnXnik − ln ψ̂ik − ln φ̂nk − ln δ̂ni

)
= 0, ∀n, k

m̄ni ≡
1

K

K∑
k=1

(
lnXnik − ln ψ̂ik − ln φ̂nk − ln δ̂ni

)
= 0, ∀n 6= i.

These moment conditions are equivalent to the normal equations associated with a linear regression

of the form

lnXnik = lnψik + lnφnk + ln δni + εnik. (8)

As a result, I refer to this as the “regression-based” estimator of θ̂. This regression is identical to

the one proposed by Costinot et al. (2012) to estimate relative productivity across countries and

industries. If (7) is correct, then (8) will provide a consistent estimate of θ.

This estimator also has the advantage of being easy to implement. Any standard statistical

software can estimate (8) as a linear regression of lnXnik on the appropriate set of dummy variables.

However, there is reason to suggest that the gravity-based estimator is weakly superior to this

regression-based estimator. Most importantly, Santos Silva and Tenreyro (2006) point out that

(7) assumes a very particular form of heteroskedasticity and that estimates of θ will be biased

if the data are inconsistent with this assumption. In addition, the log-linear specification of (8)

requires that observations with zero-valued trade flows be dropped from the estimation, leading to

sample-selection bias. In Monte Carlo experiments meant to replicate the features of international

trade data, Santos Silva and Tenreyro (2006) find that these biases are substantial. By contrast,

they find that the Poisson PML estimator performs very well in the presence of many forms of

heteroskedasticity and a large number of zeros due to rounding error.

3.4 Relation to Other Estimators

While (4) is the obvious method of moments estimator based on (3), there are many other poten-

tially valid moment conditions. For example, consider the moment condition E[(ψikφnkδni)
1−ρ ×

(Xnik − ψikφnkδni)] = 0, for a predetermined value of ρ. This is clearly valid, given that (3) holds.

Moreover, it is the optimal moment condition if V [Xnik − ψikφnkδni] ∝ (ψikφnkδni)
ρ. The method

of moments estimators based on this moment condition nest several PML estimators based on
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linear-exponential family distributions. Clearly, ρ = 1 corresponds to the gravity-based estimator

and Poisson PML. Other notable cases are ρ = 0, which corresponds to Guassian PML (nonlinear

least squares), and ρ = 2, which corresponds to gamma PML.

However, estimators based on this generalized moment condition have several drawbacks com-

pared to the gravity-based estimator. In addition to the gravity-based estimator’s consistency with

structural gravity, the fact that each of the equations of (4) is linear in all variables means that

solving this system is quite computationally efficient. This is not the case when ρ 6= 1. In addition,

Poisson PML is special in that, like OLS, it does not suffer from an incidental parameters problem

with a large number of fixed effects, meaning that consistent estimation of one parameter does not

require consistent estimation of all parameters.9 This not the case with other PML estimators. By

analogy, the gravity-based estimator is likely to have better finite-sample properties than estimators

based on this generalized moment condition.

In addition, Santos Silva and Tenreyro (2006) argue that ρ = 1 is likely to be a good assumption

regarding trade data. They argue that, because Xnik ≥ 0, its variance must approach zero as

E[Xnik] approaches zero, meaning that the optimal value of ρ is likely positive. On the other hand,

measurement error is likely more prevalent for small values of Xnik, so the estimator should not

place too much weight on small values, meaning that ρ should not be too large, and ρ = 1 is a

reasonable compromise. Santos Silva and Tenreyro (2006) also perform a series of Monte Carlo

experiments to evaluate the relative performance of these PML estimators and find Poisson PML

to be the most robust under various forms of heteroskedasticity and measurement error.

It is worth noting that, because θ is exactly identified by these estimators, it is not possible to

estimate ρ without adding additional moment conditions. However, for those interested in testing

whether a particular value of ρ is appropriate, the guidance provided by Head and Mayer (2014)

regarding PML estimators is relevant to the generalized gravity-based estimator. To summarize,

they find that the Park-type tests proposed by Manning and Mullahy (2001) and applied by Santos

Silva and Tenreyro (2006) to be useful indicators (though not robust estimators) of the optimal

value of ρ. They also suggest that gamma PML (ρ = 2), along with the analogue of the regression-

based estimator, be used as a robustness test for the Poisson PML estimator (ρ = 1).

4 Statistical Inference

Because the gravity-based estimator is a standard method of moments estimator, statistical infer-

ence based on the estimates is also standard. The standard estimator for the asymptotic variance

of θ̂, assuming that observations are independent over (n, i, k), is

V̂ [θ̂] =
1

N2K
Ĝ
−1
ŜĜ

′
,

9Fernández-Val and Weidner (2016) show this for Poisson PML with two-way fixed effects.
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where

Ĝ =
∂m̄

∂θ′
,

where m̄ is the set of moment equations, and

Ŝ =
1

N2K

∑
n,i,k

m̄nikm̄
′
nik,

where m̄nik is the J × 1 vector of the contribution of observation (n, i, k) to m̄.

However, with international trade data, the independence assumption is a strong one. In partic-

ular, it is likely that errors are clustered for trade flows to or from a common country. As a result,

an appropriate cluster-robust covariance matrix should be estimated. This can done by replacing

Ŝ by

Ŝclus =
1

N2K

∑
n,i,k

∑
n′,i′,k′

m̄nikm̄
′
n′i′k′1

[
(n, i, k) and (n′, i′, k′) share any cluster

]
,

where 1[·] is the indicator function.10

5 Practical Considerations

Several practical considerations are likely to be of interest in applications using the gravity-based

estimator defined by (4). In particular, I discuss a straightforward method for computing θ̂ and

a method which ameliorates the technical difficulty of statistical inference for large sample sizes.

I also propose a simple statistic that tests for comparative advantage, and I discuss a method for

identifying dnk when data on domestic trade flows are available.

5.1 A General Solution Algorithm

For large numbers of countries and products, it is not computationally feasible to implement the

gravity-based estimator via Poisson regression with dummy variables. It turns out that the gravity-

like structure of the estimator provides simple and effective alternative. We have already seen that

θ̂ is the solution to (5). Because we know that this solution is unique, we can solve for θ̂ by iterating

on these equations until convergence.11

Algorithms such as this have a long history in various literatures. For example, this algorithm

is analogous to the “zig-zag” algorithm proposed by Heckman and Macurdy (1980) in the context

of a fixed-effects Probit. It is also a generalization of the solution algorithm for the gravity model of

Anderson and van Wincoop (2003), where δni is treated as an unknown, rather than being taken as

given. It is extremely simple to implement, requiring only matrix multiplication and element-wise

10See Cameron and Miller (2015) for a recent survey of the literature on cluster-robust inference.
11While it is beyond the scope of this paper to prove that convergence is guaranteed, in practice the system appears

always to converge monotonically to θ̂.
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division, and while convergence may take many iterations, each iteration is very computationally

efficient so that convergence can be achieved quickly and with minimal memory requirements.

Extending this algorithm to the regression-based estimator yields exactly the iterative solu-

tion for OLS employed by Guimarães and Portugal (2010). Despite the similarity between the

two solution algorithms, computation of the regression-based estimator is much slower in practice.

This is because the regression-based estimator drops zero-valued trade flows, leading to an unbal-

anced sample. This means that standard matrix operations cannot be employed, increasing the

computation time considerably.

5.2 Bootstrapped Cluster-Robust Standard Errors

While it is straightforward to compute θ̂ for large samples, it may be infeasible to compute the

J ×J matrices Ĝ, Ŝ, and V̂ (θ̂). One solution is to employ the pairs cluster bootstrap discussed by

Cameron and Miller (2015). This approach allows the elements of interest of V̂ to be computed

without needing to construct Ĝ. It does require that (5) be solved many times. However, because

this can be done relatively quickly, especially once θ̂ has been found and can be used as a starting

value, the additional computational burden is not prohibitive.

Because trade data typically take the form of a balanced sample, it is particularly straightfor-

ward to use a two-way cluster by both importer and exporter using the following procedure:

1. Draw N importers and N exporters, with replacement.

2. Construct the sample of trade flows, Xn∗i∗k, where n∗ and i∗ are the nth importer and ith

exporter drawn.

3. Compute θ̂b by solving (5) for the constructed sample.

4. Repeats steps 1-3 for b = 1, ..., B.

Then, compute the elements of interest of V̂ as

V̂ jj′ =
1

Njj′

B∑
b=1

(θ̂bj −
¯̂
θbj)(θ̂

b
j′ −

¯̂
θbj′)1[θ̂bj and θ̂bj′ both identified in sample b],

where Njj′ =
∑B

b=1 1[θ̂bj and θ̂bj′ both identified in sample b].

Cameron and Miller (2015) recommend using B = 400. However, because all countries do not

appear in each bootstrap sample, a larger B may be warranted. A parameter involving country i will

be estimated in a given sample with probability 1− (1−N−1)N , which converges to 1− e−1 ≈ 0.63

as N becomes large. Thus, when computing the diagonal elements of V̂ , B = 650 > 400/0.63

should be sufficient for any N . Some of the off-diagonal elements of V̂ are estimated less precisely

because a bootstrap sample is only informative if both countries are sampled. Therefore, an even

larger B may be warranted if one or more of these elements is needed. The probability of sampling
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two different countries in a given sample converges to (1 − e−1)2 ≈ 0.4, so B = 1, 000 = 400/0.4

should be sufficient for any N .

One advantage of the bootstrap approach is that, once the bootstrap procedure has been run,

each element of V̂ can be calculated without re-running the bootstrap. Thus, the bootstrap can

be performed at the time of estimation and the results saved so that the relevant elements of V̂

can be calculated as necessary for any statistical test conducted in the future.

5.3 Testing for Comparative Advantage

Testing whether a country has a comparative advantage for a particular product, vis-à-vis a refer-

ence product and country can be done by testing the following null hypothesis:

H0 :
ψik
ψi′k
− ψik′

ψi′k′
= 0.

It is tempting to perform a standard Wald test of this hypothesis, but this is potentially prob-

lematic because the Wald test is not invariant to algebraically equivalent specifications of the null

hypothesis, meaning it could lead to contradictory conclusions. Other tests, such as likelihood ratio

and Lagrange multiplier tests, do not suffer from this issue but are not straightforward to compute

for the gravity-based estimator because they require estimating restricted versions of the empirical

model.

A reasonable compromise is to estimate V̂ based on the logged values of the model parameters.

Then, it is straightforward to perform a Wald test of the linear restriction

H0 : (lnψik − lnψi′k)− (lnψik′ − lnψi′k′) = 0.

This calculation is simple when done as part of the pairs cluster bootstrap.

5.4 Identifying Border Costs

One appealing feature of the gravity-based estimator is that it does not require data on domestic

trade flows, Xnnk, to identify θ. This is important because such data are typically available for

many fewer countries and at much higher levels of aggregation than are international trade data.

However, if such data are available, then it is also possible to identify the effect of border costs,

d−θnk , which may be of interest in certain applications.

If we assume that dnnk = dnn, for all k, then given estimates of ψ̂ik and φ̂nk, based on (4), the

gravity-based estimator for border costs is

d̂−θnk =
ψ̂nkφ̂nkδ̂nn
Xnnk

,

where δ̂nn = Xnn

/∑
k ψ̂nkφ̂nk .

9



If domestic trade data are available only at a higher level of aggregation than international

trade data, it is not possible to identify d−θnk , but it is possible to identify an index of these border

costs. Suppose that data on domestic trade flows are available for sector j, which includes products

k = 1, ...,Kj . Then, the following index of d−θnk is identified:

d̂−θnj =
δ̂nn
Xnnj

Kj∑
k=1

ψ̂nkφ̂nk,

where Xnnj =
∑Kj

k=1Xnnk. French (2017) shows that, because the values of ψ̂nk and φ̂nk do not

depend on dnk in (5), d̂−θnj can be interpreted as the hypothetical uniform value of d̂−θnk for which

predicted sector-level domestic trade flows equal their values in data, when product-level imports

and exports, Mnk and Eik, are held constant.

6 Conclusion

This paper proposes a gravity-based method of moments RCA estimator. This estimator has

a number of desirable properties: (1) it is theoretically consistent with the classical notion of

Ricardian comparative advantage, (2) it is consistent with structural gravity models, (3) its relation

to Poisson PML implies that it has the same robustness properties, and (4) it is easy to compute

the parameter estimates and conduct statistical inference. This suggests that the gravity-based

estimator meets the necessary requirements to be a workhorse estimator of RCA.
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Guimarães, Paulo and Pedro Portugal (2010), “A Simple Geasible Procedure to Fit Models with

High-Dimensional Fixed Effects,” Stata Journal, 10 (4), 628–649(22).

11



Head, Keith and Thierry Mayer (2014), “Gravity Equations: Workhorse, Toolkit, and Cookbook,”

in Gita Gopinath, Elhanan Helpman, and Kenneth Rogoff (Eds.), Handbook of International

Economics, Vol. 4, Elsevier, 131–195.

Heckman, James J. and Thomas E. Macurdy (1980), “A Life Cycle Model of Female Labour

Supply,” The Review of Economic Studies, 47 (1), 47–74.

Manning, Willard G and John Mullahy (2001), “Estimating log models: to transform or not to

transform?” Journal of Health Economics, 20 (4), 461–494.

Santos Silva, J. M. C. and Silvana Tenreyro (2006), “The Log of Gravity,” The Review of Economics

and Statistics, 88 (4), pp. 641–658.

(2011), “poisson: Some convergence issues,” Stata Journal, 11 (2), 207–212(6).

Tinbergen, Jan (1962), Shaping the World Economy: Suggestions for an International Economic

Policy, New York, Twentieth Century Fund.

12


	SSRN cover page - 2017-05 - French
	Scott's Paper

