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Abstract

Over the years, a large number of indexes of technological inefficiency have
been specified, and a spate of papers has examined the properties satisfied
by these indexes. This paper approaches the subject more synthetically,
presenting generic results on classes of indexes and their properties. In par-
ticular, we consider a broad class of indexes containing almost all known
indexes and a partition of this class into two subsets, slacks-based indexes
and path-based indexes. Slacks-based indexes are expressed in terms of addi-
tive or multiplicative slacks for all inputs and outputs, and particular indexes
are generated by specifying the form of aggregation over the coordinate-wise
slacks. Path-based indexes are expressed in terms of a common contrac-
tion/expansion factor, and particular indexes are generated by specifying the
form of the path to the frontier of the technology. Owing to an impossibility
result in one of our earlier papers, we know that the set of all inefficiency
indexes can be partitioned into three subsets: those that satisfy continuity
(in quantities and technologies) and violate indication (equal to some spec-
ified value if and only if the quantity vector is efficient), those that satisfy
indication and violate continuity, and those that satisfy neither. We prove
two generic theorems establishing the equivalence of these two partitions: all
slacks-based indexes satisfy indication and hence violate continuity, and all
path-based indexes satisfy continuity and hence violate indication. We also
discuss the few indexes that do not belong to either of these two sets. Our
hope is that these results will help guide decisions about specification of the
form of efficiency indexes used in empirical analysis.

Keywords: Efficiency Indexes, Inefficiency Indexes, Specification.

JEL Classification Codes: C6, D2.



1 Introductory Remarks.

Over the years, a large number of indexes of technological inefficiency (or,
equivalently, technological efficiency) have been specified, and a spate of pa-
pers has examined the properties, or axioms, satisfied by these indexes. Rus-
sell and Schworm [19] carried out a systematic analysis, axiom by axiom and
specification by specification. Their theorems suggest, however, a more syn-
thetic structure and the possibility of generic results on classes of indexes
and their properties. The purpose of the present paper is to present such
results. In particular, we consider a broad class of indexes containing almost
all known indexes and a partition of this class into two subsets, which we
term “slacks-based indexes” and “path-based indexes”. Slacks-based indexes
are expressed in terms of additive or multiplicative slacks for all inputs and
outputs, and particular indexes are generated by specifying the form of ag-
gregation over the coordinate-wise slacks. Path-based indexes are expressed
in terms of a path between a production vector and the boundary of the
technology, and particular indexes are generated by specifying the form of
the path.

Owing to an impossibility result of Russell and Schworm [19], we know that
the set of all inefficiency indexes can be partitioned into three subsets: those
that satisfy continuity (in quantities and technologies) and violate indication
(equal to some specified value if and only if the quantity vector is efficient),
those that satisfy indication and violate continuity, and those that satisfy
neither indication nor continuity. Abstracting from the indexes satisfying
neither axiom, we prove a generic theorem showing the equivalence of these
two taxonomies—i.e., showing that slacks-based indexes satisfy indication
and hence violate continuity and path-based indexes satisfy continuity and
hence violate indication. In our concluding remarks, we discuss briefly the
few indexes that do not belong to either of these two sets.

2 Technology Sets and Efficiency.

The 〈input, output〉 production vector 〈x, y〉 ∈ Rn+m
+ is constrained to lie

in a technology set T ⊂ Rn+m
+ . The output possibility set for input x is

P (x) =
{
y ∈ Rm

+ | 〈x, y〉 ∈ T
}

. Denote the origin of Rn+m
+ by 0[n+m] =

〈0[n], 0[m]〉 and the (upper) frontier of T by ∂(T ). The inputs are indexed by
i = 1, . . . , n, and outputs are indexed by j = 1 . . . ,m.

We consider the collection of non-empty, closed technology sets, T , that
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satisfy the following conditions:1

(i) 〈x, y〉 ∈ T and 〈x̄,−ȳ〉 ≥ 〈x,−y〉 implies 〈x̄, ȳ〉 ∈ T (free disposability
of inputs and outputs),

(ii) y > 0[m] =⇒ 〈0[n], y〉 /∈ T (no free lunch), and

(iii) P (x) is non-empty and bounded for all x ∈ Rn
+.

Note that, owing to condition (i), 〈x, y〉 ∈ ∂(T ) and 〈x,−y〉 � 〈x̄,−ȳ〉
implies 〈x̄, ȳ〉 /∈ T .

Many inefficiency indexes were originally defined on the particular subset of T
generated by mathematical programming methods of constructing technology
sets on a finite set of data points. This method, commonly referred to as Data
Envelopment Analysis (DEA), generates convex polyhedral technologies (i.e.,
intersections of finite numbers of half spaces).2 Almost all of these indexes,
however, can be applied to the more general class of technologies T .

A production vector 〈x, y〉 ∈ T is technologically efficient (in the sense of
Koopmans [13]) if 〈x,−y〉 > 〈x̄,−ȳ〉 implies 〈x̄, ȳ〉 /∈ T . Denote the set of
efficient production vectors in T by Eff(T ).

3 Inefficiency Indexes: A Binary Taxonomy.

3.1 Technological inefficiency indexes.

Intuitively, a technological inefficiency index measures the “distance” from
the production vector to a “reference point” on the frontier of T . Alternative
inefficiency indexes are obtained by varying the selection of reference points
and the measure of distance.

Formally, we define an inefficiency index as a mapping, I : Ξ → R+, with
image I(x, y, T ), where

Ξ =
{
〈x, y, T 〉 ∈ Rn+m

++ × T | 〈x, y〉 ∈ T
}
.

The effective range of I, denoted R(I), is a closed subset of R+.3,4 Denote
the minimum point of the range by θ = minR(I).

1Vector notation: x̄ ≥ x if x̄i ≥ xi for all i; x̄ > x if x̄i ≥ xi for all i and x̄ 6= x; and
x̄� x if x̄i > xi for all i.

2See Charnes, Cooper, Lewin, and Seiford [4].
3It is a straightforward matter of renormalization to convert an efficiency measure

(typically mapping into the (0,1] interval) into an inefficiency measure.
4Note that, to focus on the salient issues at hand, we restrict the domain of I to positive
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3.2 Slacks-based indexes.

Slacks-based indexes depend on the differences between the components of
a given production vector 〈x, y〉 and the respective components of a frontier
reference vector. The reference vector is determined as the solution to an
optimization problem with an objective function formed by aggregating over
the slacks.

Slacks-based indexes can be formulated in terms of either additive or mul-
tiplicative slacks: viz., the additive or multiplicative difference between the
production vector and the reference vector. We denote the additive slacks
by 〈s, t〉 ∈ Rn

+ ×Rm
+ . Proportional input and output slacks are then given

respectively by αi = (xi−si)/xi ∈ (0, 1] for all i and βj = yj/(yj + tj) ∈ (0, 1]
for all j.5 To facilitate easy comparison, we formulate all slacks-based in-
dexes in terms of additive slacks (although some were originally formulated
in terms of multiplicative slacks).

Formally, a slacks-based inefficiency index is defined by

Is(x, y, T ) = max
〈s,t〉∈Rn+m

+

{ψ(s, t, x, y) | 〈x− s, y + t〉 ∈ T}, (1)

where the function ψ is independent of units of measurement and increasing
in the slack variables 〈s, t〉 and satisfies ψ(0[n+m], x, y) = 0 for all 〈x, y〉 ∈ T .
Members of this family of inefficiency indexes are generated by specifying the
form of the function ψ.

The following indexes—converted to inefficiency indexes and/or normalized
to satisfy ψ(0[n+m], x, y) = θ = 0 where necessary—satisfy the definition (1)
with the indicated specifications of ψ.6

• Färe-Grosskopf-Lovell Index (Färe, Grosskopf, and Lovell [9]):

ψ(s, t, x, y) =

[
1

n+m

(∑
i

xi − si
xi

+
∑
j

yj
yj + tj

)]−1
− 1.

values of input and output quantities, thus avoiding some distracting boundary issues (see
Levkoff, Russell, and Schworm [14] for an analysis of boundary problems).

5Of course, proportional slacks are conversely converted to additive slacks by si =
(1− αi)xi for all i and tj = (1− βj)yj for all j.

6See Russell and Schworm [19] for an in-depth comparison of these indexes and those
that follow below.
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• Quantity-Weighted Additive Index (Charnes, Cooper, Golany, Seiford,
and Stutz [3]):7

ψ(s, t, x, y) =
∑
i

si
xi

+
∑
j

tj
yj
.

• Weighted Additive Index (Cooper and Pastor [8]):

ψ(s, t, x, y) =
∑
i

uisi +
∑
j

vjtj,

where u� 0 and v � 0 are pre-specified weights.

• Pastor-Ruiz-Sirvent Index (Pastor, Ruiz, and Sirvent [16]):

ψ(s, t, x, y) =
1
n

∑
i(xi − si)/xi

1
m

∑
j(yj + tj)/yj

− 1.

• Measure of Efficiency Proportions (Banker and Cooper [1]):

equivalent to the Färe-Grosskopf-Lovell index.

• Measure of Inefficiency Proportions (Cooper, Park, and Pastor [7]):

equivalent to the Quantity-Weighted Additive Index.

• Slacks-Based Measure of Efficiency (Tone [20]):

equivalent to the Pastor-Ruiz-Sirvent Index.

• Directional Slacks-Based Measure (Fukuyama and Weber [12]):

equivalent to the Weighted Additive Index.

3.3 Path-based indexes.

Path-based indexes require the specification of a path in input-output space
that commences with any production vector 〈x, y〉 ∈ T and intersects the
boundary of T exactly once. The path determines the reference point for
any feasible production vector and measures the distance between the two
points.

7Charnes, Cooper, Golany, Seiford, and Stutz also specified the “Additive DEA Model”
(eschewing the weights), but that index is not independent of units of measurement and
hence has been superceded by the Quantity-Weighted Additive Index.
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To describe the path, we introduce a set Λ that is a closed (unit free) subset
of R+ with µ = min Λ and a map Ω : T × Λ → Rn+m

+ . To denote the com-
ponents of Ω, let Ω(x, y, λ) = 〈Ωx(x, y, λ),Ωy(x, y, λ)〉, where Ωx(x, y, λ) =
〈Ωx

1(x, y, λ), . . . ,Ωx
n(x, y, λ)〉 and Ωy(x, y, λ) = 〈Ωy

1(x, y, λ), . . . ,Ωy
m(x, y, λ)〉.

We require that Ω be continuous and satisfy the following conditions for all
〈x, y〉 ∈ T :

(a) 〈x, y〉 = Ω(x, y, µ);

(b) Ωx
i is decreasing in λ and increasing in xi for i = 1, . . . , n and Ωy

j is
increasing in λ and yj for j = 1, . . . ,m; and

(c) limλ→∞Ωj(x, y, λ) =∞ for some output j.

For any feasible point 〈x, y〉, the path containing it is defined by the set
{Ω(x, y, λ) | λ ∈ Λ}. Along the path, inputs are contracted and outputs are
expanded as λ increases.

Path-based indexes are defined by

Ip(x, y, T ) = max{λ ∈ Λ | Ω(x, y, λ) ∈ T}. (2)

Note that Ω(x, y, Ip(x, y, T )) is the point of intersection between the path
{Ω(x, y, λ) | λ ∈ Λ} and the boundary of the technology set. Therefore,
Ω(x, y, Ip(x, y, T )) ∈ ∂(T ) is the reference vector for any feasible point 〈x, y〉.
The following indexes satisfy the definition (2) with the indicated specifica-
tions of Λ and Ω .

• The Hyperbolic Index (Färe, Grosskopf, and Lovell [1985]):

Λ = [1,+∞) and Ω(x, y, λ) = 〈x/λ, λy〉.

• The Directional-Distance Index8 (Luenberger [15] and Chung, Färe,
and Grosskopf [5]):

Λ = [0,∞) and Ω(x, y, λ) = 〈x− λgx, y + λgy〉,

where g = 〈gx, gy〉 ∈ Rn+m
++ .

8The directional distance index is adapted from the shortage function of Luenberger
[15] to the measurement of efficiency by Chung, Färe, and Grosskopf [5]. Both restrict
g only to the non-negative orthant, but restriction to the positive orthant improves the
properties of the index (see Russell and Schworm [19]).
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• The Briec [2] Index9:

Λ = [0, 1] and Ω(x, y, λ) = 〈(1− λ)x, (1 + λ)y〉.

4 A Generic Theorem.

Among the axioms, or properties, of efficiency and inefficiency indexes that
have been posited in the literature, two are salient for the above taxonomy:

Indication of efficiency (I): For all 〈x, y, T 〉 ∈ Ξ, I(x, y, T ) = θ if and only if
〈x, y〉 ∈ Eff(T ).

Joint continuity (C): I is continuous in 〈x, y, T 〉.10

The intrinsic appeal of these axioms is self-evident. Condition (I), introduced
in the context of input-oriented indexes by Färe and Lovell [1978], requires
that an inefficiency index distinguish between inefficient and efficient produc-
tion vectors. Specifically, the indication condition requires that the index is
equal to its minimal value if and only if the production vector is efficient for
the given technology.

In formulating condition (C), Russell [17, page 256] argued that continuity
is a compelling property, “for it provides assurance that ‘small’ errors of
measurement (of, e.g., input or output quantities) result only in ‘small’ errors
of efficiency measurement.” If the technology is constructed (with error) from
data on production vectors, the argument for continuity in the technology is
perhaps even more compelling.

These two properties take on more importance when one considers the fol-
lowing result:

R-S Impossibility Result (Russell and Schworm [19, Theorem 1]): There
does not exist an inefficiency index satisfying (I) and (C) on T .

Thus, the set of all inefficiency indexes can be partitioned into three sets: (i)
those that satisfy the indication property, (ii) those that satisfy continuity,
and (iii) those that satisfy neither. For reasons we discuss briefly in Section

9Briec [2] derives this index from the directional-distance function by using the defini-
tion of IDD with the direction g = 〈x, y〉.

10As in Russell [17] and Russell and Schworm [19], we adopt the topology of closed
convergence on T .
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5, we have little interest in those satisfying neither. Instead, we are inter-
ested in characterizing a binary partition of indexes—extant or yet to be
formulated—into those satisfying indication and those satisfying continuity.
To this end, we show that all indexes with the structure (1) satisfy the indi-
cation property but violate continuity, whereas all indexes with the structure
(2) satisfy continuity but violate the indication property.

Theorem.

(a) Is violates (C) and satisfies (I).

(b) Ip violates (I) and satisfies (C).

Proof. See the Appendix.

5 Discussion.

Axioms other than indication and continuity have been explored in the liter-
ature, but none seems as dispositive as these two. Invariance with respect to
units of measurement has been built into the definitions of slacks-based and
path-based indexes (1) and (2), and all indexes in the literature satisfy this
fundamental condition.11

Similarly, slacks-based and path-based indexes both satisfy (weak) mono-
tonicity: 〈x, y〉 ∈ T, 〈x′, y′〉 ∈ T , and 〈x′,−y′〉 ≥ 〈x,−y〉 imply I(x′, y′, T ) ≥
I(x, y, T ). This is evident from the definitions of the two types of indexes.
If 〈so, to〉 solves the optimization problem in (1) at 〈x, y, T 〉 and 〈x′,−y′〉 ≥
〈x,−y〉, then (by free disposability) 〈x′−so, y′+to〉 ∈ T ; consequently 〈so, to〉
is a feasible solution at 〈x′, y′, T 〉, implying that Is(x′, y′, T ) ≥ Is(x, y, T ).
Similarly, if λo solves the optimization problem in (2) at 〈x, y, T 〉, then
free disposability and 〈x′,−y′〉 ≥ 〈x,−y〉 implies Ω(x′, y′, λo) ∈ T so that
Ip(x′, y′, T ) ≥ Ip(x, y, T ).12

Many efficiency studies, including those employing data envelopment analy-
sis, restrict the collection of allowable technologies to convex polyhedral sets.

11Other than the “Additive Model” of Charnes, Cooper, Golany, Seiford, and Stutz [3],
which has been superseded by the Weighted Additive Index formulated in the same paper
for the explicit purpose of establishing unit invariance.

12It is not possible to show that either class of indexes satisfies strict monotonicity:
〈x, y〉 ∈ T, 〈x′, y′〉 ∈ T , and 〈x′,−y′〉 ≥ 〈x,−y〉 imply I(x′, y′, T ) > I(x, y, T ). One
particular specification, the Weighted Additive Index, does satisfy this condition, but it
has the disadvantage of requiring the use of arbitrary weights to correct for the dependence
of the “Additive Model” on unit changes.
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It can be shown that, on this restricted class of technologies, slacks-based
inefficiency indexes are continuous in input and output quantities.13 Never-
theless, part (a) of the Theorem (and, a fortiori, part (b)) remains valid on
this restricted class of technologies. Thus, the indication-continuity trade-off
between slacks-based and path-based technologies remains.

Researchers have specified inefficiency indexes that do not belong to either
the slacks-based or path-based family. The most interesting is the Weighted
Holder Distance Function (Briec [2]), which is based explicitly on a mathe-
matical distance function. This index has the same properties as the path-
based indexes but to our knowledge has yet to be applied in practice.14 Other
indexes that do not fit into our taxonomy have distinctively inferior prop-
erties. For example, the multi-stage indexes (e.g., Coelli [6]), sequentially
combining path-based and slacks-based properties, appear to violate (weak)
monotonicity (see the discussion of the Zieschang [21] index in Russell and
Schworm [18]). Indexes that concomitantly combine slacks-based and path-
based properties (e.g., the generalized hyperbolic measure of Färe, Grosskopf,
and Lovell [9]) appear to combine the worst features of both types of indexes,
violating both continuity and identification.

Both slacks-based and path-based indexes can be restricted to a subspace
of Rn+m

+ (to generate, e.g., input-oriented indexes and output-oriented in-
dexes). Subspace adaptations of the path-based efficiency indexes retain
continuity. Subspace specializations of slacks-based indexes satisfy indica-
tion if the indication axiom is relaxed to encompass only subspace efficiency.
Therefore, with suitable modifications of the axioms, the theorem remains
true for inefficiency indexes defined on subspaces.

To summarize, the axiomatic analysis of inefficiency measurement seems to
boil down to the choice between the indication and continuity properties.
The incompatibility of these two properties poses a fundamental quandary
for the researcher. The trade-off between the slacks-based and the path-
based indexes evident in the Theorem reflects the trade-off between these
two properties. If the researcher values indication more than continuity,
employ or specify a slacks-based index; if the researcher values continuity
more than indication, employ or specify a path-based index.

We close by paying tribute to the formulations in two landmark papers that

13The proof follows closely the continuity proof of selected slacks-based indexes in Russell
and Schworm [19, pp. 155–156].

14The definition of path-based indexes (2) could be modified to encompass this index—
after all, the Holder distance identifies the shortest path from a production vector to
the boundary of the technology—but the redefinition would complicate the analysis (and
would be a bit contrived).
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crystallize the fundamental dichotomy, and resultant specification quandary,
of inefficiency indexes and axioms. The Farrell [11] (input based) index is the
model for path-based indexes (satisfying continuity but violating indication),
and the Färe-Lovell [10] (input based) index is the model for slacks-based
indexes (satisfying indication but violating continuity). All subsequently
specified (in)efficiency indexes are variations on these two themes.15

Appendix: Proof of the Theorem.

Proof of (a) Slacks-Based Indexes Violate Continuity
and Satisfy Indication.

It suffices to prove that Is satisfies (I), since the R-S Impossibility Result
then implies that this class of indexes violates (C).

Suppose that 〈x, y〉 ∈ T , with 〈x, y〉 � 0[n+m], is not efficient so that
there exists a production vector 〈x′, y′〉 ∈ T satisfying 〈x′, y′〉 � 0[n+m] and
〈x′,−y′〉 < 〈x,−y〉. If 〈s′, t′〉 is the solution to

max
〈s,t〉∈Rn+m

+

{
ψ(x′, y′, s, t)) | 〈x′ − s, y′ + t〉 ∈ T

}
,

then 〈x′−s′, y′+t′〉 is a boundary point of T . As 〈x′−s′, y′+t′〉 ≤ 〈x′,−y′〉 <
〈x,−y〉, there exists an 〈so, to〉 ∈ Rn+m

+ such that 〈so, to〉 > 〈s′, t′〉 and 〈x −
so, y+ yo〉 = 〈x′− s′, y′+ t′〉 ∈ T . As ψ is increasing in 〈s, t〉, it must be that
Is(x, y, T ) > Is(x′, y′, T ) ≥ 0.

Next suppose that Is(x, y, T ) > 0. Then 〈s, t〉 > 0[n+m], so that there exists
a point 〈x′, y′〉 ∈ T satisfying 〈x′, y′〉 � 0[n+m] and 〈x′,−y′〉 < 〈x,−y〉.
Therefore, (x, y) is inefficient.

Consequently, Is satisfies indication (I) and therefore violates (C) . ♦

Proof of (b) Path-Based Indexes Satisfy Continuity and
Violate Indication.

It suffices to prove that Ip satisfies (C), since the R-S Impossibility Result
then implies that this class of indexes violates (I).

15In fact, the hyperbolic (in)efficiency index is a straightforward generalization of the
Farrell index (which takes a radial path to the boundary of the input-requirement set),
and the Färe-Grosskopf-Lovell index is a straightforward generalization of the Färe-Lovell
index.
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Consider a sequence {xν , yν , T ν}∞ν=1 converging (in the topology of closed
convergence) to 〈xo, yo, T o〉. We need to show that Ip(xν , yν , T ν) converges
to I(xo, yo, T o).

Before addressing directly the issue of continuity of Ip, we formally establish
two (intuitively obvious) facts.

(i) The intersection of the curve {Ω(x, y, λ) | λ ∈ Λ} and the frontier
∂(T ) is a singleton for each 〈x, y, T 〉 ∈ Ξ (and hence for each element of the
sequence {xν , yν , T ν}∞ν=1 and its limit 〈xo, yo, T o〉).

Suppose not: for some 〈x, y, T 〉 ∈ Ξ, {Ω(x, y, λ) | λ ∈ Λ} ∩ ∂(T ) contains
two points, 〈x′, y′〉 and 〈x̂, ŷ〉. Since Ωx

i is decreasing in λ for all i and Ωy
j

is increasing in λ for all j, either 〈x′,−y′〉 � 〈x̂,−ŷ〉 or 〈x̂,−ŷ〉 � 〈x′,−y′〉.
As these are frontier points, each inequality violates the free disposability
assumption (FD), which proves the result.

(ii) Since Ω is continuous, the sequence of paths {Ω(xν , yν , λ) | λ ∈ Λ}∞ν=1

converges to the path {Ω(xo, yo, λ) | λ ∈ Λ} (in the topology of closed
convergence).

Consider a sequence, {Ω(xν , yν , λν)}∞ν=1, converging to Ω(xo, yo, λ′), where
(by continuity of Ω) λ′ = limν→∞ λ

ν . As Λ is a closed set, λ′ ∈ Λ, establishing
that Ω(xo, yo, λ′) ∈ {Ω(xo, yo, λ) | λ ∈ Λ}.
Now consider a point Ω(xo, yo, λ′) with λ′ ∈ Λ and construct the sequence
{Ω(xν , yν , λ′)}∞ν=1. Clearly, {Ω(xν , yν , λ′)} ∈ {Ω(xν , yν , λ) | λ ∈ Λ} for all ν
and limν→∞Ω(xν , yν , λ′) = Ω(xo, yo, λ′), establishing convergence.

(iii) Continuity of Ip.

Assume Ip is not continuous. Then there exists a sequence {〈xν , yν , T ν〉}∞ν=1

converging to 〈xo, yo, T o〉 for which the sequence {Ip(xν , yν , T ν)}∞ν=1 does not
converge to Ip(xo, yo, T o).

Let λν = Ip(xν , yν , T ν) for ν = 1 . . . ,∞ and λo = Ip(xo, yo, T o) so that
the sequence {λν}∞νk=1 does not converge to λo. Therefore, there exists a
subsequence {λνk}∞νk=1 such that

either λνk > λo or λνk < λo

for all elements of the subsequence.

By the definition of path-based indexes (2), Ω(x, y, Ip(x, y, T )) is the inter-
section of the paths {Ω(x, y, T ) | λ ∈ Λ} and ∂(T ). Moreover, (i) above
implies that this intersection consists of a single point. Finally, condition (ii)
above implies that

{Ω(xν , yν , λν)}∞ν=1 → Ω(xo, yo, λν)
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for all λν = 1, . . . ,∞ and

{Ω(xν , yν , λo)}∞ν=1 → Ω(xo, yo, λo).

Since Ω is continuous and λν 6→ λo, the sequence {Ω(xo, yo, λν)}∞ν=1 does not
converge to Ω(xo, yo, λo).

To ease the notation, denote Ω(xν , yν , Ip(xν , yν , T ν)) by 〈x̃ν , ỹν〉 for all ν and
Ω(xo, yo, Ip(xo, yo, T o)) by 〈x̃o, ỹo〉.
The condition (c) on Ω implies that

either 〈x̃νk ,−ỹνk〉 � 〈x̃o,−ỹo〉 or 〈x̃νk ,−ỹνk〉 � 〈x̃o,−ỹo〉

for all elements in the subsequence {νk}∞k=1.

As T ν → T o and {Ω(xν , yν , λ) | λ ∈ Λ}∞ν=1 converges to {Ω(xo, yo, λ) |
λ ∈ Λ}, there exists a sequence {x̄ν , ȳν}∞ν=1 ⊂ ∂(T ν) converging to 〈x̃o, ỹo〉.
Hence, there exists a subsequence of {νk} denoted {νkj} such that

either 〈x̃νkj ,−ỹνkj 〉 � 〈x̄νkj ,−ȳνkj 〉 or 〈x̃νkj ,−ỹνkj 〉 � 〈x̄νkj ,−ȳνkj 〉

for all elements of the subsequence.

As 〈x̃ν , ỹν〉 and 〈x̄ν , ȳν〉 are contained in the frontier of T ν , either of these
strict inequalities violates free disposability (FD).

This contradiction implies that Ip(xν , yν , T ν) converges to Ip(xo, yo, T o) so
that Ip satisfies continuity (C), in which case it must violate indication (I).
♦
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