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Abstract: This paper investigates a problem of optimal growth with resource exhaustibility

and pollution externality, based on a unified framework that explicitly considers augmentable

man-made capital, exhaustible resource reserves, and accumulative environmental pollutants as

three stock variables for optimal control analysis. Characterizations of the social optimum show

that for any given man-made capital and resource reserves, resource extraction flows generated

in optimal growth with both resource exhaustibility and pollution externality are smaller than

those with only resource exhaustibility, and taking account of pollution externality resulting from

resource extraction reduces the growth rate of consumption if man-made capital and natural

resources are complements in final goods production. Existence, uniqueness and comparative

statics of the steady state are analyzed. Conditions for transitional dynamics stability of optimal

growth with resource exhaustibility and pollution externality are established. Expositions are made

on whether allocations in a market equilibrium are consistent with the social optimum outcomes.
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1 Introduction

One of the most important challenges facing our society is the endeavor to sustain economic

prosperity without depleting the Earth’s exhaustible natural resources and without jeopardizing

the vulnerable environment (World Bank, 2011). A sensible way to solve this complex problem

requires taking a holistic approach to target the intricate connection between economic growth,

natural resource, and the environment.

First, there is a clear case that growth and natural resources are closely linked given that

natural resources (such as minerals and fossil fuels) provide intermediate inputs to produce final

goods. An accessible supply of resource is productive to the economy and a decline in supply

due to resource scarcity will constrain production and impose shadow costs on the economy (e.g.,

Hamilton, 2009; Dargay and Gately, 2010; Reynolds and Baek, 2012; Lutz et al., 2012). Second,

extraction and utilization of natural resources, particularly the fossil fuels that still dominate

world energy markets, is tightly connected to anthropogenic emissions of environmental pollutants.

Extraction of polluting resources gives rise to emissions of conventional air pollutants at local

levels (e.g., particulate, sulfur oxides, and nitrogen oxides), and greenhouse gas emissions from

burning fossil-based resource have been identified as the dominant contributor to climate change

at the global level (IPCC, 2007; World Bank, 2011; IEA, 2014). Third, there is no disagreement

that a polluted environment (e.g., particulate, acid rain and rising ozone levels) generates negative

externality effects that are exacting heavy losses in social welfare (Chay and Greenstone, 2003;

Chen et al., 2013; Zivin and Neidell, 2012). In particular, the climate change effects such as heat

waves, floods, droughts and storm surges induced by greenhouse gas emissions bring about a

greater prevalence of pollution damages and disutility (IPCC, 2007; Weitzman, 2007).

In this context, we think it is significant to bring together economic growth, natural resource

and the environment into a unified framework and investigate their underlying dynamic relation-

ship in a sustainable growth path. By doing so, this study will help enhance our understanding

of economic mechanisms relating to growth sustainability, resource exhaustibility and pollution

externality, and improve the effectiveness of policy responses to the grand challenge facing our

society. Therefore, the central aim of this research is to examine optimal growth with both resource

exhaustibility and pollution externality, based on a unified framework with an explicit account

1



of dynamic interactions between augmentable man-made capital, exhaustible resource reserves

and accumulative environmental pollutants.

1.1 Related Literature

To explore this issue, we think there is a clear case for taking the theory of natural resource and

environmental economics as a point of departure. Accordingly, we restrict ourselves to a brief review

of two strands in resource and environmental economics literature on which our own analysis draws.

First, it is natural to think of the planet as a source of supplying energy, minerals and other

natural resources, and this interpretation of the nature’s function to mankind led to a large and still

growing literature on growth and resource exhaustibility.1 In particular, this strand of literature is en-

riched with the theory of optimal extraction of exhaustible resources finding its origin in the pioneer-

ing work of Hotelling (1931) and afterward the seminal Dasgupta-Heal-Solow-Stiglitz (DHSS there-

after) models, which features model representations of an economy by two capital stocks - an aug-

mentable man-made capital and an exhaustible resource reserve (Dasgupta and Heal, 1979; Solow,

1974; Stiglitz, 1974). Existing works along the line of DHSS models allow the economists to fruitfully

address various interesting issues, for example, (1) relations between capital accumulation, resource

depletion, and the Hartwick’s rule (e.g., Hartwick, 1977; Dixit et al., 1980; Withagen and Asheim,

1998; Asheim et al., 2012; Mitra et al., 2013); (2) effects of non-renewable resources taxation on

sustainable growth path (e.g., Schou, 2002; Groth and Schou, 2007); and (3) relations between knowl-

edge accumulation, endogenous technology change, and exhaustible natural resources (e.g., Barbier,

1999; Tsur and Zemel, 2003; Grimaud and Rouge, 2003, 2005; Bretschger and Smulders, 2012).

While the DHHS models lay a solid foundation for analyzing the relations between optimal

growth and resource scarcity, there is an apparent need to extend the DHHS framework by

incorporating an explicit account of the environment that is closely linked to natural resources.

Specifically, given the fact that extraction and utilization of polluting resources such as fossil-based

energy resources brings about anthropogenic emissions of environmental pollutants and damages,

investigations of issues related to growth and resource extraction are expected to gain new insights

if pollution externality resulting from resource extraction is incorporated into traditional growth

models with only resource exhaustibility.

1See Krautkraemer (1998) for a survey.
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Second, the connection between growth and the environment has received attention because

of a large body of empirical works studying the relation between economic development and

environmental degradation, known as the Environmental Kuznets Curve (e.g., Grossman and

Krueger, 1995; Selden and Song, 1994; Stern and Common, 2001; Dasputa et al., 2002). A rapidly

expanding theoretical literature attempts to rationalize the empirical relations by examining growth,

pollution abatement and environmental quality, see, for example, Keeler et al. (1974); Forster (1973);

Gruver (1976); Tahvonen and Withagen (1996); Selden and Song (1995); Mohtadi (1996); Stokey

(1998); John and Pecchenino (1994), and more recently Bartz and Kelly (2008); Rubio et al. (2009).2

Basically, the models specified in these works describe the economy by two stocks - an

augmentable man-made capital and a stock of environmental quality or pollutants. As the factor

affecting dynamics of the environmental stocks, pollution emissions or the rate of environmental

degradation is modeled as a flow variable that depends on goods production and consumption or

capital accumulation, without establishing the connection between pollution emissions and natural

resources. However, given the fact that emissions of environmental pollutants are basically driven

by extraction and utilization of natural resources (e.g., emissions profiles of carbon pollutants are

shaped by extraction and combustion of fossil-based energy resources), a finer modelling framework

should feature a representation of natural resources as the direct determinant of pollution emissions.

This argument coincides with a strand of recent environmental economics literature known as

the Green Paradox, saying that the supply-side profiles of fossil-based resources (such as resource

exhaustibility, extraction costs and emissions intensity) are underlying fundamental determinants

of fossil-induced environmental consequences (Sinn, 2012; Grafton et al., 2012; Smulders et al.,

2012; van der Ploeg and Withagen, 2012a, 2014). From this point of view, there is also a particular

need to establish the connection between natural resources and the environment for addressing

environmental and pollution control problems.

For the above-mentioned reasons, this work aims to create a linkage between studies on growth

and exhaustible resources on the one hand, and the literature on growth and the environment on

the other hand, by investigating a general problem of optimal growth with resource exhaustibility

and pollution externality.3 For this purpose, the present paper will provide a unified framework

2For a survey of theoretical models on the Environmental Kuznets Curve, see Kijima et al. (2010).
3While there are some studies that feature specifications of both exhaustible resources and accumulative

pollutants as two stock variables for addressing resource and environmental economics problems (e.g., Withagen,
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that represents augmentable man-made capital, exhaustible resource reserves, and accumulative

environmental pollutants as three stock variables for optimal control analysis. By doing that, our

present work is expected to play a positive role in moving forward most of the existing natural

resource and environmental economics literature that offer theoretical insights based on a two-stock

optimal control framework.

In general, an increase in the number of stock variables in an optimal control model will

substantially complicate the analysis of their relations in a dynamic setting, and without simplifying

assumptions it will be challenging to analytically characterize important relationships that underline

the model with three stock variables. For this reason, most of the existing literature tend to address

their research problems based on a two-stock dynamic framework, and there are only a few studies

developing three-stock modelling frameworks to address resource and environmental economics

issues, see Table 1, for example, Tahvonen and Kuuluvainen (1991), Bovenberg and Smulders

(1995), Schou (2000), Tahvonen and Salo (2001), Tsur and Zemel (2005), Chakravorty et al.

(2008) and Acemoglu et al. (2012).4 To sum up, while the above-cited studies with different model

specifications offer methodological insights into optimal control analysis with three stock variables

to address natural resource and environmental economics, the problems specific to interactions

between augmentable capital, exhaustible resources and accumulative pollutants are hardly

explored in the literature. This research gap could be filled if a general problem of optimal growth

with resource exhaustibility and pollution externality can be addressed by our study in this paper.

1994; Ulph and Ulph, 1994; Sinclair, 1994; Hoel and Kverndokk, 1996; Tahvonen, 1997; Chakravorty et al., 2006;
van der Ploeg and Withagen, 2012a,b; Prieur et al., 2013), a somewhat weak aspect is that the scopes of these works
are confined to natural environment, without casting the analysis in a growth context where resource extraction
and environmental pollution are deem to be interactive with production, consumption and capital accumulation.

4Tahvonen and Kuuluvainen (1991) analyze the dynamic relations between economic growth, renewable resource
harvesting and pollution emissions where man-made capital, renewable resources, and pollutants are considered as
three stock variables. Bovenberg and Smulders (1995) investigate the conditions for a balanced growth path in an
endogenous growth model where the three stock variables specified are natural capital, physical capital and pollution-
augmenting technology. Schou (2000) also analyzes the condition of balanced growth paths based on an endogenous
growth model with physical capital, human capital and non-renewable resources as three stock variables. Tahvonen
and Salo (2001) investigate the transition between renewable to nonrenewable energy regime where man-made
capital, exhaustible resources and technological knowledge are considered as three stock variables. Tsur and Zemel
(2005) explore the dynamic relations between resource scarcity, economic growth and R&D, where physical capital,
primary resources and technological knowledge are specified as three stock variables. Chakravorty et al. (2008)
examine the order of extraction of non-renewable resources differentiated by pollution intensity, based on a three-
stock optimal control model with two polluting non-renewable resource stocks and an aggregate stock of pollutants.
Acemoglu et al. (2012) analyze directed technical change in a quality-improving Schumpeterian endogenous growth
model with resource exhaustibility and environmental constraints, and the three stock variables specified are
exhaustible natural resources, environmental quality and the time-varying quality of intermediate machines.
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In this regard, our present work could be viewed as a helpful complement to the recent seminal

works by Golosov et al. (2012) and van der Ploeg and Withagen (2014) which consider physical

capital, exhaustible fossil energy and atmospherical concentration of carbon dioxide in their

analysis of climate economics problems.5 But the key difference is that our present work presents

generalized treatments of man-made capital, exhaustible resources, and environmental pollutants

as three separate stock variables throughout model specifications, characterizations, and analysis,

while Golosov et al. (2012) and van der Ploeg and Withagen (2014) impose several simplifying

assumptions to reduce the model into a system with two stock variables when it comes to analytical

characterizations of the dynamic optimum and derivation of key results.6 Furthermore, our study

in this paper provides detailed expositions and methodological insights into the essential properties

of steady state and transitional dynamic specific to optimal growth with resource exhaustibility

and environmental externality, which is still missing in the current literature but would be helpful

for future studies on the economics of growth, exhaustible resources, and environmental pollution.

The rest of this paper is structured as follows. Section 2 presents specifications of the model.

Section 3 considers the social optimum problem with characterizations of the optimal growth path.

Section 4 and 5 investigate steady state and transitional dynamics stability, respectively. Section

6 examines allocations in a decentralized market equilibrium and its consistency with the social

optimum outcomes. Section 7 provides concluding remarks.

5Golosov et al. (2012) develop a discrete-time dynamic general equilibrium model with climate externality
resulting from fossil energy use, and derive a simple formula for the marginal externality damage of emission. Fossil
energy extracted from the exhaustible stock is productive to final goods production, carbon emissions from using
fossil energy contribute to the accumulative stock of carbon concentration which is linked to climate damages
externality on goods production. van der Ploeg and Withagen (2014) present a Green Ramsey growth model to
investigate different regimes of switch from carbon-based exhaustible energy to carbon-free renewable backstops.
Man-made capital and energy are inputs in the production process, energy from exhaustible oil reserve and renewable
backstops are perfect substitutes, and convex global warming damages depend on the stock of atmospheric carbon.

6Golosov et al. (2012) assumes full depreciation of capital after use in each period and capital is simplified
as an intermediates input without accumulation across periods, thus reducing the original three-stock system
into a two-stock one (resource reserves and pollution stocks). van der Ploeg and Withagen (2014) simplify the
specification of the accumulative stock of pollutants by omitting anthropogenic activities of pollution abatement,
and the exhaustible stock of fossil energy and the accumulative stock of pollutants are fully correlated (i.e., the
rates of change are of opposite sign but of equal absolute magnitude), and the model is thus reduced to a system
with only two stock variables (man-made capital and exhaustible resource stock).
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2 The Model

The model is formulated in continuous time over an infinite horizon t∈ [0,∞). At each point

in time anthropogenic activities of resource extraction and utilization deplete a finite stock of

resource reserves, and the law of motion for the exhaustible resource stock is specified as

Ẋ(t)=−E(t), (1)

where E(t) and X(t) are resource extraction flows and the remaining stocks of resource reserves

at time t, respectively. The “dot” above a variable corresponds to the time derivative of that

variable. In addition to the physical exhaustibility and scarcity, extraction of natural resources

also has underlying environmental impacts. Suppose that extraction and utilization of resources

such as fossil energy is environmentally polluting, and extracting one unit of fossil-based resources

generates one unit of pollutant emissions for normalization (the pollution intensity of resources

is basically a constant physical property). The flows of pollutant emissions then contribute to

accumulations of environmental pollution stocks via

Ż(t)=E(t)−B(t), (2)

where Z is the stock of environmental pollutants which is increasing in pollution emissions resulting

from resource extraction E, and decreasing by pollution abatement B.

The resources extracted from the exhaustible stock are used as intermediate inputs (that

fully depreciate after use) to produce final goods. With an augmentable man-made capital as

the other production input, the technology of final goods production is given by

Y (t)=F(K(t),E(t)), (3)

where Y and K are final goods outputs and man-made capital, respectively. Outputs of final goods

are continuously increasing with man-made capital and resource inputs, and the marginal produc-

tivity of man-made capital and resources is diminishing. The production function F:R+×R+ 7→R+

thus satisfies the assumptions as follows.7

7The sign of FKE depends on whether K and E are substitutes FKE<0 or complements FKE>0. Time-series
data classifies the two inputs as complements, while cross-section studies conclude that capital and energy are
substitutes in production, (e.g., Apostolakis, 1990; Thompson and Taylor, 1995; Frondel and Schmidt, 2002; Koetse
et al., 2008). Explanations are twofold. First, man-made capital and energy resources act more as substitutes
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Assumption 1. FK≡ ∂Y
∂Y
>0,FE≡ ∂Y

∂E
>0, FKK≡ ∂2Y

∂K2 <0, FEE≡ ∂2Y
∂E2 <0, and FEEFKK−F2

KE>

0.

Outputs of final goods are allocated to consumption, capital investment, resource extraction,

and pollution abatement, and the stock of man-made capital is accumulated via

K̇(t)=F(K(t),E(t))−M(X(t),E(t))−G(B(t))−C(t), (4)

where outputs of final goods (the numéraire) Y are equal to the sum of consumption C, resource

extraction expenditure M(X,E), pollution abatement expenditure G(B), and investment in man-

made capital K̇. Specifically, the costs of resource extraction are determined by both extraction

flow and the remaining resource reserves, and the extraction cost function M:R+×R+ 7→R+ is

continuously increasing with extraction flows E and decreasing with the remaining stock of resource

reserves X. Suppose that the marginal cost of extraction ME is non-decreasing with the extraction

flows E and decreasing with the remaining stock of resources X. Meanwhile, the stock-dependent

extraction costs are convex since a lower remaining stock of resource reserves makes the costs of

further extraction rise at an increasing rate.8 These assumptions are expressed as follows.

Assumption 2. ME ≡ ∂M
∂E

> 0, MX ≡ ∂M
∂X

< 0, MEE ≡ ∂2M
∂E2 ≥ 0, MEX ≡ ∂2M

∂E∂X
< 0, and

MXX≡ ∂2M
∂X2 >0.

Furthermore, the fraction of final goods outputs allocated to pollution abatement expenditure

is measured by a convex function of pollution abatement costs G:R+ 7→R+ which has a positive

and increasing marginal cost, i.e.,

Assumption 3. G′(B)≡ dG
dB
>0, and G′′(B)≡ d2G

dB2 >0.

Finally, the economy admits a representative household with preferences valuing goods

consumption and environmental stock, with her instantaneous utility function specified as

U(t)≡U(C(t),Z(t)), (5)

in the long run and more as complements in the short run. Second, the complementarity only occurs in cases
where the cost share of energy resources in production is small (service sectors), and the substitutability is more
likely to occur in cases where energy resources have large cost shares in production (electric utility sectors).

8Taking the cost function of resource extraction M(X,E) = mc(X)E as an example, the total costs are
determined by both extraction flows E and the marginal cost of resource extraction mc(X), where the latter
depends on the remaining reserves of exhaustible resources X with mc′(X)>0 and mc′′(X)>0.
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where the utility function U:R+×R+ 7→R+ is strictly increasingly in consumption but decreasing

in pollution. The marginal utility of consumption is decreasing in both consumption and the stock

of pollutants, and the marginal disutility of pollution is increasing in the stock of pollution (i.e.,

convex pollution damages). Thus, the following assumptions hold.

Assumption 4. UC≡ ∂U
∂C
>0, UZ≡ ∂U

∂Z
<0, UCC≡ ∂2U

∂C2 <0, UCZ≡ ∂2U
∂C∂Z

<0, UZZ≡ ∂2U
∂Z2 <0, and

UCCUZZ−U2
CZ>0.

3 Social Optimum

Given the above-described model, we consider a social optimum problem to characterize the

time path of consumption, resource extraction, pollution abatement, man-made capital, resource

reserves, and pollution stocks [C(t),E(t),B(t),K(t),X(t),Z(t)]∞t=0 that maximize discounted present

values of social welfare given by

V (K0,X0,Z0)≡ max
[C(t),E(t),B(t)]∞t=0

∫ ∞
0

exp(−ρt)U(C(t),Z(t))dt, (6)

subject to the law of motion of man-made capital (4), resource reserves (1) and pollution stock (2),

given their initial conditions [K0,X0,Z0]. The present values of welfare are discounted by a rate

of time preference ρ>0. Consumption, resource extraction, and pollution abatement [C,E,B] are

control variables, while man-made capital, exhaustible resources, and environmental pollutants

[K,X,Z] are state variables. The discount rate ρ and initial states [K0,X0,Z0] are exogenously

given. F(K,E), U(C,Z), M(E,X) and G(B) are the function constraints on production, preference,

extraction and abatement, respectively. Throughout the analysis, all these functions are assumed

to be twice continuously differentiable.

A time path of goods consumption, resource extraction, pollution abatement, man-made

capital, resource reserves, and environmental pollutant stocks [C(t),E(t),B(t),K(t),X(t),Z(t)]∞t=0

is feasible if [K(t),X(t),Z(t)]∞t=0≥0, [K(0),X(0),Z(0)]=[K0,X0,Z0], and [C(t),E(t),B(t),K(t),X(t),Z(t)]∞t=0

satisfies (1), (2), and(4) for ∀t∈ [0,∞). We simplify notations by surpassing the time argument

t and denote [C,E,B,K,X,Z]=[C(t),E(t),B(t),K(t),X(t),Z(t)]∞t=0. To characterize allocations in

the social optimum, we define the ordinary current-value Hamiltonian function H0 :R9
+ 7→R+ that
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corresponds to the optimal control problem as

H0(C,E,B,K,X,Z,λ,µ,ψ)≡U(C,Z)+λ(F(K,E)−M(X,E)−G(B)−C)−µE+ψ(E−B),

where λ, µ, ψ is the co-state variables corresponding to man-made capital K, exhaustible resources

X, and environmental pollutants Z, respectively.

3.1 Necessary Conditions of Optimality

Following from the Pontryagin Maximum Principle, the necessary conditions of optimality are

given as follows.

Lemma 1. Suppose that [C,E,B,K,X,Z] is an interior solution to the problem of maximizing (6)

subject to (1), (2) and (4). Then there exist continuously differentiable co-state variables λ,µ,ψ,

such that the optimal control variables C,E,B and the corresponding paths of state variables K,X,Z

satisfy the necessary conditions of optimality given by

0=UC(C,Z)−λ, (7a)

0=λ(FE(K,E)−ME(X,E))−µ+ψ, (7b)

0=−λG′(B)−ψ, (7c)

ρλ−λ̇=λFK(K,E), (7d)

ρµ−µ̇=−λMX(X,E), (7e)

ρψ−ψ̇=UZ(C,Z), (7f)

K̇=F(K,E)−M(X,E)−G(B)−C, (7g)

Ẋ=−E, (7h)

Ż=E−B, (7i)

and the transversality conditions

lim
t→+∞

exp(−ρt)λK=0, lim
t→+∞

exp(−ρt)µX=0, lim
t→+∞

exp(−ρt)ψZ=0. (8)

First, characterization given by (7a) states that consumption should reach socially optimal

levels at which the marginal utility of consumption equals the shadow price of man-made capital.
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(7a) implicitly determines the optimal control of consumption denoted by Ĉ as

Ĉ=C(Z,λ), (9)

where the function of optimal consumption C:R2
+ 7→R+ depends on pollution stock Z and the

shadow price of man-made capital λ, with the first-order derivative properties given by

CZ≡
∂Ĉ

∂Z
=−UCZ

UCC

<0, Cλ≡
∂Ĉ

∂λ
=

1

UCC

<0. (10)

Intuitively, the optimal growth path tends to have lower consumption if there is a larger stock

of accumulated pollution because a heavily polluted environment lowers the marginal utility from

consumption. Meanwhile, a larger shadow value of man-made capital, via offering an incentive

to allocate final goods towards capital investment, will reduce consumption levels.

Second, extraction of the exhaustible resources along the social optimum path is characterized

by (7b), i.e.,

FE(K,E)= ME(E,X)︸ ︷︷ ︸
marginal extraction cost

+
µ

λ︸︷︷︸
resource exhaustibility cost

+

(
−ψ
λ

)
︸ ︷︷ ︸

pollution externality cost

. (11)

It is shown that resource extraction should reach an amount where the marginal product of

resources equals the sum of marginal direct extraction cost and social cost (shadow values) related

to resource exhaustibility and pollution externality (shadow costs are converted from utility units

to final goods units by dividing the shadow value of man-made capital). The shadow value of

the exhaustible resource reserves is determined as

µ(t)=

∫ ∞
s=t

exp[−ρ(s−t)][−UC(C(s),Z(s))MX(E(s),X(s))]ds>0, (12)

where µ>0 given that UC>0 and MX<0. The shadow value of the pollution stock is given as

ψ(t)=

∫ ∞
s=t

exp[−ρ(s−t)]UZ(C(s),Z(s))ds<0, (13)

where ψ<0 following from UZ<0. Furthermore, equation (11) determines the optimal levels of

resource extraction as

Ê=E(K,X,λ,µ,ψ), (14)

and the function of optimal resource extraction E:R5
+ 7→R+ has the first-order derivative properties

10



given by

EK≡
∂Ê

∂K
=
−FEK

FEE−MEE

, EX≡
∂Ê

∂X
=

MEX

FEE−MEE

, Eλ≡
∂Ê

∂λ
=

−µ+ψ

λ2(FEE−MEE)
,

Eµ≡
∂Ê

∂µ
=

1

λ(FEE−MEE)
, Eψ≡

∂Ê

∂ψ
=

−1

λ(FEE−MEE)
,

(15)

where FEE−MEE<0 is the marginal effect of resource extraction flows E on marginal extraction

revenues π≡FE−ME, and the negative sign follows from FEE<0 and MEE≥0. Intuitively, the

amounts of resource extraction will be raised by an increase in the remaining resource reserves

(EX>0), the shadow price of man-made capital (Eλ>0),9 and the shadow value of pollution stock

(Eψ>0).10 Furthermore, an increase in the shadow value of exhaustible resources would lower

resource extraction such that larger resource reserves can be left in situ (Eµ<0), but the marginal

effect of man-made capital on resource extraction EK depends on whether man-made capital and

resources are substitutes or complements.

Third, characterizations given by (7c) suggest that pollution abatement should reach a

level where the marginal cost of abatement is equal to the shadow value of pollution stock, i.e.,

G′(B)=−ψ
λ
, which determines optimal control of pollution abatement as

B̂=B(λ,ψ), (16)

where the function of optimal abatement B:R2
+ 7→R+ has the first-order derivatives

Bλ≡
∂B̂

∂λ
=− G′

λG′′
<0, Bψ≡

∂B̂

∂ψ
=− 1

λG′′
<0. (17)

Intuitively, a larger shadow value of man-made capital induces the social planner to allocate

more final goods to investment in physical capital and thus reduces allocations to pollution

abatement. Meanwhile, as the shadow value of pollution stocks increases, there will be a lower

level of abatement such that a greater stock of pollutants can be accumulated.

9A larger shadow price of man-made capital translates into lower shadow costs associated with resource
exhaustibility and pollution externality, thus reducing marginal revenue of resource extraction and increasing
the flows of resource extractions.

10An increase in the shadow value ψ is equivalent to a decrease in the shadow cost of pollution externality
ψ, thus reducing marginal revenues of resource extraction and increasing the flows of resource extractions.
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3.2 Sufficient Conditions of Optimality

Lemma 1 provides the necessary condition for the interior optimal solution. To consider the

sufficient condition of optimality corresponding to our optimal control problem, we define the

maximized Hamiltonian function as

H(K,X,Z,λ,µ,ψ)=U(Ĉ,Z)+λ
[
F(K,Ê)−M(Ê,X)−G(B̂)−Ĉ

]
−µÊ+ψ

(
Ê−B̂

)
,

where the arguments of the maximized Hamiltonian function H :R6
+ 7→R+ are state and co-state

variables K,X,Z,λ,µ,ψ, and Ĉ,B̂,Ê are the control variables optimally determined as a function of

state and costate variables by (9), (14) and (16). Then, based on the Arrow’s sufficiency theorem

on the optimal control theory (Arrow, 1968; Kamien and Schwartz, 1971), we establish the sufficient

condition of optimality corresponding to our optimal control problems as in the following lemma.

Lemma 2. Suppose that there exists an interior continuous solution [C,E,B,K,X,Z] that satisfies

the necessary conditions of optimality (7). If the functions of production, preference, and resource

extraction satisfy the conditions

UCCUZZ−U2
CZ

UCC

<0,
MXXMEE−M2

XE

MXX

<
FEEFKK−F2

KE

FKK
, (18)

then the path [C,E,B,K,X,Z] that satisfies the necessary conditions of optimality (7) is the unique

solution of the problem of maximizing (6) subject to (1), (2) and (4).

Proof. See Appendix A.

The sufficient conditions of optimality to the problem of optimal growth with resource

exhaustibility and pollution externality have the following interesting features. First, the utility

function representing preferences should be strictly concave with respect to its two arguments, i.e.,

UCC<0 and UCCUZZ−U2
CZ>0. Second, given that final goods production function is strictly

concave with respect to its two arguments, i.e., FKK<0, FEE<0 and FEEFKK−F2
KE>0, the

second order leading principal minors of the resource extraction cost function must be negative,

i.e., MXXMEE−M2
XE<0, such that the second sufficient condition can be established, i.e., the

ratio of leading principal minors between the second and first order of M(E,X) is smaller than

that of F(K,E). Hence, if the extraction cost function is convex with respect to its two arguments,
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i.e., MXX >0, MEE≥0 and MXXMEE−M2
XE >0, then the sufficient condition for optimality

would be violated.

3.3 Characterization of Dynamic Behaviors

Based on the necessary conditions of optimality (7a)-(7c), the dynamic behavior of consumption,

resource extraction and pollution abatement can be described as

Ċ

C
=σ

[
FK−ρ+

UCZ

UC

(E−B)

]
, (19a)

π̇=FKπ+MX+
UZ

UC

, (19b)

Ḃ=
FKG′

G′′
+

UZ

UCG′′
, (19c)

where σ≡− UC

CUCC
is the intertemporal elasticity of consumption substitution and π≡FE−ME

are marginal revenues of resource extraction.

(19a) expresses the Euler’s consumption rule where both the marginal product of man-made

capital FK and the rate of time preference ρ have positive effects on the growth of consumption.

Furthermore, if the connection between resource extraction and environmental pollution is factored

into the model, then the negative effect of pollution on marginal utility of consumption UCZ<0 and

accumulation of the pollution stock Ż=E−B will also affect the dynamic profiles of consumption.

(19b) extends the Hotelling rule on extraction of exhaustible resources: marginal revenues of

resource extraction π≡FE−ME increases at the rate of return on man-made capital FK, adjusted

by the marginal effect of in-situ resource reserves on extraction costs MX<0 (i.e., the negative sign

is due to that extractions reduce the remaining resource reserves and increase the stock-dependent

extraction costs). Moreover, if the pollution externality resulting from resource extraction is taken

into account, then accumulation of the pollution stock due to resource extraction would generate

pollution damages UZ

UC
<0, which ceteris paribus would lower the growth rate of marginal revenues

of resource extraction.

(19c), rewritten as Ġ′=FKG′+UZ

UC
, gives the dynamic profile of pollution abatement. With

the pollution externality taken into account, marginal costs of pollution abatement increases at the

rate of return on man-made capital FK. Furthermore, as the marginal cost of pollution abatement

depends on the shadow cost of pollution externality in the social optimum, the rate of change

13



in marginal costs of pollution abatement would be affected by marginal pollution damages UZ

UC
<0.

As mentioned previously, investigations of growth and resource extraction would generate

new results if the connection between natural resources and the environment is incorporated

into a traditional growth framework with only resource exhaustibility. The following proposition

summarizes this result.

Proposition 1. For a given state of both man-made capital and resource reserves, the correspond-

ing resource extraction flows generated in optimal growth with both resource exhaustibility and

pollution externality are smaller than those in optimal growth with only resource exhaustibility.

Furthermore, if man-made capital and natural resources are complements in final goods production,

then taking account of pollution externality will reduce the growth rate of consumption.

Proof. See Appendix B.

Following from (19), the dynamic profile of optimal growth with both resource exhaustibility

and pollution externality can feature the following three phases. First, the economy starts with

a pristine environment and abundant resource reserves. Given this pristine environment with

a sufficiently small stock of pollutants, the shadow cost related to pollution externality could

be relatively smaller.11 Meanwhile, an abundant supply of resource reserves leads to a lower

shadow cost related to resource exhaustibility. With smaller shadow costs associated with resource

exhaustibility and pollution externality, marginal revenues of resource extraction could thus be

relatively lower and resource extraction flows could be relatively larger.12 As the same time,

marginal benefits of pollution abatement (this is equal to the shadow cost of pollution externality)

11Due to the convexity of pollution damage UZZ<0, a small stock of pollutants translates into a lower level
of marginal pollution damages, and shadow values of the pollution stock as given in (13) would be very small.

12Specifically, solving (19b) yields π(t)=
∫∞
s=t

exp
[
−
∫ s
s′=t

r(s′)ds′
][
−MX−UZ

UC

]
ds, where a time-varying rate of

return on capital is given by r≡FK, and marginal revenues of resource extraction are equal to discounted present
value of shadow costs associated with resource exhaustibility (the first term within the integral) and pollution
externality (the second term within the integral). Consider the marginal revenues of resource extraction at a
point in time t0 during initial growth phase which takes the form as

π(t0)=

∫ t1

t0

exp

[
−
∫ s

t0

r(s′)ds′
][
−MX−

UZ
UC

]
ds+exp

[
−
∫ t1

t0

r(s′)ds′
]
π(t1) (20)

Over the initial growth phase [t0,t1], the pristine environment and abundant resource reserves leads to an outcome

where the value of −MX−UZ

UC
is sufficiently small, thus π(t0)<π(t1) due to exp

[
−
∫ t1
t0
r(s′)ds′

]
<1. Furthermore,

given that FEE−MEE<0, marginal revenues of resource extraction π≡FE−ME are negatively related to resource
extraction flows E for a given state of K and X.
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are relatively smaller and could be less than marginal costs of launching pollution abatement,

i.e., −ψ
λ
<G′(0), thus generating an outcome where there is no abatement B=0 and pollution

accumulations are driven by emissions from resource extraction, i.e., Ż=E. Therefore, over the

initial growth phase, the exhaustible stock of resources would be extracted at a higher flow rate

E↗, leading to rapid accumulation of pollutants in the environment.

Then the economy would enter the second growth stage at which the stock of pollutants has

been accumulated to a larger level throughout the first growth phase and thus could generate a larger

shadow cost associated with pollution externality. As a result, the marginal benefit of pollution

abatement would rise and become equal to the marginal cost of abatement, i.e., −ψ
λ

= G′(B)

and thus launch positive abatement activities B>0 to slow pollution accumulation. Meanwhile,

as rapid extractions in the initial phase has substantially reduced resource reserves, the shadow

costs of resource exhaustibility could become larger. With the rising shadow costs associated with

resource exhaustibility and pollution externality, marginal revenues of resource extraction could

become larger and the amounts of resource extraction thus become relatively lower. Therefore,

the second growth phase could be characterized by decreases in resource extraction E↘, increases

in pollution abatement B↗, and thus a lower rate of pollution accumulation in the environment

Ż=E−B↘ (but the stock of pollution may still be augmented at a positive rate Ż=E−B>0).

With an expanding stock of pollutants Z↗, marginal benefits of pollution abatement (i.e., the

shadow cost of pollution externality) could further increase, thus inducing higher levels of pollution

abatement B↗ on the one hand and reducing the amounts of resource extraction E↘ on the

other hand. As a result, the stock of pollutants would peak and then begin to shrink Ż=E−B<0.

Finally, the economy will enter the final growth phase during which the stock of pollutants

becomes decumulated Ż = E−B < 0, the shrinking stock of pollutants, through decreasing

the shadow costs of pollution externality, would reduce the levels of pollution abatement B↘.

Meanwhile, the decrease in shadow costs of pollution externality plays a role to increase resource

extraction but that effect could be largely offset by substantial increases in social costs of resource

exhaustibility (due to that the remaining resource reserves become much more scare after ex-

tractions over the previous two growth phases), thus making the amounts of resource extraction

decrease. At the final stage, the high social costs incurred by resource scarcity could reduce

resource extraction by an amount that is larger than the decrease in pollution abatement, thus
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further shrinking the stock of pollutants. Therefore, the final growth phase could be characterized

by decreases in both pollution abatement B↘ and resource extraction E↘, and decumulation

of both resource reserves X↘ and pollution stocks Z↘. As this process evolves, the final growth

phase will reach the steady states, to which we now turn.

4 Steady State

In our model of optimal growth with resource exhaustibility and pollution externality, the steady

state (SS) is defined as an optimal growth path along which final goods consumption, resource

extraction, pollution abatement, man-made capital, resource reserves, and pollution stocks are

stationary at the SS levels (C∗,E∗,B∗,K∗,X∗,Z∗).

4.1 Existence of Steady State

Imposing stationary conditions on the necessary conditions of optimality (1), the SS corresponding

to the social optimum is determined as follows. First, in the SS both resource extraction and

pollution abatement would be equal to zero, i.e., E∗=0 and B∗=0, and outputs of final goods

production are fully allocated to consumptions, i.e., C∗=F(K∗,0).13 Second, the stock of man-made

capital K∗ would be accumulated to a level where the marginal product of man-made capital is

equal to the rate of time preference, i.e.,

FK(K∗,0)=ρ, (21)

which implies that the stock of man-made capital accumulated in the SS depends on the rate of

time preference, i.e., K∗=K∗(ρ). Third, the remaining stock of exhaustible resource reserves X∗

is determined by

FE(K∗,0)−ME(0,X∗)=−MX(0,X∗)

ρ
+G′(0). (22)

Finally, the stock of pollutants accumulated in the environment Z∗ is determined by

− UZ(C∗,Z∗)

ρUC(C∗,Z∗)
=G′(0). (23)

13This result implies that in the SS natural resources are not necessarily an essential input of production, and
production of final goods could only reply on man-made capital without resource inputs F(K∗,0)>0.
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To establish the SS where both resource reserves and pollution stocks are stationary, there

will be no resource extraction E∗=0 and pollution abatement B∗=0. With E∗=0 and B∗=0,

there will be no spending on resource extraction and pollution abatement, i.e., M(0,X∗)=0 and

G(0)=0, and outputs of final goods are fully allocated to consumption, i.e., C∗=F(K∗,0). With

stationery consumption, the marginal product of man-made capital must be equal to the rate of

time preference. Furthermore, revenues received from extracting a marginal unit of resources should

cover the corresponding shadow cost associated with resource exhaustibility (the first term on

the RHS of (22)) and pollution externality (the second term on the RHS of (22)), where the latter

is equal to marginal abatement cost at zero abatement levels in the SS, i.e., G′(0) given in (23).

Equations 21)-(23) determine the SS of man-made capital, resource reserves and pollu-

tion stocks, and the sufficient conditions for the existence of SS for optimal growth with both

exhaustibility and pollution externality are provided in the following result.

Proposition 2. If marginal utility of consumption UC is less elastic with respect to accumulations

of the pollution stock Z than marginal disutility of environmental pollution UZ, i.e.,
∂lnUC

∂Z
< ∂lnUZ

∂Z
,

then there exists a steady state in which consumption, extraction, abatement, man-made capital,

resource reserves, and pollution stocks satisfy (21)-(23).

Proof. See Appendix C.

4.2 Comparative Static Effects

As we aim to capture the growth implications of connecting natural resources with the environ-

ment, the following result gives insights into the effects of incorporating pollution externality into

traditional growth models with only resource exhaustibility.

Proposition 3. If pollution externality resulting from resource extraction is not taken into account,

then in the SS resource reserves X∗ and goods consumption C∗ will decrease, but resource extraction

E∗ and man-made capital K∗ would be unaffected.

Proof. See Appendix D.

Intuitively, if the connection between natural resource and environmental pollution is taken no

account in optimal growth, then there would be no social cost associated with pollution externality
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in determining resource extraction. As a result, the sum of marginal direct extraction cost and the

social cost of resource exhaustibility would increase. To establish that outcome, the SS would have

a smaller stock of remaining resource reserves. Similarly, we can establish the following proposition

that determines the effect of resource exhaustibility on the SS behavior of the social optimum.

Proposition 4. If resource exhaustibility is not taken into account (resource reserves are infinitely

large), then in the SS resource extraction E∗ and pollution abatement B will increase, but changes

in man-made capital K∗, consumption C∗, and pollution stock Z∗ are ambiguous.

Proof. See Appendix E.

The analysis above captures the effect of resource exhaustibility and pollution externality

on the SS of optimal growth. We now consider the comparative statics of the time preference,

Proposition 5. The steady state levels of consumption, resource extraction, pollution abatement,

man-made capital, resource reserves, and pollution stocks (C∗,E∗,B∗,K∗,X∗,Z∗) are determined

by (21)-(23). Comparative statics of the rate of time preference ρ are given by

dC∗

dρ
<0,

dE∗

dρ
=0,

dB∗

dρ
=0,

dK∗

dρ
<0,

dZ∗

dρ
<0, (24)

and the comparative static effect of ρ on X∗ is determined by, dX∗

dρ
≥0 if MX≤ρ2 FEK

FKK
,

dX∗

dρ
<0 if MX>ρ

2 FEK

FKK
.

(25)

Proof. See Appendix F.

Several interesting results arise from this proposition. First, change in the time preference

has no effect on resource extraction and pollution abatement in the SS. Second, consumption,

man-made capital and pollution stocks will decline in the SS if the rate of time preference increases.

Intuitively, as the discounting rate rises, the marginal product of man-made capital FK will

increase. To yield a higher level of FK, K∗ will decrease because FK is decreasing in K. When K∗

decreases, outputs of final goods decline and consumption levels C∗ drop. Meanwhile, if marginal

utility of consumption is less elastic with respect to pollution accumulation (see Proposition 2),

then C∗ and Z∗ will change in the same direction, and the SS would generate a lower pollution

stock in the case of a higher time preference.
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Furthermore, the effect of ρ on the SS levels of resource reserves X∗ depends on the stock-

dependent extraction cost, production technology of final goods, and time preference. On the

one hand, increase in the rate of time preference will lower man-made capital in producing final

goods. On the other hand, changes in ρ also have an impact on resource extraction accordingly to

ρFEKdK
∗+(MXX−ρMEX)dX∗= MX

ρ
dρ. If the marginal effect of resource scarcity on extraction

costs is small (the first condition in (25)), then the resource stocks will increase in response to

a larger level of ρ. Therefore, a larger rate of time preference helps preserve the remaining stock

of resource reserves in the SS if the marginal effect of resource scarcity on extraction cost is small.

To establish additional interesting results, we further consider comparative statics of three

parameters closely related to the connection between resource extraction and pollution emissions. 1)

Resource use efficiency α: the effective use of resource inputs in final goods production F(K,αE,Z);

2) resource extraction efficiency β: extraction costs M(βE,X) and the speed of resource depletion

Ẋ=−βE; and 3) pollution emission intensity γ: the amount of pollution emissions from extracting

each unit of resources Ż=γE−B. The comparative static effects are summarized in the following

proposition,

Proposition 6. Comparative static effects of α, β, and γ on the steady state of man-made capital

K∗, resource reserves X∗, and pollution stocks Z∗ are given by

dK∗

dα
=0,

dX∗

dα
<0,

dZ∗

dα
=0, (26a)

dK∗

dβ
=0,

dX∗

dβ
>0,

dZ∗

dβ
=0, (26b)

dK∗

dγ
=0,

dX∗

dγ
>0,

dZ∗

dγ
=0. (26c)

Proof. See Appendix G.

It is shown that changes in resource use efficiency and emission intensity have no impact on

man-made capital and pollutants tock in the SS, because these changes generate no effect on (21)

and (23) that characterize the SS levels of man-made capital and pollutants. In comparison, the

SS levels of resource reserves X∗ are determined by (22) in which resource use efficiency, resource

extraction efficiency and emission intensity can affect marginal products of resources, marginal

costs of extraction, and social costs of pollution externality, respectively. Accordingly, changes

in these three parameters can affect resource reserves in the SS X∗.
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Specifically, when the resource use efficiency increases, marginal benefits of resource use will

increase, and the higher return from resource extraction thus stimulate larger resource extraction,

leaving a lower stock of remaining resource reserves, i.e., dX∗

dα
<0. Furthermore, when extraction

efficiency improves, marginal costs of resource extraction will increase and thus slow resource

extraction flows, leaving the remaining resource reserves larger, i.e., dX∗

dβ
>0. Finally, if emission

intensity increases, then the social costs of pollution externality will rise, thus slowing the extraction

process and leading to larger resource reserves, i.e., dX∗

dγ
>0.

5 Transitional Dynamics

As our model extends the traditional DHHS framework by incorporating the connection between

natural resources and the environment, it is interesting to determine the conditions under which

a dynamical system with augmentable man-made capital, exhaustible resource reserves, and

accumulative environmental pollutants has transitional dynamic stability.

To investigate the stability of transitional dynamics, we derive the modified Hamiltonian

dynamic system (MHDS) corresponding to our growth model as

Hλ=F(K,Ê)−M(Ê,X)−G(B̂)−Ĉ=K̇, (27a)

Hµ=−Ê=Ẋ, (27b)

Hψ=Ê−B̂=Ż, (27c)

HK=λFK(K,Ê)=ρλ−λ̇, (27d)

HX=−λMX(Ê,X)=ρµ−µ̇, (27e)

HZ=UZ(Ĉ,Z)=ρψ−ψ̇, (27f)

where the MHDS includes three state K,X,Z and three costate variables λ,µ,ψ, and Hi is the

derivative of the maximized Hamiltonian with respect to i=K,X,Z,λ,µ,ψ, and Ĉ,Ê,B̂ denote the

control variables optimally determined by (9), (14) and (16).14 To simplify notation, we denote

by S≡ [S1,S2,S3]=[K,X,Z] a vector of the three state variables and by P≡ [P1,P2,P3]=[λ,µ,ψ]

a vector of the three costate variables. A 6×6 Jacobian matrix corresponding to the MHDS given

14The derivative of the maximized Hamiltonian with respect to a state or costate or variable is equal to the
derivative of ordinary Hamiltonian with respect to that state or costate variable where the control variables within

20



in (27) can be written as

J (S,P)≡

 HPS HPP

−HSS −HSP+ρI3

, (28)

where ρ is the rate of time preference, I3 is a 3×3 identity matrix, and HPS,HPP,HSS and HSP

are 3×3 submatrix of J (S,P). The six row vectors of J (S,P) correspond to the derivatives

with respect to K,X,Z,λ,µ,ψ of the six dynamic equations given by K̇=Hλ, Ẋ=Hµ, Ż=Hψ,

λ̇=−HK+ρλ, µ̇=−HX+ρµ, and ψ̇=−HZ+ρψ, respectively.

5.1 Saddle-path Stability

Transitional dynamic stability of the MHDS is analyzed by finding eigenvalue of the Jacobian

matrix J (S,P) corresponding to the MHDS, we first consider the following matrix

Ĵ (S,P)≡J (S,P)−ρ
2
I6=

HPS− ρ
2
I3 HPP

−HSS −HSP+ ρ
2
I3

, (29)

where I6 is a 6×6 identity matrix, and verify that Ĵ (S,P) takes a form of a Hamiltonian matrix,

since the submatrix in first and third quadrants (HPP and −HSS) are real-value symmetric matrix,

and the submatrix in second and fourth quadrants satisfyHPS− ρ
2
I3+

(
−HSP+ ρ

2
I3
)T

=0 where the

superscript T denotes the matrix transpose.15 For the 6×6 Hamiltonian matrix Ĵ (S,P), the set of

six eigenvalues of Ĵ (S,P) are distributed symmetrically with respect to zero, i.e., [±ξ̂1,±ξ̂2,±ξ̂3].16

the ordinary Hamiltonian is optimally chosen (Envelope Theorem).

Hi(K,X,Z,λ,µ,ψ)≡
∂

(
max
C,E,B

H0(C,E,B,K,X,Z,λ,µ,ψ)

)
∂i

=
∂H0(Ĉ,Ê,B̂,K,X,Z,λ,µ,ψ)

∂i
,

where i=K,X,Z for state variables or i=λ,µ,ψ for co-state variables, and Ĉ,Ê,B̂ are the control variables that
are optimally determined by (9), (14) and (16).

15Formally, a real-value Hamiltonian matrixM takes a form ofM=

[
A B
C −AT

]
with A∈Rn×n, B,C∈Sn where

Sn denotes the set of all real-valued symmetric n×n matrices. The superscript T denotes matrix transpose. More
generally, a matrixM∈R2n×2n is called Hamiltonian if IM is symmetric, i.e., IM=(IM)T , where I∈R2n×2n

is a skew-symmetric matrix given by I=

[
0n −In
In 0n

]
where 0n,In are a n×n zero and identity matrix, respectively.

16The proof is as follows. Suppose that ξ̂ and v̂ are the eigenvalue and eigenvector corresponding to Ĵ , i.e.,
Ĵ v̂= ξ̂v̂, we obtain Î(ξ̂v̂) = Î(Ĵ v̂) = Ĵ T ÎT v̂, following from that the product of a skew-symmetric matrix Î
and a Hamiltonian matrix Ĵ is symmetric, i.e., ÎĴ =(ÎĴ )T =Ĵ T ÎT . Since the skew symmetric matrix satisfied

ÎT =−Î, we have Ĵ T (−Î)v̂ = Î(ξ̂v̂), and rearranging yields Ĵ T (Îv̂) =−ξ̂(Îv̂), implying that −ξ̂ is also an
eigenvalue corresponding to the eigenvector Îv̂.

21



Furthermore, let ξ̂ be an eigenvalue of Ĵ (S,P) with the corresponding eigenvector v̂, we have

ξ̂v̂=Ĵ (S,P)v̂=
[
J (S,P)−ρ

2
I6

]
v̂=J (S,P)v̂−ρ

2
v̂ ⇒ J (S,P)v̂=

(
ξ̂+

ρ

2

)
v̂. (30)

We derive that if ξ̂ and v̂ are the eigenvalue and eigenvector of the Hamiltonian matrix Ĵ (S,P),

then ξ̂+ ρ
2

and v̂ are the eigenvalue and eigenvector of the Jacobian matrix J (S,P). That is, if−ξ̂ is

an eigenvalue of Ĵ (S,P), then −ξ̂+ ρ
2

is the eigenvalue of Ĵ (S,P). Therefore, for each symmetrical

pair of the eigenvalues ±ξ̂i(i=1,2,3) of the Hamiltonian matrix Ĵ (S,P), ξ1,2i =[−ξ̂i+ ρ
2
,ξ̂i+

ρ
2
] is

a pair of eigenvalues for the Jacobian matrix J (S,P).

Based on the relation (30), we establish the condition under which optimal growth with

resource exhaustibility and pollution externality has saddle-path stability as follows.

Proposition 7. Denote by ρ the rate of time preference and by ±ξ̂i each symmetric pair of

eigenvalues of the Hamiltonian matrix given by (29). If the condition

ρ

2
< |±ξ̂i| ∀i=1,2,3 (31)

holds, then there is a three-dimensional saddle-path stable manifold. Given the initial levels of

state variables [K(0),X(0),Z(0)], the three-dimensional stable manifold determines the initial levels

of costate variables [λ(0),µ(0),ψ(0)]. Starting from this initial condition, transitional dynamics

evolve along the growth path given by the MHDS (27) and converge to the steady state with

[K(t),X(t),Z(t),λ(t),µ(t),ψ(t)]→ [K∗,X∗,Z∗,λ∗,µ∗,ψ∗] as t→∞.

Proof. The saddle-path stability condition (31) implies that ξ̂i>
ρ
2

and −ξ̂i<−ρ
2

for ∀i=1,2,3.

Following from ξ1,2i = [−ξ̂i+ ρ
2
,ξ̂i+

ρ
2
], the corresponding pairs of eigenvalues ξi of the Jacobian

matrix (28) thus satisfy ξ1i = ξ̂+ ρ
2
> 0 and ξ2i =−ξ̂+ ρ

2
< 0 for ∀i= 1,2,3. Accordingly, the six

eigenvalues ξ1,2i =[−ξ̂i+ ρ
2
,ξ̂i+

ρ
2
] (i=1,2,3) of the 6×6 matrix J (S,P) are three positive and three

negative, establishing that the MHDS is saddle-path stable.

5.2 Global Stability

Proposition (7) has established the conditions for saddle-path dynamic stability. As a further

step, we will examine the conditions under which transitional dynamics of our model has global

stability. Specifically, global stability is defined as follows.
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Definition 1. The transitional dynamics are globally asymptotically stable (GAS) for every

bounded solution to the problem of maximizing (6) subject to (1), (2) and (4), if starting

from any initial condition [K(0),X(0),Z(0),λ(0),µ(0),ψ(0)], transitional dynamics can evolve

along the optimal path characterized by the MHDS (27) and converge to the steady state with

[K(t),X(t),Z(t),λ(t),µ(t),ψ(t)]→ [K∗,X∗,Z∗,λ∗,µ∗,ψ∗] as t→∞.

For transitional dynamics of the growth path characterized by (27), the sufficient condition

of GAS can be established if there is a 3×3 real-value symmetric matrix Q∈R3×3 such that the

following generalized curvature matrix

CQ(S,P)≡

HSS+HSPQ+QHPS+QHPPQ−ρQ −ρ
2
I3

−ρ
2
I3 −HPP

≺0 (32)

is negative definite. This sufficient condition of GAS draws on the seminal work of Sorger (1989),

which generalizes previous studies on the sufficient conditions for the convergence of optimal

growth paths to a steady state (e.g., Brock and Scheinkman, 1976; Cass and Shell, 1976; Magill,

1977; Rockafellar, 1976). Using the Schur decomposition, we derive that the curvature matrix

CQ(S,P) is negative definite if the fourth quadrant submatrix −HPP and its corresponding Schur

complement CQ(S,P)/(−HPP) are both negative definite, i.e.,

−HPP≺0 and CQ(S,P)/(−HPP)≡HSS+HSPQ+QHPS+QHPPQ−ρQ+
ρ2

4
H−1PP≺0.

The following result firstly establishes the negative definiteness of the submatrix −HPP.

Lemma 3. For optimal growth with resource exhaustibility and pollution externality, if the model

assumptions given in 1-4 hold, then the submatrix −HPP is negative definite, i.e.,

−HPP≡


−Hλλ −Hλµ −Hλψ
−Hµλ −Hµµ −Hµψ
−Hψλ −Hψµ −Hψψ

≺0,

Proof. See Appendix H.

Intuitively, the second-order derivatives of the maximized Hamiltonian with respect to three

costate variables HPP characterizes marginal effects of the shadow values λ, µ and ψ on the

dynamics of man-made capital, resource reserves and pollution stocks, i.e., K̇=Hλ, Ẋ=Hµ and
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Ż=Hψ. The negative definiteness of −HPP is equivalent to the positive definiteness of HPP,

thus implying that the growth rate of the three stock variables are positively affected by their

corresponding shadow values.

Furthermore, the following proposition establishes negative definiteness of the curvature

matrix CQ(S,P), and hence provides the sufficient condition of GAS for optimal growth with

resource exhaustibility and pollution externality.

Proposition 8. If the model of optimal growth with resource exhaustibility and pollution externality

satisfy the conditions

FEK=0, FK(FE−ME)+MX+
UCZ

UCC

=0, (33)

then the curvature matrix given in (32) is negative definite and the sufficient conditions for GAS

are satisfied. Accordingly, starting from any initial condition [K(0),X(0),Z(0),λ(0),µ(0),ψ(0)],

transitional dynamics can evolve along the path given by the MHDS (27) and converge to the

steady state with [K(t),X(t),Z(t),λ(t),µ(t),ψ(t)]→ [K∗,X∗,Z∗,λ∗,µ∗,ψ∗] as t→∞.

Proof. See Appendix I.

Proposition 8 provides two conditions for establishing the GAS. First, production function of

final goods should be separable in its two arguments K and E (FEK=0), i.e., one of the production

inputs - man-made capital or natural resources - has no effect on marginal products of the other.

Second, returns from marginal revenues of resource extraction π≡FE−ME (marginal product

of man-made capital FK as the rate of return) should be equal to the sum of marginal effects

of resource depletion on extraction costs MX<0 and marginal effect of pollution accumulation

on optimal consumption ∂Ĉ
∂Z

= UCZ

UCC
<0.

Following from (33), an interesting result is that transitional dynamics with the GAS will

feature a growth path along which changes in marginal revenues of resource extraction depend

on consumption and its marginal effect on the marginal rate of substitution between consumption

and environmental pollution as given by

π̇=σC
∂
(

UZ

UC

)
∂C

,

where σ≡− UC

CUCC
is the intertemporal elasticity of consumption substitution, and the marginal
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effect of C on the marginal rate of substitution between C and Z is given by ∂(UZ/UC)
∂C

=

UZCUC−UZUCC

U2
C

<0 with a negative sign.17

6 The Market Equilibrium

6.1 Equilibrium without Pollution Pricing

This section will investigate whether allocations in a market equilibrium (ME) are consistent with

the social optimum (SO), and if not which policy interventions can be implemented to achieve

the consistency. In the ME we consider a representative household who solves a problem of

maximizing discounted present values of utility streams subject to her budget constraint as

max
[C(t),K(t)]∞t=0

∫ ∞
0

exp(−ρt)U(C(t),Z(t))dt

s.t., K̇(t)=Π(t)+r(t)K(t)−C(t),

(34)

where the instantaneous utility U(C,Z) is discounted by the constant rate of time preference ρ, C

and K is consumption and man-made capital assets owned by the household, and the household

receives remunerations by renting capital K at the market interest rate r. The household has

an ownership of the firms operating in the economy and receives corporate profits Π at each

instantaneous time point as another source of income in her budget constraint.18 Corporate profits

are determined by solving the firm problems and not controllable by the household, and the

utility-maximizing household only optimally chooses consumption C and capital asset K.19

Furthermore, using both durable man-made capitalK and intermediate energy inputsE as pro-

duction factors, a representative firm producing final goods solves the profit maximization problem

max
[E(t),K(t)]∞t=0

∫ ∞
0

exp

[
−
∫ t

0

r(t′)dt′
]
[F(K(t),E(t))−r(t)K(t)−κ(t)E(t)]dt, (35)

where rK is the cost of renting capital K at the market interest rate r, and κE is the costs of using

17For derivations, substituting the modified Hotelling rule for resource extraction (19b) into the global stability

condition yields π̇= UZ

UC
−UZC

UCC
=
∂
(

UZ
UC

)
∂C C

(
− UC

CUCC

)
.

18The aggregate profits are given by Π=Π1+Π2, where Π1 and Π2 denotes the flow profit of the firms producing
final goods and extracting exhaustible resources respectively, which is given by (35) and (36).

19In our specification of the representative household problem, the size of the household is normalized to unity
and inelastically supplies, thus there is no endogenous treatment of labor input and wage remuneration.
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resource inputs E at the unit cost κ paid to resource extraction firms. Given the market interest

rate r and the price of resource inputs κ, the final goods producer optimally chooses the demand

for physical capital K and resource inputs E for maximizing discounted values of profits streams,

which is equivalent to maximization of static flow profits at each instantaneous point in time.

Finally, the ME considers that a representative firm that extracts resources and supplies

them to the final goods producer solves the problem

max
[E(t),X(t)]∞t=0

∫ ∞
0

exp

[
−
∫ t

0

r(t′)dt′
]
[κ(t)E(t)−M(E(t),X(t))]dt,

s.t., Ẋ(t)=−E(t),

(36)

where the resource extraction firm optimally chooses extraction flows E and the remaining stock

of resource reserves X for maximizing discounted present values of profit streams, subject to

depletions of the exhaustible resource stock. Instantaneous flow profits are obtained by receiving

revenues from selling extracted resources to the final goods producer at a price level κ, minus the

resource extraction cost denoted by M(E,X).

The market equilibrium is defined as an allocation in which 1) the household optimally

chooses consumption C and man-made capital K to maximize discounted present values of utility

streams subject to her budget constraint (34); 2) the final goods producer optimally chooses

demands for man-made capital K and resource inputs E for maximizing profits (35); and 3) the

resource extraction firm optimally chooses resource extraction flows E and the remaining stock

of resource reserves X for maximizing discounted present values of profit streams (36).

To characterize allocations in the ME, we first solve the household problem (34) and yield

the necessary condition of optimality: UC(C,Z)−λ=0, and ρλ−λ̇=rλ, where λ corresponds to

the shadow value of man-made capital K. Then solving the problem of the final goods firm yields:

FK(K,E)=r, and FE(K,E)=κ. The optimal behavior of consumption and capital accumulation

in the ME is thus characterized as

λM =UC(CM ,ZM), (37a)

λ̇M

λM
=ρ−FK(KM ,EM), (37b)

where the superscript “M” corresponds to allocations in the ME. Furthermore, solving the problem
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of the resource extraction firm yields: κ−ME−µ=0, and rµ−µ̇=−MX, where µ corresponds

to the shadow value of exhaustible resources. Substituting FE =κ and rearranging yields the

following equations characterizing extraction flows and the remaining stock of natural resources,

µM =FE(KM ,EM)−ME(EM ,XM), (38a)

µ̇M

µM
=r+

MX(EM ,XM)

FE(KM ,EM)−ME(EM ,XM)
, (38b)

where the shadow value of the exhaustible resource stock is equal to marginal revenues of resource

extraction, and the growth rate of the shadow values depends on the market interest rate and the

stock-dependent extraction costs. Without pollution pricing to internalize pollution externality

resulting from resource extraction, allocations in the ME are characterized by (37) and (38), and

its consistency with the SO outcome is given by the following result.

Proposition 9. Without taking into account the externality of pollution resulting from resource

extraction, allocations in the ME are not consistent with the SO outcomes.

Proof. See Appendix J.

6.2 Flow-based Pollution Pricing

To achieve consistency with the SO allocations, the ME needs to introduce a way of internalizing

the externality of pollution resulting from resource extraction. We consider implementation of a

polluters pay system that makes resource extraction firms generating emissions pay for the costs of

abating pollution. With such a system established, the resource extraction firm solves the problem

max
[E(t),X(t)]∞t=0

∫ ∞
0

exp

[
−
∫ t

0

r(t′)dt′
]
[κ(t)E(t)−M(E(t),X(t))−ω(t)E(t)]dt,

s.t., Ẋ(t)=−E(t),

(39)

where the cost burden facing this resource extraction firm involves both direct extraction costs

denoted by M(E,X) and the costs of abating pollution emissions resulting from resource extraction

ωE, with ω denoting the unit cost of abatement. The total costs of abatement are charged based on

resource extraction flows E (one unit of resource extraction leads to one unit of pollution emissions).

Meanwhile, pricing environmental pollutants is implemented by creating a market for pollution

where pollution abatement firms, upon receiving the price signal of pollutants, has an incentive
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to provide abatement services to resource extraction firms. Specifically, the pollution abatement

firm solves the problem

max
[B(t)]∞t=0

∫ ∞
0

exp

[
−
∫ t

0

r(t′)dt′
]
[ω(t)B(t)−G(B(t))]dt, (40)

where pollution abatement B are optimally chosen for maximizing intertemporal profit streams,

which is equivalent to maximization of static profits at instantaneous time points.

To characterize allocations with flow-based pollution pricing, we solve the resource extraction

firm problem (39) and obtain the necessary condition of optimality: κ−ME−ω−µ= 0, and

rµ−µ̇=−MX, where ω is the unit cost of pollution in the flow-based pricing system, and µ is the

shadow value of exhaustible resources. Substituting FE=κ given in (35) and rearranging yields

the static and dynamic profiles of the shadow price of resource reserves

µM =FE(KM ,EM)−ME(EM ,XM)−ω, (41a)

µ̇M

µM
=r+

MX(EM ,XM)

FE(KM ,EM)−ME(EM ,XM)−ω
. (41b)

Then solving the problem of pollution abatement firms (40) yields ω=G′(BM). We obtain the

following result concerning allocation in a ME with flow-based pollution pricing.

Proposition 10. With a flow-based pollution pricing system, allocations in the ME can achieve

consistency with SO outcomes. Furthermore, with pollution costs charged based on resource extrac-

tion flows, the unit pricing of pollution emissions is given as the ratio of shadow values between

pollution stocks and man-made capital in the SO, i.e., ω= −ψ
S

λS
.

Proof. See Appendix K.

6.3 Stock-based Pollution Pricing

To compare with the flow-based pricing system, we consider an alternative pollution pricing

mechanism based on the stock of polluting resources rather than extraction flows. Within a

stock-based pollution pricing system, the resource extraction firm solves the problem

max
[E(t),X(t)]∞t=0

∫ ∞
0

exp

[
−
∫ t

0

r(t′)dt′
]
[κ(t)E(t)−M(E(t),X(t))−ω̄(t)X(t)]dt,

s.t., Ẋ(t)=−E(t),

(42)
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where the total cost of abating pollution from resource extraction is charged based on the remaining

stock of resources X (that will generate an equivalent stock of environmental pollutants), with the

unit price of pollutants denoted by ω̄. Meanwhile, the pollution abatement firm solves the problem

max
[B(t),Z(t)]∞t=0

∫ ∞
0

exp

[
−
∫ t

0

r(t′)dt′
]
[ω̄(t)Z(t)−G(B(t))]dt,

s.t., Ż(t)=E(t)−B(t),

(43)

where the pollution abatement firm optimally chooses abatement levelsB and the pollution stock Z

for maximizing intertemporal profit streams, subject to the law of motion for pollution accumulation.

Instantaneous flow profits are obtained by receiving payments from the resource extraction firm that

is responsible for the accumulated pollution stock Z, minus the abatement costs given by G(B).

To characterize allocations with stock-based pollution pricing, we solve the resource extrac-

tion firm problem (42) and yield the necessary condition of optimality: κ−ME−µ= 0, and

rµ− µ̇=−MX− ω̄. Substituting FE = κ and rearranging yields the shadow price of resource

reserves in a stock-based pollution pricing system

µM =FE(KM ,EM)−ME(EM ,XM), (44a)

µ̇M

µM
=r+

MX(EM ,XM)−ω̄
FE(KM ,EM)−ME(EM ,XM)

. (44b)

Meanwhile, solving the problem of pollution abatement firms yields

ψM =−G′(BM), (45a)

rψM−ψ̇M =ω̄, (45b)

where ψM is the shadow value of pollution stocks. We hence obtain the following result for

allocations in the ME with stock-based pollution pricing.

Proposition 11. Allocations in the ME with stock-based pollution pricing can achieve consistency

with SO outcomes. With pollution costs charged based on the remaining stock of resource reserves,

the unit pricing of pollution emissions is determined as a ratio between the marginal disutility of

pollution and the marginal utility of consumption, i.e., ω̄=−UZ

UC
.

Proof. See Appendix L.

29



7 Conclusions

One of the grand challenges facing the world is the endeavor to sustain economic growth without

depleting exhaustible natural resources and without jeopardizing the environment. This paper

provides a general theory of optimal growth with resource exhaustibility and pollution externality,

based on an optimal control framework that explicitly considers augmentable man-made capital,

exhaustible resource reserves and accumulative environmental pollutants as three stock variables.

First, characterization of social optimum shows that resource extraction should reach a level

where marginal products of natural resources equal marginal direct costs of extraction plus social

costs associated with resource exhaustibility and pollution externality. With pollution externality

taken into account, for any given states of man-made capital and resource reserves the resource

extraction flows generated in optimal growth with both resource exhaustibility and pollution

externality are smaller than those with only resource exhaustibility. Moreover, if man-made capital

and resource inputs are complements in final goods production, then taking account of pollution

externality will reduce the growth rate of consumption.

Second, we shows that if marginal utility of consumption is less elastic with respect to pollution

stock accumulation than marginal disutility of pollution, then there is a unique steady state where

the marginal product of man-made capital is equal to the rate of time preference, and marginal

revenues of resource extraction are equal to marginal extraction costs of resource depletion plus

marginal disutility of pollution discounted by the rate of time preference. Furthermore, the steady

state levels of resource reserves and consumption will decrease if pollution externality resulting from

resource extraction is not taken into account. Comparative statics show that in the steady state

an increase in the rate of time preference will reduce man-made capital and pollution stocks, but

that effect on remaining resource reserves is ambiguous depending on the stock-dependent resource

extraction costs, production technology of final goods, and the rate of time preference. An increase

in resource use efficiency reduces the remaining resource reserves, but an increase in marginal

extraction cost and pollution emission intensity leads to a larger stock of remaining resource reserves.

Third, the analysis of transitional dynamics shows that if the rate of time preference is suffi-

ciently small, then there is always a three-dimensional stable saddle path along which transitional

dynamics evolve and converge to the steady state. Furthermore, if production technology of final
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goods is separable in man-made capital and resource inputs, and return from marginal revenues

of resource extraction is equal to the sum of marginal effects of resource depletion on extraction

costs and marginal effects of pollution accumulation on optimal consumption, the transitional

dynamics are globally asymptotically stable.

Finally, we find that the market equilibrium without pricing pollution resulting from resource

extraction can not achieve consistency with allocations in the social optimum. To achieve con-

sistency, the ME needs to consider pricing pollution externality by establishing a polluters pay

system that makes resource extraction firms generating emissions pay for the costs of pollution

abatement. Specifically, in a flow-based pollution pricing system where pollution costs are charged

based on resource extraction flows, the unit pricing of pollution emissions is determined as the

ratio of shadow values between pollution stocks and man-made capital. In a stock-based pollution

pricing system where pollution costs are charged based on the stock of resource reserves, the unit

pricing of pollution stocks is determined as a ratio between the marginal disutility of pollution

and the marginal utility of consumption.

Appendix A Proof of Lemma 2

The proof involves two steps. First, we will show if the maximized Hamiltonian H is strictly

concave with respect to state variables [K,X,Z], then the solution [Ĉ,Ê,B̂,K̂,X̂,Ẑ] satisfying

the necessary conditions of optimality corresponds to a unique global maximum. Specifically, we

have H(K,X,Z,λ,µ,ψ)≥H0(C,E,B,K,X,Z,λ,µ,ψ)≡U(C,Z)+λK̇+µẊ+ψŻ and multiplying the

exponential discounting factor e−ρt and integration yields∫ ∞
0

e−ρtU(C,Z)dt+

∫ ∞
0

e−ρt
[
λK̇+µẊ+ψŻ

]
dt≤

∫ ∞
0

e−ρtH(K,X,Z,λ,µ,ψ)dt.

If the maximized Hamiltonian H is strictly concave with respect to state variables [K,X,Z] given

the resulting costate variables [λ,µ,ψ], then we have

H(K,X,Z,λ,µ,ψ)<H(K̂,X̂,Ẑ,λ,µ,ψ)+(ρλ−λ̇)(K−K̂)+(ρµ−µ̇)(X−X̂)+(ρψ−ψ̇)(Z−Ẑ),

where [K,X,Z] corresponds to a non-optimal feasible path, and [K̂,X̂,Ẑ] to the optimal path for a

given costate variables [λ,µ,ψ], and the inequality follows from the necessary conditions of optimal-
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ity: HK(K̂,X̂,Ẑ,λ,µ,ψ)=ρλ−λ̇, HX(K̂,X̂,Ẑ,λ,µ,ψ)=ρµ−µ̇, and HZ(K̂,X̂,Ẑ,λ,µ,ψ)=ρψ−ψ̇.

Combining the two inequality given above yields∫ ∞
0

e−ρtU(C,Z)dt+

∫ ∞
0

e−ρt
[
λK̇+µẊ+ψŻ

]
dt≤

∫ ∞
0

e−ρtH(K̂,X̂,Ẑ,λ,µ,ψ)dt

+

∫ ∞
0

e−ρt
[
(ρλ−λ̇)(K−K̂)+(ρµ−µ̇)(X−X̂)+(ρψ−ψ̇)(Z−Ẑ)

]
dt.

(A.1)

The maximized Hamiltonian evaluated at the optimal path [K̂,X̂,Ẑ] is given byH(K̂,X̂,Ẑ,λ,µ,ψ)≡

U(Ĉ,Ẑ)+λ
˙̂
K+µ

˙̂
X+ψ

˙̂
Z, and substituting it into (A.1) and rearranging yields∫ ∞

0

e−ρt
[
U(C,Z)−U(Ĉ,Ẑ)

]
dt<

∫ ∞
0

e−ρt
[
λ(

˙̂
K−K̇)+µ(

˙̂
X−Ẋ)+ψ(

˙̂
Z−Ż)

]
dt

+

∫ ∞
0

e−ρt
[
(ρλ−λ̇)(K−K̂)+(ρµ−µ̇)(X−X̂)+(ρψ−ψ̇)(Z−Ẑ)

]
dt

=e−ρtλ(K−K̂)|∞t=0+e−ρtλ(X−X̂)|∞t=0+e−ρtλ(Z−Ẑ)|∞t=0=0,

where the last line boils down to zero following from both transversality and initial conditions,

and we hence have ∫ ∞
0

e−ρtU(C,Z)dt≤
∫ ∞
0

e−ρtU(Ĉ,Ẑ)dt.

This establishes that the solution [Ĉ,Ê,B̂,K̂,X̂,Ẑ] satisfying the necessary conditions of optimality

corresponds to a unique global maximum.

Second, to establish the concavity of the maximized Hamiltonian with respect to three state

variables, the corresponding 3×3 Hessian matrix should be negative definite, which requires the

leading principal minors of the Hessian matrix alternate their signs, i.e.,

HKK<0,

∣∣∣∣∣∣ HKK HKX
HXK HXX

∣∣∣∣∣∣>0,

∣∣∣∣∣∣∣∣∣
HKK HKX HKZ
HXK HXX HXZ
HZK HZX HZZ

∣∣∣∣∣∣∣∣∣<0. (A.2)

Using the Envelop Theorem yields the first-order derivative of H with respect to three state

variables: HK=λFK(K,Ê), HX =−λMX(Ê,X), and HZ=UZ(Ĉ,Z). Using (10), (15) and (17)

to simplify the first inequality of the conditions (A.2). as λ
MEE−FEE

[FKK(MEE−FEE)+F2
KE]<0,

and the second inequality as λ2

MEE−FEE
{FKKM2

XE−MXX[F2
KE+FKK(MEE−FEE)]}>0. Given
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that Z only affect HZ, the last inequality boils down to

HZZ

∣∣∣∣∣∣ HKK HKX
HXK HXX

∣∣∣∣∣∣=
[
UZZ−

U2
CZ

UCC

]
λ2

MEE−FEE

{
FKKM2

XE−MXX

[
F2
KE+FKK(MEE−FEE)

]}
<0.

Given that MEE−FEE>0, FKK<0 and MXX>0, the sufficient conditions can be simplified as

F2
KE+FKK(MEE−FEE)<FKK

M2
XE

MXX
and UZZUCC−U2

CZ<0.

Appendix B Proof of Proposition 1

Rewriting (19c) as Ġ′=FKG′+UZ

UC
, and substituting it into (19b), the dynamic profiles of resource

extraction in an optimal growth model with both resource exhaustibility and pollution externality

(named Model 1) are given by

d

dt
[π(K,X,E)−G′(B)]=FK(K,E)[π(K,X,E)−G′(B)]+MX(X,E), (B.1)

where π(K,X,E)≡F(K,E)−M(X,E) is marginal revenue of resource extraction, π(K,X,E)−G′(B)

is marginal extraction revenue minus marginal pollution abatement costs. In contrast, for an

optimal growth model with only resource exhaustibility (named Model 2), the terms representing

pollution disutility and abatements vanish, and marginal revenues of resource extraction would

evolve according to

d

dt

[
π(K̂,X̂,Ê)

]
=FK(K̂,Ê)π(K̂,X̂,Ê)+MX(X̂,Ê), (B.2)

where the “hat” over the underlying arguments corresponds to the case of optimal growth with

only resource exhaustibility.

We prove by contradiction that resource extraction flows derived from Model 1 are smaller than

that from Model 2, i.e., E<Ê, for any given man-made capital and resource reserves, i.e., K=K̂

and X=X̂. First, suppose that E=Ê, with K=K̂ and X=X̂, we have FK(K,E)=FK(K̂,Ê)

and MX(X,E)=MX(X̂,Ê). Then from (B.1)-(B.2), we derive π(K,X,E)−G′(B)=π(K̂,X̂,Ê).

However, it is straightforward to verify that this equality cannot hold with E=Ê, K=K̂, X=X̂

and G′(B)>0, which thus leads to contradiction.

Moreover, suppose that E>Ê, with K=K̂ and X=X̂, we have FK(K,E)<FK(K̂,Ê) and
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MX(X,E)<MX(X̂,Ê) given that FEK<0 and MEX<0. Then from (B.1)-(B.2), we have

π(K,X,E)−G′(B)>π(K̂,X̂,Ê). (B.3)

However, with E>Ê, K= K̂, X = X̂ and π is negatively related to E, we have π(K,X,E)<

π(K̂,X̂,Ê) which contradicts with (B.3).

Finally, suppose that E<Ê, with K=K̂ and X= X̂, we have FK(K,E)>FK(K̂,Ê) and

MX(X,E)>MX(X̂,Ê) given that FEK<0 and MEX<0. Then from (B.1)-(B.2), we derive

π(K,X,E)−G′(B)<π(K̂,X̂,Ê). (B.4)

Given that E<Ê, K= K̂, X= X̂ and ψ is negatively related to E, we can have π(K,X,E)>

π(K̂,X̂,Ê). Therefore, with G′(B)>0, π(K,X,E)−G′(B)<π(K̂,X̂,Ê) can possibly hold and

thus not contradict with (B.4). Further check when FEK>0, we have FK(K,E)<FK(K̂,Ê) for

E<Ê with K=K̂ and X=X̂. Then from (B.1)-(B.2), the following inequality can hold

π(K,X,E)−G′(B)>π(K̂,X̂,Ê). (B.5)

Given that E<Ê, K= K̂, X= X̂ and ψ is negatively related to E, we can have π(K,X,E)>

π(K̂,X̂,Ê). With G′(B)>0, π(K,X,E)−G′(B)>π(K̂,X̂,Ê) can hold and thus not contradict

with (B.4). Therefore, it can be concluded that only E<Ê does not lead to contradiction. With

E<Ê, FK will decrease if FEK>0, and together with the negative pollution effect on utility, the

growth rate of consumption would be lower.

Appendix C Proof of Proposition 2

Substituting C=F(K∗,0) into (23) yields the following equation that characterizes the steady

state of pollution stock

− UZ(F(K∗,0),Z∗)

ρUC(F(K∗,0),Z∗)
=G′(0), (C.1)

where the marginal cost of abatement at zero abatement levels is exogenously given G′(0). Com-

bined with (21), the two equations can pin down two endogenous variables K∗ and Z∗. To establish
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the existence of K∗ and Z∗, we use (21) to pin down K∗. Then total differentiating (C.1) yields[
UCUZC−UZUCC

U2
C

]
dC∗+

[
UCUZZ−UZUCZ

U2
C

]
dZ∗=0 ⇒ ΩdC∗+ΨdZ∗=0,

where we define two terms: Ω ≡ UCUZC−UZUCC

U2
C

and Ψ ≡ UCUZZ−UZUCZ

U2
C

. Following from

UC>0,UZC<0,UZ<0,UCC<0, we have Ω<0. Furthermore, suppose that

∂lnUC

∂Z
<
∂lnUZ

∂Z
,

we would obtain UCUZZ−UZUCZ > 0 and Ψ> 0. Substituting dC∗ = FKdK
∗ (derived from

C∗=F(K∗,0)) yields ΩFKdK
∗+ΨdZ∗=0 and rearranging yields

dZ∗

dK∗
=−ΩFK

Ψ
>0.

where the positive sign is derived following from Ω<0, Ψ>0, FK>0, implying that Z∗ is strictly

increasing in K∗. Given that K∗ is uniquely determined by (21), there exists a unique value of

K∗ and Z∗ that satisfies (21) and (23).

Given the existence of K∗ and Z∗, the steady state levels of consumption are given by

C∗=F(K∗,0), and the steady state levels of resource reserves X∗ are determined by

FE(K∗,0)=ME(0,X∗)−MX(0,X∗)

ρ
+G′(0). (C.2)

where the uniqueness of K∗ and Z∗ implies that FE(K∗,0) is uniquely determined, and the

right-hand side of (C.2) is also uniquely determined. Given that MEX < 0 and MXX > 0, the

right-hand side of (C.2) is monotonically decreasing with the only argument X∗, so the right-hand

side of (C.2) uniquely determines the steady state of resource reserves X∗.

Appendix D Proof of Proposition 3

Since (21) and (23) has no argument of Z, pollution externality has no effect on E∗ and K∗.

From (22), the term G′(B∗) will vanish if the pollution externality is not taken into account. With

G′(B∗) decrease, the term ME(E∗,X∗)−MX(E∗,X∗)
ρ

will increase such that the right-hand side of

(22) will be equal to the left-hand side FE which is unaffected. Given that E∗ is unchanged, X∗

will decrease when ME(E∗,X∗)−MX(E∗,X∗)
ρ

increases because it is monotonically decreasing in X∗.
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Finally, since F(K∗,E∗) is unchanged and G(B∗)=G(0)=0, an increase in M(E∗,X∗) leads to

a decrease in C∗=F(K∗,E∗)−M(E∗,X∗)−G(B∗).

Appendix E Proof of Proposition 4

Assuming that the supply of resources is infinitely large, i.e., X∗→∞, the law of motion for

resource depletion vanishes and (22) characterizing the steady state of resource extraction becomes

FE(K(E∗),E∗)=ME(E∗,X∗)+
µ∗

λ∗
+G′(E∗), (E.1)

where FK(K∗,E∗)=ρ implicitly determines K∗=K(E∗) that relates K∗ as a function of E∗ with

dK∗

dE∗
=−FEK

FKK
, and B∗=E∗ holds such that the pollution stock can be stabilized in the steady

state. Total differentiating (E.1) yields[
FEEFKK−F2

EK

FKK
−MEE−G′′

]
dE∗=MEXdX

∗+d

(
µ∗

λ∗

)
. (E.2)

With resource reserves increase to an infinitely large level X∗→∞, we have dX∗> 0 and the

shadow value of resources due to exhaustibility will decrease and vanish d
(
µ∗

λ∗

)
<0. Following from

FEEFKK−F2
EK>0, FKK<0, MEE>0 and G′′>0, we have dE∗>0, dB∗>0, and dG(B∗)>0.

Furthermore, while X∗→∞ lowers the marginal cost of extraction, the increase in extraction

flows dE∗>0 makes the total cost of extraction M(E∗,X∗) ambiguous. Depending on whether

K and E are complementary in final goods production, we have dK∗>0 if FKE>0 and dK∗<0

if FKE<0. Given that F(K∗,E∗) and M(E∗,X∗) are ambiguous, changes in C∗ are ambiguous,

implying that Z∗ is undetermined following from (23).

Appendix F Proof of Proposition 5

With respect to the exogenous parameter ρ, totally differentiating FK(K∗,0)=ρ, (C.1) and (C.2)

that characterize K∗,X∗,Z∗ yields the following linear equation system
FKK 0 0

ρFEK 0 MXX−ρMEX

ΩFK Ψ 0



dK∗

dZ∗

dX∗

=


1

ME−FE+G′(0)

0

dρ,
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and using the Cramer’s Rule to solve and yield dK∗

dρ
= DK∗

D , dZ∗

dρ
= DZ∗
D , dX∗

dρ
= DX∗
D , where the

sign of D is established by D=−(MXX−ρMEX)FKKΨ> 0, following from MXX−ρMEX > 0,

FKK<0 and Ψ>0. The sign of DK∗ is given by DK∗=−(MXX−FKMEX)Ψ<0 following from

MXX−ρMEX>0 and Ψ>0. The sign of DZ∗ is given by DZ∗=−(MXX−FKMEX)(0−ΩFK)<0

due to MXX−ρMEX>0 and ΩFK<0. The sign of DX∗ is given by DX∗=ρFEKΨ−FKKΨ(ME−

FE +G′(0)). Using (C.2) ME−FE +G′(0) = MX

ρ
to simplify notations and rearranging yields

DX∗=
[
ρFEK−MX

ρ
FKK

]
Ψ. Given that Ψ>0, we yield (25). Finally, E∗ and B∗ are not affected

by changes in ρ, so dE∗

dρ
=0 and dB∗

dρ
=0. Given that dK∗

dρ
<0 and C∗=F(K∗,0), we have dC∗

dρ
<0.

Appendix G Proof of Proposition 6

With respect to the exogenous parameter α, totally differentiating FK(K∗,0)=ρ, (C.1) and (C.2)

that characterize K∗,X∗,Z∗ yields
FKK 0 0

αFEK 0 MXX

ρ
−MEX

ΩFK Ψ 0



dK∗

dZ∗

dX∗

=


0

−FE

0

dα. (G.1)

Using the Cramer’s Rule to solve the linear equation system and yields dK∗

dα
= DK∗

D , dZ∗

dα
=

DZ∗
D , dX∗

dα
= DX∗
D , where the signs ofD,DK∗,DZ∗,DX∗ are given byD=(−1)

(
MXX

ρ
−MEX

)
FKKΨ>

0, DK∗=0, DZ∗=0, and DX∗=FEFKKΨ<0. For the exogenous parameter β and γ, we follow

a similar procedure of total differentiation FK(K∗,0)=ρ, (C.1) and (C.2), and the matrix of linear

equations is given by
FKK 0 0

FEK 0 βMXX

ρ
−MEX

ΩFK Ψ 0



dK∗

dZ∗

dX∗

=


0

ME−MX

ρ

0

dβ,


FKK 0 0

FEK 0 MXX

ρ
−MEX

ΩFK Ψ 0



dK∗

dZ∗

dX∗

=


0

G′(0)

0

dγ,
from which the signs of the comparative static effects of β and γ can be established.
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Appendix H Proof of Lemma 3

We prove this lemma by verifying the negative definiteness of the matrix −HPP. The first leading

principal minor is given by

−Hλλ=−

[
(FE−ME)2

λ∆
+

(G′)2

λG′′
− 1

UCC

]
<0,

where the negative sign is determined following from λ>0, ∆≡MEE−FEE>0 and UCC<0. The

second leading principal minor of the matrix (3) is determined by∣∣∣∣∣∣ −Hλλ −Hλµ−Hµλ −Hµµ

∣∣∣∣∣∣=HλλHµµ−H2
λµ=

[
(G′)2

λG′′
− 1

UCC

]
1

λ∆
>0.

The third leading principal minor can be rewritten as

(−Hλψ)

∣∣∣∣∣∣ −Hµλ −Hµµ−Hψλ −Hψµ

∣∣∣∣∣∣−(−Hµψ)

∣∣∣∣∣∣ −Hλλ −Hλµ−Hψλ −Hψµ

∣∣∣∣∣∣+(−Hψψ)

∣∣∣∣∣∣ −Hλλ −Hλµ−Hµλ −Hµµ

∣∣∣∣∣∣
=−

[
FE−ME

λ∆
+

G′

λG′′

][
FE−ME

λ∆

1

λ∆
−
(

FE−ME

λ∆
+

G′

λG′′

)
1

λ∆

]
−
(

1

λ∆

)[
1

λ∆

[
1

UCC

− (G′)2

λG′′

]
+

(FE−ME)G′

λ2∆G′′

]
−
[

1

λ∆
+

1

λG′′

][
(G′)2

λG′′
− 1

UCC

]
1

λ∆

=
1

λ2∆G′′UCC

<0,

where cancelling common terms and simplifying yields the last line, and the negative sign is

determined given that ∆≡MEE−FEE>0, G′′>0 and UCC<0.

Appendix I Proof of Proposition 8

The proof begins by defining two Hamiltonian matrix

Ĵ (S,P)≡

R T

W −RT

=

HPS− ρ
2
I3 HPP

−HSS −HSP+ ρ
2
I3

, (I.1a)

J̄ (S,P)≡

 R T

W−
(
ρ2

4
+τ
)
T −1 −RT

=

 HPS− ρ
2
I3 HPP

−HSS−
(
ρ2

4
+τ
)
H−1PP −HSP+ ρ

2
I3

, (I.1b)
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where τ is an exogenous parameter, and we verify that ifHPSHPP=HPPHSP holds, then we have

RTT −1 =T −1R and J̄ (S,P)2 = Ĵ (S,P)2−
(
ρ2

4
+τ
)
I6. Hence, the eigenvalues of J̄ (S,P) and

Ĵ (S,P) satisfy the condition (±ξ̄i)2 =(±ξ̂i)2−
(
ρ2

4
+τ
)
∀i=1,2,3, where ±ξ̄i and ±ξ̂i denote

the symmetric pair of eigenvalue of J̄ (S,P) and Ĵ (S,P), respectively.

Now consider the case of the saddle path stability, the eigenvalues of Ĵ (S,P) satisfy

| ± ξ̂i| > ρ
2
∀i = 1,2,3, there thus exists τ̄ = min

i=1,2,3

(
ξ̂2i −

ρ2

4

)
> 0 such that for ∀τ ∈ (0, τ̄),

(±ξ̄i)2=(±ξ̂i)2−
(
ρ2

4
+τ
)
>0=⇒|ξ̄i|>0, i.e., J̄ (S,P) has nonzero eigenvalues (three positive and

three negative, symmetrically distributed with respect to zero). Given the symmetric distribution

of nonzero eigenvalues, there exists a 3×3 matrix Z ∈R3×3 and a 6×3 matrix [X ,Y]T ∈R6×3,

such that the 6×6 Hamiltonian matrix J̄ (S,P) given by (I.1b) can be diagonalized as

J̄ (S,P)

X
Y

≡
R T

V −RT

X
Y

=

X
Y

Z, (I.2)

where the three columns of the 6×3 matrix [X ,Y]T ∈R6×3 correspond to the three eigenvectors

associated with three negative eigenvalues of Ĵ (S,P), and Z ≡ diag(ξ1,ξ2,ξ3) ∈ R3×3 is the

eigenvalue diagonalized matrix where ξ1,ξ2,ξ3 denote the three negative eigenvalues of Ĵ (S,P).

Matrix manipulation on the second row of (I.2) yields, V−RTYX−1=YZX−1=YX−1XZX−1.

Define Q=YX−1 and substituting the first row of (I.2) yields, V−RTQ=Q(RX+T Y)X−1=

QR+T Q. Rearranging yields a matrix Riccati equation

−V+RTQ+QR+QT Q=0, (I.3)

where there exists a symmetric matrixQ=YX−1 (X is nonsingular) that solves (I.3).20 Substituting

the expressions of R,T ,V given by (I.1b) into the matrix Riccati equation (I.3) yields

CQ(S,P)/(−HPP)≡HSS+
ρ2

4
H−1PP+HSPQ+QHPS+QHPPQ−ρQ=−τH−1PP. (I.4)

20To establish the matrix Q=YX−1 is symmetric, from (I.2) we have[
X
Y

]T
IJ̄
[
X
Y

]
=

[
X
Y

]T
I
[
X
Y

]
Z ⇒

[
X
Y

]T[−V RT
R T

][
X
Y

]
=(YTX−XTY)Z,

where I ∈ R6×6 is a skew-symmetric matrix. As the left-hand side is symmetric, the right-
hand side is also symmetric, i.e., (YTX − XTY)Z = ZT (XTY − YTX ). Rearranging yields
(YTX − XTY)(Z + ZT ) = 0 ⇒ YTX = XTY. We can accordingly establish that the matrix Q = YX−1

is symmetry, i.e., Q=YX−1=
(
X−1

)TXTYX−1=
(
X−1

)TYTXX−1=
(
YX−1

)T
=QT .
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Therefore, if HPSHPP=HPPHSP holds, then CQ(S,P)/(−HPP) has the same negative definite-

ness as −H−1PP. Given that −HPP≺0, we have −H−1PP≺0,21 and CQ(S,P)/(−HPP)≺0. With

both −HPP and its Schur complement CQ(S,P)/(−HPP) are negative definite, the curvature

matrix is negative definite, i.e., CQ(S,P)≺0. The negative definiteness of the curvature matrix

given in (32) thus established the condition for GAS.

The second part of proof is to establish the condition HPSHPP=HPPHSP, i.e.,
HλK HλX HλZ
HµK HµX HµZ
HψK HψX HψZ



Hλλ Hλµ Hλψ
Hµλ Hµµ Hµψ
Hψλ Hψµ Hψψ

=


Hλλ Hλµ Hλψ
Hµλ Hµµ Hµψ
Hψλ Hψµ Hψψ



HKλ HKµ HKψ
HXλ HXµ HXψ
HZλ HZµ HZψ

, (I.5)

where the equality corresponding to the main diagonal (1,1), (2,2) and (3,3) elements always

holds since H(K,X,Z,λ,µ,ψ) satisfies the equality of mixed second-order partial derivatives, i.e.,

∂2H
∂i∂j

= ∂2H
∂j∂i

∀i,j∈{K,X,Z,λ,µ,ψ}. Meanwhile, the off-diagonal elements in (I.5) are symmetric,

and we thus only need to verify the equalities corresponding to the (1,2), (1,3) and (2,3) element

as they are the same with that corresponding to the (2,1), (3,1) and (3,2) element respectively.

Making LHS to equalize RHS in (I.5) and cancelling the common terms, the equality

corresponding to (1,2) element boils down to the condition

−FK
∂Ê

∂λ
+MX

∂Ê

∂µ
+
∂Ĉ

∂Z

∂Ê

∂ψ
=
∂Ĉ

∂λ

∂Ê

∂K
+G′

∂B̂

∂λ

∂Ê

∂K
, (I.6)

where the LHS and RHS are given by ∇K,X,ZHλ ·[∇λ,µ,ψHµ]T =
〈

FK+π ∂Ê
∂K
,−MX+π ∂Ê

∂X
,−∂Ĉ

∂Z

〉
·〈

−∂Ê
∂λ
,−∂Ê

∂µ
,−∂Ê

∂ψ

〉T
, and ∇λ,µ,ψHλ·[∇K,X,ZHµ]T =

〈
π ∂Ê
∂λ
−G′ ∂B̂

∂λ
− ∂Ĉ

∂λ
,π ∂Ê

∂µ
,π ∂Ê

∂µ
−G′ ∂B̂

∂ψ

〉
·
〈
− ∂Ê
∂X
,− ∂Ê

∂X
,−∂Ê

∂Z

〉T
, respectively. Furthermore, the equality corresponding to (1,3) element boils

down to the condition

−FK

(
∂Ê

∂λ
−∂B̂
∂λ

)
+π

∂Ê

∂K

∂B̂

∂λ
+MX

∂Ê

∂µ
+
∂Ĉ

∂Z

(
∂Ê

∂ψ
−∂B̂
∂ψ

)
=
∂Ĉ

∂λ

∂Ê

∂K
+G′

∂B̂

∂λ

∂Ê

∂K
, (I.7)

where the LHS and RHS are given by ∇K,X,ZHλ ·[∇λ,µ,ψHψ]T =
〈

FK+π ∂Ê
∂K
,−MX+π ∂Ê

∂X
,−∂Ĉ

∂Z

〉
·〈

∂Ê
∂λ
− ∂B̂

∂λ
,∂Ê
∂µ
,∂Ê
∂ψ
− ∂B̂

∂ψ

〉T
, and ∇λ,µ,ψHλ · [∇K,X,ZHψ]T =

〈
π ∂Ê
∂λ
−G′ ∂B̂

∂λ
− ∂Ĉ

∂λ
,π ∂Ê

∂µ
,π ∂Ê

∂ψ
−G′ ∂B̂

∂ψ

〉
·〈

∂Ê
∂K
, ∂Ê
∂X
,∂Ê
∂Z

〉T
, respectively. Finally, the equality corresponding to (2,3) element can be simplified

21If a nonsingular symmetric matrix is negative definite −HPP≺0, so is an inverse matrix of this symmetric
matrix −H−1PP≺0.
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as the condition
∂Ê

∂K

∂B̂

∂λ
=0. (I.8)

where the LHS and RHS are given by∇K,X,ZHµ·[∇λ,µ,ψHψ]T =
〈
− ∂Ê
∂K
,− ∂Ê

∂X
,−∂Ê

∂Z

〉
·
〈
∂Ê
∂λ
− ∂B̂

∂λ
,∂Ê
∂µ
,∂Ê
∂ψ
− ∂B̂

∂ψ

〉T
,

and ∇λ,µ,ψHµ·[∇K,X,ZHψ]T =
〈
−∂Ê

∂λ
,−∂Ê

∂µ
,−∂Ê

∂ψ

〉
·
〈
∂Ê
∂K
, ∂Ê
∂X
,∂Ê
∂Z

〉T
, respectively.

The three conditions (I.6), (I.7) and (I.8) can be further simplified as FK
∂Ê
∂λ
−MX

∂Ê
∂µ
− ∂Ĉ
∂Z

∂Ê
∂ψ

+

∂Ĉ
∂λ

∂Ê
∂K

= 0, FK
∂B̂
∂λ
− ∂Ĉ

∂Z
∂B̂
∂ψ

= 0, and ∂Ê
∂K

∂B̂
∂λ

= 0. Substituting the specific function forms given in

(10), (15) and (17) into these conditions, we obtain FK(FE−ME)+MX−FKG′+ UC

UCC
FEK =0,

FKG′+UCZ

UCC
=0, and FEKG′=0. Given that G′ 6=0, we obtain (33).

Appendix J Proof of Proposition 9

Following from (7a) and (7d), the static and dynamic profiles of the shadow price of man-made

capital in the SO are characterized by λS = UC(CS,ZS) and λ̇S

λS
= ρ−FK(KS,ES), where the

superscript “S” correspond to allocations in the SO. To establish static consistency with (7b)

characterizing resource extraction in the SO, i.e., µS−ψS

λS
=FE−ME, the shadow value of resource

stocks µM should satisfy µM = µS−ψS

λS
. Taking time derivatives yields,

˙µM

λM
=
µ̇S−ψ̇S

µS−ψS
− λ̇

S

λS
=r+

MX(ES,XS)+UZ(C
S,ZS)
λS

FE(KS,ES)−ME(ES,XS)
, (J.1)

where λ̇S=ρλS−λSFK(KS,ES), µ̇S=ρµS+λSMX(ES,XS), and ψ̇S=ρψS−UZ(CS,ZS) are used

to derive (J.1). However, with UZ(C
S,ZS)
λS

6=0, (38b) and (J.1) imply that the ME can not achieve

dynamic consistency with SO if the pollution externality is not considered.

Appendix K Proof of Proposition 10

To establish a consistency with (7b) characterizing the shadow price of resources in the SO, i.e.,

µS

λS
=FE−ME+ψS

λS
, we need to have µM = µS

λS
,ω= −ψ

S

λS
. Taking time derivatives yields

˙µM

λM
=
µ̇S

µS
− λ̇

S

λS
=r+

MX(ES,XS)

FE(KS,ES)−ME(ES,XS)+ψS

λS

, (K.1)
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where λ̇S = ρλS−λSFK(KS,ES), µ̇S = ρµS +λSMX(ES,XS) are used to derive (K.1). With

ω= −ψS

λS
, (41b) and (K.1) imply that allocations in the ME can satisfy the dynamic consistency

with SO in characterizing resource extraction. Furthermore, with the unit pricing of pollutants

ω= −ψ
S

λS
, characterization of pollution abatement in the ME is given by G′(BM)=ω= −ψ

S

λS
, which

is consistent with (7c) characterizing abatement in the SO.

Appendix L Proof of Proposition 11

From (7b) and (7e) resource extraction and the remaining stocks in the SO are given by

µS−ψS

λS
=FE(KS,ES)−ME(ES,XS), (L.1a)

µ̇S−ψ̇S

µS−ψS
− λ̇

S

λS
=r+

MX(ES,XS)+UZ(C
S,ZS)
λS

FE(KS,ES)−ME(ES,XS)
. (L.1b)

Comparing (44a) with (L.1a), a static consistency between ME and SO can be established if

µM = µS−ψS

λS
holds. Furthermore, from (44b) and (L.1b), a dynamic version of µM = µS−ψS

λS
, i.e.,

µ̇M

µM
= µ̇S−ψ̇S

µS−ψS− λ̇S

λS
satisfies dynamic consistency between ME and SO if the unit price of pollutants ω

satisfies ω̄=−UZ

λ
. The shadow price of pollutants in the ME given in (45) is thus characterized by

ψM =−G′(BM), FK(KM ,EM)ψM−ψ̇M =
UZ(CM ,ZM)

λM
. (L.2)

In comparison, from (7f) the static and dynamic profiles of the shadow price of pollution stocks

in the SO is characterized by22

ψS

λS
=−G′(BS), FK(KS,ES)

(
ψS

λS

)
−

˙(
ψS

λS

)
=

UZ(CS,ZS)

λS
. (L.3)

Comparing (L.2) with (L.3), we find that by setting the ME shadow price of pollutants as the

shadow price ratio between pollution stocks and man-made capital in the SO, i.e., ψM = ψS

λS
, the

ME can establish consistency with SO in characterizing pollution abatement and stocks.

22Rearranging UZ=ρψ−ψ̇ given in (7f) yields UZ

λ =ρ
(
ψ
λ

)
−

˙(ψ
λ

)
−
(
ψ
λ

)
λ̇
λ , then substituting λ̇

λ =ρ−FK given

in (7d) and simplifying yields (L.3).
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