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Abstract

In applied forecasting, there is a trade-off between in-sample fit and out-of-
sample forecast accuracy. Parsimonious model specifications typically outperform
richer model specifications. Consequently, there is often predictable information in
forecast errors that is difficult to exploit. However, we show how this predictable
information can be exploited in forecast combinations. In this case, optimal com-
bination weights should minimize conditional mean squared error, or a conditional
loss function, rather than the unconditional variance as in the commonly used
framework of Bates and Granger (1969). We prove that our conditionally optimal
weights lead to better forecast performance. The conditionally optimal weights sup-
port other forward-looking approaches to combining forecasts, where the forecast
weights depend on the expected model performance. We show that forward-looking
approaches can robustly outperform the random walk benchmark and many of the
commonly used forecast combination strategies, including equal weights, in real-
time out-of-sample forecasting exercises of inflation.
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1 Introduction

The standard approach in much of the literature on forecast combination is to construct

the combination weights based on the past performances of the individual forecasts.1

This backward-looking approach is very sensible, but it also has generated a puzzle. The

forecast combination puzzle is the empirical finding that simple forecast combination

strategies, such as equal weights (averaging), produce the most reliably accurate fore-

casts. This is despite the fact that the equal weights strategy is only optimal under

very restrictive assumptions on the correlation and covariance of the individual models’

forecast errors and despite the fact that significant past differences often exist in forecast

accuracy that should be exploitable to create accurate combined forecasts.2 The puzzle,

therefore, is that most forecast combination strategies work in theory but not in practice

when compared to equal weights.3

In this paper, we show that a key contributor to the poor performance of optimal

forecast combination strategies in practice is that the underlying forecasts typically have

serially correlated and predictable errors. We show that when forecast errors are pre-

dictable, the optimal combination weights are those that minimize the mean squared er-

ror conditional on the predictable information. We prove that our conditionally optimal

weights lead to better forecast performance under a general loss function. The theoretical

results suggest that dynamic forecast combination strategies should be forward-looking

in the sense that weights should be assigned based on the expected forecast performance

rather than the past forecast performance.

Building on our theoretical results, we propose a number of operational forward-

1See Timmermann (2006) for a survey of the literature and Elliott and Timmermann (2016) for the
most recent rigorous treatment of the relevant issues.

2An empirical example of the forecast combination puzzle for inflation is presented in Stock and
Watson (2003). To our knowledge, the first formal reference to the forecast combination puzzle in the
literature is Stock and Watson (2004); however, the results are certainly known in the literature, at least
dating back to Bates and Granger (1969).

3Surveys and comments on the literature are found in Clemen (1989), Granger (1989), Diebold and
Lopez (1996), Timmermann (2006), and Wallis (2011).
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looking combination strategies that construct combination weights by predicting the

forecast error of each model out to a forecast horizon of interest and assign weights ac-

cording to each model’s relative expected squared error. We use the term ”operational” to

describe our proposed strategies because in practice the true conditional optimal weights

that we derive still suffer from small sample estimation problems that plague all op-

timal forecast combination strategies. Therefore, we take the basic principle from our

conditionally optimal weights to construct simple and transparent combined forecasts

as a proof-of-concept for improvements that may be obtained through forward-looking

combination strategies relative to equal weights.

In practice, our operational strategies are feasible because there is almost always pre-

dictable information in actual forecast errors due to parsimonious specification choices to

avoid data overfitting or simply because real-world data often contain structural breaks.

The information in the errors is typically not exploitable by correcting individual model

specifications precisely because of overfitting issues. Such information is, however, ex-

ploitable for constructing combined forecasts. We show that forward-looking combination

strategies can significantly and robustly outperform individual time-series models (includ-

ing the random walk model), equal weights combined forecasts, and other commonly used

forecast combination strategies in real-time out-of-sample forecasting experiments of US

and New Zealand inflation. We select inflation as the empirical application because 1)

it is very difficult to forecast, see Stock and Watson (2007), and 2) because it is well

documented that time variation exists in the forecast accuracy of Phillips curve model

specifications, see Stock and Watson (2009), which our strategy is well suited to exploit.

We also address an external validity concern that exists when comparing forecast com-

bination strategies on fixed sets of forecasting models to demonstrate that our preferred

operational strategy robustly outperforms the equal weights strategy. The individual

forecasting specifications chosen by a researcher dictate the improvements in forecast ac-

curacy that are possible, and these choices drive the reported results. An example of this
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is when a number of poor performing forecasts are considered among the set of forecasts.

Sophisticated forecast combination strategies often easily detect the poor forecasts and

will outperform equal weights. However, the forecast combination puzzle reemerges if

the set of models is trimmed to include only the best performing models. This concern

is addressed by conducting a forecasting tournament that compares multiple forecast

combination strategies on all possible subsets of the best models considered in this paper

to show that the performance of forward-looking weights is robust to model choices. In

addition, the fact that we obtain similar results for both the US and New Zealand data

suggests that the information that we exploit for forecast combination is not country

specific.

The concept of conditionally optimal combinations is approached by Aiolfi and Tim-

mermann (2006). They note that there is persistence in relative forecast performance

among linear and nonlinear time-series models used to forecast a wide range of macroe-

conomic variables and that this persistence can be exploited to select forecasts and con-

struct weights. However, they limit their approach to the weights estimated by least

squares regression of the actual realization on the individual forecasts. Thus, Aiolfi and

Timmermann (2006) restrict the information set used for conditioning and return to a

backward-looking framework in that their conditional combination strategies are based on

recent historical forecasting performances. We provide a general framework that allows

conditioning on any available information set and that encompasses Aiolfi and Timmer-

mann’s weights. More importantly, all of our operational strategies are forward-looking

and based on predictions of future forecast errors rather than focusing solely on relative

past performance. We also prove that our conditionally optimal weights lead to better

forecast performance in terms of expected loss relative to unconditional weights and that

extending the information used for conditioning further improves the results.

There are two related papers that support our forward-looking approach. Giacomini

and Rossi (2009) show that detecting changes in relative forecast accuracy is possible
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in real time and Timmermann and Zhu (2016) show that a forward-looking approach to

model selection is useful in situations with weak predictors due to estimation error. As in

those papers, we show that changes in accuracy of Phillips curve forecasts are predictable

in real time. We, however, use the predictions to construct combined forecasts rather

than for model selection.

Our approach is also related to Wallis and Whitley (1991) and Clements and Hendry

(1996), who study the use of forecast errors to improve forecast efficiency through a strat-

egy known as intercept correction. Intercept correction uses the most recently observed

forecast errors to correct the bias of a point forecast by adding the errors to the next

forecast to set the model back on track. Wallis and Whitley (1991) finds that intercept

correction produces modest improvements over an uncorrected model for forecasts of UK

inflation and other macroeconomic variables. We explore intercept correction relative to

conditional optimal forecast combinations in our section on robustness.

The remainder of the paper is organized as follows. In Section 2 we provide the theory

behind conditionally optimal weights and discuss forward-looking strategies. Section 3

presents our application, where we use conditionally optimal weights and forward-looking

strategies to forecast US data in real time. Section 4 provides further analysis and robust-

ness of our proposed weights including the forecast tournament and real-time forecasts

of New Zealand inflation. Section 5 concludes this work.

2 Conditionally Optimal Weights

There are two explanations for why the forecast combination puzzle exists. The first ex-

plains the failure of optimal weighting strategies in small sample environments. Optimal

weighting strategies require the estimation of combination weights from the joint distri-

bution of all the considered models’ forecast errors. This introduces significant estimation

uncertainty because the number of models considered is typically large relative to the
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amount of available data. Smith and Wallis (2009) show using Monte Carlo experiments

that equal weights generally provide more accurate forecasts compared to estimated op-

timal weights, particularly when the optimal weights are close to being equal. Claeskens

et al. (2016) formalize this argument and provide a proof showing how the estimation of

the weights influences the results. Therefore, the literature often recommends employing

combination strategies that do not require estimation of the weights.

The second explanation is that economic forecasting models are often misspecified and

many economic data series are subject to relatively frequent structural breaks. Hendry

and Clements (2004) show that the equal weights strategy is an effective strategy in this

case because it mitigates the different biases that arise in differently specified models. In

particular, differently specified models may manifest bias in opposite directions following

a change in the data-generating process, which is averaged out in the combined forecast.

The second explanation, however, implies that in practice there is predictable in-

formation that is not taken into account by classical optimal weights. The underlying

forecasts’ errors exhibit serial correlation due to structural breaks and other time-varying

misspecifications of the forecasting models. Therefore, the optimal forecast combination

weights should condition on this predictable information, which implies minimizing the

conditional mean squared error (MSE),

MSE = Bias2 + var,

rather than the unconditional variance.
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2.1 The case of two forecasts

To illustrate this point, assume that we need to forecast yT+1 and that we have two

individual forecasts available, f1,T+1 and f2,T+1, which can be combined linearly

fc,T+1 = wf1,T+1 + (1− w)f2,T+1.

In the classical framework of Bates and Granger (1969), if the individual forecasts are

unbiased, i.e., the forecast errors e1,T+1 = yT+1 − f1,T+1 and e2,T+1 = yT+1 − f2,T+1

have zero expectation, then the error of the combined forecast ec,T+1 = yT+1 − fc,T+1 =

we1,T+1 + (1− w)e2,T+1 will have zero expectation, and its variance is

var(ec,T+1) = w2σ2
e1

+ (1− w)2σ2
e2

+ 2w(1− w)ρe1,e2σe1σe2 ,

where σ2
e1

= var(e1,T+1), σ2
e2

= var(e2,T+1) and ρe1,e2 = corr(e1,T+1, e2,T+1). The variance

of the combined forecast is minimized when

w∗ =
σ2
e2
− ρe1,e2σe1σe2

σ2
e1

+ σ2
e2
− 2ρe1,e2σe1σe2

. (1)

We will refer to w∗ as the unconditionally optimal weight.

To extend the classical framework, assume that an information set IT is available.

We can apply the same reasoning as before but conditionally on IT . The errors can be

decomposed as

e1,T+1 = b1,T + ξ1,T+1

and

e2,T+1 = b2,T + ξ2,T+1,

where b1,T = E(e1,T+1|IT ), b2,T = E(e2,T+1|IT ), and E(ξ1,T+1|IT ) = E(ξ2,T+1|IT ) = 0.

Note that there is no contradiction with the unbiasedness of the original forecasts as
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long as unconditionally E(b1,T ) = E(b2,T ) = 0. A simple AR(1) model can capture

the autocorrelation of the forecast errors if b1,T = γ1e1,T and b2,T = γ2e2,T , but IT can

potentially have additional variables for error prediction.

Conditionally on IT , the error of the combined forecast will have non-zero expectation

E(ec,T+1|IT ) = wb1,T + (1− w)b2,T

and its variance

var(ec,T+1|IT ) = w2σ2
ξ1

+ (1− w)2σ2
ξ2

+ 2w(1− w)ρξ1,ξ2σξ1σξ2 ,

where σ2
ξ1

= var(ξ1,T+1|IT ), σ2
ξ2

= var(ξ2,T+1|IT ), and ρξ1,ξ2 = corr(ξ1,T+1, ξ2,T+1|IT ). In

this situation, one should consider minimizing the conditional mean squared error to

balance the bias and the variance components simultaneously

MSE(w) = (wb1,T + (1− w)b2,T )2 + w2σ2
ξ1

+ (1− w)2σ2
ξ2

+ 2w(1− w)ρξ1,ξ2σξ1σξ2

and the optimal solution in this case is

w∗(IT ) =
σ2
ξ2

+ b2
2,T − ρξ1,ξ2σξ1σξ2 − b1,T b2,T

σ2
ξ1

+ b2
1,T + σ2

ξ2
+ b2

2,T − 2ρξ1,ξ2σξ1σξ2 − 2b1,T b2,T

. (2)

We will refer to w∗(IT ) as the conditionally optimal weight and IT explicitly indicates the

information set used for conditioning.

There are several special cases that help to understand the behavior of the condition-

ally optimal weight.

1. If b1,T = b2,T then the biases cancel out and are not used to determine the optimal
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weight. The optimal conditional solution (2) simplifies to

σ2
ξ2
− ρξ1,ξ2σξ1σξ2

σ2
ξ1

+ σ2
ξ2
− 2ρξ1,ξ2σξ1σξ2

which is similar to the classical (unconditional) solution (1) that is well studied.

2. If ρξ1,ξ2 = 0, σξ1 = σξ2 and b1,T = b2,T then the conditionally optimal weight w∗(IT )

is equal to 1/2, which is the same as the classical (unconditional) solution w∗ given

by (1) when ρe1,e2 = 0 and σe1 = σe2 .

3. If ρξ1,ξ2 = 0 and b2,T = 0, then the conditionally optimal solution is

σ2
ξ2

σ2
ξ1

+ b2
1,T + σ2

ξ2

.

In the classical (unconditional) formula (1), the ratio between variances determines

the weight if the correlation is zero (i.e., w∗ =
σ2
e2

σ2
e1

+σ2
e2

); the conditional bias now

also plays a similar role. The larger b2
1,T is, the smaller is the weight w∗(IT ). If

σξ1 = σξ2 , then the weights are not equal, which is different from the classical

solution of 1/2 given by (1) when ρe1,e2 = 0 and σe1 = σe2 .

4. If ρξ1,ξ2 = 0, then

w∗(IT ) =
σ2
ξ2

+ b2
2,T − b1,T b2,T

σ2
ξ1

+ b2
1,T + σ2

ξ2
+ b2

2,T − 2b1,T b2,T

and if b1,T b2,T < 0, i.e., the biases work in different directions, then the optimal

weight is non-negative w∗(IT ) > 0. However, if b1,T b2,T > 0, then the optimal weight

can be negative. In other words, if we know that both forecasts are expected to over

(under) estimate, then we need to select the combination that is smaller (larger)

than both forecasts.
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2.2 General case

The conditional approach can easily be adapted for a general case with n forecasts and

different forecast horizons. Assume that we need to forecast yT+h ∈ R and consider the

vector of h-step-ahead forecasts

fT+h = (f1,T+h, f2,T+h, . . . , fn,T+h)
′ ∈ Rk

and the information set IT available to us at time T . The forecast vector fT+h needs to

be mapped to the real line, and following Aiolfi and Timmermann (2006), we limit the

analysis to a linear combination that involves selecting a vector of weights

w = (w1, w2, . . . , wn)′

to produce the combined forecast fc,T+h = w′fT+h. We denote the vector of forecasting

errors as

eT+h = yT+hι− fT+h,

where ι is a vector of ones, and the error of the combined forecast as

ec,T+h = yT+h − fc,T+h = w′eT+h.

Assuming that the loss function L(·) that describes how costly it is to use an imperfect

forecast depends only on the forecast error, ec,T+h, the conditionally optimal combination

weights, w∗(IT ), solves the problem

w∗(IT ) = arg min
w

E[L(ec,T+h)|IT ]. (3)

Under mean squared error (MSE) loss, L(e) = e2, only the first two conditional

moments influence the optimal weight, and the optimization problem can be solved ex-
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plicitly. We also assume that the forecasts are unbiased, E(eT+h) = 0; thus we solve

the optimization problem (3) subject to the restriction that the weights sum up to one4,

w′ι = 1.

If the errors of the original forecasts are decomposed into two parts

eT+h = bT + ξT+h,

where bT = E(eT+h|IT ) and E(ξT+h|IT ) = 0, then

MSE(w) = (w′bT )2 +w′Σξw = w′(Σξ + bTb
′
T )w,

where Σξ = var(ξT+h|IT ) = E(ξT+hξ
′
T+h|IT ), and it is minimized by the conditionally

optimal weights

w∗(IT ) =
[Σξ + bTb

′
T ]−1ι

ι′[Σξ + bTb′T ]−1ι
. (4)

The minimum MSE that is achieved by the conditionally optimal weights (4) is

MSE(w∗(IT )) =
1

ι′[Σξ + bTb′T ]−1ι
. (5)

Naturally, bT , Σξ, MSE(w) and the optimal solution depend on IT , but to keep

the notation simple we specify this dependency explicitly only for the optimal solution

w∗(IT ). This highlights the fact that the conditionally optimal weights w∗(IT ) are time

varying because they depend on the information IT available at time T . Without loss of

generality, we assume Σξ to be constant for the reminder of this section.5

For comparison, the well-established classical results, see Elliott (2011), for the un-

4The case of biased forecasts can be addressed by including a constant in fT+h similar to Aiolfi and
Timmermann (2006).

5The adaptation of our theory to cover the case of time-varying Σξ (e.g., when it follows a GARCH
model) is straightforward.
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conditionally optimal weights

w∗ =
Σ−1
e ι

ι′Σ−1
e ι

(6)

are based on the unconditional variance of the errors Σe = var(eT+1) = Σξ + E(bTb
′
T )

and the minimum of var(ec,T+h) = w′Σew achieved by w∗ is

1

ι′Σ−1
e ι

. (7)

There are several interesting observations that help us understand the new condition-

ally optimal weights.

1. Using unconditional weights w∗ is equivalent to using no information to predict

the errors, i.e., w∗ = w∗(∅).

2. If bT is proportional to ι, i.e., the predictable parts are the same for all forecasts,

then bT does not play a role in the conditionally optimal weight, i.e.,

w∗(IT ) = w† =
Σ−1
ξ ι

ι′Σ−1
ξ ι

.

3. Without predictability, i.e., if bT = 0, we have w∗(IT ) = w∗ because of Σξ = Σe in

this case.

4. The presence of bias, i.e., if bT 6= 0, will increase the MSE:

1

ι′Σ−1
ξ ι

<
1

ι′[Σξ + bTb′T ]−1ι
.

5. If w∗ is used rather than w∗(IT ) but bT 6= 0, then the minimum of the MSE given

by (5) will not be achieved, i.e.,

MSE(w∗(IT )) =
1

ι′[Σξ + bTb′T ]−1ι
< w∗

′
[Σξ + bTb

′
T ]w∗ =

ι′Σ−1
e [Σξ + bTb

′
T ]Σ−1

e ι

[ι′Σ−1
e ι]

2
.
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6. If the bias is ignored, i.e., w† =
Σ−1
ξ ι

ι′Σ−1
ξ ι

is used rather than w∗(IT ) but bT 6= 0, then

the minimum of the MSE given by (5) will not be achieved, i.e.,

MSE(w∗(IT )) =
1

ι′[Σξ + bTb′T ]−1ι
< w†

′
[Σξ + bTb

′
T ]w† =

1

ι′Σ−1
ξ ι

+

[
ι′Σ−1

ξ bT

ι′Σ−1
ξ ι

]2

Using the Cauchy-Schwarz inequality,

(ι′Σ−1
ξ bT )2 ≤ (ι′Σ−1

ξ ι)(b
′
TΣ−1

ξ bT )

we have another upper bound,

MSE(w∗(IT )) <
1

ι′Σ−1
ξ ι

[
1 + b′TΣ−1

ξ bT
]
.

7. Using the Sherman-Morrison formula

[Σξ + bTb
′
T ]−1 = Σ−1

ξ −
Σ−1
ξ bTb

′
TΣ−1

ξ

1 + b′TΣ−1
ξ bT

it is possible to rewrite MSE(w∗(IT )),

1

ι′[Σξ + bTb′T ]−1ι
=

1

ι′Σ−1
ξ ι−

(ι′Σ−1
ξ bT )2

1+b′TΣ−1
ξ bT

which, in combination with the Cauchy-Schwarz inequality, provides us with the

same upper bound,

MSE(w∗(IT )) ≤ 1

ι′Σ−1
ξ ι

[
1 + b′TΣ−1

ξ bT
]
.

8. The effect of the bias on the MSE of the combination can be investigated via the
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differential

dMSE(w∗(IT )) =
ι′[Σξ + bTb

′
T ]−1{(db)b′ + b(db)′}[Σξ + bTb

′
T ]−1ι

(ι′[Σξ + bTb′T ]−1ι)2
.

To conclude the theoretical part we formulate the following central result that for-

malizes a very intuitive idea that using more information allows us to construct a better

combination.

Theorem 1 Given that the first and the second conditional and unconditional moments

exist, the following inequalities hold:

(a) for conditional and unconditional MSE,

E(MSE(w∗(IT ))) ≤ MSE(w∗),

or equivalently

E
[
min
w
w′ E(eT+he

′
T+h|IT )w

]
≤ min

w
w′ E(eT+he

′
T+h)w,

or equivalently

E

(
1

ι′[Σξ + bTb′T ]−1ι

)
≤ 1

ι′Σ−1
e ι

;

(b) for conditional MSE when two information sets JT ⊂ IT are available,

E(MSE(w∗(IT ))|JT ) ≤ MSE(w∗(JT )),

or equivalently

E
[

min
w
w′ E(eT+he

′
T+h|IT )w

∣∣∣ JT] ≤ min
w
w′ E(eT+he

′
T+h|JT )w,

14



or equivalently

E

[
1

ι′
[
E(eT+he′T+h|IT )

]−1
ι

∣∣∣∣∣ JT
]
≤ 1

ι′
[
E(eT+he′T+h|JT )

]−1
ι
.

(c) for a convex loss function L(·) and JT ⊂ IT ,

E
[

min
w

E[L(ec,T+h)|IT ]
∣∣∣ JT] ≤ min

w
E[L(ec,T+h)|JT ]

if the conditional expectations and the solutions of the minimization problems exist.

Proof See Appendix B.

Theorem 1 has three parts, and the first two parts have three formulations. Part (a)

compares the conditional and unconditional approaches, whereas part (b) presents a

more general result when there are two information sets IT and JT available and IT is an

extension of JT , i.e., it contains more information. Part (a) can be viewed as a special

case of part (b) when JT = ∅. Part (c) covers the case of a general loss function.

The first formulation in parts (a) and (b) is in terms of the precision achieved by

the combinations as measured by the MSE. In part (a), to make the conditional and

unconditional MSE comparable, we need to examine E(MSE(w∗(IT ))). In part (b),

we need to condition on the smallest information set JT . In both parts, using more

information results in better combinations in terms of the expected MSE. The second

formulation is in terms of the underlying optimization problems. The final formulation

is in terms of the optimal solutions and is essentially a Jensen-type inequality for a

scalar function of a matrix argument. Part (c) has only one formulation in terms of the

underlying optimization problems because there is no explicit solution in this case.
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2.3 Practical considerations and the operational strategy

In practice, of course, the conditionally optimal weights w∗(IT ) given by (4) need to be

estimated, which involves estimating Σξ and bT . The estimated version

ŵ∗(IT ) =
[Σ̂ξ + b̂T b̂

′
T ]−1ι

ι′[Σ̂ξ + b̂T b̂′T ]−1ι
, (8)

will inherit the estimation issues from Σ̂ξ and b̂T . These issues may be particularly

severe in the case of b̂T , which is the predictable part of eT+h, since the forecast model

specifications should attempt to minimize this component to the greatest extent possible.

Our operational strategy is to use several modifications to moderate these issues.

1. Since correlation estimation is unstable, one can employ a shrinkage technique to

stabilize it, e.g. use

Σ̃ξ = αΣ0 + (1− α)Σ̂ξ.

The stabilizing matrix Σ0 can be a diagonal matrix of the variances (i.e., shrinking

all correlations to zero), or it can be an identity matrix I (i.e., shrinking the weights

toward equal weights), which are the approaches often used for the unconditional

weights. We denote the weight that is produced by this modification as

ŵ∗COS(IT ) =
[Σ̃ξ + b̂T b̂

′
T ]−1ι

ι′[Σ̃ξ + b̂T b̂′T ]−1ι
(9)

and refer to ŵ∗COS(IT ) as conditional optimal weights with shrinkage and explicitly

specify the shrinkage parameter, e.g., α = 0.5.

2. If the conditional bias part is more important than the remainder, then we can

concentrate on using b̂T and ignore Σ̂ξ and its estimation issues, i.e., use

ŵ∗b (IT ) =
[b̂T b̂

′
T ]−1ι

ι′[b̂T b̂′T ]−1ι
.
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Matrix b̂T b̂
′
T will have off-diagonal elements that can present a similar problem

as the off-diagonal elements of Σ̂ξ. If the same fix is applied and the off-diagonal

elements are shrunk to zero, then we can use matrix

βB + (1− β)b̂T b̂
′
T ,

where the stabilizing matrix B = diag(̂b2
1,T , . . . , b̂

2
n,T ) has squared elements of b̂T =

(̂b1,T , . . . , b̂n,T )′ on the diagonal and zeros everywhere else. In the case when matrix

b̂T b̂
′
T is fully shrunk toward its diagonal (i.e., β = 1), the estimated conditional

optimal weights will be

ŵ∗PB(IT ) =
1∑n

l=1 b̂
−2
l,T

(
b̂−2

1,T , . . . , b̂
−2
n,T

)′
. (10)

The individual weights are the inverse of the corresponding squared biases, which

is very intuitive as this will place larger weights on the forecasts with small biases

and smaller weights on the forecasts with large biases. We will refer to ŵ∗PB(IT ) as

predicted bias weights.

3. Form (10) opens up numerous possibilities to allocate the weights according to the

biases of the corresponding forecasts. One option is to use the exponential function

ŵ∗PE(IT ) =
1∑n

l=1 exp(−γb̂ 2
l,T )

(
exp(−γb̂ 2

1,T ), . . . , exp(−γb̂ 2
n,T )
)′
, (11)

such that the weight decreases faster when the bias increases. The exponential

function is also bounded when the bias is close to zero, which should have a positive

effect on the weight performance. We will refer to ŵ∗PE(IT ) as predicted exponential

weights with explicitly specified parameter γ, e.g., γ = 5.
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3 Real-time forecasting with conditionally optimal

weights

In this section, we subject the operational strategies based on conditionally optimal

weights to a real-time forecasting test using US inflation data.

3.1 Data

For our main forecasting experiments, we use data from the Philadelphia Federal Re-

serve’s Real-Time Macroeconomic data set.6 The measures of inflation that we consider

are constructed using the Price Index for Personal Consumption Expenditure (PCE)

and the gross domestic product (GDP) deflator. These measures are chosen because

real-time data are available dating back to 1965Q4, which allows for the longest possible

out-of-sample forecasting period. Quarterly inflation is defined as

πt = ln

(
pt
pt−1

)
× 400,

where pt is the price index.

The variables used to forecast inflation and to predict model performance are con-

structed from the real GDP and the civilian unemployment rate measures available in

the real-time data set. The real GDP measure is used to create three predictors: 1) GDP

growth, constructed as log-differenced GDP; 2) output gap, constructed using the stan-

dard Hodrick Prescott (HP) filter; 3) and a growth gap measure, which is constructed

as the difference of the current GDP growth rate from the maximum growth rate ob-

served over the previous twelve quarters. The unemployment rate is used to create two

predictors: 1) the simple level and 2) as a one-sided unemployment gap measure similar

to the GDP growth gap. The unemployment gap and growth gap measures follow Stock

6A detailed description of the data set and an explanation of its usefulness for evaluating forecasting
strategies are provided by Croushore and Stark (2001).
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Univariate Phillips Curve Direct Forecasts

AR(1) PC Output Gap DF Output Gap
AR(2) PC Unemployment Gap DF Unemployment Gap
AR(4) PC GDP Growth DF GDP Growth
ARMA(1, 1) PC Growth Gap DF Growth Gap
ARMA(4, 4) PC Unemployment Rate DF Unemployment Rate
AO VAR All

Table 1: Forecast model specifications.

and Watson (2010) and provide one-sided measures of the business cycle to capture the

possible nonlinearity of the Phillips curve.

3.2 Models

The list of considered models is presented in Table 1. The included univariate models are

chosen either because they are frequently used as benchmarks in the inflation forecasting

literature or to provide variety in the specifications.7 The AO forecast is based on the

näıve random walk model employed in Atkeson and Ohanian (2001) and is the average

of the previous four quarters of inflation8

π̂AOt+h =
1

4

4∑
i=1

πt−i. (12)

The Phillips curve (PC) specifications are bi-variate VARs with two lags of inflation

and two lags of a real activity measure. VARs are used as the PC-type forecasts to

provide a degree of generality to the results. The VARs do not impose a specific theory

on the structure of the Phillips curve but incorporate the basic observable information

that is used in many different theoretically based PC forecasts. The lag length for the

VARs is selected for parsimony and is held constant throughout the exercise.

7For example the ARMA(1,1) is the benchmark forecast employed by Ang et al. (2007), who compared
dozens of different forecast specifications covering surveys, ARMA models, regressions using real-activity
measures, and term structure models; or the AR(4), which is the benchmark in Stock and Watson (2010).

8The AO forecast performs comparably to the inflation gap forecasting strategy proposed by Stock
and Watson (2007) as shown by Faust and Wright (2013).
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The specifications labeled as direct forecasts (DF) are OLS regressions of a given real

activity measure on h-quarter-ahead inflation

πt+h = c+ βxt + εt+h, (13)

where xt represents a real activity measure and εt+h is the error term.9 This specification

is included primarily as a robustness check. The predictions of forecast errors are con-

structed using the same direct forecast specification. One concern is that the prediction

step of the combination strategy is picking up a correctable form of model misspecifica-

tion. The underlying assumption of the proposed combination strategy is that there is a

model misspecification that can be exploited through the prediction of a model’s forecast

errors, but that cannot be exploited by altering the forecast model’s specifications.

The VAR All model is also included for robustness. The VAR All model includes all

the information that is found to predict forecast performance well into a single specifi-

cation (GDP growth, output gap, and the unemployment gap). If the information used

to predict a future forecast model’s performance is more useful for predicting the level of

inflation, then this model should provide relatively accurate forecasts. The lag length of

this specification is also fixed at two for all exercises.

3.3 Forecasts and Inference

The forecast of interest in this paper is the four-quarter-ahead forecast of quarterly

inflation, which is expressed as an annual rate following Ang et al. (2007). A medium

horizon is studied because the predictable component of the error tends to increase with

the forecast horizon and because this horizon is also one that is of particular interest to

policy makers.

The real-time forecasts are constructed using the latest vintage of data available at

9For an explanation of the merits of direct forecasting see Marcellino et al. (2006).
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each point in time. Due to lags in the release of data to the public, however, the current

quarter’s observation of inflation is not available at the time a forecast is made. Therefore,

the considered forecast is actually the nowcast and the subsequent three quarters. The

forecasts are denoted as Eτ
t πt+4, where t is the last observation of data and τ is the

vintage of data.10

The forecasts are evaluated based on the root mean squared forecast error (MSFE)

and the mean forecast error (MFE) to measure forecast bias. Inferences on the observed

differences in MSFE are obtained using the Diebold and Mariano (1995) (DM) test for

equal within-sample forecast accuracy with the Harvey et al. (1997) small sample size

and long horizon correction.11 There is not much guidance in the literature on the

correct test statistic for evaluating combined forecasts. We assume that the underlying

data generating process suffers from frequent structural breaks. Most test statistics are

based on the assumption of asymptotic convergence to stationary distributions for the

estimated regressors of the model considered and of their forecast errors.12 Neither of

which hold in this case, which is one reason for considering model combination in the first

place. The use of the Diebold and Mariano test statistic follows the recommendations

provided by Clark and McCracken (2013) for evaluating forecasts on real-time data and

Diebold (2015), who notes that the only assumption that must be satisfied to use the DM

test statistic is that the differences in squared forecast errors are covariance stationary.

Inference on the bias results is obtained using a t-test with Newey and West (1987)

standard errors.

The target measure of inflation to which the real-time forecasts are compared is a

composite series constructed from the second release quarterly observations of inflation

as they appear in the real-time data set. The use of second release data minimizes the

influences of large renormalizations that occur in the sample due to definitional changes

10Eτt πt+4 is the fT+h from Section 2.
11This test statistic is also occasionally referred to as the Diebold Mariano and West test statistic to

reflect that it is a special case of the statistic analyzed in West (1996).
12See West (2006) for a review of the literature.
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and provides a final measure of inflation that is closer to the actual measure that a

forecaster would have been attempting to forecast at any given point in time.

3.4 Individual Model Results

Table 2 reports the real-time out-of-sample forecasting results for the individual model

forecasts of PCE inflation. The results are reported for the full out-of-sample period

(1970Q1-2014Q1) and for two sub-sample periods: 1983Q1-2007Q3, which roughly covers

the Great Moderation, and the most recent period 2007Q4-2014Q1, which covers the

Financial Crisis and the recovery. We only present the results for PCE inflation in this

section because we find little difference in the forecast outcomes between the PCE and

the PGDP measures of inflation. However, the PGDP results are presented in Section

4.2. All RMSFE results are reported relative to the AO forecast.

The AO forecast clearly dominates all other considered forecast specifications. The

AO forecast results in the lowest RMSFE over the full sample and both subsamples with

only two exceptions. The PC GDP growth forecasts and the ARMA(1,1) forecast both

result in lower RMSFE during the subsample covering the Great Moderation. However,

neither of the improvements are statistically different from the AO forecast. The AO

forecast also has the lowest bias among the forecast models considered.

The best performing PC specification in terms of RMSFE is the specification that

utilizes the one-sided growth gap measure. Although, the growth gap specification is sta-

tistically no different from the AO forecast over the full sample and the Great Moderation

subsample. The worst performing PC specification in terms of RMSFE is the output gap

specification, which is statistically significantly worse than the AO forecast on the full

sample and on the two subsamples. Finally, all models provide unbiased forecasts for the

full sample.
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Individual Model Results

1970Q1-2014Q1 1983Q1-2007Q3 2007Q4-2014Q1

Predictor Rel. RMSFE Bias Rel. RMSFE Bias Rel. RMSFE Bias

Benchmark

AO 2.353 0.09† 1.483 0.20† 2.282 0.21†

Direct Forecasts (relative RMSFE)

DF CUR 1.287 0.24† 1.432 1.42 1.349 2.28
DF GDP 1.267 −0.27† 1.189 1.10 1.062 1.51
DF Growth Gap 1.258 −0.08† 1.262 1.27 1.109 1.67
DF Output Gap 1.368 −0.22† 1.461 1.30 1.095 1.45
DF U. Gap 1.263 −0.09† 1.246 1.22 1.153 1.79

Phillips Curves (relative RMSFE)

PC CUR 1.064 0.14† 1.169 0.81 1.190 1.33
PC GDP growth 1.041 −0.37† 0.985 0.54 1.062 0.65†

PC Growth Gap 1.002 −0.11† 1.018 0.53 1.082 0.77
PC Output Gap 1.087 −0.31† 1.086 0.71 1.099 0.74
PC U. Gap 1.026 −0.04† 1.055 0.62 1.159 1.10
VAR ALL 1.073 −0.31† 1.198 0.54 1.090 0.55†

Univariate (relative RMSFE)

AR(1) 1.114 −0.22† 1.066 0.84 1.078 1.05
AR(2) 1.021 −0.15† 1.017 0.64 1.073 0.85
AR(4) 1.072 −0.30† 1.019 0.63 1.067 0.82
ARMA(1, 1) 1.003 −0.15† 0.991 0.57 1.057 0.78
ARMA(4, 4) 1.085 −0.22† 1.122 0.70 1.042 0.71

*** p < 0.01, ** p < 0.05, * p < 0.1

Table 2: This table reports the individual forecast model results. The RMSFE of the AO forecast
is reported in the first row. All of the remaining results are reported relative to the AO forecast. A
number less than one represents an improvement in the forecast accuracy. Significance for the RMSFE
results is only indicated for improvements over the benchmark. The † indicates a failure to reject the
null hypothesis of unbiasedness at the 10% level.
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3.5 Combined Forecasts

3.5.1 Predicting Forecast Errors

The prediction of inflation forecast errors in our application is similar to the concept of

inflation gap forecasting explored by Stock and Watson (2007, 2010) and Cogley et al.

(2010). The inflation gap is defined as the deviation of inflation from a stochastic trend.

An inflation gap forecast is constructed by forecasting the inflation gap and then adding

it back to the last observation of the trend. Stock and Watson (2010) and Faust and

Wright (2013) both find that inflation gap forecasting offers modest improvements over

other parsimonious time-series models in pseudo (single vintage of data) and real-time

(multiple vintages of data) out-of-sample experiments, respectively. The prediction of

the inflation gap is a forecast of the trend forecast’s error. The difference in our case is

that we use the gap prediction to aid in selecting forecast weights rather than using it to

engage in intercept correction.

The prediction of a forecast model’s error is obtained via a direct forecast of the

model’s real-time forecast error. The direct forecast regresses the four-quarter-ahead

forecast error, ei,t+4 = πt+4 − Ei,tπt+4, on a real activity measure

ei,t+4 = c+ βixt + ξi,t+4 (14)

for the ith considered model.13 The forecast error series is constructed using real-time

errors obtained from comparing past real-time forecasts to the composite series of second

release information. However, the last forecast error in each period is compared to the

first release information because the second release is not available at the time the forecast

13The real activity measure acts as a “tester” using the terminology of Timmermann and Zhu (2016)
and provides information on the relative forecast performance of the competing models. Timmermann
and Zhu (2016) provide a thorough analysis of the usefulness of this type of specifications for predicting
relative forecast accuracy. They, however, do not study its usefulness for combining forecasts. This
specification is also similar to the specification considered by Stock and Watson (2010) to forecast the
inflation gap.
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is made. By construction, this procedure introduces new information into the forecasts

because the individual forecast models are estimated on the most recent vintage of data

available at the time the forecast is made, whereas the series of forecast errors contains

information from multiple vintages. Therefore, the forecast error series incorporates some

information about revisions into the final combined forecast.14

3.5.2 Combining forecasts with conditionally optimal weights

The out-of-sample forecasting exercise requires the data to be separated into three sub-

sets. The required divisions are 1) a training subset to estimate the initial parameters of

the forecast models, 2) an in-sample forecasting period to recursively forecast to construct

an initial series of forecast errors to estimate Equation (14), and 3) an out-of-sample pe-

riod to conduct out-of-sample forecasts. For the forecast experiments presented in this

paper, the three periods are 1947Q2-1965Q4, 1966Q1-1969Q4, and 1970Q1-2014Q1, re-

spectively.

The out-of-sample forecasts are performed recursively using the following procedure

at each time period t:

1. Each candidate forecast is estimated on vintage τ data.

2. Each candidate forecast is used to construct a four-quarter-ahead forecast.

3. Equation (14) is estimated on the available real-time forecast errors for each of the

candidate forecasts.

4. Equation (14) is used to predict the expected forecast errors of each model to

construct êi,t+4 and ξ̂i,t+4.

5. The predicted errors are used to construct weights, and the weights are used to

construct the combined forecast.

14We tested both revised and unrevised forecast error series, and the revised series do appear to add
a small amount of forecasting power relative to the unrevised series.
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3.5.3 Combined Forecast Results

Table 3 reports the results for combinations of all seventeen individual forecasts using

the three different operational variants of conditionally optimal weights. The first com-

bination strategy shown is conditionally optimal weights with shrinkage, Equation (9),

where Σ̂ξ is shrunk toward an identity matrix. The shrinkage parameter is set to α = 0.5

to reduce the noise coming from the estimation uncertainty of this term. The second

operational combination strategy, predicted bias weights, Equation (10), uses only the

predictions of the squared bias (̂b2
1,T , . . . , b̂

2
n,T ) by removing Σ̂ξ and ignores off-diagonal

terms in b̂T b̂
′
T . The final operational strategy that we consider is predicted exponential

weights, Equation (11), with γ = 5. The γ parameter in this specification is chosen

by searching over whole number values to minimize the MSFE in a pre-sample 1967Q1-

1969Q4. The benchmark for the combined forecasts is the equal weights forecast. All

RMSFEs are normalized against its value. In addition, we also provide the AO fore-

cast results in Table 3, and the results relative to the AO benchmark are presented in

Table A1.

Conditionally Optimal Weights with Shrinkage significantly outperform equal weights

in four of the five full sample experiments and qualitatively outperform equal weights in

approximately two thirds of the forecasting experiments, yielding lower RMSFEs and

reductions in forecast bias. This case also yields significant improvements relative to the

benchmark AO forecast for the full sample for the output gap, unemployment gap, and

unemployment rate specifications. The combination strategy, however, does not yield

any improvements in the recent subsamples relative to AO (results relative to AO are

shown in Table A1 in Appendix A).

The second operational case, Predicted Bias Weights, performs almost as well as con-

ditionally optimal weights with shrinkage in terms of RMSFE on the full sample and

shows improvements in the Great Moderation subsample. This case yields statically sig-

nificant improvements relative to equal weights in two instances in the Great Moderation
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Combined Forecast Results

1970Q1-2014Q1 1983Q1-2007Q3 2007Q4-2014Q1

Predictor Rel. RMSFE Bias Rel. RMSFE Bias Rel. RMSFE Bias

Cond. Optimal Weights with Shrinkage: α = 0.5

Output Gap 0.936∗ −0.35† 0.960 0.04† 1.031 0.04†

U. Gap 0.850∗∗∗ −0.11† 1.007 0.19† 1.028 0.11†

GDP Growth 0.899∗∗ −0.17† 0.956 0.07† 0.991 0.18†

Growth Gap 1.004 −0.03† 0.983 0.19† 1.004 0.27†

CUR 0.878∗∗ 0.04† 0.988 0.34† 1.022 0.09†

Predicted Bias Weights

Output Gap 0.976∗ −0.13† 0.988 0.63 0.984 0.82
U. Gap 0.981 0.08† 1.014 0.79 0.999 1.00
GDP Growth 0.920∗∗∗ −0.03† 0.958∗ 0.52 1.059 1.07
Growth Gap 0.932∗∗∗ −0.05† 0.933∗∗ 0.41 1.064 1.44
CUR 0.929∗∗∗ 0.09† 1.002 0.64 1.050 0.96

Predicted Exponential Weights: γ = 5

Output Gap 0.875∗∗∗ −0.19† 0.899∗∗∗ 0.23† 0.954∗∗ 0.74
U. Gap 0.929∗ 0.22† 0.974 0.53 0.998 1.06
GDP Growth 0.883∗∗∗ 0.15† 0.922∗∗ 0.43 1.011 1.11
Growth Gap 0.958 0.26† 0.954 0.46 1.028 1.21
CUR 0.952 0.29† 0.974 0.48 1.001 1.06

Comparisons

AO 0.949 0.09† 0.947 0.20† 0.956 0.21†

Equal weights 1.000 −0.14† 1.000 0.80 1.000 1.07

*** p < 0.01, ** p < 0.05, * p < 0.1

Table 3: The RMSFEs are shown relative to the equal weights forecast. Significance for the RMSFE
results is only indicated for improvements over the benchmark. The † indicates a failure to reject the
null hypothesis of unbiasedness at the 10% level.
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Best Predicted Model in Each Period

1970Q1-2014Q1 1983Q1-2007Q3 2007Q4-2014Q1

Predictor Rel. RMSFE Bias Rel. RMSFE Bias Rel. RMSFE Bias

Predicted Exponential Weights: γ →∞

Output Gap 0.893∗∗∗ 0.28† 0.949 0.22† 0.943∗∗ 0.52†

U. Gap 0.959 0.33† 1.058 0.57 1.075 1.28
GDP Growth 0.913∗∗ 0.09† 0.921∗∗ 0.26† 1.115 1.04
Growth Gap 0.976 0.14† 0.952 0.25† 1.166 1.68
CUR 0.967 0.26† 1.014 0.41† 1.044 1.09

Comparisons

AO 0.949 0.09† 0.947 0.20† 0.956 0.21†

Equal weights 1.000 −0.14† 1.000 0.80 1.000 1.07

*** p < 0.01, ** p < 0.05, * p < 0.1

Table 4: The RMSFEs are shown relative to the equal weights forecast. Significance for the RMSFE
results is only indicated for improvements over the benchmark. The † indicates a failure to reject the
null hypothesis of unbiasedness at the 10% level.

subsample for predictions using GDP growth and the GDP growth gap. Compared to

the AO forecast, its absolute performance is similar to the previous case with slightly

weaker performance in the full sample but better performance in the subsamples.

The third operational strategy, Predicted Exponential Weights, is our preferred strat-

egy. This strategy uses the same information as the previous strategy but incorporates

shrinkage in a nonstandard way. The weights in this case are not shrunk toward equal

weights but rather increased toward the forecast with the lowest expected squared er-

ror. This strategy performs the best. It yields consistent improvement relative to equal

weights in the full sample and across both subsamples with statically significant improve-

ments for at least one specification in each sample considered. Compared to the AO

forecast, the results are good with qualitative improvement in all samples considered.15

The economic significance of the improvements in the Predicted Exponential Weight

15The best overall predictor for the weights observed in these exercises is the output gap measure. This
is somewhat surprising because Orphanides and van Norden (2005) show that the HP-filtered output
gap has very little predictive power over inflation in real time and because the output gap is the worst
predictor of inflation on average among the PC and DF forecasts reported in Table 2. One explanation
for this finding is that the HP filter provides an estimate of the output gap that only captures large
business cycle fluctuation, which is when a change in relative efficiency between the Phillips curve and
univariate models is most likely.
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Figure 1: This figure plots the difference in root squared forecast error between the AO and the Expo-
nential Weights forecast using the output gap as a predictor (positive values indicate that Exponential
Weights forecast is more accurate). The shaded bars represent the NBER recession dates.

case is illustrated in Figure 1. This figure plots the difference in the root squared forecast

error between the AO forecast and the Predicted Exponential Weight forecast that uses

the output gap as the predictor for each period. Points that are above zero correspond to

better forecast accuracy. Due to the choice of the shrinkage parameter γ, the difference

between the forecasts of the two combination strategies is small in most periods because

almost all weight is placed on the AO forecast. However, following recessions the com-

bined forecast yields improvements over the AO forecast that average approximately one

percentage point of inflation. The timing of these improvements is significant. Stock

and Watson (2009) show that the forecast accuracy of the Phillips curve relationship is

episodic. It tends to increase in accuracy during downturns and decrease in times of

economic strength. The forward-looking weights used here are predicting these changes

and shifting the weights accordingly in real time.

Table 4 shows the limiting case of Predicted Exponential Weights. The parameter γ
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is sent to infinity, which is equivalent to placing a weight of one on the best predicted

forecast in each time period removing the hedging advantage of a combined forecast.

This case is of particular interest because, as noted in Timmermann (2006), choosing

a single model in every period typically results in very poor out-of-sample forecasting

accuracy. Therefore, the results here are quite surprising. Choosing the expected best

model in each period actually leads to reductions in the relative RMSFE compared to

equal weights in a majority of the out-of-sample forecast experiments and even results

in a lower RMSFE compared to the AO benchmark for some predictors in every sample

period considered (see Table A2 in the Appendix A). It also leads to a reduction in bias

compared to the combined forecasts in most cases. The results illustrate that the gains

in forecast efficiency observed in Table 3 are driven by correct predictions of the actual

best performing forecast model in each period.

4 Further Analysis and Robustness

4.1 Forward versus Backward-Looking Weights

As noted in the previous section, there is a known time variation in the forecast ac-

curacy of Phillips curve specifications. This known time variation is one source of the

predictable information in the forecast errors, which is exploited by our combination

strategy. To illustrate how the forward-looking weights use this information, we compare

a backward-looking strategy with a forward-looking strategy using six univariate and six

Phillips curve forecasts of inflation (the models in the first two columns of Table 1). We

use the Predicted Exponential Weight given by Equation (11) and a backward-looking

modification

ŵ∗AO(IT ) =
1∑n

l=1 exp(−γb̃ 2
l,T )

(
exp(−γb̃ 2

1,T ), . . . , exp(−γb̃ 2
n,T )
)′
, (15)
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Figure 2: This figure depicts the PCE measure of US inflation from 1970Q1 to 2014Q1 (solid), the ex
post predicted weights forecast (dashed), and the cumulative weight placed on the Phillips curve forecasts
relative to equal weights for the ex post predicted weights (shaded blue). The dark bars indicate the
NBER recession dates.

where

b̃i,T =
1

4

4∑
j=1

ei,T−j.

We will refer to the backward-looking case as AO predicted weights because the prediction

takes the same form as the AO forecast model used for inflation. The AO Predicted

Weights are similar to the weights explored by Stock and Watson (2004) and capture the

idea of weighting models by recent past performance. For Predicted Exponential Weights

we use the output gap prediction. We set γ = 5 in both cases.

To assess how well the weights perform, we compare them against a counterfactual

series of ex post weights that are constructed by using the realized ex post forecast error

(ei,T+4) of each model rather than b̃i,T in the above weights equation. Figure 2 presents

the ex post weights and their implied combined forecast for PCE inflation. The ex post

weights produce an unbiased combined forecast that is a 26% improvement over both the

AO and equal weights combined forecast in RMSFE.16 The cumulative weights illustrated

16The AO and equal weights combined forecasts have a relative RMSFE of 1.0004. The benchmark
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Figure 3: This figure depicts the PCE measure of US inflation from 1970Q1 to 2014Q1 (solid), the AO
weights combined forecast (dashed), the cumulative ex post weights relative to equal weights (shaded
blue), and the cumulative AO weights relative to equal weights (shaded red). The dark bars indicate
the NBER recession dates.

in the graph are constructed by summing the weights placed on the PC forecasts in

each quarter and subtracting it from one half (
∑

i∈PC wi,t − 0.5). Therefore, the graph

provides an approximate description of how the cumulative weight on the PC forecasts

shifts relative to equal weights over time. Points that are above zero indicate that greater

than half of all weight is on the PC forecast specifications. Points below zero represent

that greater than half of all weight is on the univariate forecast specifications.

Figure 3 shows the AO weights compared to the ex post weights. The backward-

looking strategy results in a modest but statistically significant 5% loss in the relative

RMSFE compared to equal weights and the AO forecasts. The reason for why this

strategy fails to improve upon equal weights is clearly visible in the figure. The backward-

looking weights are negatively correlated with the ex post weights (correlation equal to

-0.138). The strategy shifts weight to the PC forecasts after periods where the PC

combined weights also result in a slight increase in RMSFE compared to actually forecasting with the
ex post best model in each period.
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Figure 4: This figure shows the PCE measure of US inflation from 1970Q1 to 2014Q1 (solid), the
Predicted Exponential Weights combined forecast (dashed), the cumulative ex post weights relative to
equal weights (shaded blue), and the cumulative Predicted Exponential Weights relative to equal weights
(shaded green). The dark bars indicate the NBER recession dates.

forecasts perform well, which is of course precisely when the strategy is about to lose

forecast efficiency relative to the univariate forecasts.

Figures 2 and 3 illustrate the relationship between the PC forecast efficiency and

economic downturns. The ex post weights consistently shift toward the Phillips curve

forecasts in the periods surrounding the NBER recession dates. A forward-looking strat-

egy can take advantage of this regularity by shifting weight toward PC forecasts when

real activity is weak and by shifting weights toward the univariate models when real

activity is strong.

Figure 4 shows the weights for the forward-looking strategy plotted against the ex

post weights. The Predicted Exponential Weights often deviate far from the ex post

weights in this case but are positively correlated with them over time (correlation equal to

0.178). The positive correlation translates into a statistically significant 7% improvement

in RMSFE over both equal weights and the AO forecasts for the set of considered models.

By forecasting the changes in the relative forecast accuracy of the models, the weights are
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able to shift in real time away from model specifications that are losing forecast accuracy

to specifications that are gaining accuracy.

4.2 Forecasting Tournament

Comparisons of combined forecast techniques face an external validity problem because

the results are sensitive to the set of forecast models considered. This concern is particu-

larly relevant when comparing a combination strategy to an equal weights forecast. The

equal weights strategy clearly has no mechanism to filter out obviously poor forecasts.

Therefore, it is easy to construct a straw man equal weights forecast by considering poor

performing forecasts that a sophisticated model combination strategy can easily detect

and which actual forecasters would not consider. To overcome this issue and provide a

relatively fair comparison of equal weights to the proposed predicted weights strategy,

we conduct a forecast tournament that varies the set of models in the combined fore-

casts. The tournament is conducted by selecting the twelve most efficient models from

the 2007Q4-2014Q1 subsample found in Table 2 and then considering every combination

of the twelve distinct forecasts taken n at time, where n = 2, 3, ..., 12. This provides

4,083 different sets of models to combine.17

For the tournament, we compare four different forecast combination strategies:18

1. Equal weights

2. Weights based on the past observed MSFE of each model following Stock and

Watson (2004), where

ŵSW =
1∑n

i=1MSFE−ki,t

(
MSFE−k1,t , ...,MSFE−kn,t

)′
(16)

17The number of distinct combinations of the twelve models for each n is as follows: n = 2 → 66 sets,
n = 3 → 220 sets, n = 4 → 495 sets, n = 5 → 792 sets, n = 6 → 924 sets, n = 7 → 792 sets, n = 8 →
495 sets, n = 9 → 220 sets, n = 10 → 66 sets, n = 11 → 12 sets, n = 12 → 1 set.

18We also considered the optimal weights implied by regressing all past forecasts on the actual realiza-
tion of inflation proposed by Granger and Ramanathan (1984). However, the weights perform so poorly
compared to the other four methods considered that it did not provide a useful comparison.
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such that MSFEi,t = (1/m)
∑t

τ=t−m e
2
i,τ−4, m is the sample size, and k = 5 is a

shrinkage parameter. The MSFE weights are one of the simple combination proce-

dures that, similar to equal weights, consistently improve upon more sophisticated

weighting procedures.

3. The AO weights discussed in the previous section, Equation (15), with γ = 5.

4. Predicted Exponential Weights using the output gap to predict errors, Equation

(11), with γ = 5.

Figure 5 presents a summary of the results for the real-time out-of-sample forecasting

exercises conducted on the 1970Q1-2014Q1 PCE and PGDP measures of inflation. This

figure shows the median, minimum, and maximum RMSFE observed for each subset

of models of size n relative to the AO forecast RMSFE. The maximum RMSFE plot

shows the worst case scenario for each of the combination methods for combining n

different forecasts, the minimum RMSFE plot shows the best case scenario for combining

n different forecasts, and the median RMSFE provides a measure of the distribution of

RMSFE observed for combining n different forecasts.

The maximum RMSFE results show that each combination method exhibits approx-

imately equal risk over the full sample. The maximum RMSFE or worst forecasting

outcomes of all four strategies are comparable to each other across all sets of size n.

Accuracy is increasing in the number of forecasts considered in all cases.

The minimum RMSFE results show a clear advantage for the predicted weights strat-

egy. The predicted weights strategy consistently results in the lowest observed RMSFE

among the four different forecast combination strategies. The PGDP results are par-

ticularly impressive with consistent improvements approaching 15% relative to the AO

forecast for the minimum RMSFE observations for all n.

The median RMSFE results presented in Figure 5 also show an advantage for the

predicted weights forecasts. The median improvements in efficiency are as high as 10%
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Tournament Results: 1970Q1 - 2014Q1
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Figure 5: Median, minimum, and maximum relative RMSFE results for combinations of n different
models. The results are relative to the RMSFE of the AO forecast.

Subsample Tournament Results: 1983Q1 - 2007Q3
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Figure 6: Median, minimum, and maximum relative RMSFE results for combinations of n different
models. The results are relative to the RMSFE of the AO forecast.
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Subsample Tournament Results: 2007Q4 - 2014Q1
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Figure 7: Median, minimum, and maximum relative RMSFE results for combinations of n different
models. The results are relative to the RMSFE of the AO forecast.

relative to the AO forecast for combinations of n > 5 models. The increase in efficiency

at n > 5 also provides some evidence of the exploitable time-varying trade-off between

PC and univariate forecasts. For n > 5, almost all experiments include at least one PC

and one univariate forecast model.

Figures 6 and 7 present the results for the two subsamples. The 1983Q1-2007Q4

subsample results are consistent with the full sample results. The 2007Q4-2014Q1 sub-

sample results, however, are attenuated compared to the RMSFEs obtained on the other

samples. The attenuation is most pronounced for the PGDP measure of inflation. Here,

there are no consistent improvements over equal weights, although subsequent explo-

ration revealed that increasing the γ parameter can improve performance in this sample

(shown in Figure A1 in Appendix A).

The results shown in Figures 5, 6, and 7 can be approximately replicated using either

the GDP growth or the unemployment gap predictors to construct the predicted weights.

The GDP growth measure in particular produces forecasts that are comparable to the
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output gap forecasts across all considered samples. The results for the one-sided growth

gap and unemployment rate measure, however, are less impressive. These predictors per-

form well compared to the equal weights combined forecasts but often fail to outperform

the AO weights and SW weights.

4.3 Intercept Correction

Here, we examine the real-time out-of-sample forecasting performance of the individual

models if the predicted errors are used for intercept correction. This exercise allows us

to assess whether the information that we exploit in the weights should actually just be

used to improve the individual forecast specifications rather than to construct weights.

Table A3 presents the intercept correction results. The intercept correction results use

the output gap predictions of the forecast errors to correct the point forecasts of each

model such that

Etπ
IC
i,t+4 = Etπi,t+4 + Etei,t+4. (17)

Table A3 shows that the point forecasts of the forecast errors are not very accurate. The

intercept corrected forecasts are less efficient than the uncorrected forecasts in almost

all cases. The one exception is the AO forecast, although, the reported improvement in

forecast efficiency is not statistically different from the uncorrected AO forecast. The

results are similar for all of the five real activity measures considered to predict forecast

errors.

The explanation for the disparity in the effectiveness between predicted weights fore-

casts and the intercept corrected forecasts is that the two strategies use the predictions

of the forecast errors in different ways. Predicted weights exploits the relative ranking of

the forecasts implied by the predicted forecast errors, whereas intercept correction relies

on the accuracy of the actual point forecast of the error. The differences suggest that the
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predictions of forecast errors contain information about relative performance but little

information about the absolute performance of the considered models.

4.4 New Zealand Inflation

Here, we reproduce all of our results using real-time data from New Zealand. The US and

New Zealand economies clearly differ along a number of key dimensions, but inflation is

difficult to predict in both countries. Therefore, the New Zealand data act as a check

on whether we are exploiting correlations that are specific to US data. The real-time

New Zealand data come from a dataset provided by the Reserve Bank of New Zealand.

The dataset does not include real-time measures of PCE or PGDP; thus, quarterly non-

tradable CPI inflation is used instead.19 Inflation is defined and computed using the

same definitions employed for the US data and the same real GDP and unemployment

measures are constructed with one exception. The New Zealand dataset contains a real-

time estimate of the output gap. We use this in place of the GDP growth gap.

Table A4 reports the results for Predicted Exponential Weights for the forecasts

in Table 1 used in Section 3.5. The out-of-sample forecast period for New Zealand is

1997Q1-2014Q1. The table shows that the results are similar to those obtained on US

data. Predicted Exponential Weights results in significant increases in forecast efficiency

relative to the AO forecast and performs about as well as the equal weights forecasts for

combinations of all 17 models.

Figure 8 presents the results for the forecast tournament on New Zealand real-time

data. The results here are similar to the US results. Predicted Exponential Weights

outperforms the three other strategies, robustly producing a lower RMSFE on average.

19Since New Zealand is a small open economy, the measure of inflation that has the most similar
relationship with the output gap as PCE and PGDP for US data is non-tradable CPI inflation.
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1997Q1 - 2014Q1 NZ Tournament Results
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Figure 8: Median, minimum, and maximum relative RMSFE results for combinations of n different
models with γ = 5 for New Zealand non-tradable inflation. The results are relative to the RMSFE of
the AO forecast.

5 Conclusion

We showed that when there is predictable information in forecast errors, a combined

forecast should be constructed to minimize a conditional expected loss function. We

proved that forecast combinations constructed in this way improve upon unconditional

combinations commonly used in the literature and that the improvements are increasing

when more information becomes available. Our theoretical findings support forward-

looking approaches to combining forecasts, where forecasts are weighted by their expected

performance rather than their past performance.

We evaluate our forward-looking approaches using a real-time forecasting experiment

of US and New Zealand inflation and find that they perform well against equally weighted

forecasts and the common benchmark of a random walk. In particular, the Predicted

Exponential Weights strategy provides robust improvements over equal weights in a va-

riety of settings including different subsamples and when varying the forecast pool. Our

empirical results represent a proof-of-concept that forward-looking approaches to com-

bining forecasts are less susceptible to the issues surrounding the forecast combination

puzzle than backward-looking strategies. In forecasting, one should evaluate conditional

expected performance and use forward-looking approaches to combine forecasts.
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Appendix A

Combined Forecast Results

1970Q1-2014Q1 1983Q1-2007Q3 2007Q4-2014Q1

Predictor Rel. RMSFE Bias Rel. RMSFE Bias Rel. RMSFE Bias

Cond. Optimal Weights with Shrinkage: α = 0.5

Output Gap 0.986 −0.35† 1.014 0.04† 1.079 0.04†

U. Gap 0.985∗∗∗ −0.11† 1.063 0.19† 1.075 0.11†

GDP Growth 0.947∗ −0.17† 1.009 0.07† 1.037 0.18†

Growth Gap 1.058 −0.03† 1.038 0.19† 1.050 0.27†

CUR 0.926∗ 0.04† 1.044 0.34† 1.070 0.09†

Predicted Bias Weights

Output Gap 1.028 −0.13† 1.044 0.63 1.030 0.82
U. Gap 1.034 0.08† 1.070 0.79 1.046 1.00
GDP Growth 0.970 −0.03† 1.011 0.52 1.108 1.07
Growth Gap 0.982 −0.05† 0.986 0.41 1.113 1.44
CUR 0.979 0.09† 1.058 0.64 1.099 0.96

Predicted Exponential Weights: γ = 5

Output Gap 0.922∗∗∗ −0.19† 0.949 0.23† 0.998 0.74
U. Gap 0.979 0.22† 1.028 0.53 1.044 1.06
GDP Growth 0.931∗∗∗ 0.15† 0.974 0.43 1.058 1.11
Growth Gap 1.009 0.26† 1.007 0.46 1.076 1.21
CUR 1.003 0.29† 1.028 0.48 1.047 1.06

Equal Weights

N/A 1.054 −0.14† 1.056 0.80 1.046 1.07

*** p < 0.01, ** p < 0.05, * p < 0.1

Table A1: The RMSFEs are shown relative to the AO forecast. Significance for the RMSFE results
is only indicated for improvements over the benchmark. The † indicates a failure to reject the null
hypothesis of unbiasedness at the 10% level.
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Best Predicted Model in Each Period

1970Q1-2014Q1 1983Q1-2007Q3 2007Q4-2014Q1

Predictor Rel. RMSFE Bias Rel. RMSFE Bias Rel. RMSFE Bias

Predicted Exponential Weights: γ →∞

Output Gap 0.941∗∗ 0.28† 1.002 0.22† 0.987 0.52†

U. Gap 1.011 0.33† 1.117 0.57 1.124 1.28
GDP Growth 0.962 0.09† 0.973 0.26† 1.167 1.04
Growth Gap 1.029 0.14† 1.005 0.25† 1.220 1.68
CUR 1.019 0.26† 1.070 0.41† 1.093 1.09

Equal Weights

N/A 1.054 −0.14† 1.056 0.80 1.046 1.07

*** p < 0.01, ** p < 0.05, * p < 0.1

Table A2: The RMSFEs are shown relative to the AO forecast. Significance for the RMSFE results
is only indicated for improvements over the benchmark. The † indicates a failure to reject the null
hypothesis of unbiasedness at the 10% level.
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Figure A1: Median, minimum, and maximum relative RMSFE results for combinations of n different
models. The parameter γ is set to zero. The results are relative to the RMSFE of the AO forecast.
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Intercept Correction Results

1970Q1-2014Q1 1983Q1-2007Q3 2007Q4-2014Q1

Predictor Rel. RMSFE Bias Rel. RMSFE Bias Rel. RMSFE Bias

Benchmark

AO 0.937 0.32† 1.262 0.49† 1.130 −0.09†

Direct Forecasts (relative RMSFE)

DF CUR 1.562 1.81 2.703 3.06 1.493 2.17
DF GDP 1.513 1.62 2.553 3.20 1.258 1.89
DF Growth Gap 1.512 1.74 2.611 3.25 1.271 1.88
DF Output Gap 1.667 1.61 2.772 3.36 1.278 1.87
DF U. Gap 1.509 1.70 2.579 3.20 1.294 2.03

Phillips Curves (relative RMSFE)

PC CUR 1.232 1.27 1.988 1.87 1.414 1.21†

PC GDP 1.197 1.13 1.895 2.11 1.217 1.03
PC Growth Gap 1.137 1.10 1.771 1.70 1.243 0.87†

PC Output Gap 1.309 1.17 2.036 2.27 1.231 1.13
PC U. Gap 1.179 1.11 1.843 1.82 1.352 1.14†

VAR ALL 1.296 1.09 2.073 1.99 1.229 0.91†

Univariate (relative RMSFE)

AR(1) 1.297 1.24 2.141 2.48 1.227 1.28
AR(2) 1.139 1.05 1.806 1.93 1.196 1.00
AR(4) 1.208 1.22 1.917 2.20 1.217 1.15
ARMA(1, 1) 1.100 1.00 1.708 1.79 1.177 0.91†

ARMA(4, 4) 1.252 1.22 1.900 2.09 1.171 0.91†

*** p < 0.01, ** p < 0.05, * p < 0.1

Table A3: Intercept correction results. The RMSFE results are presented relative to the uncorrected
AO forecasts. Significance for the RMSFE results is only indicated for improvements over the benchmark.
The † indicates a failure to reject the null hypothesis of unbiasedness at the 10% level.
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Combined Forecast Results New Zealand

1970Q1-2014Q1 1983Q1-2007Q3 2007Q4-2014Q1

Predictor Rel. RMSFE Bias Rel. RMSFE Bias Rel. RMSFE Bias

Ouput Gap 1.073 1.068 0.13† 1.072 1.067 0.09†

U. Gap 0.942 0.938∗ 0.02† 1.054 1.049 −0.08†

GDP Growth 0.989 0.984 0.09† 1.039 1.035 0.05†

NZ Output Gap 1.146 1.141 0.15 1.322 1.316 0.18
CUR 1.041 1.036 0.32 1.119 1.115 0.34

Comparisons

AO 1.115 0.947 0.12† − − −
Equal weights 1.004 1.000 0.27† − − −

*** p < 0.01, ** p < 0.05, * p < 0.1

Table A4: The RMSFEs are shown relative to the equal weights forecast. Significance for the RMSFE
results is only indicated for improvements over the benchmark. The † indicates a failure to reject the
null hypothesis of unbiasedness at the 10% level.
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Appendix B

Proof We will prove the optimization formulation; the MSE formulation follows by
definition of the optimal solution, and the Jensen-type inequality formulation follows by
substituting the explicit solutions.

(a) When comparing the unconditional problem

min
w
w′ E(eT+he

′
T+h)w

and the conditional problem

min
w
w′ E(eT+he

′
T+h|IT )w,

it is useful to consider a function ψ(w) = w′ E(eT+he
′
T+h|IT )w. We have

min
w

ψ(w) ≤ ψ(v) for any v;

therefore,
E[min

w
ψ(w)] ≤ E[ψ(v)]

and
E[min

w
ψ(w)] ≤ min

v
E[ψ(v)],

which is equivalent to
E[min

w
ψ(w)] ≤ min

w
E[ψ(w)].

In the original notation, we have

E
[
min
w
w′ E(eT+he

′
T+h|IT )w

]
≤ min

w
E
[
w′ E(eT+he

′
T+h|IT )w

]
,

which provides us with

E
[
min
w
w′ E(eT+he

′
T+h|IT )w

]
≤ min

w
w′ E(eT+he

′
T+h)w.

The optimization problems have explicit solutions; thus,

E

[
1

ι′
[
E(eT+he′T+h|IT )

]−1
ι

]
≤ 1

ι′
[
E(eT+he′T+h)

]−1
ι

or

E

(
1

ι′[Σξ + bTb′T ]−1ι

)
≤ 1

ι′Σ−1
e ι

.

In other words, using the predictability of the forecast errors is beneficial because
we achieve a lower MSE in expectation.

(b) The proof is similar to part (a) and simply requires substituting the unconditional
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expectation with the expectation conditional on JT .

(c) The proof follows from part (b) if ψ(w) = E[L(ec,T+h)|IT ].
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