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Abstract

This paper proposes a constrained principal components (CnPC) estimator

for efficient estimation of large-dimensional factor models when errors are cross-

sectionally correlated and the number of cross-sections (N) may be larger than

the number of observations (T ). Although principal components (PC) method

is consistent for any path of the panel dimensions, it is inefficient as the errors

are treated to be homoskedastic and uncorrelated. The new CnPC exploits the

assumption of bounded cross-sectional dependence, which defines Chamberlain

and Rothschild’s (1983) approximate factor structure, as an explicit constraint

and solves a constrained PC problem. The CnPC method is computationally

equivalent to the PC method applied to a regularized form of the data covari-

ance matrix. Unlike maximum likelihood type methods, the CnPC method does

not require inverting a large covariance matrix and thus is valid for panels with

N ≥ T . The paper derives a convergence rate and an asymptotic normality

result for the CnPC estimators of the common factors. We provide feasible esti-

mators and show in a simulation study that they are more accurate than the PC
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estimator, especially for panels with N larger than T , and the generalized PC

type estimators (Choi [2012]), especially for panels with N almost as large as T .

Keywords: High dimensionality, unknown factors, principal components, cross-

sectional correlation, shrinkage regression, regularization, pseudo-out-of-sample

forecasting
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1 Introduction

Factor models constitute the dominant framework used across many disciplines for re-

alistic parsimonious representations of the dynamic behavior of large panels of time

series. Principal components estimators (PCEs) of the common factors can be easily

computed in panels where the cross-sectional dimension N is large, and is possibly

larger than the sample size T . PCEs are feasible for any path of the panel dimensions

and are consistent for both N and T going to infinity [Forni et al., 2009, 2005, 2004, Bai,

2003, Bai and Ng, 2003, Stock and Watson, 2002a,b]. However, PCEs are not efficient

in the presence of heteroskedasticity and/or dependence in the error term. Methods

based on maximum likelihood (ML) and generalized least squares (GLS) type princi-

pal components depend on estimating a high-dimensional covariance matrix, which is

a challenging problem in large systems (N > T ) when errors are dependent and het-

eroskedastic. Generally, to impliment ML and GLS type methods, a feasible estimator

of the covariance matrix is needed. A natural candidate is the sample covariance ma-

trix. The sample covariance matrix behaves optimally if N is fixed and converges to

the population covariance at a rate T−1/2. However, when N →∞, the sample covari-

ance matrix can behave very badly and for N > T cannot be inverted. One common

solution in the literature is to regularize the covariance matrix; see for example Fan

et al. [2016] for an overview of this literature.
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This article is related to a large literature on factor models and a much smaller

literature on estimation when N is large and the errors are cross-sectionally depen-

dent. Approxiamte factor models are consistently estimated using PC or ML methods.

The fundamental result in the literature is that common factors can be consistently

estimated for both N and T going to infinity, with no restrictions on the relative rates

of convergence and under fairly general conditions on the time and cross-sectional de-

pendence of the errors [Stock and Watson, 1998, 2002a,b, 2006, Bai and Ng, 2002, Bai,

2003, Kapetanios, 2010, Onatski, 2010]. These studies allow for an approximate fac-

tor structure but the error dependence dynamics do not enter the consistency result.

Therefore, the idiosyncratic errors are treated as homoskedastic and as independent

both in the cross-section and time dimensions. In general, although there exist well-

established estimation procedures for static factor models, efficiency considerations

have only received selective attention in the literature. Boivin and Ng [2006] docu-

mented, through an extensive simulation analysis, the potential effects of the presence

of cross-sectional dependence on the small sample properties of the PCEs and their per-

formance in forecasting. They find that “weighting the data by their properties when

constructing the factors also lead to improved forecasts.”Additionally they also find

that with cross-correlated errors, the estimated factors may be less useful for forecast-

ing when more series are available. The ML estimation provides a natural framework

to account for heteroskedasticity and temporal dependence [Forni et al., 2004, 2009].

Doz et al. [2012] establish the properties of ML estimators for factor models in large

panels of time series under heteroskedasticity. Breitung and Tenhofen [2011] propose a

two-step GLS estimation that generalizes PC method to account for heteroskedasticity

and serial correlation in a dynamic factor model with possibly large N . Choi [2012]

considers efficient estimation using generalized least squares type PCEs to account

for heteroskedasticity and dependence, but the framework requires N < T to invert

the sample covariance matrix. Bai and Li [2012] consider estimation of panels with
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N > T by maximizing the Gaussian-quasi likelihood method, but they consider the

strict factor model with heteroskedastic but uncorrelated errors.

The literature is even more sparse in regards to efficiency considerations in large

panels with large N (possibly larger than T ) and cross-correlated errors. To our knowl-

edge, Bai and Liao [2016] is the most relevant study for this article. Bai and Liao [2016]

propose ML estimation with penalization of a large sparse covariance matrix. Their

method is a joint estimation of the factors, their loadings and the covariance matrix,

and is shown to be more efficient than PC or GLS type PC methods. Bai and Liao’s

(2016) paper is related to a growing literature on estimating large covariance matrices

[Ledoit and Wolf, 2004, Bickel and Levina, 2008a,b, Ledoit and Wolf, 2012, Lam and

Fan, 2009a]. Fan et al. [2011, 2013b] also used adaptive thresholding technique, as

in Cai and Liu [2011], to estimate a sparse error covariance matrix in an approximate

factor model using PC method when N > T . Advances in matrix theory have opened a

new line of research into the consistent estimation of large matrices. Once a consistent

estimate of the covariance matrix is achieved, a GLS type estimation or ML can be

implemented in a two-step plug-in estimation approach. Regularisation and shrinkage

methods amount to shrinking the off-diagonal elements of the error covariance matrix

to zero. The key assumption these studies make is that the model is sparse or condi-

tionally sparse (as in a factor model). The sparsity assumption of the error covariance

matrix requires many off-diagonal elements to be zero or nearly zero. This assump-

tion is slightly stronger than the original assumptions on cross-sectioanl dependence in

Chamberlain and Rothschild [1983].

This article studies the efficient estimation of large-dimensional factor models,

where N is large and is possibly larger than T , and where the errors are cross-sectionally

dependent, while assuming the factors and the errors are stationary, and the error co-

variance matrix is time and cross-section separable. We propose a new PC-based

estimation method, we denote as CnPC, that preserves the simple tractable implimen-
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tation of PC method, while using infomation about the cross-sectional dependence in

the data. Our estimation method solves a least squares problem, similar to the PC

method, under a constraint derived from the assumption of bounded cross-sectional

dependence in the sense of Chamberlain and Rothschild [1983]. The new estimators,

we call constrained principal components estimators (CnPCEs), are computationally

easily obtained by performing an eigenvalue decomposition to a regularized form of the

data covariance matrix. The constrained estimation has a dual problem that can be

cast as a shrinkage estimation, where the regularization is applied to the cross-sectional

correlations in the data.

Our method differs from the various regularization techniques, proposed in the

large covariance matrix literature, in that we move away from targeting the covariance

matrix for estimation. As a result, we do not make the assumption of sparsity on its

off-diagonal elements. Additionally, the constraint in the CnPC is less restrictive than

sparsity, allowing for more flexible patterns in the cross-sectional dependence.

The CnPC method has an implicit effect of shrinking the cross-sectional correla-

tions that is driven by the dynamics of the dependence in the data. The asymptotic

properties of the CnPCEs of the common factors are derived using the existing tech-

niques of Bai and Ng [2002], Bai [2003] and Choi [2012]. We derive a convergence rate

for the CnPCEs to the population common factors and show an asymptotic normality

result for appropriate path of (N, T ). The CnPCEs are computationally more attrac-

tive (than ML-based estimators) because the estimation does not require (i) explicit

assumption about the structure of sparsity of the covariance matrix, or (ii) estimation

and inversion of large covariance matrices.

In finite samples, a simulation analysis shows that the CnPCEs have improved

accuracy compared to PCEs and to GLS-PCEs. When applied to the problem of fore-

casting U.S. inflation and industrial production using the diffusion indexes framework

of Stock and Watson [2002a], we find a relative improvement in accuracy of up to 6%
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decrease in the out-of-sample mean square forecast errors for a ten-year rolling window

forecasting exercise.

The rest of the paper is organized as follows. Section 2 reviews some results of

the dynamic factor models and the method of PC. In Section 3, we introduce the new

CnPCEs and provide feasible estimators. Section 4 establishes the asymptotic conver-

gence result and the relative efficiency of CnPCEs. The small sample properties of the

estimators are compared in Section 5 by means of Monte Carlo simulations. Finally,

Section 5 concludes the article. Proofs are deferred to the Appendix.

Notation

The following notation is used throughout the paper: E(.|Zt) and Et(.) denote condi-

tional expectation given variables in Zt and given information at time t respectively. A′

denotes the transpose of A, when A = [ai,j] is q× p matrix, A′ = [aj,i] is of dimensions

p × q. A ⊗ B denotes the Kronecker product of matrices A and B, for A = [aij] and

B = [bij], A⊗ B = [aijB]. A−1 denotes the inverse of a matrix A. ιm is a m-vector of

ones. Im is an m ×m identity matrix. diag(A) = (a1,1, a2,2, ..., an,n) when A = [ai,j].

“vector”means column vector. For any positive number a, [a] is the largest integer

smaller than or equal to a. I(statement) is an indicator function that takes on value

of 1 if ‘statement’ is true.

2 The Model and assumptions

Consider a sequence of random variables {Xit, i ∈ N, t ∈ Z} which admits a static

r−factor structure:

Xit = λ0′

i F
0
t + eit, (2.1)

where F 0
t = {F 0

kt}1≤k≤r, is an r−vector of common factors at time t, λ0
i = {λ0

ik}1≤k≤r

is the corresponding vector of factor loadings for cross-section unit i, and eit is the
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idiosyncratic term. Suppose that we observe Xit with i = 1, · · · , N and t = 1, · · · , T .

Let us denote the data vector at time t, (X1t, · · · , XNt)
′, as X t, and denote its id-

iosyncratic component, (e1t, · · · , eNt)′, as et. The factor structure can be represented

in vector form:

X t = Λ0F 0
t + et, t = 1, · · · , T, (2.2)

where Λ0 denotes the N × r matrix of factor loadings with vector entries λ0
i for cross-

section i, Λ0 = {λ0′
1 , · · · , λ0′

N}. In a more compact matrix notation,

X = F0Λ0′ + e,

where we denote the T ×N data matrix as, X = [X1, · · · , XT ]′, and denote the T ×N

matrix of idiosyncratic errors as, e = [e1, · · · , eT ]′.

Let us denote the covariance matrix of the N−variate random variable X t as ΨN ,

where ΨN = E(X tX
′
t). The r−factor structure in (2.1) implies that ΨN admits the

following decomposition:

ΨN = Λ0ΣFΛ0′ + ΩN , (2.3)

where ΣF = E
(
F 0
t F

0′
t

)
is defined in Assumption A1, and the subscript N is explicit

to indicate that the factor structure depends on the cross-section dimension. On the

other hand, ΨN in (2.3) is time invariant, which is true under a stationarity assumption

we make in this paper (see model assumptions below). Additionally, separability of

the time and cross-sectional dependence, implies that the NT ×NT covariance matrix

of vec(e) is separable:

E [vec(e)vec(e)′] = ΩN ⊗ΘT ,

where the T × T matrix ΘT , captures the time dependence dynamics in the errors. In

this paper, we assume that ΘT = IT and focus on the issue of capturing the dynamics

of ΩN in the estimation.
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The approximate factor structure (Chamberlain and Rothschild [1983]) generalizes

the strict factor model, which assumes a diagonal error covariance ΩN , and allows for a

more general covariance structure with both time and cross-sectional dependence in the

errors. The existence and identification of the approximate factor structure requires

some pervasiveness assumptions. Chamberlain and Rothschild [1983] show that if, as

N → ∞, the covariance matrix of the data has only r unbounded eigenvalues and

the remaining eigenvalues remain constant, then there is a factor structure and it

is unique [Brown, 1989, Connor and Korajczyk, 1993]. The dimension of the panel

in Chamberlain and Rothschild’s (1983) approximate structure can be large in both

N and T . In fact, the high-dimensional aspect of N large is needed to achieve the

desirable statistical properties of the estimators in an approximate factor model. One

key assumption for identification of the approximate factor structure, is that the cross-

sectional dependence of the errors is asymptotically weak. As the number of variables

in the panel grows larger, the correlation between these variables becomes smaller. At

the limit, when N goes to infinity, the correlation dies out, which ensures identification

and consistent estimation of the column space of the factors [Stock and Watson, 2002a,

Bai and Ng, 2002], as well as the inferential theory [Bai, 2003, Bai and Ng, 2003]. The

consistency result is achieved even if the estimation method doesn’t exploit features

of the data, such as heterogeneity in the signal to noise ratio, and non-spherical error

components.

The underlying assumptions of the approximate factor structure are standard in

the literature. In particular the following assumptions are made, [Bai and Ng, 2002,

Bai, 2003]

Assumption A1 (Factors). E‖F 0
t ‖4 < ∞ and 1

T

∑T
t=1 F

0
t F

0′
t

p→ ΣF as T → ∞, for

an r × r non-random positive definite matrix ΣF .

Assumption A2 (Factor Loadings). λi is either deterministic such that ‖λ0
i ‖ < λ <

∞, or it is stochastic such that E‖λ0
i ‖4 < λ < ∞. In either case, ‖N−1

∑T
i=1 λ

0
iλ

0′
i −
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ΣΛ‖
p→ 0 as N →∞ for some r × r positive definite matrix ΣΛ.

Assumption A3 (Error term). There exists a positive constant M <∞, such that

for all N and T ,

1. E(eit) = 0, E|eit|8 ≤M ;

2. E(e′set/N) = γN(s, t), |γN(s, s)| ≤ M for all s and T−1
∑T

s=1

∑T
t=1 |γN(s, t)| ≤

M ;

3. E(eitejt) = τij,t with |τij,t| ≤ |τij| for some τij and for all t; in addition,

N−1

N∑
i=1

N∑
j=1

|τij| ≤M ;

4. E(eitejs) = τij,ts and (NT )−1
∑T

t=1

∑T
s=1

∑N
i=1

∑N
j=1 |τij,ts| ≤M ;

5. For every (t, s), E
∣∣∣N−1/2

∑N
i=1 [eiseit − E(eiseit)]

∣∣∣4 ≤M.

Assumption A4. Weak Dependence between Factors and Idiosyncratic Errors:

E

(
1

N

N∑
i=1

∥∥∥∥∥ 1√
T

T∑
t=1

F 0
t eit

∥∥∥∥∥
)
≤M.

Assumption A2 allows the loading to be either deterministic or random. While

the results in this paper are derived under deterministic λi, as noted in Bai and Ng

[2002], the results can be extended to the case of stochastic λi, provided the loadings

are independent of factors and idiosyncratic errors.

Assumptions A1 and A2 imply the existence of an r factor structure. The only

observables are the data X t, t = 1, · · · , T . The common factors F0, the loadings Λ0,

and the covariance matrix ΩN are all unknown population parameters. Additionally,

the number of factors r is generally unknown. The literature has extensively studied

the estimation of the number of common factors in panels of large dimensions. For
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static approximate factor models like the one studied in this paper, Bai and Ng [2002]

proposed a consistent estimator of r by minimizing information criteria that depend on

bothN and T . However, the finite sample properties of the estimated r may be sensitive

to a prespecified threshold in the penalty function and to the maximum number in the

support of r, especially in the presence of moderate to strong dependence of the errors.

Alessi et al. [2010] revisits the penalty term in Bai and Ng’s (2002) information criteria

and adds a multiplicative tuning constant, based on Hallin and Lǐska’s (2007) diverging

eigenvalue method for generalized factor models. Examples of other estimators with

improved finite sample properties are Onatski’s (2010) “Edge Distribution” estimator

and Ahn and Horenstein’s (2013) “Eigenvalue Ratio”and “Growth Ratio”estimators.

See also Onatski [2009] for inference about r, and Forni et al. [2000], Amengual and

Watson [2007], and Bai and Ng [2007] for dynamic factor models. Recently, Bai and

Ng [2017] propose a data-dependent penalty, based on shrinking singular values of

the common components, that is more conservative in the presence of weak factors or

measurement errors. Therefore, we take the number of factors r as known, as it can be

consistently estimated using the aforementioned methods developed in the literature.

Under the regularity conditions in Assumptions A1-A4 (Bai and Ng [2002], Stock

and Watson [2002b]), the factors and factor loadings can be consistently estimated,

as N and T are both large, by using the method of asymptotic principal components

[Connor and Korajczyk, 1989]. Technically, PCE minimizes the objective function

V (Λ,F) = tr [(X− FΛ′)′(X− FΛ′)] , (2.4)

by choosing the normalization F′F/T = Ir and Λ0′Λ0 is a diagonal matrix with distinct

entries [Bai and Ng, 2013]. The estimator has a simple interpretation in terms of

the singular value decomposition of the sample covariance of the data. Consider the
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spectral decomposition of the sample covariance matrix of X, ΨN = 1
T
X′X:

ΨNΓ = Γ∆,

where ∆ = diag(d1, · · · , dN) is a diagonal matrix with dl corresponding to the lth high-

est eigenvalue of ΨN , and Γ = (ϕ1, · · · , ϕN) is the matrix whose columns correspond

to the normalized eigenvectors of ΨN . The normalized PCEs of F0 are F̂k,t = 1√
dk
ϕ′kX t,

for k = 1, · · · , r [De Mol et al., 2008]. Then Λ̂ = X′F̂/T = Γ1:r is a N × r matrix

of estimated factor loadings, obtained as a least squares projection of X on F̂. One

key result is that, while the restrictions identify the space spanned by the columns of

F0 and the space spanned by the columns of Λ0, they do not necessarily identify the

individual columns of F0 and Λ0.

The statistical properties of F̂ and Λ̂ are well studied in the literature. See for

example Bai and Ng [2002] for consistency, and Bai [2003] for inferential theory. Re-

ferring to Bai and Ng’s (2002) convergence result, the estimated factors F̂t span the

space of the true factors F 0
t up to an orthogonal rotation Hk, meaning that

C2
NT

(
1

T

T∑
t=1

‖F̂ k
t −Hk′F 0

t ‖2

)
= Op(1),

where Hk =
(
Λ0′Λ0/N

) (
F0′F̂/T

)
∆1:r,1:r and CNT = min{

√
N,
√
T}.

Assumption A3.3 does not explicitly play a role, and is not operational, in the

estimation of the factors and the loadings. The PCEs in an approximate factor model

are the same as the PCEs in a strict factor model, where the error covariance matrix

is diagonal and homoskedastic.

If ΩN is known, a generalized least squares type principal components estimator
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can be constructed by minimizing the objective function,

VΩN (Λ,F) = tr
[
Ω−1
N (X− FΛ′)′(X− FΛ′)

]
. (2.5)

A similar GLS-PC estimator is studied by Choi [2012], although inspired by an ML

approach, for the case of heteroskedastic errors, where ΩN = diag[E(e2
1t), · · · , E(e2

Nt)],

and block diagonal cross-sectional dependence, where ΩN = Ω1

⊕
Ω2 · · ·

⊕
Ωn has n

blocks. Breitung and Tenhofen [2011] consider a similar type estimation for dynamic

factor models with heteroskedasticity and serial correlation. In the case of ΩN unknown,

the sample covariance matrix is used to propose feasible estimators. However, the

sample covariance matrix is singular for high-dimensional systems with N > T , making

these GLS-type estimators unfeasible.

Boivin and Ng [2006] propose a weighted PCE which minimizes the objective func-

tion
∑N

i=1 wiT
∑T

t=1(Xit − λ′iFt)
2, where choices of the weights include the following:

(i) wiT is the inverse of the diagonal element of Ω̂N,T , the sample covariance matrix

estimated using data up to time T and, (ii) wiT is the inverse of N−1
∑N

i=1 |Ω̂N,T (i, j)|.

The random matrix literature has a rich body of work on estimating large di-

mensional covariance matrices [Fan et al., 2013a, 2016]. This literature makes a key

assumption that the covariance matrix is sparse or conditionaly sparse, while using

thresholding and penalized maximum likelihood for estimation [Cai and Liu, 2011].

Bai and Liao [2016] are perhaps the first to address efficiency in a high dimensional

approximate factor model in the presence of heteroskedasticity and cross-sectional de-

pendence in the errors. They apply Fan et al.’s (2013a) principal orthogonal component

thresholding estimator to propose a two-step estimator, and Lam and Fan’s (2009b)

penalized likelihood to propose a joint estimation of Λ0 and a conditionally sparse ΩN .

In a recent contribution to this literature, Bai and Ng [2017] propose a minimum rank

estimator by using ridge regressions and shrinking the singular values of the common
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component.

3 The CnPC Estimator

Let us consider Assumption A3.3 of bounded cross-sectional correlation in an approx-

imate factor structure. The eigenvalues of the error covariance matrix ΩN in Cham-

berlain and Rothschild’s (1983) factor model must be bounded. Under the assumption

of (covariance) stationarity, E(eitejt) = τij, all the eigenvalues of ΩN are bounded by

maxi
∑N

i=1 |τij|. Thus Assumption A3.3 is implied by the assumption of
∑N

i=1 |τij| ≤M

for all i and all N as found in Bai and Ng [2002].

Let sgn(a) denote the spatial sign function with sgn(a) = |a|/a for a 6= 0 and

sgn(0) = 1. Under the assumption of stationarity, Assumption A3.3 can be written as:

1

N

N∑
i=1

N∑
j=1

sgn(τij)τij ≤MN , (3.1)

where τij = E(eitejt) and est = Xst − λ′sFt, for s = i, j, and where the bounding

constant M is now indexed by N for the remainder of the paper.

The paper proposes a CnPC method that solves a PC problem under the constraint

in (3.1):

minimize
λi,Ft

(NT )−1

N∑
i=1

T∑
t=1

e2
it (3.2)

s.t
1

N

N∑
i=1

N∑
j=1

sgn(τij)τij ≤MN (3.3)

Let S be N ×N matrix with elements [Sij] defined as,

Si,i = 0

Si,j = sgn (τij) for i 6= j.
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3.1 The CnPC estimator with known S

In this next section, we proceed with the working assumption that S is known to

derive the CnPC estimator. This is an unfeasible estimator since in practice, the

sign of correlation between any two variables is generally unknown. However, it is

plausible that in many applications, institutional knowledge and theory may provide

information about the direction of co-variation between variables without knowledge

about the strength of the relationship. We show in Lemma2, below, that a consistent

estimator of S can be obtained.

Let L1(F,Λ) = 1
T

∑T
t=1 e

′
tet and L2(F,Λ) = 1

NT

∑T
t=1 e

′
tSet−MN . The optimization

in (3.2)-(3.3) can be written as:

minimize
Λ,F

{L1(Λ,F)|L2(F,Λ) ≤ 0}, (3.4)

under the normalization restrictions that T−1
∑T

t=1 FtF
′
t = Ir and N−1

∑N
i=1 λiλ

′
i is an

r × r diagonal matrix with distinct entries. This optimization problem can be solved

using standard Kuhn-Tucker’s theorem. Treating the system in (3.4) as a convex

programming problem, the Lagrangian is

L(Λ,F, µ) =
1

N
L1(Λ,F) + µNTL2(F,Λ). (3.5)

The matrix S has diagonal elements equal to zero and off-diagonal elements that are

equal to either 1 or −1. The Lagrangian is similar to that of a shrinkage regression

where the cross-sectional correlations are shrunk towards zero. The tuning parameter

µNT represents the cost/penalty for deviation of the solution from (3.1) and thus plays

the role of a shrinkage factor.

Proposition 1. The constrained principal components estimator for F0, denoted F̂,

which solves (3.5), is
√
T times the matrix consisting of the eigenvectors corresponding
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to the r largest eigenvalues of the matrix XANX′

NT
, where AN = IN + µNTS, and µNT

is the Lagrange multiplier parameter. The CnPC estimator for Λ0, denoted Λ̂ is given

by Λ̂ = 1
T
XF̂.

Assumption A5. There exists a positive constant D <∞, such that for all N and T ,

1. let E(e′sSet/N) = %N(s, t), then
∑T

s=1 |%N(s, t)| ≤ D for all t.

2. for every t, s, and N , assume that E
∣∣N−1/2 [e′sSet − E (e′sSet)]

∣∣4 ≤ D;

3. for any t and N , there exists a positive constant M <∞ such that E
∥∥∥ 1√

N
Λ0′Set

∥∥∥2

≤

D.

Theorem 3.1. For any fixed (known) r ≥ 1, there exists a suitable (r × r) full rank

rotation matrix H such that under Assumption A1-A5

1

T

T∑
t=1

∥∥∥F̂t −H′F 0
t

∥∥∥2

= Op(δ
−2
NT ) +Op(µ

−2
NT δ

−2
NT ),

where H =
(

Λ′ANΛ
N

)(
F′F̂
T

)
V −1
NT . Or equivalently,

ω2
NT

(
1

T

T∑
t=1

∥∥∥F̂t −H′F 0
t

∥∥∥2
)

= Op(1),

where δNT = min
{√

N,
√
T
}

and ωNT = min {δNT , δNTµNT}.

In Theorem 3.1, the time average of squared deviations between the CnPC estimator

and those that lie in the true factor space goes to zero as N, T → ∞. The rate of

convergence depends on the panel structure but also on the regularization factor µNT .

When µNT = O(1), equivalent to h = 0 in Proposition2 below, the CnPC estimator of F̂

is the principal components estimator of the factor space consisting of the eigenvectors

corresponding to the r largest eigenvalues of XX′/T [Stock and Watson, 2002a, Bai and

Ng, 2002, Bai, 2003]. In this case, Theorem 3.1 implies the same rate of convergence
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as in Bai and Ng [2002] which is equal to δNT and is determined by the smaller of N

or T .

Theorem 3.1 establishes conditions under which the convergence of the CnPC esti-

mator is faster/slower than that of the ordinary PCEs.

Proposition 2. Let µNT = δ−hNT , then the rate of convergence in Theorem 3.1 is:

(i) ω2
NT = δ

2(1−h)
NT for h > 0,

(ii) ω2
NT = δ2

NT for h ≤ 0.

In the case of h > 0, ω2
NT < δ2

NT and thus the CnPC estimator converges (in the

sense of Theorem 3.1) to factors that lie in the true factors space at a rate slower than

Bai and Ng’s (2002) ordinary CPEs. The two methods imply a different rotation matrix

H, which means the convergence is towards a different rotation of the space spanned

by the true factors. Thus the estimated factor spaces are not directly comparable.

Lemma 1. Assume in addition that max1≤t≤T
∑T

s=1 γN(s, t)2 ≤MN for some M <∞

uniformly in t, then

ω2
NT

∥∥∥F̂t −H′F 0
t

∥∥∥2

= Op(1).

The proof is similar to that of Theorem 3.1.

3.2 A consistent estimator for S

The population pair-wise signs of the cross-sectional correlations, Sij, i 6= j are gener-

ally unknown. The information we require is about the direction of association between

the two cross-sectional units i and j. This does not necessarily require estimating the

full covariance/correlation matrix. A sufficient statistic that measures the (conditional)

ordinal association between Xi and Xj can be used to construct an estimator for Sij.
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An estimate of Sij can be defined using the estimated parameters of the model,

Ŝij = S
(
λ̂i, λ̂j, F̂t

)
= sgn

[
Ê (êitêjt)

]
= sgn

[
1

T

T∑
t=1

(
Xit − λ̂′iF̂t

)(
Xjt − λ̂′jF̂t

)]

Instead of estimating a covariance/correlation matrix, a pair-wise estimator for τij can

be computed only from the ith and jth cross sections. This is a faster and better

strategy in high-dimensions with possibly sparse systems (N > T ), as per Dürre et al.

[2015]. Consider the sample moment estimator, τ̂ij, for the population τij:

τ̂ij =
1

T

T∑
t=1

êitêjt,

where êkt = Xkt − Ĉkt, where the common components estimator, Ĉkt = λ̂′kF̂t, for k =

1, · · · , N . In order to make Assumption (A3.3) operational, the population moments

τij are replaced by the sample moments τ̂ij, and sgn(τij) by sgn(τ̂ij).

Lemma 2 (Consistency of τij and sgn(τ̂ij)). Under assumptions A1-A4, as T,N →∞

we have

i. τ̂ij converges to τij at a rate Op

(
1

T 1/4

)
+Op

(
1

δNT

)
ii. For τ̂ij 6= 0, plim sgn(τ̂ij) = sgn(τij)

3.3 Regularisation and thresholding

The largest eigenvalue of ΩN is bounded by maxi
∑N

i=1 |τij|, where τij = E(eitejt),

(Boivin and Ng [2006]). Under Assumption A3.3, there should exist a τN such that∑N
j=1 |τij| ≤ τN <∞ for all i and N . This assumption is vital in the development of the

approximate factor structure theory. However, there is no indication as to how much
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cross-correlation is permitted in practice. Boivin and Ng [2006] use τ̂ ∗ = maxiτ̂
∗
i /N ,

where τ̂ ∗i =
∑N

j=1 |T−1
∑T

t=1 êitêjt| as indicator for τN/N , which should be small and

decrease with N .

The use of thresholding parameters to regularise the cross-sectional dependence is

an implication of the requirement of sparsity/conditional sparsity of ΩN , which is one

key assumption in the literature for estimating high-dimensional covariance matrices.

See Bickel and Levina [2008a], Cai and Liu [2011], Fan et al. [2016]. Sparsity requires

that many of the cross-correlations are zero which translates to a sparse condition that

requires the quantity:

mT = maxi≤N
∑
j≤N

I(τij 6= 0), (3.6)

to be bounded or grow slowly as N −→ ∞. That is mT = o(f(N)), where f(N) =

o(N). This condition is a special case of a more general sparsity assumption that

requires mT = maxi≤N
∑N

j=1 |τij|q, for some 0 ≤ q < 1, to be bounded. Condition (3.6)

is stronger than Assumption A3.3 because it requires that the idiosyncratic components

are mostly uncorrelated.

In specific terms, choices of MN in A3.3 can be determined depending on the thresh-

olding mechanisms. Given that |τij| ≤ 1, i, j ≤ N , it follows that

maxi
∑
j

|τij| ≤ maxi
∑
j

I(τij 6= 0),

and τ ∗ ≤ mT . Following Fan et al. [2011], it is sufficient to assume that for a fixed r

MN = o

([
T

logN

]0.5
)
, (3.7)

where as in their notation MN ≡
∑

i≤N mT/N .

The CnPC estimation, the estimated factors and loadings are a function of the
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threshold parameter MN as it controls the ‘shrinkage’parameter µNT , which is esti-

mated from the concentrated objective function L(µNT ). There is a correspondence

between µNT and MN : µNT increases as MN decreases for given N, T . This correspon-

dence is, however, not a function. Although positive values of µNT correspond to a sin-

gle value ofMN , the value µNT = 0 relates to allMN in
[

1
N

∑N
i=1

∑N
j=1 |E(ê(0)itê(0)jt)|,∞

)
,

where ê(0)it and ê(0)jt are the residuals obtained in the PC estimation method. If the

factor structure is strict, there is no need for shrinkage.

Let us denote as M0 the amount of cross-sectional dependence in the sample co-

variance matrix, estimated using the PC residuals,

M0 =
1

N

N∑
i=1

N∑
j=1

∣∣∣∣∣T−1

T∑
t=1

ê(0)itê(0)jt

∣∣∣∣∣ .
It is then the case that values of MN that are smaller than M0 will have an effect of

an increase in shrinking the off-diagonal elements τ̂ij.

The complementary slackness conditions are used to compute an estimate µ̂NT for

the Lagrange multiplier. If the constraints are not binding and 1
N

∑N
i=1

∑N
j=1 |E(eitejt)| ≤

MN , then the constrained maxima are the ordinary PC solution
(
F̂ , Λ̂, 0

)
. On the

other hand, if 1
N

∑N
i=1

∑N
j=1 |E(eitejt)| > MN , then by the complementary slackness we

must have µ̂NT > 0 and 1
N

∑N
i=1

∑N
j=1 |E(eitejt)| = MN .

If MN is greater than or equal to the L1,1−norm of the PC sample covariance matrix,

M0, then the PCE estimator is unchanged by the proposed regularization. For smaller

values of MN , the CnPC has an effect of shrinking the cross-sectional correlations

towards the origin, in the L1,1 sense.

In this paper, we consider a grid of values for MN with a support from zero to M0,

which is computed using the residuals of a first stage PCE. The grid is indexed by

a parameter, we call m, representing the percentage shrinkage applied relative to the

unconstrained PCE. For example, a value of m = 0.1 means that the CnPC applies a
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threshold that is equal to 10% the value of M0, implying a very high level of shrinkage

and a tightening of the constraint. One way to make a single choice of m is cross-

validation. A ‘best’ value of m corresponds to the grid value that minimizes a specified

risk/objective function. The risk can be measured in terms of fit of the estimated factors

F̂ and/or in terms of prediction error for factor based forecasts. In the simulation

analysis, we present the path of solutions over the grid, as well as show some results

for a selected best m.

It is worth noting that there is a dual problem to the CnPC problem that we solve

in this paper. A closely related optimization problem to CnPC regression in (3.5) is

the constrained regression

minimize
λi,Ft

(NT )−1

N∑
i=1

T∑
t=1

e2
it + κnt

1

N

N∑
i=1

N∑
j=1

|E(eitejt)| (3.8)

Problems (3.5 ) and (3.8) are equivalent (Osborne et al. [2000]). For a given κnt, 0 ≤

κnt < ∞, there exists a MN ≥ 0 such that the two problems share the same solu-

tion, and vice versa. In (3.8), the parameter κnt is easily interpreted as a shrink-

age/regularization parameter applied to a large cross-section of correlation parameters.

The Lagrange multiplier µNT is the price of deviation from the bounded cross correla-

tion constraint imposed by the approximate factor structure. The two parameters are

exchangeable for all practical purposes.

4 Limiting distributions of CnPC estimators

In this section, we study the asymptotic distributions of the proposed CnPCEs. These

estimators are compared to the ordinary PCEs [Bai, 2003] and the generalized PCEs

[Choi, 2012].

Assumption A6. Moments and Central Limit Theorem

20



1. for any t, N and T , there exists an D <∞ such that

E

∥∥∥∥∥ 1√
NT

T∑
s=1

F 0
s [e′sSet − E (e′sSet)]

∥∥∥∥∥
2

≤ D;

2. for any N and T , there exists an D <∞ such that

E

∥∥∥∥∥ 1√
NT

T∑
s=1

Λ0′SesF0′

s

∥∥∥∥∥
2

≤ D;

3. for each t, as N →∞,

1√
N

Λ0′et
d−→ N(0, Ψt)

where Ψt = limN→∞
1
N

Λ0′E(ete
′
t)Λ

0;

4. for each i, as T →∞,

1√
T

T∑
t=1

F0
t eit

d−→ N(0,Φi),

where Φi = plimT→∞
1
T

∑T
t=1

∑T
s=1 E(F 0

t F
0′
t eiteis).

Assumption A7 (Factor Loadings*). ‖N−1Λ0′ANΛ0 − ΣΛ∗‖ → 0 as N → ∞ for

some r × r positive definite matrix ΣΛ∗.

Assumption A8. The eigenvalues of the r × r matrix (ΣΛ∗ · ΣF) are distinct.

As in Bai [2003], Assumption A8 is needed to guarantee a unique limit for the the

matrix F̂′F0/T because the factors are only identified up to an orthogonal transforma-

tion H.

Proposition 3. Under Assumptions A1-A5 and Assumption A8, the matrix Q defined

as:

Q = plimT,N→∞
F̂′F0

T
,
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is invertible and is given by Q = V 1/2ΨΣ
1/2
Λ∗ , where V is a diagonal matrix of largest r

eigenvalues of ΣΛ∗ΣFΣΛ∗, and Ψ is the corresponding eigenvector matrix.

The proof is similar to that of Proposition 1 in Bai [2003].

Theorem 4.1. Suppose that Assumptions A1-A8 hold. In addition, if
√
N

TµNT
→ 0, then

the CnPC estimator F̂t has a limiting distribution,

√
N
(
F̂t −H′F 0

t

)
d−→ N(0, V −1QΨtQ′V −1). (4.1)

The main motivation of this paper is to improve on the existing estimators in terms

of efficiency. The ordinary PCEs F̂t,PC have asymptotic distribution (Bai’s (2003)

Theorem 1):

√
N
(
F̂t,PC −H ′F 0

t

)
d−→ N(0, V −1

PCQPCΨtQ
′
PCV

−1
PC), (4.2)

where QPC = Σ
−1/2
Λ ΥPCV

1/2
PC , ΥPC is the matrix of eigenvector of Σ

1/2
Λ ΣFΣ

1/2
Λ , and

VPC = QPCΣΛQ
′
PC .

In terms of efficiency, it is not clear how the asymptotic covariance matrix in (4.1)

compares to the asymptotic covariance matrix in (4.2). The CnPC and PCE estimate

different objects since the rotation matrices H and H are generally not identical.

Let us consider the simple case of a one factor model with r = 1. This is an

interesting case where H and H are identical and equal to the scalar Σ
−1/2
F . In this

case, the PCEs and the CnPCEs are estimating the same object Ft/
√

ΣF.

Corollary 1. Suppose that Assumptions A1-A8 hold and r = 1, then the CnPCEs are

more efficient than the PCEs with a ratio of (asymptotic) variances, for t = 1, · · · , T :

V
(
F̂t,PC

)
V (F̂t,CnPC)

=

(
1 + µNT plim

Λ′SΛ

N

)2

≥ 1.
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In the case of one-factor model (of r = 1), Υ = ΥPC = 1, Q = QPC = Σ
−1/2
F , and

the CnPC estimator Ft,CnPC

F̂t,CnPC w
F 0
t√
ΣF

+
1√
N
N

(
0,

1

ΣF

Σ−1
Λ∗ΨtΣ

−1
Λ∗

)
(4.3)

and the PCEs have

F̂t,PC w
F 0
t√
ΣF

+
1√
N
N

(
0,

1

ΣF

Σ−1
Λ ΨtΣ

−1
Λ

)
, (4.4)

where

ΣΛ∗ = ΣΛ + µNT plim
Λ′SΛ

N
≥ ΣΛ, (4.5)

because S is positive definite and µNT ≥ 0.

5 Monte Carlo Simulations

5.1 Simulations designs

This section presents the Monte Carlo experiments designed to study the small sam-

ple properties of the proposed CnPC estimator and their performance relative to the

ordinary PCEs in the presence of cross-correlated errors. The experimental design for

the Monte Carlo simulation adopts the same covariance structure as in Boivin and Ng

[2006]. Let the total number of cross-sections N be divided into three groups of sizes

N1, N2 and N3 such as N = N1 + N2 + N3. Let the errors uit be the building blocks

for the errors dynamics with uit ∼ N(0, 1), i = 1, · · · , N , and construct the errors eit

where

• eit = σ1uit for the first block of N1 time series,
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• eit = σ2uit for the second block of N2 time series,

• eit = σ3ẽit, ẽit = uit +
∑C

j=1 ρijujt for the third block of N3 time series.

The errors within the first block ofN1 series are mutually uncorrelated and homoskedas-

tic, the errors within the second block of N2 series are also mutually uncorrelated and

homoskedastic but their variance differs from the variance of the first block of time

series, σ2
2 > σ2

1. Cross-correlation is introduced in the third block of N3 series. The

series in block 3 are correlated with a proportion C of block 1 of N1 cross-sections.

The lower first block of the covariance matrix, Ω13, therefore has C · N3 non-zero el-

ements. The correlation coefficients ρij denote cross-correlation of series i ∈ {1, N1}

and j ∈ {N1 +N2 + 1, N} and is drawn from a uniform distribution U [0.05, 0.7]. The

error variance in the third group is σ2
3 = σ2

1. The error covariance matrix takes the

following form:

Ωii = σ2
1, 1 ≤ i ≤ N1

Ωii = σ2
2, N1 + 1 ≤ i ≤ N1 +N2

Ωii = σ2
3, N1 +N2 + 1 ≤ i ≤ N

Ωij = 0, 1 ≤ i, j ≤ N1 +N2

Ωij = σ1σ3ρij, i ≤ C,N1 +N2 + 1 ≤ j ≤ N.

The common factors and their loadings are fixed throughout the simulation, which

corresponds to an analysis conditional on F0 and Λ0. The number of factors r is

known and fixed. We consider two values of r in the data generating process: r equals

1 for a small factor structure and r equals 4, representing a common number found in

the empirical literature. The panel dimension takes combinations of T = 50, 100, and

N = 50, 100, 150. Data are generated through Xit =
∑r

m=1 λ
0
imF

0
mt + eit. The Monte

Carlo results are based on L = 2, 000 replications.
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For each replication l = 1, · · · , L, the Monte Carlo experiment is carried out as

follows.

(i) Compute the ordinary PCEs of F̂
(l)
PCE, Λ̂

(l)′

PCE and the estimated errors êlPCE =

X(l) − Λ̂
(l)′

PCEF̂
(l)
PCE. Using the sample correlation between cross-sections i and

j, τ̂ lij,PCE = êl
′
i,PCE êlj,PCE/T , construct an estimate for the elements of the sign

matrix, Ŝ(l)
ij , for i 6= j and i, j = 1, · · · , N.

(ii) Given a value of M = m ·M0, where m ∈ [0, 1], compute
(
F̂(l), µ̂lNT

)
:

(a) Begin with a starting value µNT = µ0, here we take µ0 = 0.5
√
tr(ê′ê)/tr(ê′AN ê)

using the first stage PCEs and Aµ = IN −µŜ. Find the solution to the dual

objective function L(µ):

µ̂NT = arg maxµ(NT )−1
[
tr XAµX′ − tr F̂′µXAµX′F̂µ

]
−M, (5.1)

where F̂µ is
√
T times eigenvectors corresponding to the largest r eigenvalues

of ΨN,µ = 1
T
X′AµX. This is iterated to convergence and to optimal values

F̂(l), µ̂
(l)
NT .

(b) Compute the CnPC estimator for the loadings as a linear projection of X

on F̂(l): Λ̂(l) = 1
T
X′F̂(l).

(iii) Compute the following measures of performance.

• Percentage explained variation. Boivin and Ng [2006] use the percentage of

variation in the true factors captured by the estimated structure,

S
(l)

F̂,F0
=

tr

(
F0′F̂(l)

(
F̂(l)′F̂(l)

)−1

F̂(l)′F0

)
tr(F0′F0)

.

• Small sample bias. The estimated factors and the true factors are not di-

rectly comparable. The estimated factors span a transformation of the true
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factors. In comparing the small sample bias of the CnPC estimator and the

benchmark PCEs, one has to account for the differences in the rotation ma-

trices H and H. We compute the small sample bias of the (rotated) factors

F̃t ≡ H−1F̂t:

bias(l) =
1

L

L∑
l=1

F̃
(l)
tk − F

0
tk, (5.2)

for k = 1 and t = 1, [T/2], T .

• Empirical mean squared errors (MSEs). For each F̂
(l)
t , we compute

MSEs(l) = r−1
∥∥∥F̂ (l)

t − F
0(l)
t

∥∥∥2

. (5.3)

5.2 The Diffusion Index framework

Consider the forecasting model whereby we are interested in the h-steps ahead forecast

of a series yt. In the presence of many predictors, the Diffusion Index of Stock and

Watson [2002a] proposes using a small number of common factors, also called indexes,

that are extracted from the matrix of predictors X, to forecat a series y. The framework

offers a solution to dimensionality and turns it from curse to blessing, [Stock and

Watson, 2002b, Stock, 2005]. The data generating process for the forecast target series

is:

yt+h = β0 +
r∑
j=1

βjF
0
jt + εt+h ≡ yF0,t+h|t + εt+h,

where εt ∼ N(0, σ2
ε ), and σ2

ε is chosen such that the R2 of the forecasting equation is

κy. The unfeasible diffusion index forecast is ŷF0,t+h|t, which only requires estimation of

β. The feasible diffusion index forecast is denoted as ŷF̂,t+h|t, which requires estimation

of both the factors and β. A forecast using the observed N series is not feasible if N

is large. However, one can use the factor structure of Xit in equation (2.1) and use
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F 0
t ≡ {F 0

jt}rj=1 to account for the important drivers of the common variation in X:

ŷF 0,t+h|It = β̂0 + F 0′

t β̂. (5.4)

This forecast is unfeasible since the true factors F 0
t are unobserved. Given estimates

F̂t,N ≡ {F̂jt,N}r̂j=1, using the data from the N series and conditional on information at

time It, a feasible factor augmented forecast is constructed as

ŷF̂t,N ,t+1|It = β̂0 + F̂ ′t,N β̂. (5.5)

The feasible forecast depends on the properties of both the estimated β’s and the

‘generated’ regressors F̂t,N .

The performance of forecasts is evaluted using a pseudo-out-of-sample forecasting

exercise with a ten years rolling window. The simulated series are divided into in-

sample data and out-of-sample data. The first T observations of the series make up

the in-sample data. The starting point for the out-of-sample exercise is t = T . At each

time t = T, · · · , T + J − h, estimation is carried out using the last 10 years of data,

and point forecasts for the target series at time T + h are formed. Next, the sample

is rolled forward by one observation and the same exercise is repeated for J periods.

At the end a series of J pseudo-out-of-sample forecasts is available, with a choice of

J = 120. The panel dimensions in this experiment are T = 120 and N = 131 to

reflect those commonly used in macroeconomic forecasting. We compute the empirical

mean-squared-forecast errors (MSFE) as in Boivin and Ng [2006]

MSFEŷF̂,ŷF0 =
1

J

T+J−1∑
t=T

(
ŷF0,t+1|t − ŷF̂,t+1|t

)2

, (5.6)

Sβ̂,β =
1

J

T+J−1∑
t=T

(
yF̂,t+1|t − ŷF̂,t+1|t

)2

. (5.7)
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Table 1: Small sample bias and standard errors for the estimated factors F̃t,1, for t = [T/2], T
and r = 1

PCE CnPCE

F̃[T/2],1 F̃T,1 F̃[T/2],1 F̃T,1
T N bias std bias std bias std bias std
50 50 -0.018 0.190 -0.092 0.163 -0.024 0.037 -0.139 0.097

100 0.001 0.179 -0.207 0.092 0.033 0.031 -0.025 0.008
150 -0.155 0.136 0.293 0.137 -0.211 0.103 0.353 0.166

100 50 -0.004 0.118 0.008 0.092 -0.046 0.025 0.121 0.015
100 -0.128 0.102 -0.109 0.106 -0.120 0.079 -0.114 0.054
150 -0.168 0.105 -0.049 0.115 -0.126 0.063 -0.013 0.053

150 50 -0.007 0.089 0.026 0.078 -0.032 0.053 0.070 0.081
100 0.018 0.097 -0.113 0.086 0.054 0.022 -0.180 0.032
150 0.093 0.062 0.031 0.065 -0.000 0.020 -0.065 0.021

The results are for the sampling distribution of F̃t = J−1F̂t, J = H for CnPC and J = H for PCE. The thresholding
parameter M is chosen by a 10-fold cross-validation.

The statistic in (5.6) measures the loss in forecast accuracy due to Ft being unobserved

and estimated. If the estimated factors are consistent and span the same space as the

true factors, the difference in forecasting performance of the two predictors F̂t,N and

F 0
t should be negligible and SŷF̂,ŷF0 close to one. The larger is SŷF̂,ŷF0 , the closer are

the ‘diffusion index’ forecasts to those generated by the unfeasible forecasts computed

based on the true observed factors. The statistic in (5.7) assesses the accuracy of the

’diffusion index’ forecasts relative to the conditional mean forecasts which requires only

estimation of Ft. Smaller values of Sβ̂,β are desirable.

5.3 Simulation results

Case of threshold M selected by cross-validation

Table 1 reports the small sample bias and sample standard deviation of the estimated

factors F̃tj for j = 1. The table reports results for two arbitrary choices of t: [T/2]

and T . The number of factors in this design experiment is r = 1. In all Monte Carlo

results, the number of factors r is assumed to be known and is not estimated. The

threshold M is selected with a 10-fold cross-validation with minimum average MSE, of

estimated factors, as a risk function. Overall, the proposed CnPCEs suffer some small
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Figure 1: Empirical mean-squared-errors accuracy of the CnPC estimators of common factors

(a) Case r = 1

7NT
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(b) Case r = 4

Note: The MSEs are computed for the rotated estimated factor matrix F̃t = J F̂t. The shrinkage factor M is set equal
to the value for which the constrained problem has the same solution as its dual penalized PC regression. The graphs
show the effect of µNT .

sample bias, compared to the ordinary PCEs, especially for small N large T panels.

These results are expected since the CnPCEs have a slower rate of convergence due to

the penalization factor. There is however an appreciable gain in efficiency as measured

with smaller sample standard errors results for the CnPCEs, especially for panels with

large N . Figure 1 displays the sample (empirical) mean-squared-errors (MSEs) (5.3)

for the rotated factors F̃t, estimated using the CnPC over a grid of values for the

regularization parameter µNT and for a given M . The results shown are equivalent to

the penalized PC estimator that solves (3.8). The results for the PCEs are displayed

with a dashed line. The left panel is for the case with one true factor and the right

panel is for the case of two factors in the population model. As expected, the proposed

technique with µNT = 0 gives the same factors’ accuracy in terms of MSEs as the

standard PC method. As the penalization increases, the MSEs for model with r = 1

decrease sharply. For data generating process with r = 4, the MSEs of F̃t also reach a

stable value, that is significantly lower than the empirical MSE of the PCEs, after some

dynamics for small µNT . The relationship between MSEs and µNT is not monotonic.

Figure (2) displays the MSEs for the CnPC estimates of the common factors F̂ in the

right panel and the common components, Ĉ = Λ̂F̂′, in the left panel. In the right
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Figure 2: Empirical mean squared errors of the CnPC estimators of the common factors F̂t
and the common components Ĉit, where i = 1, · · · , N and t = 1, · · · , T , and r = 1.

(a) Common Components MSEĈ (b) Common Factors MSEF̂

panel, we extend the comparative analysis to a GLS-type PCE as in Choi [2012]. Note

that a GLS-PCE method requires inverting the sample covariance matrix. Therefore a

GLS-PC estimation is restricted to panels with N < T . Overall, both estimators bring

significant improvement over the ordinary PCEs, as measured with lower MSEs results

for the factors. The MSE for the GLS-PCE is represented with a straight dashed-

line, as it is not dependent on the thresholding factor m. The GLS-PCE delivers a

22% decrease in the MSE of the estimated factors. The striking result is however the

improved performance of the CnPC estimator with consistent gains in MSE over the

GLS-PCE, ranging from 5% to 35% depending on m.

Consider the case of the common factors in the left panel. Accuracy of the CnPC,

as measured by the MSE, increases as N becomes large. This is not the case for the

PC estimators where the gains in forecasting accuracy are very small.

5.3.1 The case of M indexed path

Figure 3 displays the path of the statistic SF̂ ,F 0 indexed by m = M/M0. Note that

in this experiment, the CnPC estimator F̂t and µ̂NT are jointly estimated. The CnPC

estimator results are shown in a circle-dot dashed line and the PCEs in a bold dashed

line. The left panel plots the results for a DGP with four factors, and the right panel
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Table 2: Accuracy of estimated common factors F̂ in spanning the true factor space of F0:
SF̂,F0 and MSEF̂

SF̂,F0 MSEF̂

T N PC% CnPC% GLS-PC% PC CnPC GLS-PC

100 25 13.0 31.9 43.4 2.17 2.16 2.13
50 12.0 38.2 15.7 1.84 1.76 1.77

150 50 10.3 33.7 18.5 1.78 1.95 1.97
100 10.5 58.0 7.8 1.83 1.89 1.94

55 50 24.2 50.5 7.2 1.94 1.95 1.75
50 25 26.7 34.1 25.2 1.96 1.36 2.02

plots the results for a one factor model. The right panel shows that the PCE is doing

a good job in mapping the space of the true factors with accuracy results in the 90%

range. However, the CnPC estimator has a clear advantage with values in the 97%

range. For the four-factor case on the left, the estimated factors span less perfectly

Figure 3: Accuracy of CnPC estimators of the common factors F̂ : SF̂ ,F 0

(a) Case r = 1 (b) Case r = 4

the true space of the true factors. The explained variation in the true factors for the

PCEs is considerably lower (in the 40% range). On the other hand, the results for

the CnPC estimator are promissing with accuracy values ranging up to %75, thus

improving the ability of the estimated factors estimates to span the true factor space.

The plot also suggests that the relation between M and SF̂ ,F is not monotonic with
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some dynamics in the low range of the grid. These plots clearly show that the CnPCE

sample performance is affected by the thresholding criteria. For example, the dashed-

line in the plot represents the results for a fixed value of M corresponding to µ = µ0, the

initialization value specified in the algorithm. These plots can be used as graphical tools

for eliciting M . The ridge-trace plot is a similar strategy that is used in the context

of ridge regression [Hoerl et al., 1975]. Such plots provide a visual assessment of the

effect on the regression coefficient of the choice of the ridge regularization parameter,

thus allowing the analyst to make a more informed decision. Similarly, the selected

M using such strategy would correspond to the value at which the statistic of interest

stabilizes.

In Table 2, the estimator GLS-PC refers to Choi [2012] estimator that uses a PCE’s

sample covariance matrix to compute a feasible generalized PC efficient estimator. The

PCE is very inaccurate in terms of SF̂ ,F 0 . The GLS-PC performs better in case of T

large and N small. However, as N becomes larger, GLS-PCE becomes less accurate.

When N is large, GLS-PC performs poorly with SF,F 0 considerably lower than the ones

for the PC and CnPC estimators. The low accuracy of GLS-PCE can be explained by

the poor accuracy and unstable sample covariance matrix when N is large and close

to T .

Sample correlations

Similar to the ridge-trace plot which graphically shows the effect of the shrinkage

parameter on the coefficients of a linear regression model, one can look at the effect of

the threshold M on the sample cross-section correlations |τ̂ij|. We use this strategy to

select the threshold M for the results in this section. Figure 6 shows histograms of the

sampling distribution of Ω̂ij for an arbitrary selection of values for i and j. We select

cases where Ω0
ij = 0 and Ω0

ij 6= 0 in the population model. The dotted vertical line

marks the true population value. The CnPC estimators are shown in the black-color
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Figure 4: Accuracy of the Diffusion Index forecasts

(a) Accuracy of β̂ (b) Accuracy of ŷt+12|F̂t

histogram.

In the top two panels, the results show that for the PCE’s estimates of the sample

correlations, the distribution is almost symmetric around zero and fat-tailed. The

CnPCE’s estimates of these correlations are much smaller and concentrated around a

small average value. This observation is independent of the true population value. The

important finding here is that the CnPC estimator shrinks the average absolute value

of these correlations.

These finding are indeed surprising given that empirically we observe a shrinkage

at the level of each correlation, while the estimation sets up the constraints at the

average level. The CnPC estimator’s correlations are shrunk relative to the PCEs. This

reduction in the size of the correlations is less significant for the case of N = T = 150,

although the spread is still smaller.

Figure 5 shows the sampling distribution of maximum average cross-correlation τ̂ ∗.

The results show that overall, the estimated τ̂ ∗ based on the CnPC estimator are lower

than those based on PCEs. In the first panel with N = 50 and T = 100, τ̂ ∗ for the

CnPC estimator support ranges from 0.02 to 0.46, while for the PCEs the range starts

at 0.47 and goes to 0.66.
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Figure 5: Sampling distribution of τ̂∗

Figure 6: Distribution of Ω̂i,j , the elements of the sample covariance matrix Ω̂.
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These results depend on the panel dimension. For T = N = 150, the results are less

promising, although the distribution of τ̂ ∗ is skewed to the left, favoring lower values.

Simulated forecasts

Figure 4 displays the statistics Sŷ,y and Sβ̂,β0 indexed by m = M/M0. The dotted-

dashed circle line plots the results for the CnPC estimator, while the benchmark PCEs

are shown in the straight-dashed line. The plot also shows the results for the weighted-

PC estimator [Boivin and Ng, 2006], which uses as weights wiT equal to the inverse of

N−1
∑N

j=1 |Ω̂ij| for each error eit in the PC objective function. The results correspond

to a panel with T = 120 and N = 130, to reflect the panel dimensions that are

encountered in macroeconomic forecasting and arbitrage pricing applications. The

plots correspond to averages over 1000 replications.

As expected, the weighted-PC estimator outperforms the PCEs with smaller values

of Sŷ,y and Sβ̂,β0 . The shrinkage factor M = m ·M0 matters for the performance of the

CnPC. Unlike the results we have documented earlier with respect to the accuracy of

the factors, there is no pattern to the relationship between M and the accuracy of the

diffusion index forecasts. But the results show that, for small values of m, the CnPC

can outperform the weighted-PC by sizable margins.

6 Application

This section applies the CnPC estimator to a forecasting experiment for the U.S.

Index of Industrial Production (IPS10) and Consumer Price Index (PUNEW) using

the dataset provided by Stock and Watson [2002a]. The data include real variables

such as sectoral industrial production, employment and hours worked; and nominal

variables such as consumer and price indexes, wages, money aggregates, stock prices

and exchange rates. The data series are transformed to achieve stationarity: monthly
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Table 3: Pseudo-out-of-sample mean squared forecasts errors for US inflation and industrial
production

IPS10 PUNEW
r = 10 r = 5 r = 10 r = 5

h=12 PC CnPC PC CnPC PC CnPC PC CnPC
1970-2002 MSFE 0.51 0.51 0.52 0.50 0.64 0.62 0.57 0.57

V ar 0.85 0.85 0.66 0.66 0.53 0.53 0.60 0.60
1970-1985 MSFE 0.32 0.31 0.31 0.31 0.43 0.40 0.38 0.38

V ar 0.95 0.94 0.75 0.75 0.45 0.45 0.56 0.56
1985-2002 MSFE 1.09 1.08 1.13 1.11 1.65 1.63 1.46 1.40

V ar 0.53 0.50 0.39 0.43 0.87 0.85 0.77 0.75

IPS10 PUNEW
h = 1 h = 4 h = 1 h = 4

r=7 PC CnPC PC CnPC PC CnPC PC CnPC
1970-2002 MSFE 0.72 0.70 0.57 0.57 0.78 0.75 0.67 0.67

V ar 0.42 0.38 0.56 0.56 0.27 0.27 0.37 0.37
1970-1985 MSFE 0.66 0.61 0.49 0.49 0.75 0.71 0.56 0.55

V ar 0.46 0.43 0.56 0.56 0.26 0.25 0.42 0.41
1985-2002 MSFE 0.86 0.86 0.86 0.86 0.82 0.82 0.97 0.97

V ar 0.28 0.28 0.54 0.54 0.28 0.28 0.25 0.25

growth rates for real variables (e.g. industrial production, sales) and first differences

for variables already expressed in rates (e.g. unemployment rate, capacity utilization).

The dataset comprises monthly observations from 1959:01 to 2003:12 and 131 time

series. The sample is divided into an in-sample portion of size T = 120 (1959:01

to 1969:12) and an out-of-sample evaluation portion with the first date as December

1970 and the last date as December 2003. There are a total of J = 397 out-of-sample

evaluation points split into pre- and post-1985 periods, with a cut-off date of December

1984. This cut-off date has economic significance due to a change in monetary policy

to inflation targeting, and thus the well-known moderation period. The models and

parameters are re-estimated and the 12-step-ahead forecasts are computed for each

month t = T + 12, · · ·T + 12 + J − 1 using a rolling window scheme that uses the most

recent 10 years of monthly data, that is data indexed t− 12− T + 1, · · · , t− 12.

In this empirical example, the CnPC estimator is computed using a threshold pa-

rameter M that is chosen using a 10-fold cross-validation.

Table 3 reports the mean squared forecasts error (MSFE) relative to the random

walk and the variance (var) of the forecasts, relative to the variance of the series to be

forecast. We consider three sample periods and consider different values for the forecast
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horizon h. The number of factors r is selected using Bai and Ng’s (2002) information

criterion ICp1 , which returns an estimate of r̂ = 7. We also show results for arbitrary

values of r = 5, 10.

We observe that overall, there are gains in the out-of-sample forecasts accuracy as

measured by average mean-squared-forecast-errors. These gains depend on the sample

period and on the target series. Generally, the gains can be as high as a 6% decrease

in the pseudo-out-of-sample mean-squared forecast errors.

Consumer Price Index forecasts appear to benefit the most from incorporating

dependence features using the CnPC estimators of the predictors F̂t. These benefits

are more appreciable during the post-moderation period 1985–2002. This result is

supported by previous findings in the literature. During this period, predictability of

the price and output series is problematic partly because of the instabilities in the data,

and partly because of the FED’s monetary policy of inflation targeting.

7 Conclusion

This paper proposes a novel PC-based method for incorporating the features of cross-

correlation in the data in large factor models. The method allows for approximate

factor structure in the sense of Chamberlain and Rothschild [1983], and embeds the

assumption of bounded cross-sectional dependence to solve a constrained PC prob-

lem. This constrained estimation is easily implemented within the existing classical

PC analysis. The method does not require inverting a large covariance matrix and

works through a shrinkage mechanism applied to the sample average of cross-sectional

correlations.

We provide convergence results of the estimated factors to a space that spans the

true factors. The convergence rate is slower than in the asymptotic classical PC method

and depends on a regularization parameter. The method is computationally equivalent
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to a PC estimation applied to a regularized form of the data matrix.

The simulation analysis shows that the CnPC estimator is generally more accurate

than the PCE and GLS-PCE for large N panels. Applied to real data, the results

suggest that sizable improvements in the accuracy of the estimated factors, in spanning

the true factors space, do not always lead to quantitaively similar improvements in the

forecasts’ accuracy of the diffusion indexes, and that the results greatly depend on the

target series and on the forecast’s horizon.
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