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Abstract

This paper develops a new distribution theory and inference methods for over-identified

Generalized Method of Moments (GMM) estimation focusing on the iterated GMM estimator,

allowing for moment misspecification, and for clustered dependence with heterogeneous and

growing cluster sizes. This paper is the first to provide a rigorous theory for the iterated GMM

estimator. We provide conditions for its existence by demonstrating that the iteration sequence

is a contraction mapping. Our asymptotic theory allows the moments to be possibly misspec-

ified, which is a general feature of approximate over-identified models. This form of moment

misspecification causes bias in conventional standard error estimation. Our results show how to

correct for this standard error bias. Our paper is also the first to provide a rigorous distribution

theory for the GMM estimator under cluster dependence. Our distribution theory is asymp-

totic, and allows for heterogeneous and growing cluster sizes. Our results cover standard smooth

moment condition models, including dynamic panels, which is a common application for GMM

with cluster dependence. Our simulation results show that conventional heteroskedasticity-

robust standard errors are highly biased under moment misspecification, severely understating

estimation uncertainty, and resulting in severely over-sized hypothesis tests. In contrast, our

misspecification-robust standard errors are approximately unbiased and properly sized under

both correct specification and misspecification. We illustrate the method by extending the em-

pirical work reported in Acemoglu, Johnson, Robinson, and Yared (2008, American Economic

Review) and Cervellati, Jung, Sunde, and Vischer (2014, American Economic Review). Our

results reveal an enormous effect of iterating the GMM estimator, demonstrating the arbitrari-

ness of using one-step and two-step estimators. Our results also show a large effect of using

misspecification robust standard errors instead of the Arellano-Bond standard errors. Our re-

sults support Acemoglu, Johnson, Robinson, and Yared’s conclusion of an insignificant effect

of income on democracy, but reveal that the heterogeneous effects documented by Cervellati,

Jung, Sunde, and Vischer are less statistically significant than previously claimed.

∗Hansen thanks the National Science Foundation and the Phipps Chair for research support.
†Lee acknowledges that this research was supported under the Australian Research Council Discovery Early Career

Reserach Award (DECRA) funding scheme (project number DE170100787).
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1 Introduction

White (1980, 1982) advocated for robust inference, meaning that variance estimation should

be constructed to be valid under broader assumptions than the model interpreted narrowly. His

seminal papers showed how to construct robust covariance estimators for linear regression and for

likelihood estimation which provide asymptotically valid inference for the pseudo-true parameter

values without the requirement of correct model specification. White’s vision for robust covariance

estimation dominates much of econometric practice.

The metaphor of robust estimation also motivated the generalized method of moments (GMM)

estimator of Lars Hansen (1982), as it was understood that estimation by maximum likelihood

could be quite sensitive to model misspecification. GMM focused estimation on the specific moment

conditions specified by the application. Hansen’s proposed covariance matrix estimators were also

quite similar to those of White (1980) in that they did not exploit information beyond the moment

conditions used for estimation.

However, when the model is over-identified Hansen’s GMM covariance matrix estimator turns

out to be quite sensitive to the assumption of correct moment specification. If we take the realistic

view that an over-identified model is a constructive approximation rather than a literal truth, we

should be cautious about requiring that our inference procedures rely on the literal assumption of

correct specification.

This concern for robustness is echoed in the monograph by Hansen and Sargent (2008), where

they argue that decisions should be robust to model misspecification.

This paper focuses on the problem of correct asymptotic inference in over-identified econometric

models without requiring that all moment conditions hold exactly in the population. In this context

it turns out that correct GMM inference requires a significant adjustment in covariance matrix

calculation, as the asymptotic distribution turns out to depend on estimation error in the moment

derivatives, on weight matrix estimation, and the degree of curvature of the model moments.

Fortunately it is straightforward to characterize the correct covariance matrix structure, though

some of the calculations are more tedious than the conventional case.

A second issue raised in this paper is a rigorous theory for the iterated GMM estimator. We focus

on the iterated estimator as it removes the arbitrary dependence of the one-step and two-step GMM

estimators on the initial weight matrix. In our empirical application we demonstrate that estimators

can be highly sensitive to the initial weight matrix and the number of iterations. We provide a

rigorous theory by providing simple conditions under which the iteration sequence is a contraction

and thus the iterated GMM estimator exists. This results benefits from the theory of Dominitz

and Sherman (2005). To our knowledge our paper is the first to provide this demonstration.

A third issue raised in this paper is inference allowing for clustered sampling dependence. In

the past two decades there has been an explosion of empirical econometric interest in clustered

sampling, but relatively little formal theory. This paper uses a new asymptotic theory developed

in a companion paper Hansen and Lee (2017), which allows for quite general forms of clustered

dependence, allowing for heterogeneous and growing cluster sizes. Our theory requires the number
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of clusters to diverge to infinity (so-called “large G” asymptotics) so to obtain asymptotically

normal limiting representations.

This paper builds on the important contribution of Hall and Inoue (2003) who similarly explored

the asymptotic distribution of the GMM estimator under moment misspecification. A limitation of

their analysis was that they were unable to incorporate the iterated GMM estimator, and thus had

the unfortunate finding that the limiting distribution depended on the specific weight matrix. In-

stead, our focus on the iterated GMM estimator simplifies the analysis by removing the dependence

on the specified iteration.

One of the most common applications of over-identified GMM with clustered dependence is

the dynamic panel model. The standard estimators, due to Arellano and Bond (1991), Arellano

and Bover (1995) and Blundell and Bond (1998) all fall in this class, and are covered by our

assumptions. Dynamic panel regression is highly susceptible to misspecification, as it is not credible

that the dynamic structure (number of lags) is known a priori. Consequently the models should

generically be viewed as constructive approximations, and standard errors calculated using our

misspecification-robust approach.

The assumptions in this paper are closely related to the context of over-identified IV regression

with heterogeneous treatment effects (Imbens and Angrist (1994), Angrist and Imbens (1995),

Kolesár (2013)). As shown in Lee (2017) and Evdokimov and Kolesár (2017), conventional inference

methods are inappropriate in this context and alternative standard error formulas are necessary.

The theory and methods presented in this paper include the heterogeneous treatment effect IV

model as a special case, and apply more broadly to linear and non-linear GMM estimation.

Our results assume that the moment conditions are smooth. Allowing for non-differentiable

moment conditions would be desirable but would require a different approach.

The iterated GMM estimator is related to – but substantially different from – the continuously

updated estimator of Hansen, Heaton and Yaron (1996). While it would be desirable to extend our

results to cover the CU-GMM estimator, we do not do so in this paper to keep the presentation

focused. Such an extension would be technically much more complicated.

The organization of the paper is as follows. Section 2 presents the iterated GMM estimator.

Section 3 provides formal conditions for identification and existence. Section 4 discusses weight

matrices. Section 5 presents the asymptotic distribution of the GMM estimator. Section 6 discusses

covariance matrix estimation. Section 7 shows that the iterated GMM estimator defined with the

efficient weight matrix is invariant to the weight matrix being constructed with re-centering. Section

8 discusses the GMM test of over-identifying restrictions. Section 9 describes the results for the

linear model. Section 10 presents simulation evidence of the finite sample distributions. Section 11

is an application examining the dynamic panel regressions in Acemoglu, Johnson, Robinson, and

Yared (2008) and Cervellati, Jung, Sunde, and Vischer (2014). Formal proofs are presented in the

Appendix.

A Matlab code which replicates the empirical work reported in the paper is available on the

authors’ webpages.
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2 Generalized Method of Moments Estimation

Consider a standard over-identified moment condition model which specifies that

E (m(Xi, θ)) = 0 (1)

where m(·, ·) is l × 1 and θ ∈ Θ is k × 1 with l > k. Given a sample {X1, ..., Xn} let

mn(θ) =
1

n

n∑
i=1

m(Xi, θ)

be the sample estimate of (1).

The parameter θ is estimated by iterated GMM. Since the model is over-identified, the moment

condition is augmented by an l × l positive definite user-specified weight matrix Wn(θ) which

possibly depends on the parameter vector θ. Given an initial value θ̂0 we create a sequence θ̂s by

iterative minimization

θ̂s = arg min
θ∈Θ

mn(θ)′Wn(θ̂s−1)−1mn(θ).

θ̂s is known as the s-step GMM estimator. If the sequence is iterated until convergence we obtain

the iterated GMM estimator :

θ̂ = lim
s→∞

θ̂s. (2)

If the weight matrix Wn does not depend on θ then θ̂s = θ̂ but they differ otherwise. We discuss

in Section 3 sufficient conditions such that the limit in (2) exists.

Alternatively, we can view (2) as a fixed point. Define the mapping

gn(φ) = arg min
θ∈Θ

mn(θ)′Wn(φ)−1mn(θ). (3)

Given this notation, the iteration sequence can be written as

θ̂s = gn(θ̂s−1)

and the iterated GMM estimator (2) is the fixed point of the equation

gn(θ̂) = θ̂. (4)

3 Identification and Existence

Our goal is inference on θ allowing for robustness to possible moment misspecification. By this

we mean that there may not exist a value θ solving (1). Following White (1982) it is appropriate in

this context to define the pseudo-true parameter value θn as the vector which solves the population

analog of the estimation problem. In an over-identified model this means the pseudo-true value
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will depend on the weight matrix, as discussed in Hall and Inoue (2003).

Define the population analogs of the sample moment and weight matrix

mn(θ) = E (mn(θ)) (5)

Wn(θ) = E
(
Wn(θ)

)
. (6)

Notice that we write the expectations (5) and (6) as functions of n. This allows heterogeneous dis-

tributions, and additionally under cluster sampling with non-homogeneous cluster sizes the weight

matrix (6) is likely to vary with n. Under i.i.d. sampling the n subscripts can be omitted.

We then define the population analog of (3):

gn(φ) = arg min
θ∈Θ

mn(θ)′Wn(φ)−1mn(θ). (7)

Definition (7) specifies gn(φ) as the best fitting value of θ given the weight matrix Wn(φ) and an

initial value φ. Under correct specification so that (1) holds for some θn, and if Wn(φ) > 0, it follows

that the solution gn(φ) = θn is unique. Under moment misspecification, however, the solution (7)

may vary with φ.

As an analog of the iterated GMM estimator we define the population pseudo-true value θn to

be the fixed point of the population mapping gn(φ). This solves

gn(θn) = θn (8)

Conceptually, one could imagine obtaining θn by iterating gn(φ) from a starting point until conver-

gence. We write the pseudo-true value θn as a function of the sample size n since the population

weight matrix (6) may vary with the sample under cluster sampling.

The existence of the fixed points of (4) and (8) have not been discussed in the previous literature.

We now provide formal justifications.

Define the population criterion Jn(θ, φ) = mn(θ)′Wn(φ)−1mn(θ) and Dn(θ, φ) = ∂2

∂θ∂θ′Jn(θ, φ).

For a vector a let ‖a‖ = (a′a)1/2 denote the Euclidean norm. For a positive semi-definite matrix A

let λmin(A) and λmax(A) denote its smallest and largest eigenvalue, respectively. For a general

matrix A let ‖A‖ =
√
λmax (A′A) denote the spectral norm.

Assumption 1. For some 0 < C <∞

1. Θ is compact

2. infφ∈Θ λmin (Wn(φ)) ≥ C−1

3. infφ∈Θ λmin (Dn(gn(φ), φ)) ≥ C−1

4. supφ∈Θ ‖mn(gn(φ))‖ ≤ δ where δ <
(
2kC5

)−1

5. m(x, θ) is twice continuously differentiable in θ ∈ Θ
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6. Wn(φ) is continuously differentiable in φ ∈ Θ

Assumption 1.1 imposes compactness for technical convenience. Assumption 1.2 excludes sin-

gular population weight matrices. Assumption 1.3 is a global identification condition.

Assumption 1.4 is unusual. It specifies that the degree of misspecification is small, in the

sense that the norm of the population moment mn(θ) is small for all pseudo-true values of θ. This

assumption is automatically satisfied under correct specification (since in that context mn(θn) = 0),

but otherwise allows for mild moment misspecification. This assumption is only used to establish

the existence of the pseudo-true value under misspecification, so could be replaced by any other

sufficient condition for its existence.

Assumption 1.5 is a stronger smoothness condition than typical for GMM distribution theory,

but is needed to allow for moment misspecification. Assumption 1.6 is a mild smoothness condition

on the population weight matrix.

Assumption 1 is sufficient to establish the existence of the pseudo-true value θn.

Theorem 1. Under Assumption 1 the map gn(φ) is a contraction. The fixed point θn exists and

is unique.

We next provide formal justification for existence of the iterated GMM estimator (2).

Define the sample derivativesQn(θ) = ∂
∂θ′mn(θ), Rn(θ) = ∂

∂θ′vec(Qn(θ)′), and Sn(φ) = ∂
∂φ′vecWn(φ),

and the population analogs Qn(θ) = ∂
∂θ′mn(θ), Rn(θ) = ∂

∂θ′vec(Qn(θ)′), and Sn(φ) = ∂
∂φ′vecWn(φ).

Assumption 2. As n→∞

sup
θ∈Θ
‖mn(θ)−mn(θ)‖ p−→ 0 (9)

sup
θ∈Θ

∥∥Qn(θ)−Qn(θ)
∥∥ p−→ 0 (10)

sup
θ∈Θ

∥∥Rn(θ)−Rn(θ)
∥∥ p−→ 0 (11)

sup
θ∈Θ

∥∥Wn(θ)−Wn(θ)
∥∥ p−→ 0 (12)

sup
θ∈Θ

∥∥Sn(θ)− Sn(θ)
∥∥ p−→ 0 (13)

and the functions mn(θ), Qn(θ), Rn(θ), Wn(θ) and Sn(θ) are continuous in θ uniformly over θ ∈ Θ.

Assumption 2 states that the sample moments converge uniformly over θ to their expectations.

Sufficient conditions for these results are available for specific sampling contexts. In Section 5 we

provide primitive conditions in the context of cluster sampling.

Assumptions 1-2 are sufficient to establish the existence of the iterated GMM estimator θ̂ and

its consistency for θn.

Theorem 2. Under Assumptions 1 and 2, as n→∞

1. supφ∈Θ ‖gn(φ)− gn(φ)‖ →p 0.
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2. With probability tending to one, the map gn(φ) is a contraction and the fixed point θ̂ exists and

is unique.

3.
∥∥∥θ̂ − θn∥∥∥→p 0.

Our proof of parts 2 and 3 of Theorem 2 builds on Dominitz and Sherman (2005, Theorem

2 and Lemma 3). They show that if the population mapping gn(φ) is a contraction (which was

established in Theorem 1), the sample mapping gn(φ) is uniformly consistent (established in part

1), and similarly its derivative, then gn(φ) is a contraction, the fixed point exists, and the fixed

point θ̂ is consistent. We use the uniform consistency of Assumption 2 to establish the uniform

consistency of gn(φ) and its derivative.

4 Weight Matrices and Clustering

For the remainder of the paper we focus attention on two specific classes of weight matrices

which encompass the typical choices used in empirical practice. In particular, we allow for either

unclustered or clustered weight matrices.

We assume that the observations are grouped into G mutually independent known clusters,

indexed g = 1, ..., G, where the gth cluster has ng observations. The number of observations per

cluster may vary across clusters. Thus the total number of observations is n =
∑G

g=1 ng. When

convenient, we index the observations as Xgj for g = 1, ..., G and j = 1, ..., ng. Random sampling

is the special case where ng = 1.

Unclustered weight matrices take the form

Wn(θ) =
1

n

n∑
i=1

v(Xi, θ)v(Xi, θ)
′, (14)

for some l×1 vector v(x, θ). Unclustered weight matrices are standard under independent sampling

but can also be used under clustered sampling. The two leading examples of unclustered weight

matrices (14) are 2SLS, which sets v(Xi, θ) = Zi for an instrument vector Zi, and the standard

efficient weight matrix which sets v(x, θ) = m(x, θ).

Clustered weight matrices take the form

Wn(θ) =
1

n

G∑
g=1

 ng∑
j=1

v(Xgj , θ)

 ng∑
j=1

v(Xgj , θ)

′ (15)

=
1

n

G∑
g=1

ṽg(θ)ṽg(θ)
′,

for some l× 1 vector v(x, θ), and ṽg(θ) =
∑ng

j=1 v(Xgj , θ). Clustered weight matrices are often used

under cluster sampling. The standard GMM estimator under clustering uses an efficient weight
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matrix (15) with v(x, θ) = m(x, θ). The Arellano and Bond (1991) two-step GMM estimator for

dynamic panels uses (15) with v((Y,X,Z), θ) = Z ′(Y −Xθ).
Even when the observations are clustered for the purpose of standard error calculation, it is

not necessary for a user to select a clustered weight matrix. It is quite common, for example, for

users to estimate a model by 2SLS (which uses a non-clustered weight matrix of the form (14)) and

then use cluster-robust standard errors. Consequently, we allow for both (14) and (15) as feasible

choices, separately from the choice of covariance matrix estimator.

The weight matrices (14) and (15) are uncentered. Centered versions are also commonly used.

In Section 7 we show that our GMM estimators are invariant to recentering, and thus all our results

apply to such weight matrices as well.

5 Asymptotic Distribution

The iterated GMM estimator θ̂ minimizes the criterion mn(θ)′Wn(θ̂)−1mn(θ) and thus satisfies

the first-order condition

0 = Fn(θ̂) = Qn(θ̂)′Wn(θ̂)−1mn(θ̂).

The standard approach to obtain the asymptotic distribution for θ̂ makes a first-order Taylor

expansion of mn(θ̂) about mn(θn) and then solves to find

√
n
(
θ̂ − θn

)
' −

(
Qn(θ̂)′Wn(θ̂)−1Qn(θn)

)−1
Qn(θ̂)′Wn(θ̂)−1√nmn(θn).

Under correct specification Emn(θn) = 0 so the central limit theorem applies. However, under

misspecification Emn(θn) = µn 6= 0 and we cannot apply the central limit theorem without first re-

centering mn(θn) about µn. This invalidates the above argument and does not lead to a constructive

solution.

To obtain the correct asymptotic distribution, we can instead expand the entire first-order

condition, rather than just the sample moment mn(θ̂). There are three steps. The first expands

the sample function Fn(θ) about θn. To do so, its derivative equals

∂

∂θ′
Fn(θ) = Qn(θ)′Wn(θ)−1Qn(θ) +

(
mn(θ)′Wn(θ)−1 ⊗ Ik

)
Rn(θ) (16)

−
(
mn(θ)′Wn(θ)−1 ⊗Qn(θ)′Wn(θ)−1

)
Sn(θ)

≡ Hn(θ).

(This and other calculations are justified in the appendix.) Expanding Fn(θ̂) about θn, we find

that

0 = Fn(θ̂) ' Fn(θn) +Hn(θn)
(
θ̂ − θn

)
. (17)

Thus
√
n
(
θ̂ − θn

)
' −Hn(θn)−1√nFn(θn). (18)
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Second, we expand Fn(θn) in terms of sample moments. Set µn = mn(θn), Qn = Qn(θn), Wn =

Wn(θn), Rn = Rn(θn), and Sn = Sn(θn). Set mn = mn(θn), Qn = Qn(θn), and Wn = Wn(θn). In

the Appendix we show that
√
nFn(θn) =

√
nF̃n (1 + op(1)) (19)

where

F̃n = Q′nW
−1
n mn +QnW

−1
n µn −Q′nW−1

n WnW
−1
n µn.

We write F̃n as a sum across the cluster sums. Define

m̃g =

ng∑
j=1

m(Xgj , θn)

Q̃g =

ng∑
j=1

Q(Xgj , θn)

W̃g =

{ ∑ng

j=1 v(Xgj , θn)v(Xgj , θn)′ under (14)

ṽg(θn)ṽg(θn)′ under (15).

Then set

ψ̃g = Q′nW
−1
n m̃g + Q̃gW

−1
n µn −Q′nW−1

n W̃gW
−1
n µn

so that
√
nF̃n =

1√
n

G∑
g=1

ψ̃g. (20)

The CLT can be applied to (20), which has variance

Ωn =
1

n

G∑
g=1

E
(
ψ̃gψ̃

′
g

)
. (21)

Equations (18), (19), and (20) imply

√
n
(
θ̂ − θn

)
' −Hn(θn)−1

 1√
n

G∑
g=1

ψ̃g

 (1 + op(1)) .

This leads to an asymptotic distribution theory for θ̂.

We now provide regularity conditions and a formal statement. Define

Hn = Hn(θn) = Q′nW
−1
n Qn +

(
µ′nW

−1
n ⊗ Ik

)
Rn −

(
µ′nW

−1
n ⊗Q′nW−1

n

)
Sn (22)

and U(x, θ) = ∂
∂θ′ v(x, θ).

Assumption 3. For some 0 < C <∞

1. λmin (Hn) ≥ C−1
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2. λmin (Ωn) ≥ C−1

3. The weight matrix Wn(θ) takes either the unclustered (14) or clustered form (15)

4. For each θ ∈ Θ, and f(x) = ‖m(x, θ)‖2, ‖Q(x, θ)‖2, ‖R(x, θ)‖, ‖v(x, θ)‖4, and ‖U(x, θ)‖2

lim
B→∞

sup
i
E (‖f(Xi)‖ 1 (‖f(Xi))‖ > B)) = 0

5. For each θ1, θ2 ∈ Θ and f(x, θ) = m(x, θ), Q(x, θ), R(x, θ), v(x, θ), and U(x, θ)

‖f(x, θ1)− f(x, θ2)‖ ≤ A(x)h (‖θ1 − θ2‖)

where h(u) ↓ 0 as u ↓ 0, and (i) supiEA(Xi) ≤ C for f(x, θ) = R(x, θ), and (ii) supiEA(Xi)
2 ≤

C for f(x, θ) = m(x, θ), Q(x, θ), and U(x, θ), and (iii) supiEA(Xi)
4 ≤ C for f(x, θ) = v(x, θ)

6. The observations are grouped in independent clusters of size ng

7. If the weight matrix is unclustered (14) then

(a) n−1
∑G

g=1 n
2
g ≤ C

(b) maxg≤G n
2
g/n→ 0

8. If the weight matrix is clustered (15) then

(a) n−1
∑G

g=1 n
4
g ≤ C

(b) maxg≤G n
4
g/n→ 0

(c) ‖Wn(θ)‖ ≤ C and ‖Sn(θ)‖ ≤ C

Theorem 3. Under Assumptions 1 and 3, as n→∞

(
H−1
n ΩnH

−1′
n

)−1/2√
n
(
θ̂ − θn

)
d−→ N (0, Ik) (23)

where Ωn and Hn are defined in (21) and (22), respectively.

Theorem 3 provides a simple characterization of the asymptotic distribution of the GMM esti-

mator under possible moment misspecification and cluster sampling.

The asymptotic variance in Theorem 3 differs from the classical formula

(Q′W−1Q)−1
(
Q′W−1Ω11W

−1Q
) (
Q′W−1Q

)−1
(24)

where Ω11 is (21) with µn = 0, in two ways. First, the matrix Hn defined in (22) is a function of the

curvature in Qn(θ) and Wn(θ) through the matrix derivatives Rn and Sn. Larger curvature implies

larger distortions. Second, the asymptotic covariance matrix Ωn defined in (21) of the vector ψg is
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an augmented version of the classic covariance matrix. Ωn is augmented by the variation in Q̃ and

W̃g. Larger variance in these variables implies larger distortions. All of these differences disappear

when µn = 0 (correct specification) but appear when µn 6= 0.

Theorem 3 is agnostic about whether or not the model is correctly specified, and thus provides

valid covariance matrix estimates and standard errors without sensitivity to specification. This

is a more robust distribution theory, and also important in studying test power and bootstrap

distributions.

The asymptotic distribution in Theorem 3 is similar to that obtained by Hall and Inoue (2003)

and they are equivalent when Wn = Wn(θ) does not depend on θ in the i.i.d. case. An important

distinction is that Theorem 3 allows Wn(θ) to depend on θ and thus includes the iterated GMM

estimator. Theorem 3 is the first distribution theory which formally covers the iterated GMM

estimator, both under correct specification and misspecification, and to allow for cluster sampling

which includes random sampling as a special case.

Assumption 3.1 is a full-rank condition on the effective Hessian Hn; it simplifies to the full

column rank condition of Qn if µn = 0. Assumption 3.2 excludes singular covariance matrices.

Assumption 3.4 impose uniform integrability on specific powers of the moments and their deriva-

tives. In the i.i.d. case Assumption 3.4 simplifies to moment bounds. Assumption 3.5 are Lipschitz

bounds on the same functions.

Clustered sampling is permitted by Assumptions 3.6-3.8. Assumptions 3.7-3.8 control the degree

of heterogeneity in the cluster sizes ng. Condition (b) implies G → ∞ so we are in the “large

number of clusters” asymptotic framework. Assumption 3.7 is used when the weight matrix is

unclustered (as in 2SLS). The assumptions allow for mildly growing and heterogeneous cluster

sizes. Assumption 3.8 is used when the weight matrix is unclustered (as when the optimal weight

matrix is used in a clustered sample). Conditions (a) and (b) are more restrictive versions of the

conditions in Assumption 3.7. Condition (c) requires that the weight matrix and its derivative is

bounded. This will hold (under the other assumptions) if the cluster sizes ng are bounded, but may

not hold otherwise. This assumption may be important (may not simply be a technical condition)

since if the weight matrix is unbounded as the sample size diverges, then it is unclear if the GMM

criterion will be well behaved. The conditions in Assumptions 3.7-3.8 are probably not the weakest

possible.

The asymptotic distribution (23) implies that the approximate scaled variance matrix isH−1
n ΩnH

−1′
n .

It does not require, however, that scaled variance matrix converges to a constant. This is important

for clustered data as Ωn may not converge even after re-scaling.

6 Covariance Matrix Estimation

It is straightforward to calculate an estimate of the covariance matrix

Vn = H−1
n ΩnH

−1′
n
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from Theorem 3. Construct the derivatives Q̂ = Qn(θ̂), R̂ = Rn(θ̂), Ŝ = Sn(θ̂), Ŵ = Wn(θ̂),

µ̂ = mn(θ̂) and

Ĥ = Hn(θ̂) = Q̂′Ŵ−1Q̂+ (µ̂′Ŵ−1 ⊗ Ik)R̂− (µ̂′Ŵ−1 ⊗ Q̂′Ŵ−1)Ŝ. (25)

Construct the cluster sum

ψ̂g = Q̂′Ŵ−1m̃g(θ̂) + Q̃g(θ̂)
′Ŵ−1µ̂− Q̂′Ŵ−1W̃g(θ̂)Ŵ

−1µ̂ (26)

and the cluster variance estimator

Ω̂ =
1

n

G∑
g=1

ψ̂gψ̂
′
g (27)

and

V̂ = Ĥ−1Ω̂Ĥ−1′. (28)

The standard errors for θ̂ can be obtained by taking the square roots of the diagonal elements of

n−1V̂ . In the case of no clustering, set G = n and ng = 1.

We now establish that V̂ is consistent for V and that replacement in Theorem 3 of Vn by V̂

does not affect the asymptotic distribution.

Theorem 4. Under Assumptions 1 and 3,∥∥∥V −1/2
n V̂ V −1/2

n − Ik
∥∥∥→p 0 (29)

and

V̂ −1/2√n
(
θ̂ − θn

)
d−→ N (0, Ik) (30)

as n→∞.

Equation (29) shows that V̂ is consistent in a sense appropriate when the variance matrix

may not be converging with n. Equation (30) implies that test statistics constructed with V̂ have

standard asymptotic distributions. In particular, t-statistics are asymptotically standard normal,

and Wald statistics have asymptotic chi-square distributions.

While Theorem 4 is quite straightforward to establish in the case of i.i.d. observations, it is

quite tedious to establish in the case of clustered observations with a clustered weight matrix. In

particular, the clustered weight matrix poses special challenges. This is because Ω̂ includes terms

W̃gW̃
′
g which are effectively the fourth power of a cluster sum. This required an extension of the

uniform convergence theory of Hansen and Lee (2017, Theorem 6). The proof method is similar

but the details are somewhat tedious, so we present the proof in the Appendix.

To emphasize, Theorem 4 shows that robust t-statistics and Wald statistics have conventional

asymptotic distributions, but this requires that the covariance matrix has been calculated with our

new robust estimator which accounts for possible misspecification. The result fails if conventional

covariance matrix estimators are used, as they are in general inconsistent for the correct variance.

12



7 Weight Matrix Invariance

If the inverse of the weight matrix is consistent for the covariance matrix of the moment function,

the asymptotic variance of the GMM estimator is minimized under correct specification, which leads

to efficient GMM. Under independent sampling, efficient weight matrices are constructed using the

moment function m(Xi, θ) or its recentered version, m(Xi, θ)−mn(θ). An open question is whether

recentering affects the pseudo-true value θn or the estimate θ̂. Recentering is known to not affect

the continuous-updating GMM estimator (see Newey and Smith (2004), footnote 2) but its impact

on the iterated GMM estimator is unknown. We now show that recentering has no effect for the

efficient weight matrix, either clustered or non-clustered.

The covariance matrix of
√
nmn(θ) is

Ωn(θ) = E
(
n (mn(θ)− Emn(θ)) (mn(θ)− Emn(θ))′

)
=

1

n

G∑
g=1

E
(
(m̃g(θ)− Em̃g(θ)) (m̃g(θ)− Em̃g(θ))

′)
=

1

n

G∑
g=1

Em̃g(θ)m̃g(θ)
′ − 1

n

G∑
g=1

Em̃g(θ)Em̃g(θ)
′.

If we further assume that m(θ) ≡ Em(Xi, θ) does not vary across observations, then

Ωn(θ) =
1

n

G∑
g=1

Em̃g(θ)m̃g(θ)
′ −

 1

n

G∑
g=1

n2
g

m(θ)m(θ)′.

Depending on the user’s assumption whether the model is correctly specified or possibly mis-

specified, the clustered efficient weight matrices are defined as either

Wn(θ) =
1

n

G∑
g=1

m̃g(θ)m̃g(θ)
′ (31)

or

W
∗
n(θ) =

1

n

G∑
g=1

m̃g(θ)m̃g(θ)
′ −

 1

n

G∑
g=1

n2
g

mn(θ)mn(θ)′. (32)

Under independent sampling, we set n = G and ng = 1 so that (31) and (32) become

Wn(θ) =
1

n

n∑
i=1

m(Xi, θ)m(Xi, θ)
′ (33)

and

W
∗
n(θ) =

1

n

n∑
i=1

m(Xi, θ)m(Xi, θ)
′ −mn(θ)mn(θ)′, (34)

13



respectively.

Theorem 5. Suppose that Assumptions 1 and 2 hold for all the weight matrices defined above. The

pseudo-true value θn and iterated GMM estimate θ̂ are invariant to the choice of (i) either (31)

or (32) for the clustered weight matrix, and (ii) either (33) or (34) for the non-clustered weight

matrix.

Theorem 5 shows that recentering the weight matrix does not alter the pseudo-true value θn

and iterated GMM estimate θ̂ when the weight matrix takes the efficient form. However, while the

estimator itself is unaffected the covariance matrix estimate, the criterion function, and LR-type

test statistics are affected by the choice. Their relative finite sample performance deserves more

research.

It is important to understand that Theorem 5 applies only to the GMM estimator when iterated

until convergence. It does not apply to the s-step estimator.

8 Over-identifying Restrictions Test

It is conventional to report the over-identifying restrictions test (the J test) statistic along with

the GMM point estimates and standard errors. The J statistic is the GMM criterion evaluated at

the estimator with the efficient weight matrix:

Jn = n ·mn(θ̂)′Ŵ−1mn(θ̂) (35)

where Ŵ is either (32) or (31) under cluster sampling and either (34) or (33) under independent

sampling, evaluated at the estimator. The null hypothesis is that the moment condition is correctly

specified, E(m(Xi, θ)) = 0.

It is straightforward to show that (35) is consistent for the chi-square distribution with the

degrees of freedom l − k under the null under independent sampling. Under cluster sampling, the

clustered efficient weight matrix should be used because the conventional non-clustered efficient

weight matrix is no longer consistent for the asymptotic covariance matrix of the moment in general.

Theorem 17 Equation (68) of Hansen and Lee (2017), which shows consistency of the J test under

cluster sampling, holds with the iterated GMM estimator.

Both the uncentered and re-centered efficient weight matrices can be used for the test statistic

and the resulting two J statistics are closely related. Indeed, from the proof of Theorem 5, we can

deduce that

Jn =
1

1 + (Cn/n) J
∗
n

J
∗
n (36)

where J
∗
n is the J test statistic using the centered weight matrix Ŵ ∗ and Cn = 1 when (33) and

(34) are used and Cn =
∑G

g=1 n
2
g/n when (31) and (32) are used. Since (Cn/n) J

∗
n ≥ 0,

Jn ≤ J
∗
n. (37)
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So the J statistics are rank ordered and are monotonic functions of the other, which implies that

they are identical tests, holding size constant. For example, if the bootstrap p-values are calculated

they will be identical.

In practice, the centered version is larger so will reject more frequently based on asymptotic

critical values. Since J tests tend to over-reject in finite samples, this could result in spurious over-

rejection. On the other hand, the centered version may have better power. Hall (2000) shows that

the J test based on the two-step GMM using the centered heteroskedasticity and autocorrelation

consistent covariance (HACC) weight matrix is more powerful than the other in larger samples.

9 Linear Model

Consider the linear model yi = x′iθ + ei with moment condition E(ziei) = 0. We consider two

possible weight matrices, corresponding to 2SLS and conventional efficient GMM. For each weight

matrix we describe the covariance matrix estimator under independent and clustered dependence.

First, take the case of 2SLS. The estimator is

θ̂ = (X ′Z
(
Z ′Z

)−1
Z ′X)−1(X ′Z

(
Z ′Z

)−1
Z ′Y ).

where X, Y , Z are stacked data matrices. No iteration is required. The residuals are êi = yi − x′iθ̂
and let ê = Y −Xθ̂.

The asymptotic covariance matrix estimate for θ̂ takes the form

V̂ = Ĥ−1Ω̂Ĥ−1

Ĥ =
1

n
X ′Z

(
Z ′Z

)−1
Z ′X

Ω̂ =
1

n
Ψ̂′Ψ̂.

If the observations are independent (not clustered) then Ψ̂ is an n × k matrix whose ith row is ψ̂′i
where

ψ̂i = −X ′Z
(
Z ′Z

)−1
ziêi − xiz′i

(
Z ′Z

)−1
Z ′ê+X ′Z

(
Z ′Z

)−1
ziz
′
i

(
Z ′Z

)−1
Z ′ê.

If the observations are clustered, then the only modification is that Ψ̂ is an G×k matrix whose gth

row is ψ̃′g where

ψ̃g =

ng∑
j=1

ψ̂i

Second, take the case of efficient GMM. Under independent sampling, a non-clustered weight

matrix takes the form

Wn(θ) =
1

n

n∑
i=1

ziz
′
i

(
yi − x′iθ

)2
.

15



If the observations are clustered, then a clustered weight matrix takes the form

Wn(θ) =
1

n

G∑
g=1

Z ′g(Yg −Xgθ)(Yg −Xgθ)
′Zg

where Zg, Yg, and Xg are ng × l, ng × 1, and ng × k stacked data matrices for cluster g.

Given a preliminary estimate θ̂0 the s-step GMM estimator is defined by

θ̂s = (Z ′XWn(θ̂s−1)−1X ′Z)−1(Z ′XWn(θ̂s−1)−1X ′Y ).

The iterated GMM estimator θ̂ is this limit iterated until convergence. The residuals are êi =

yi − x′iθ̂. Let ê = Y −Xθ̂ and êg = Yg −Xg θ̂. Set Ŵ = Wn(θ̂).

The asymptotic covariance matrix estimate under independent sampling (not clustered) takes

the form

V̂ = Ĥ−1Ω̂Ĥ−1′

Ĥ =
1

n2
X ′ZŴ−1Z ′X − 2

n3
X ′ZŴ−1

n∑
i=1

zix
′
i

(
êiz
′
iŴ
−1Z ′ê

)

where Ψ̂ is an n× k matrix whose ith row is ψ̂′i where

ψ̂i = − 1

n
X ′ZŴ−1ziêi −

1

n
xiz
′
iŴ
−1Z ′ê+

1

n2
X ′ZŴ−1ziz

′
iê

2
i Ŵ
−1Z ′ê.

If the observations are clustered, then Ĥ is

Ĥ =
1

n2
X ′ZŴ−1Z ′X − 1

n3
X ′ZŴ−1

G∑
g=1

(
Z ′g êg ê

′ZŴ−1Z ′gXg + Z ′gXg

(
ê′ZŴ−1Z ′g êg

))

and Ψ̂ is an G× k matrix whose gth row is ψ̃′g where

ψ̃g = − 1

n
X ′ZŴ−1Z ′g êg −

1

n
X ′gZgŴ

−1Z ′ê+
1

n2
X ′ZŴ−1Z ′g êg ê

′
gZgŴ

−1Z ′ê.

10 Simulation

In this section, we illustrate the performance of the methods proposed in this paper in two

simulation experiments, one for i.i.d. observations and one for clustered dependence. In both

experiments we investigate the performance of inference methods for 2SLS and iterated efficient

GMM estimation, using both conventional and our recommended robust standard errors. We find

large and important improvements in performance by using our recommended methods.

Our first experiment concerns a simple linear instrumental variable regression with a single
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endogenous regressor. The model to be estimated is

yi = xiθ0 + ei

E (ziei) = 0 (38)

where xi and θ0 are scalar and zi = (z1i, z2i, z3i, z4i)
′ is a vector of instrumental variables. We

estimate θ0 by 2SLS and iterated efficient GMM, and calculate standard errors using the conven-

tional heteroskedasticity-robust formula and using our misspecification-robust formula. All results

are reported using 5000 Monte Carlo replications.

Our data-generating process is

yi = xiθ0 + α0 (z1i − z2i + z3i − z4i) + ei, (39)

xi = π0 (z1i + z2i + z3i + z4i) + ui,

zi ∼ N (0, I4) ,(
ei

ui

)
∼ N

((
0

0

)
,

[
1 .5

.5 1

])
.

We set θ0 = 1, vary α0 from 0 to 1 in steps of 0.1, and set the first-stage coefficient π0 so that the

first-stage R2 = 0.20 or 0.02, corresponding to relatively strong and weak instrument settings. We

set the number of observations as n = 250 and 2500.

The key parameter is α0. At α0 = 0, the model is correctly specified. For α0 6= 0 we find

E (ziei) =


α0

−α0

α0

−α0

 = µ0 6= 0

so the moment condition (38) fails to hold. The pseudo-true value θ0, however is invariant to α0.

We first investigate the performance of inference based on 2SLS estimation. The results are

reported in Table 1. In the fourth column we report the ratio of the mean of our proposed

misspecification-robust standard errors relative to the actual standard deviation of θ̂ across the

5000 simulation replications. The standard error is unbiased if this ratio is 1, is biased downwards

for values less than 1, and biased upwards for values greater than 1. We can see that under strong

identification (R2 = 0.20) our proposed standard errors are nearly unbiased in all cases examined.

Under weak identification (R2 = 0.02) our proposed standard errors are upward biased for n = 250,

but nearly unbiased for n = 2500.

In the fifth column we report the ratio of the mean of the conventional heteroskedasticity-

robust standard errors relative to the standard deviation of θ̂. We can see that the standard

errors are unbiased for α0 = 0, but highly biased for α0 6= 0. The standard errors are downward

biased, meaning that the reported standard errors understate estimation uncertainty. The bias is
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severe even for the smallest departure from α0 = 0, with approximately a 10% downwards bias

for α0 = 0.1 under strong identification, and a 30-40% downward bias under weak identification.

The bias is increasing in α0, and does not improve with sample size. Indeed the worst case arises

for α0 = 1, R2 = 0.02, and n = 2500, where the conventional standard error is about one-

fifth the true standard deviation. These results demonstrate unambiguously that the conventional

heteroskedasticity-robust standard errors are severely affected by moment misspecification.

In columns six and seven we report the size of nominal asymptotic 5% t-tests for H0 : θ0 = 1

against H1 : θ0 6= 1. Column six reports the size of tests using our proposed misspecification-

robust standard errors. We can see that under strong identification the tests have excellent size

performance. Under weak identification and the smaller sample size we can see that there is

mild size distortion (rejection rates range from 0.049 to 0.078) but the distortion disappears when

the sample size is increased. Column seven reports the size of the test using the conventional

heteroskedasticity-robust standard errors. We can see that the test is highly over-sized, with the

size distortion increasing in the degree of misspecification, as the strength of the instruments weaken,

and as the sample size increases. The rejection rates are severe even for the mildest departures

from correct specification in the presence of weak instruments. Indeed, the size of the t-test is 23%

for α = 0.1 and n = 2500, equals 46% for α = 0.2, and exceeds 70% for α ≥ 0.7.

In the final column we report rejection rates for the J test using the asymptotic 5% critical

value. While the J test will properly detect misspecification when n = 2500, it may not when

n = 250, especially in the presence of weak instruments.

We second investigate the performance of inference based on iterated efficient GMM. The results

are reported in Table 2. The same statistics are reported as in Table 1, plus the median number of

iterations required to obtain convergence.

Overall, the results in Table 2 are similar to those in Table 1. The main difference is that there

is meaningful size distortion from our misspecification-robust t-tests when the sample size is small

(rejection rates range from 6% to 12%), but this disappears as the sample size increases.

The final column reports the median number of iterations required to obtain GMM convergence,

which is defined as ‖θ̂s − θ̂s−1‖ < 10−5. The results show that the number of required iterations

is increasing in the degree of misspecification. This is consistent with Assumption 1.4 which is

used to establish the convergence of the GMM iteration sequence. As misspecification increases

the contraction property weakens and thus iterative convergence slows. It is noteworthy that in all

our simulation runs, the GMM iteration sequence did converge.

On a final note it is also quite interesting to point out the behavior of the statistics when there is

no misspecification (α0 = 0). In this setting both conventional and robust methods are appropriate,

and in fact one might expect the conventional methods to work better since the covariance matrix

is estimating fewer terms. However, in both tables the misspecification-robust t-statistic has less

size distortion than the conventional t-statistic, in particular when the sample size is small and

the instruments are weak. This finding points out that there is no apparent cost of using our new

robust standard errors, even in the context of no misspecification.
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R2 n α0 sr(θ̂)/s.d s(θ̂)/s.d Size(tr) Size(t) Reject(J)

0.2 250 0 1.0209 0.9964 0.0568 0.0616 0.0584
0.1 1.0054 0.9187 0.0580 0.0792 0.7212
0.2 0.9869 0.7818 0.0576 0.1266 0.9990
0.3 0.9910 0.6879 0.0522 0.1764 1.0000
0.4 1.0050 0.6290 0.0518 0.2126 1.0000
0.5 0.9774 0.5688 0.0604 0.2516 1.0000
0.6 0.9994 0.5508 0.0512 0.2730 1.0000
0.7 0.9892 0.5256 0.0548 0.2902 1.0000
0.8 0.9931 0.5127 0.0514 0.3108 1.0000
0.9 0.9987 0.5040 0.0542 0.3200 1.0000
1.0 0.9712 0.4832 0.0564 0.3304 1.0000

2500 0 1.0132 1.0107 0.0474 0.0478 0.0484
0.1 0.9969 0.9260 0.0510 0.0686 1.0000
0.2 0.9912 0.7946 0.0506 0.1196 1.0000
0.3 1.0107 0.7039 0.0464 0.1662 1.0000
0.4 1.0006 0.6256 0.0514 0.2176 1.0000
0.5 1.0052 0.5812 0.0508 0.2530 1.0000
0.6 1.0171 0.5553 0.0470 0.2742 1.0000
0.7 0.9909 0.5198 0.0518 0.3036 1.0000
0.8 0.9849 0.5017 0.0570 0.3250 1.0000
0.9 1.0127 0.5036 0.0466 0.3236 1.0000
1.0 1.0024 0.4901 0.0490 0.3294 1.0000

0.02 250 0 1.2982 1.0149 0.0784 0.1172 0.0552
0.1 1.1479 0.6974 0.0662 0.1898 0.6098
0.2 1.2335 0.5374 0.0610 0.2806 0.8784
0.3 1.0764 0.4568 0.0558 0.3538 0.8980
0.4 1.0923 0.4344 0.0580 0.4176 0.9104
0.5 1.0842 0.4191 0.0490 0.4442 0.9160
0.6 1.0688 0.4120 0.0524 0.4684 0.9164
0.7 1.1297 0.4106 0.0582 0.4710 0.9198
0.8 1.0245 0.3980 0.0520 0.4870 0.9220
0.9 1.0509 0.3988 0.0594 0.4974 0.9164
1.0 1.0715 0.3929 0.0568 0.5148 0.9228

2500 0 1.0494 1.0188 0.0476 0.0534 0.0506
0.1 1.0104 0.5963 0.0492 0.2284 0.9998
0.2 0.9983 0.3724 0.0496 0.4590 1.0000
0.3 0.9966 0.2907 0.0524 0.5834 1.0000
0.4 1.0020 0.2552 0.0478 0.6542 1.0000
0.5 1.0044 0.2339 0.0468 0.6756 1.0000
0.6 1.0119 0.2237 0.0486 0.6976 1.0000
0.7 1.0054 0.2139 0.0528 0.7202 1.0000
0.8 1.0184 0.2104 0.0508 0.7274 1.0000
0.9 1.0197 0.2065 0.0504 0.7234 1.0000
1.0 1.0113 0.2027 0.0510 0.7414 1.0000

Table 1: Monte Carlo Results for Linear Model - 2SLS
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R2 n α0 sr(θ̂)/s.d s(θ̂)/s.d Size(tr) Size(t) Reject(J) Med. Iter

0.2 250 0 1.0119 0.9749 0.0596 0.0658 0.0578 3
0.1 1.0011 0.8716 0.0618 0.0938 0.7138 4
0.2 0.9777 0.6926 0.0648 0.1638 0.9992 7
0.3 0.9944 0.5864 0.0738 0.2370 1.0000 9
0.4 1.0015 0.5124 0.0838 0.3046 1.0000 11
0.5 0.9657 0.4498 0.0954 0.3736 1.0000 12
0.6 0.9728 0.4278 0.0982 0.4002 1.0000 14
0.7 0.9890 0.4098 0.1032 0.4242 1.0000 15
0.8 0.9783 0.3903 0.1086 0.4530 1.0000 16
0.9 0.9457 0.3786 0.1244 0.4766 1.0000 16
1.0 0.9539 0.3661 0.1210 0.4870 1.0000 17

2500 0 1.0115 1.0079 0.0484 0.0484 0.0486 2
0.1 0.9954 0.8918 0.0530 0.0832 1.0000 4
0.2 0.9974 0.7216 0.0498 0.1610 1.0000 6
0.3 1.0164 0.6007 0.0486 0.2334 1.0000 8
0.4 0.9904 0.4990 0.0552 0.3244 1.0000 11
0.5 0.9885 0.4437 0.0594 0.3894 1.0000 13
0.6 1.0087 0.4165 0.0554 0.4082 1.0000 14
0.7 0.9836 0.3832 0.0608 0.4508 1.0000 15
0.8 0.9846 0.3666 0.0616 0.4732 1.0000 16
0.9 0.9995 0.3610 0.0586 0.4920 1.0000 17
1.0 1.0000 0.3515 0.0578 0.4964 1.0000 18

0.02 250 0 1.2766 0.9924 0.0832 0.1250 0.0536 4
0.1 1.1371 0.6791 0.0742 0.2002 0.6020 5
0.2 1.2603 0.5280 0.0738 0.2930 0.8730 6
0.3 1.0416 0.4492 0.0782 0.3828 0.8938 7
0.4 1.0266 0.4247 0.0760 0.4456 0.9052 8
0.5 1.0291 0.4105 0.0744 0.4710 0.9080 8
0.6 1.0044 0.4045 0.0740 0.4878 0.9120 9
0.7 1.0620 0.4022 0.0772 0.4900 0.9146 9
0.8 0.9611 0.3919 0.0726 0.5102 0.9180 9
0.9 1.0047 0.3932 0.0806 0.5172 0.9118 9
1.0 0.9827 0.3842 0.0796 0.5396 0.9198 9

2500 0 1.0476 1.0157 0.0478 0.0542 0.0506 3
0.1 1.0105 0.5875 0.0512 0.2356 0.9998 4
0.2 1.0030 0.3662 0.0552 0.4726 1.0000 7
0.3 0.9969 0.2841 0.0586 0.5974 1.0000 9
0.4 0.9946 0.2492 0.0642 0.6648 1.0000 10
0.5 1.0123 0.2298 0.0606 0.6942 1.0000 12
0.6 1.0092 0.2189 0.0612 0.7164 1.0000 12
0.7 1.0128 0.2098 0.0636 0.7234 1.0000 13
0.8 1.0195 0.2058 0.0668 0.7536 1.0000 14
0.9 1.0259 0.2026 0.0590 0.7448 1.0000 14
1.0 1.0078 0.1980 0.0630 0.7496 1.0000 15

Table 2: Monte Carlo Results for Linear Model - Iterated GMM
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R2 n G α0 sr(θ̂)/s.d s(θ̂)/s.d Size(tr) Size(t) Reject(J)

0.2 400 100 0 0.9930 0.9776 0.0622 0.0650 0.0538
0.1 0.9787 0.9104 0.0562 0.0766 0.8238
0.2 0.9967 0.8182 0.0568 0.1162 1.0000
0.3 0.9810 0.7089 0.0582 0.1616 1.0000
0.4 0.9974 0.6510 0.0562 0.2014 1.0000
0.5 0.9759 0.5872 0.0562 0.2468 1.0000
0.6 0.9927 0.5644 0.0548 0.2634 1.0000
0.7 0.9899 0.5378 0.0584 0.2884 1.0000
0.8 0.9854 0.5175 0.0550 0.3046 1.0000
0.9 0.9848 0.5047 0.0550 0.3236 1.0000
1.0 0.9889 0.4965 0.0524 0.3348 1.0000

4000 1000 0 0.9945 0.9929 0.0554 0.0556 0.0518
0.1 0.9946 0.9366 0.0504 0.0686 1.0000
0.2 1.0104 0.8374 0.0504 0.1056 1.0000
0.3 1.0023 0.7278 0.0504 0.1500 1.0000
0.4 0.9870 0.6430 0.0534 0.2054 1.0000
0.5 1.0001 0.6007 0.0504 0.2434 1.0000
0.6 1.0009 0.5649 0.0538 0.2640 1.0000
0.7 1.0033 0.5413 0.0472 0.2874 1.0000
0.8 1.0000 0.5212 0.0488 0.3100 1.0000
0.9 0.9947 0.5055 0.0518 0.3194 1.0000
1.0 1.0035 0.4994 0.0476 0.3256 1.0000

0.02 400 100 0 1.2058 1.0051 0.0792 0.1100 0.0598
0.1 1.1046 0.6834 0.0602 0.1952 0.7298
0.2 1.0471 0.4852 0.0582 0.2998 0.9312
0.3 1.0332 0.4100 0.0550 0.4084 0.9600
0.4 1.0207 0.3755 0.0560 0.4714 0.9622
0.5 1.0124 0.3596 0.0592 0.5232 0.9674
0.6 1.0372 0.3565 0.0560 0.5496 0.9664
0.7 1.0295 0.3461 0.0610 0.5726 0.9628
0.8 1.0388 0.3454 0.0584 0.5756 0.9666
0.9 1.0515 0.3438 0.0574 0.5954 0.9720
1 0.9466 0.3313 0.0590 0.6082 0.9674

4000 1000 0 1.0216 1.0025 0.0532 0.0574 0.0560
0.1 1.0008 0.6286 0.0546 0.2060 1.0000
0.2 0.9922 0.3961 0.0520 0.4274 1.0000
0.3 1.0045 0.3040 0.0502 0.5538 1.0000
0.4 0.9888 0.2537 0.0502 0.6374 1.0000
0.5 1.0062 0.2335 0.0470 0.6712 1.0000
0.6 0.9981 0.2152 0.0484 0.6974 1.0000
0.7 1.0070 0.2066 0.0492 0.7228 1.0000
0.8 0.9996 0.1983 0.0526 0.7290 1.0000
0.9 0.9979 0.1938 0.0518 0.7364 1.0000
1.0 1.0009 0.1902 0.0500 0.7352 1.0000

Table 3: Monte Carlo Results for Clustered Dependence - 2SLS
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R2 n G α0 sr(θ̂)/s.d s(θ̂)/s.d Size(tr) Size(t) Reject(J) Med. Iter

0.2 400 100 0 0.9825 0.9456 0.0644 0.0748 0.0488 4
0.1 0.9874 0.8287 0.0668 0.1126 0.8060 6
0.2 0.9719 0.6200 0.0760 0.2258 1.0000 11
0.3 0.9706 0.4906 0.0878 0.3242 1.0000 16
0.4 0.9844 0.4151 0.0944 0.4166 1.0000 21
0.5 0.9598 0.3652 0.1136 0.4834 0.9998 25
0.6 0.9454 0.3327 0.1346 0.5304 1.0000 28
0.7 0.9351 0.3125 0.1384 0.5660 1.0000 30
0.8 0.9306 0.2946 0.1488 0.5858 1.0000 32
0.9 0.9255 0.2878 0.1450 0.6012 1.0000 34
1.0 0.9042 0.2761 0.1532 0.6204 1.0000 35

4000 1000 0 1.0098 1.0062 0.0470 0.0478 0.0566 2
0.1 0.9982 0.8627 0.0526 0.0906 1.0000 5
0.2 0.9840 0.6476 0.0612 0.2016 1.0000 9
0.3 0.9767 0.4987 0.0560 0.3326 1.0000 15
0.4 1.0055 0.4211 0.0544 0.4122 1.0000 20
0.5 0.9804 0.3570 0.0630 0.4752 1.0000 24
0.6 0.9976 0.3276 0.0598 0.5236 1.0000 28
0.7 0.9857 0.2977 0.0610 0.5594 1.0000 32
0.8 1.0084 0.2862 0.0608 0.5816 1.0000 35
0.9 0.9821 0.2685 0.0662 0.5996 1.0000 37
1.0 1.0031 0.2646 0.0646 0.6026 1.0000 39

0.02 400 100 0 1.1591 0.9284 0.0854 0.1224 0.0576 4
0.1 1.0830 0.6335 0.0824 0.2208 0.7174 6
0.2 1.0187 0.4543 0.0926 0.3506 0.9296 9
0.3 0.9800 0.3908 0.1002 0.4566 0.9526 12
0.4 1.0201 0.3747 0.1018 0.5218 0.9556 14
0.5 0.8934 0.3416 0.1040 0.5716 0.9606 15
0.6 0.9190 0.3381 0.1020 0.5992 0.9666 16
0.7 0.9104 0.3303 0.1048 0.6166 0.9604 17
0.8 0.8830 0.3232 0.1020 0.6274 0.9630 17
0.9 0.9146 0.3295 0.0986 0.6344 0.9638 17
1.0 0.8780 0.3249 0.1008 0.6490 0.9654 18

4000 1000 0 1.0317 1.0106 0.0494 0.0528 0.0586 3
0.1 1.0020 0.6038 0.0574 0.2304 1.0000 6
0.2 0.9854 0.3715 0.0624 0.4624 1.0000 10
0.3 0.9977 0.2830 0.0650 0.5924 1.0000 15
0.4 1.0017 0.2382 0.0684 0.6684 1.0000 20
0.5 0.9901 0.2169 0.0778 0.6984 1.0000 23
0.6 0.9981 0.2026 0.0758 0.7324 1.0000 26
0.7 1.0008 0.1925 0.0770 0.7476 1.0000 28
0.8 0.9872 0.1856 0.0808 0.7608 1.0000 30
0.9 1.0036 0.1827 0.0824 0.7648 1.0000 31
1.0 0.9922 0.1786 0.0796 0.7716 1.0000 33

Table 4: Monte Carlo Results for Clustered Dependence - Iterated GMM
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Our second experiment introduces clustered dependence. The model is

ygj = xgjθ0 + egj

E (zgjegj) = 0

for g = 1, 2, ..., G and j = 1, 2, ..., ng. We set G = (100, 1000) and set the cluster sizes as ng = 2 for

one-half of the clusters and ng = 6 for the other half. Thus the total sample sizes are n = (400, 4000).

Our data-generating process is similar to (39), except that the errors are generated as

ygj = xgjθ0 + α0 (z1gj − z2gj + z3gj − z4gj) + vg + egj ,

xgj = π0 (z1gj + z2gj + z3gj + z4gj) + ugj ,

zgj ∼ N (0, I4) ,

vg ∼ N (0, 1/4) ,(
egj

ugj

)
∼ N

((
0

0

)
,

[
1

√
5/4√

5/4 1

])
.

The parameters of the model are selected so that the equation error vg + egj has a correlation of

0.5 with the reduced form error ugj , and the equation error vg + egj has a correlation of 0.2 within

each cluster.

In this experiment, we report results based on conventional cluster-robust standard errors as

well as our new misspecification-robust clustered standard errors.

The results for 2SLS are presented in Table 3 and those for the same model estimated by

iterated GMM presented in Table 4. Overall, the results in the two tables are quite similar to those

presented in Tables 1 and 2, showing unacceptable performance of the conventional cluster-robust

standard errors and t tests, and excellent performance of the new robust standard errors and t tests.

In the smaller sample the t-tests have somewhat more size distortion under cluster dependence than

in the i.i.d. case, but the distortion diminishes with sample size. It is also interesting to note that

the number of required iterations for efficient GMM is higher in Table 4 than in the i.i.d. case.

In unreported simulation results, we varied the number of instruments, the ratio of n and G,

the degree of cluster size heterogeneity, and the correlation within clusters. We found that the

main conclusions were largely unchanged.

11 Application: Income and Democracy

In an influential paper, Acemoglu, Johnson, Robinson, and Yared (2008, AJRY hereinafter) find

that there is no evidence of causal effect of income on democracy. This contrasts to the conventional

wisdom in the literature that income has a positive causal effect.

AJRY estimate the dynamic panel regression

yit = αyi,t−1 + γxi,t−1 + µt + δi + uit, (40)
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where yit is a measure of democracy, xit is log income per capita, µt is a time effect, and δi is a

country fixed effect. The error term uit has mean zero for all i and t. The parameter of interest

is γ, the effect of income on democracy. While AJRY consider several estimators we focus on the

one-step GMM estimator of Arellano and Bond (1991). This is an over-identified estimator, and

standard errors are clustered at the country level, so this fits exactly into the framework of our

paper.

The number of countries (127 in the full data set) corresponds to the number of groups G. The

sample period is 1960-2000 with observations at either 5-year or 10-year frequencies, so the number

of time-series observations ng (which is the number of observations per group) ranges up to 9, but

is heterogeneous as it is an unbalanced panel.

The main results of AJRY are reported in their Table 2, which are their estimates of the above

dynamic panel regression model. We repeat their estimates in Table 5 below. Columns I and III are

the estimates reported in AJRY (one-step GMM). Columns II and IV are iterated GMM (which are

not reported in AJRY). In addition to the coefficient estimates we report Arellano-Bond standard

errors (as done by AJRY) which cluster at the country level, and our new misspecification-robust

standard errors, also clustered at the country level. We also report the number of instruments used,

the number of total observations, the number of countries G, and the p-value of the over-identifying

restrictions J test. The J statistics are constructed using the uncentered clustered efficient weight

matrix.

The primary focus of AJRY was the coefficient on lagged income and its statistical significance.

We focus on two other issues. First, the difference between the one-step and iterated estimates.

Second, the difference between the Arellano-Bond and misspecification-robust standard errors.

First, the difference between the one-step and iterated GMM estimates is quite large in some

cases, in particular with the five-year data. For example, the one-step point estimate for γ is −0.129

while the iterated GMM estimate is −0.009. This large difference means that one-step estimation

is sensitive to the initial estimator. Two econometricians with different initial weight matrices will

find two meaningfully different estimates. Any choice except the iterated solution is arbitrary.

It is worth pointing out that the one-step and iterated estimates do not necessarily differ. For

example, for the ten-year data the one-step and iterated estimates are quite similar. This shows

that the sensitivity depends on the context. However, this is unknown unless both estimates are

calculated.

To emphasize the strong and arbitrary dependence of the GMM estimator on the initial weight

matrix and the importance of iterating until convergence, we display in Figure 1 the point estimates

for α̂ (panel (a)) and γ̂ (panel (b)) as a function of the iteration. Five lines are plotted corresponding

to distinct starting values. Also displayed are the asymptotic 95% confidence intervals for the

iterated GMM estimates. What can be seen is that while the sequence of GMM estimates converge

to a well-defined limit as the number of iterations increase, the convergence takes a fairly large

number of iterations (over 20). While the change in the point estimates between iterations is

small, the overall change by iterating to convergence is substantial. Quite intriguingly, the income
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Figure 1: Convergence path of the iterated GMM estimator in Column II of Table 5 with initial
weight matices Wn(φ̃) where φ̃ is the one-step GMM of AJRY (circle); φ̃ is the one-step GMM using
the identity matrix (x); φ̃ = (0, 0, · · · ) (+); φ̃ = (0.5, 0.5, · · · ) (∗); φ̃ = (−0.5,−0.5, · · · ) (diamond),
Thicker (lighter) error bar at the converging point is the asymptotic 95% confidence interval based
on the robust (conventional) standard error.

coefficient iterates are non-monotonic. This demonstrates substantial arbitrariness of using any

estimator other than iterated GMM.

Second, the difference between the two sets of standard errors is quite large in some cases,

in particular for the iterated estimator. For example, in the five-year data the misspecification-

robust standard error on lagged democracy is about three times the Arellano-Bond standard error.

This shows that taking into account possible misspecification can make an enormous difference in

the standard errors. In other cases, such as for lagged income in the same regression, the two

standard errors are quite similar. The fact that the misspecification-robust standard errors can be

substantially different suggests that ignoring misspecification bias can lead to large errors.

The p-values of the over-identification J tests provide mixed answers to the validity of model

specifications but overall the tests suggest that the dynamic panel regression equation may be

misspecified. This is consistent with our finding that standard errors are affected by the use of the

misspecification-robust formula. However, note that the iterated GMM estimates have only mildly

significant J statistics (the p-value is 0.09). In this context it is common for applied researchers

to treat the statistic as “borderline significant” and continue with their analysis unadjusted. Our

view is that regardless of the value of the J statistic, it is better to report the misspecification-

robust standard errors, as these are agnostic to whether the model is correctly specified, mildly

misspecified, or strongly misspecified.

It is noteworthy to point out that the p-values of the J test reported in AJRY are 0.26 and

0.07, which are different from our calculation 0.006 and 0.02 in Columns I and III. The reason is

that their statistic is the two-step GMM criterion with the efficient weight matrix evaluated at the

one-step estimate while ours is the one-step GMM criterion with both the moment and efficient
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weight matrix being evaluated at the one-step estimate. Since their main conclusions rely on the

one-step GMM estimates we believe that ours is a more reasonable choice. In fact, AJRY use

the popular Stata command xtabond2 for dynamic panel models. The command calculates the J

statistic and the p-value based on the two-step GMM (with the one-step weight matrix) even when

the one-step GMM estimates are reported. This is not a reliable test. We recommend using our J

statistic (35) evaluated at the estimator of the user.

AJRY conclude that income does not have a statistically significant causal effect on democracy.

Our results in Table 5 reinforce and extend this conclusion.

Column (4) Column (8)
five-year data ten-year data

One-step Iterated One-step Iterated
I II III IV

Democracyt−1 0.489 0.744 0.227 0.288
Arellano-Bond s.e. (0.085) (0.043) (0.123) (0.111)
Misspecification-Robust s.e. (0.095) (0.128) (0.125) (0.146)

Incomet−1 -0.129 -0.009 -0.318 -0.280
Arellano-Bond s.e. (0.076) (0.040) (0.180) (0.170)
Misspecification-Robust s.e. (0.088) (0.039) (0.183) (0.202)

Cumulative Income Effect -0.253 -0.036 -0.411 -0.393
Arellano-Bond s.e. (0.148) (0.152) (0.243) (0.243)
Misspecification-Robust s.e. (0.163) (0.149) (0.246) (0.290)

Hansen J Test [0.006] [0.42] [0.02] [0.09]
# of Iteration 0 23 0 9
# of Instruments 55 15
Observations 838 338
Countries 127 118

Standard errors clustered by country

Table 5: Extension of Acemoglu, Johnson, Robinson and Yared (2008), Table 2

What are the causes of potential misspecification? One possibility is that the dynamic structure

in (40) is incorrect – that lagged values are omitted. If the dynamics are misspecified, then the

moment conditions are not satisfied and the Arellano-Bond standard errors will be incorrect. Since

the “true” dynamic structure of a panel regression is not known a priori, this is a strong reason to

generically allow for misspecification.

Another reason for potential misspecification is coefficient heterogeneity. If the coefficients are

heterogeneous across countries, then moment conditions will not be satisfied. For example, in model

(40), if the coefficient γi (the effect of income on democracy) varies with country i, then the moment

conditions will be invalid. To see this, if we set γ = Eγi as the mean coefficient, then the effective

error in the differenced equation (40) is ∆uit + (γi − γ)∆xi,t−1 which will be correlated with the
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instrument yi,t−2. A consequence is that the Arellano-Bond standard errors will be incorrect, but

our misspecification-robust standard errors will be appropriate.

There is strong evidence for coefficient heterogeneity in equation (40). Cervellati, Jung, Sunde,

and Vischer (2014, CJSV hereinafter) argue that the income effect is heterogeneous between for-

mer colonies and non-colonies, and furthermore within colonies based on the quality of political

institutions. Bonhomme and Manresa (2015) find evidence of grouped patterns of unobserved het-

erogeneity in the same dataset. Lu and Su (2017) also find strong evidence of heterogeneity in the

income effect across countries. This literature makes a clear case that the coefficients (primarily

γ) vary across countries. In this case, model (40) should be viewed as an approximation rather

than a tight statistical model. The coefficients should be viewed as projections and the moment

conditions acknowledged to be potentially invalid. In this context Arellano-Bond standard errors

are incorrect, and our misspecification-robust standard errors appropriate.

Constraints Independence No Late Colonial

One-step Iterated One-step Iterated One-step Iterated
I II III IV V VI

Democracyt−1 0.289 -0.423 0.343 0.724 0.355 0.666
Arellano-Bond s.e. (0.123) (0.039) (0.110) (0.044) (0.101) (0.040)
Misspecification-Robust s.e. (0.142) (0.380) (0.127) (0.152) (0.115) (0.125)

Incomet−1 -0.417 -0.337 -0.270 -0.011 -0.303 -0.052
Arellano-Bond s.e. (0.194) (0.116) (0.113) (0.050) (0.110) (0.047)
Misspecification-Robust s.e. (0.221) (0.289) (0.134) (0.047) (0.122) (0.041)

Incomet−1 × ci 0.345 0.296 0.224 0.020 0.318 0.111
Arellano-Bond s.e. (0.162) (0.073) (0.121) (0.037) (0.122) (0.039)
Misspecification-Robust s.e. (0.169) (0.309) (0.125) (0.077) (0.130) (0.053)

Hansen J Test [0.03] [0.02] [0.03] [0.38] [0.09] [0.37]
# of Iteration 0 297 0 32 0 28
# of Instruments 56 56 56
Observations 531 628 631
Countries 79 99 100

Standard errors clustered by country

Table 6: Extension of Cervellati, Jung, Sunde, and Vischer (2014), Table 4

To highlight this issue further we examine a key table from CJSV (their Table 4) where they

present Arellano-Bond estimates of model (40) augmented to allow the income effect to vary across

groups. Their model is

yit = αyi,t−1 + γxi,t−1 + φxi,t−1ci + µt + δi + uit

where ci is a country-specific dummy variable, such that ci = 1 indicates that the country had
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“historically strong institutions”. (Acemoglu, Johnson, Robinson and Yared (2009) make a similar

distinction, describing the colonies with “historically weak institutions” as “extractive”.) CJSV

estimate this model for the sub-sample of former colonies using three distinct measures of insti-

tutional quality: (i) the level of constraints on the executive in 1900; (ii) whether the country

became independent before 1900; and (iii) whether the colony was subject to the rule of a late

colonial power. We repeat their estimates in Table 6 below for the five-year sample. CJSV re-

ported one-step Arellano-Bond estimates and standard errors, which are reported in our columns

I, III, and V. In addition, we report iterated GMM estimates (in columns II, IV, and VI) and

misspecification-robust standard errors.

Our focus is on the differences between the one-step and iterated GMM estimates, and between

the Arellano-Bond and misspecification-robust standard errors.

First, in many cases the iterated GMM estimates are quite different from the one-step esti-

mates. This means that the one-step estimates are dependent on the initial weight matrix and thus

inherently arbitrary. The iterated GMM estimates are free of the arbitrary choice of initial weight

matrix.

Second, in many cases the misspecification-robust standard errors are quite different from

the Arellano-Bond standard errors. In some cases they are quite similar, but in other cases the

misspecification-robust standard errors are three to four times as large. Inferences based on the

Arellano-Bond standard errors will be misleadingly precise in such contexts.

If we examine the over-identification J tests, we find that three (four) of the six p-values are

significant at the 5% (10%) level, indicating potential misspecification. Our recommendation is that

in this context the misspecification-robust standard errors are more reliable choice for inference.

Note that the reported p-values of the J test in CJSV are different from our calculation for the

same reason given in the AJRY analysis.

Turning to the question raised by CJSV – is there heterogeneity in the income effect across

institutional structure? – our results (iterated GMM with misspecification-robust standard errors)

are that in two of the three specifications the t-statistics for φ = 0 are statistically far from

significant. This is due to both smaller coefficient estimates and larger standard errors, relative to

the results reported in CJSV. In the third specification (no late colonial power) the t-ratio of 2.1

is marginally significant at the 5% level. Our conclusion is that there is no strong evidence of the

heterogeneity allegedly found by CJSV.

While this finding (no statistical evidence of coefficient heterogeneity) may appear to contradict

our claim of possible misspecification in the AJRY analysis, the key is the need for standard errors

to be robust to potential misspecification. Only by using robust standard errors can we make

inferences which are not fragile to specification choices.
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Appendix

Proof of Theorem 1: To show that the map gn(φ) is a contraction, we show that for c =

2kC5δ < 1, ‖gn(φ1)− gn(φ2)‖ ≤ c ‖φ1 − φ2‖ for all φ1, φ2 ∈ Θ. By the Banach fixed point theorem

this implies that the fixed point θn exists and is unique.

gn(φ) minimizes Jn(θ, φ) and thus is the θ which solves the first-order condition

0 =
∂

∂θ
Jn(θ, φ) = 2Qn(θ)′Wn(φ)−1mn(θ) (41)

where Qn(θ) = ∂
∂θ′mn(θ). Since (41) is continuously differentiable under Assumptions 1.5 and 1.6,

and
∂

∂θ′
∂

∂θ
Jn(θ, φ)|θ=gn(φ) = Dn(gn(φ), φ)

is uniformly invertible under Assumption 1.3, it follows by the implicit function theorem that gn(φ)

exists, is continuously differentiable, and its derivative equals

Vn(φ) =
∂

∂φ′
gn(φ) = −Dn(gn(φ), φ)−1Bn(gn(φ), φ) (42)

where

Bn(θ, φ) =
∂

∂φ′
∂

∂θ
Jn(θ, φ).

We calculate that

Bn(θ, φ) = 2
[
mn(θ)′ ⊗Qn(θ)′

] ∂

∂φ′
vec
(
Wn(φ)−1

)
= −2

[
mn(θ)′ ⊗Qn(θ)′

]
[Wn(φ)−1 ⊗Wn(φ)−1]Sn(φ) (43)

where Sn(φ) = ∂
∂φ′vecWn(φ).

Assumptions 1.1, 1.5 and 1.6 imply that ‖Qn(θ)‖ ≤ C and ‖Sn(θ)‖ ≤ C for some C < ∞.

Assumption 1.2 implies
∥∥Wn(φ)−1

∥∥ ≤ C. Assumption 1.4 implies ‖mn(gn(φ))‖ ≤ δ. Together these

imply

‖Bn(gn(φ), φ)‖ ≤ 2 ‖Qn(gn(φ))‖ ‖Sn(φ)‖
∥∥Wn(φ)−1

∥∥2 ‖mn(gn(φ))‖ ≤ 2C4δ. (44)

Let [A]j denote the jth row of a matrix A and let ‖A‖F =
√

tr (A′A) denote the Frobenius

norm. Using the properties of the Frobenius norm and Assumption 1.3,

∥∥[Dn(gn(φ), φ)−1]j
∥∥ ≤ ‖Dn(gn(φ), φ)−1‖F ≤

√
kλmax(Dn(gn(φ), φ)−1) ≤

√
kC. (45)

Let gnj denote the jth element of gn. Using the definition of the Euclidean norm, element-by-

element Taylor series expansions, where φ∗j lie on the line segment joining φ1 and φ2, the Schwarz
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inequality, (42), the Schwarz matrix inequality, (44), (45), and c = 2kC5δ,

‖gn(φ1)− gn(φ2)‖2 =

k∑
j=1

|gnj(φ1)− gnj(φ2)|2

=

k∑
j=1

∣∣∣[V (φ∗j )
]
j

(φ1 − φ2)
∣∣∣2

≤
k∑
j=1

∥∥∥[V (φ∗j )
]
j

∥∥∥2
‖φ1 − φ2‖2

=

k∑
j=1

∥∥∥[Dn(gn(φ∗j ), φ
∗
j )]
−1
j Bn(gn(φ∗j ), φ

∗
j )
∥∥∥2
‖φ1 − φ2‖2

≤
k∑
j=1

∥∥∥[Dn(gn(φ∗j ), φ
∗
j )]
−1
j

∥∥∥2
‖Bn(gn(φ∗j ), φ

∗
j )‖2 ‖φ1 − φ2‖2

≤ 4k2C10δ2 ‖φ1 − φ2‖2

= c2 ‖φ1 − φ2‖2

where c < 1. This establishes that the map gn(φ) is a contraction as required. �

Proof of Theorem 2.1: Define Jn(θ, φ) = mn(θ)′Wn(φ)−1mn(θ). Since gn(φ) minimizes

Jn(θ, φ), and gn(φ) minimizes Jn(θ, φ)

0 ≤ Jn(gn(φ), φ)− Jn(gn(φ), φ)

= Jn(gn(φ), φ)− Jn(gn(φ), φ)− Jn(gn(φ), φ) + Jn(gn(φ), φ)

≤ Jn(gn(φ), φ)− Jn(gn(φ), φ)− Jn(gn(φ), φ) + Jn(gn(φ), φ)

≤ 2 sup
φ,θ

∥∥Jn(θ, φ)− Jn(θ, φ)
∥∥→p 0,

where the final convergence by Assumption 2 (9) and (12) plus Assumption 1. This implies

sup
φ
|Jn(gn(φ), φ)− Jn(gn(φ), φ)| →p 0.

Fix ε > 0. Under Assumption 1.3, gn(φ) uniquely minimizes Jn(θ, φ), so we can find a η > 0

such that for all φ, ‖gn(φ)− θ‖ > ε implies |Jn(gn(φ), φ)− Jn(θ, φ)| > η. Thus

sup
φ
|Jn(gn(φ), φ)− Jn(gn(φ), φ)| ≤ η

implies supφ ‖gn(φ)− gn(φ)‖ ≤ ε. Hence

P

(
sup
φ
‖gn(φ)− gn(φ)‖ ≤ ε

)
≥ P

(
sup
φ
|Jn(gn(φ), φ)− Jn(gn(φ), φ)| ≤ η

)
→ 1
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as required. �

Proof of Theorem 2.2: The fixed point θ̂ exists and is unique if gn(φ) is a contraction

mapping, in the sense that there is a 0 ≤ c < 1 such that

‖gn(φ1)− gn(φ2)‖ ≤ c ‖φ1 − φ2‖ (46)

for all φ1, φ2 ∈ Θ. Dominitz and Sherman (2005) Lemma 3 show that sufficient conditions for

(46) to hold with probability tending to one as n → ∞ are that (i) gn(φ) is a contraction map-

ping (established in Theorem 1); (ii) supφ ‖gn(φ)− gn(φ)‖ →p 0 (established in part 1); and (iii)

supφ
∥∥V n(φ)− Vn(φ)

∥∥ →p 0 where Vn(φ) = ∂
∂φ′ gn(φ) and V n(φ) = ∂

∂φ′ gn(φ). Hence it is sufficient

to verify this final condition.

Recall that Vn(φ) can be expressed as (42) where Bn(θ, φ) equals (43). We can calculate that

Dn(θ, φ) = 2
{
Qn(θ)′Wn(φ)−1Qn(θ) +

(
mn(θ)′Wn(φ)−1 ⊗ I

)
Rn(θ)

}
.

Similarly,

V n(φ) = −Dn(gn(φ), φ)−1Bn(gn(φ), φ)

where

Bn(θ, φ) = −2
[
mn(θ)′ ⊗Qn(θ)′

]
[Wn(φ)−1 ⊗Wn(φ)−1]Sn(φ)

and

Dn(θ, φ) = 2
{
Qn(θ)′Wn(φ)−1Qn(θ) +

(
mn(θ)′Wn(φ)−1 ⊗ I

)
Rn(θ)

}
.

Assumption 1 and 2 imply that Bn(θ, φ)−Bn(θ, φ) and Dn(θ, φ)−Dn(θ, φ) converge uniformly to 0.

Part 1 shows that gn(φ)−gn(φ) converges uniformly to 0. Together, this implies that V n(φ)−Vn(φ)

converges uniformly to 0, as required. �

Proof of Theorem 2.3: Dominitz and Sherman (2005), Theorem 2, show that if s(n) → ∞
then

∥∥∥θ̂s(n) − θn
∥∥∥→p 0 since gn(φ) is a contraction mapping (Theorem 1) and supφ ‖gn(φ)− gn(φ)‖ →p

0 (Theorem 2.1). Combined with Theorem 2.2 we find∥∥∥θ̂ − θn∥∥∥ ≤ ∥∥∥θ̂s(n) − θn
∥∥∥+

∥∥∥θ̂ − θ̂s(n)

∥∥∥→p 0.

�

Proof of Theorem 3: We first show that Assumption 3 implies the convergence results of

Assumption 2.

First take mn(θ), Qn(θ), and Rn(θ), which are sample means. (9), (10), and (11) follow by

the ULLN for clustered means established by Hansen and Lee (2017, Theorem 5), which holds for

random variables which are uniformly integrable, Lipschitz, and cluster sizes satisfy maxg≤G ng/n→
0. The uniform integrability holds by Assumption 3.4, the Lipschitz condition by Assumption 3.5

and the cluster size condition is implied by Assumption 3.7 or 3.8.
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Second take Wn(θ). If the weight matrix is unclustered (14) then Assumption 3.4 implies that

‖Wn(θ)‖ ≤ C for some C < ∞. If the weight matrix is clustered (15) then ‖Wn(θ)‖ ≤ C is direct

from Assumption 3.8 (c). By Theorem 6 of Hansen and Lee (2017),

sup
θ∈Θ

∥∥Wn(θ)−Wn(θ)
∥∥ ≤ C · sup

θ∈Θ

∥∥∥Wn(θ)−1/2Wn(θ)Wn(θ)−1/2 − Il
∥∥∥→ 0.

This is (12).

Third, take Sn(θ). It can be written as

Sn(θ) =

{
1
n

∑n
i=1 (v(Xi, θ)⊗ U(Xi, θ) + U(Xi, θ)⊗ v(Xi, θ)) under (14)

1
n

∑n
i=1

(
ṽg(θ)⊗ Ũg(θ) + Ũg(θ)⊗ ṽg(θ)

)
under (15)

where ṽg(θ) =
∑ng

j=1 v(Xgj , θ) and Ũg(θ) =
∑ng

j=1 U(Xgj , θ). This is a subset of a larger matrix

which stacks v(Xi, θ) and vecU(Xi, θ). Applying the same argument as for Wn(θ) we find (13).

The conditions of Theorem 2 are satisfied so we conclude that
∥∥∥θ̂ − θn∥∥∥→p 0.

We next justify the expansion (16) in the text. It is convenient to note that we can write

F = Q′W−1m using the alternative representations

F =
(
m′W−1 ⊗ Ik

)
vecQ′

=
(
m′ ⊗Q′

)
vecW−1

and recall the identity
∂

∂θ′
vecW−1 = −

(
W−1 ⊗W−1

) ∂

∂θ′
vecW.

The chain rule then yields (16). Similarly, we define the population analog

Fn(θ) = Qn(θ)′Wn(θ)−1mn(θ)

and its derivative

∂

∂θ′
Fn(θ) = Qn(θ)′Wn(θ)−1Qn(θ) +

(
mn(θ)′Wn(θ)−1 ⊗ Ik

)
Rn(θ)

−
(
mn(θ)′Wn(θ)−1 ⊗Qn(θ)′Wn(θ)−1

)
Sn(θ)

≡ Hn(θ).

Notice that the first-order condition for the estimator satisfies Fn(θ̂) = 0 and that for the

pseudo-true value satisfies Fn(θn) = 0.

Instead of (17) we use the exact expansion

0 = Fn(θ̂) = Fn(θn) +H∗n

(
θ̂ − θn

)
where the jth row of H∗n is the jth row of Hn(θnj) where θnj is on the line segment joining θ̂ and
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θn. This implies
√
n
(
θ̂ − θn

)
= −H∗−1

n

√
nFn(θn).

The convergence results in Assumption 2 (which hold as discussed above) plus Assumption 1

imply that

sup
θ∈Θ

∥∥Hn(θ)−Hn(θ)
∥∥→p 0 (47)

and that Hn(θ) is uniformly continuous in θ. Together with
∥∥∥θ̂ − θn∥∥∥→p 0 we obtain

‖H∗n −Hn‖ →p 0. (48)

We next justify equation (19) from the text. First, by the convergence results in Assumption 2

and 0 = Q′nW
−1
n µn, the left-hand side of (19) can be written as

√
nFn(θn) =

√
nQ

′
nW

−1
n mn

=
√
nQ′nW

−1
n µn +

(
Qn +Qn −Qn

)′
W
−1
n

√
n (mn − µn) +

√
n
(
Qn −Qn

)′
W
−1
n µn

=
√
nQ′nW

−1
n µn +Q′nW

−1
n

√
n (mn − µn) (1 + op(1)) +

√
n
(
Qn −Qn

)′
W
−1
n µn

=
√
nQ′nW

−1
n µn +

(
Q′nW

−1
n

√
n (mn − µn) +

√
n
(
Qn −Qn

)′
W−1
n µn

)
(1 + op(1))

=
√
n
(
Q′nW

−1
n µn +Q′nW

−1
n mn +Q

′
nW

−1
n µn

)
(1 + op(1))

the final using the identify Q′nW
−1
n µn = 0

Second, using the identity

∂

∂ (vecW )′
vecW−1 = −W−1 ⊗W−1

and a Taylor expansion we find

√
nQ′nW

−1
n µn =

√
n
(
µ′n ⊗Q′n

)
vecW

−1
n

=
√
n
(
µ′n ⊗Q′n

)
vecW−1

n −
(
µ′n ⊗Q′n

) (
W−1
n ⊗W−1

n

)√
nvec

(
Wn −Wn

)
(1 + op(1))

=
√
nQ′nW

−1
n µn −Q′nW−1

n

√
n
(
Wn −Wn

)
W−1
n µn (1 + op(1))

=
√
n
(
Q′nW

−1
n µn −Q′nW−1

n WnW
−1
n µn

)
(1 + op(1))

Together, these expansions lead to (19). Note that the convergence rates of mn, Qn, and Wn are

non-standard (may even be slower than n−1/4) so that conventional expansion arguments are not

appropriate to show (19).
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Equation (20) is an algebraic equivalence. We have established that

(
H−1
n ΩnH

−1
n

)−1/2√
n
(
θ̂ − θn

)
= −

(
H−1
n ΩnH

−1
n

)−1/2
H∗−1
n

√
nFn(θn)

= −
(
H−1
n ΩnH

−1
n

)−1/2
H∗−1
n

√
n F̃n (1 + op(1))

= −
(
H−1
n ΩnH

−1
n

)−1/2
H−1
n

 1√
n

G∑
g=1

ψ̃g

 (1 + op(1)) (49)

−
(
H−1
n ΩnH

−1
n

)−1/2 (
H∗−1
n −H−1

n

) 1√
n

G∑
g=1

ψ̃g

 (1 + op(1)) . (50)

Note that we can write ψ̃g = D′nf̃g where

Dn =

 W−1
n Qn

W−1
n µn ⊗ Ik

−W−1
n µn ⊗W−1

n Qn

 . (51)

and

f̃g(θ) =

 m̃g(θ)

vec(Q̃′g(θ)

vec(W̃g)

 . (52)

The cluster sums f̃g are independent across g. Assumptions 3.2, 3.4, 3.6, 3.8 imply the assumptions

for the CLT of Corollary 1 of Hansen and Lee (2017). Thus (49) converges in distribution to

N(0, Ik).

The proof is completed by showing that (50) is op(1). λmin(Hn) ≥ C−1 and (48) imply that∥∥∥H−1/2
n H∗nH

−1/2
n − Ik

∥∥∥ =
∥∥∥H−1/2

n (H∗n −Hn)H−1/2
n

∥∥∥ ≤ C ‖H∗n −Hn‖
p−→ 0.

Applying the continuous mapping theorem we find∥∥∥H1/2
n H∗−1

n H1/2
n − Ik

∥∥∥ p−→ 0. (53)

The CLT also shows that

Ω−1/2
n

1√
n

G∑
g=1

ψ̃g →d N(0, Ik)
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and is thus Op(1). Thus (50) is bounded by Op(1) multiplied by∥∥∥(H−1
n ΩnH

−1
n

)−1/2 (
H∗−1
n −H−1

n

)
Ω1/2
n

∥∥∥
=
∥∥∥(H−1

n ΩnH
−1
n

)−1/2
H−1/2
n

(
H1/2
n H∗−1

n H1/2
n − Ik

)
H−1/2
n Ω1/2

n

∥∥∥
=
∥∥∥(H−1

n ΩnH
−1
n

)−1/2
H−1
n ΩnH

−1
n

(
H−1
n ΩnH

−1
n

)−1/2
∥∥∥1/2 ∥∥∥H1/2

n H∗−1
n H1/2

n − Ik
∥∥∥

= op(1).

Hence (50) is op(1). This completes the proof. �

Proof of Theorem 4: Given Assumptions 3.1 and 3.2 and (53), it is sufficient to show that∥∥∥Ω̂− Ωn

∥∥∥→p 0. (54)

Define f̃g(θ) as in (52),

D̂ =

 Ŵ−1Q̂

Ŵ−1µ̂⊗ Ik
−Ŵ−1µ̂⊗ Ŵ−1Q̂


G̃(θ) =

1

n

G∑
g=1

f̃g(θ)f̃g(θ)
′ (55)

so that Ω̂ = D̂′G̃(θ̂)D̂. To establish (54) we can replace D̂ with Dn defined in (51) (using the

convergence results in Assumption 2 which are implied by Assumption 3) and then rotate out Dn.

Since
∥∥∥θ̂ − θn∥∥∥→p 0 it is sufficient to show that

sup
θ∈N

∥∥∥G̃(θ)− EG̃(θ)
∥∥∥→p 0 (56)

for a neighborhood N of θn.

In the non-clustered weight matrix case, f̃g(θ) is a vector of cluster sums. (The third component

of f̃g(θ) is vec(W̃g) =
∑ng

j=1 v(Xgj , θ)⊗ v(Xgj , θ).) Thus we can appeal to the ULLN for clustered

variances of Hansen and Lee (2017, Theorem 6), for which the assumptions listed in Assumption 3

are sufficient, establishing (56).

In the clustered weight matrix case, the third component of f̃g(θ) is vec(W̃g) = ṽg(θ) ⊗ ṽg(θ)
which is not a cluster sum but rather a product of cluster sums, so the results of Hansen and Lee

(2017, Theorem 6) do not apply. Andrews (1992, Theorem 3) shows that (56) holds if for all θ ∈ N∥∥∥G̃(θ)−Gn(θ)
∥∥∥→p 0, (57)
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and for all θ1, θ2 ∈ N , ∥∥∥f̃g(θ1)f̃g(θ1)′ − f̃g(θ2)f̃(θ2)′
∥∥∥ ≤ Agh(‖θ1 − θ2‖) (58)

with h(u) ↓ 0 as u ↓ 0 and 1
n

∑G
g=1EAg ≤ A <∞. We now establish (57) and (58).

Take (57). Fix θ ∈ N . For brevity, suppress the dependence of f̃g(θ) and G̃(θ) on θ. Fix δ > 0.

Set ε = (δ/C)2. Define h̃g = f̃g1

(∥∥∥f̃g∥∥∥2
≤ nε

)
. Then

G̃ =
1

n

G∑
g=1

h̃gh̃
′
g +

1

n

G∑
g=1

f̃gf̃
′
g1

(∥∥∥f̃g∥∥∥2
> nε

)
.

By the triangle inequality

E
∥∥∥G̃− EG̃∥∥∥ =

1

n
E

∥∥∥∥∥∥
G∑
g=1

(
h̃gh̃

′
g − Eh̃gh̃′g

)∥∥∥∥∥∥ (59)

+
2

n

G∑
g=1

E

(∥∥∥f̃g∥∥∥2
1

(∥∥∥f̃g∥∥∥2
> nε

))
. (60)

Take (59). Assumption 3.4 and the Cr inequality allow us to deduce that Eṽ4
g ≤ Cn4

g and Ef̃2
g ≤

Cn4
g for some C <∞. Using Jensen’s inequality, the assumption the clusters are independent and

thus uncorrelated, the bounds
∥∥∥h̃g∥∥∥2

≤ nε and
∥∥∥h̃g∥∥∥2

≤
∥∥∥f̃g∥∥∥2

, and the definition of ε, we obtain

that (59) is bounded by

1

n

 G∑
g=1

E
∥∥∥h̃g∥∥∥4

1/2

≤ ε1/2C1/2

 1

n

G∑
g=1

n4
g

1/2

≤ δ.

Take (60). Write q̃g =
(
m̃g, vec Q̃g

)
. Using the inequality

(A+B)1(A+B > ε) ≤ 2A1(A > ε/2) + 2B1(B > ε/2),

we find that (60) is bounded by 8 times

1

n

G∑
g=1

(
E
(
‖q̃g‖2 1

(
‖q̃g‖2 >

nε

2

))
+ E

(
‖ṽg‖4 1

(
‖ṽg‖4 >

nε

2

)))
. (61)

Lemma 1 of Hansen and Lee (2017) implies that
∥∥n−1

g q̃g
∥∥2

and
∥∥n−1

g ṽg
∥∥4

are uniformly integrable,

given Assumption 3.4. This means we can pick B sufficiently large so that

sup
g
E
(∥∥n−1

g q̃g
∥∥2

1
(∥∥n−1

g q̃g
∥∥2
> B

))
≤ δ

C
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and

sup
g
E
(∥∥n−1

g ṽg
∥∥4

1
(∥∥n−1

g ν̃g
∥∥2
> B

))
≤ δ

C
.

Pick n large enough so that

max
g≤G

ng

n1/2
≤ max

g≤G

n2
g

n1/2
≤ (ε/2)1/2

B

which is feasible by Assumption 3.8(b). Then (61) is bounded by

1

n

G∑
g=1

(
E
(
‖q̃g‖2 1

(∥∥n−1
g q̃g

∥∥2
> B

))
+ E

(
‖ṽg‖4 1

(∥∥n−1
g ṽg

∥∥2
> B

)))
≤ 1

n

G∑
g=1

(
n2
g + n4

g

) δ
C
≤ 2δ.

We have shown that E
∥∥∥G̃− EG̃∥∥∥ ≤ 17δ. Since δ is arbitrary, by Markov’s inequality, (57) is shown.

Take (58). Fix any θ1, θ2 ∈ N . Set f̃g = supθ∈N

∥∥∥f̃g(θ)∥∥∥ and ṽg = supθ∈N ‖ṽg(θ)‖. Using the

triangle inequality and Assumption 3.5

‖m̃g(θ2)− m̃g(θ1)‖ ≤
ng∑
j=1

Am(Xgj)h (‖θ1 − θ2‖)

∥∥∥Q̃g(θ2)− Q̃g(θ1)
∥∥∥ ≤ ng∑

j=1

AQ(Xgj)h (‖θ1 − θ2‖)

‖ṽg(θ2)− ṽg(θ1)‖ ≤
ng∑
j=1

Av(Xgj)h (‖θ1 − θ2‖) .

Using the Cr inequality and definition (52),∥∥∥f̃g(θ2)− f̃g(θ1)
∥∥∥ ≤ ‖m̃g(θ2)− m̃g(θ1)‖+

∥∥∥Q̃g(θ2)− Q̃g(θ1)
∥∥∥+ 2ṽg ‖ṽg(θ2)− ṽg(θ1)‖

≤

 ng∑
j=1

(Am(Xgj) +AQ(Xgj) + 2ṽgAv(Xgj))

h (‖θ1 − θ2‖) .

The left-hand-side of (58) is bounded by

2f̃g

∥∥∥f̃g(θ2)− f̃(θ1)
∥∥∥ ≤ 2f̃g

 ng∑
j=1

(Am(Xgj) +AQ(Xgj) + 2ṽgAv(Xgj))

h (‖θ1 − θ2‖) .

Hence (58) holds with

Ag = 2f̃g

 ng∑
j=1

(Am(Xgj) +AQ(Xgj) + 2ṽgAv(Xgj))

 .

It remains to show that 1
n

∑G
g=1EAg ≤ A < ∞. Assumption 3.4 allows us to deduce that Eṽ4

g ≤
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Cn4
g and Ef̃2

g ≤ Cn4
g. Then applying Holder’s inequality

EAg = 2

ng∑
j=1

(
E
(
f̃gAm(Xgj)

)
+
(
ẼfgAQ(Xgj)

)
+ 2E

(
f̃gṽgAv(Xgj)

))

≤ 2

ng∑
j=1

(
Ef̃2

g

)1/2 ((
EA2

m(Xgj)
)1/2

+
(
EA2

Q(Xgj)
)1/2

+ 2
(
Eṽ4

g

)1/4 (
E
(
A4
v(Xgj)

))1/4)

≤ 2C

ng∑
j=1

(
2n2

g + n3
g

)
≤ 6Cn4

g.

Hence

1

n

G∑
g=1

EAg ≤ 6C
1

n

G∑
g=1

n4
g ≤ 6C2

by Assumption 3.8 (a). This establishes (58).

By showing (57) and (58) we have established (56) and completes the proof. �

Proof of Theorem 5: We establish a slightly more general result. For any population weight

matrix Wn(θ) set

W ∗n(θ) = Wn(θ)− Cn ·mn(θ)mn(θ)′ (62)

for some constant 0 < Cn <∞. Let θn and θ∗n be the pseudo-true values under the weight matrices

Wn(θ) and W ∗n(θ). We will show that θn = θ∗n.

If mn(θn) = 0 for some θn then the model is correctly specified and there is no distinction

Wn(θ) = W ∗n(θ) and Theorem 5 trivially holds. Assume mn(θn) 6= 0 for all θ ∈ Θ. By the

Woodbury matrix identity,

Wn(θ)−1 =
[
W ∗n(θ) + Cn ·mn(θ)mn(θ)′

]−1
= W ∗n(θ)−1 − CnW

∗
n(θ)−1mn(θ)mn(θ)′W ∗n(θ)−1

1 + Cn ·mn(θ)′W ∗n(θ)−1mn(θ)
.

Hence the population GMM criterion with Wn(φ)−1 evaluated at φ = θ∗n equals

mn(θ)′Wn(θ∗n)−1mn(θ) = mn(θ)′W ∗n(θ∗n)−1mn(θ)

− Cn ·mn(θ)′W ∗n(θ∗n)−1mn(θ∗n)mn(θ∗n)′W ∗n(θ∗n)−1mn(θ)

1 + Cn ·mn(θ∗n)′W ∗n(θ∗n)−1mn(θ∗n)

= (mn(θ)′W ∗n(θ∗n)−1mn(θ))

(
1− ρn(θ, θ∗n)

CnJ
∗
n

1 + CnJ∗n

)
(63)

where

ρn(θ, θ∗n) =

(
mn(θ)′W ∗n(θ∗n)−1mn(θ∗n)

)2
(mn(θ)′W ∗n(θ∗n)−1mn(θ)) (mn(θ∗n)′W ∗n(θ∗n)−1mn(θ∗n))

and J∗n = mn(θ∗n)′W ∗n(θ∗n)−1mn(θ∗n).
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Now consider minimization of (63) over θ given fixed θ∗n. The first term on the right-hand-side

of (63) is the GMM criterion with W ∗n(φ) evaluated at φ = θ∗n, which is minimized at θ∗n. The

second-term on the right-hand-side of (63) is minimized by maximizing ρn(θ, θ∗n) which is achieved

at θ = θ∗n because ρn(θ, θ∗n) is a squared correlation. Since both terms are minimized at θ = θ∗n it

follows that (63) is minimized at θ = θ∗n. But the left-hand-side of (63) is the GMM criterion with

Wn(φ) evalauted at φ = θ∗n, so the fact that its minimum is achieved at θ = θ∗n means that θ∗n is its

fixed point. But the fixed point of the GMM criterion with Wn(φ) is θn. Thus θ∗n = θn as claimed.

Since

W
∗
n(θ) = Wn(θ)− Cn ·mn(θ)mn(θ)′

for some 0 < Cn < ∞ for the sample weight matrices, we apply the same argument to show the

invariance of the estimator. �
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