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We investigate the impact of climate change on U.S. agricultural productiv-

ity using county-level yield and weather data from 1950 to 2015. We present

two new methods of modelling how producers adapt agricultural techniques

to harsh temperatures, including a new panel data estimator that allows for

two-dimensional fixed-effects in slopes. We find evidence of adaptation to

geographic and temporal variation in climate, but it has stalled since 1989.

We show that adaptation implies fixed-effects slope heterogeneity in the re-

lationship between crop yield and temperature, and ignoring this leads to

biased estimates of temperature sensitivity. We use our estimates to project

corn yields to 2100 using a variety of climate models and emission scenar-

ios, and find that unmitigated climate change will have severe effects on

yields. Our models indicate that adaptation techniques can mitigate 10 to

45% of the damage, but significant emissions reductions can mitigate far

more (i.e., 42 to 91%).

JEL: C23, C54, D24, Q15, Q51, Q54, Q55

Leading scientific and environmental institutions warn of the extreme impact that fu-

ture climate change may have on the productivity of agriculture and global food supply.

Temperatures in excess of certain thresholds can significantly decrease crop yield either

by directly damaging the plant tissue or enzymes through heat stress, or by encouraging

water stress which inhibits photosynthesis. However, studies that attempt to estimate the

sensitivity of agriculture to the climate, in hopes of obtaining insight into the effects of

future climate change, produce very mixed results. The forecast impact of climate change

∗ Keane: University of New South Wales, Sydney, NSW 2000 (email: m.keane@unsw.edu.au); Neal: Department
of Economics, University of New South Wales, Sydney, NSW 2000 (email: timothy.neal@unsw.edu.au).
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on U.S. agriculture in particular ranges from severe damage to productivity (e.g. Schlenker

and Roberts 2009) and crop quality (Kawasaki and Shinsuke 2016) to very minor damage

or even net benefits (e.g. Mendelsohn, Nordhaus and Shaw 1994). Resolving uncertainty

about the relationship between crop yield and the climate is one of the top priorities for

improving climate change impact assessments (Lobell and Burke 2008).

The impact of climate change on crop yield will depend critically on the degree of

adaptation by agricultural producers. Adaptation to climate change may involve switching

crop cultivars to ones that are more heat tolerant, increasing water retention in fields, use

of irrigation and/or fertilizers, altering planting or harvesting dates, shifting the spatial

distribution of agricultural production, or switching crops entirely. As we show, the very

existence of adaptation implies slope heterogeneity in the historical relationship between

crop yield and temperature. Furthermore, this heterogeneity is positively correlated with

the extent of high temperatures in a region or time period. Such fixed effects in slopes

creates important challenges for the proper econometric modelling of climate impacts.

In this article we investigate these issues using temperature and crop yield data for U.S.

counties from 1950 to 2015. We focus on corn (maize) and soybean yields, as these are

the two largest crops in the United States in terms of tonnage. Thus, they are important

for national and indeed global food supply. Prior to our work, several authors have also

investigated agricultural adaptation using panel data regressions of crop yields on tem-

perature and precipitation (see, e.g., Burke and Emerick 2016, Butler and Huybers 2013,

Schlenker and Roberts 2009), but we extend this work in two important ways:

Our first major contribution is to propose two direct methods to estimate the extent

of historical adaptation to harsh temperatures. The literature contains no established

method of measuring adaptation. The first method we propose involves augmenting a

standard panel data crop-yield regression, where temperature bands enter linearly, with

a specific non-linear functional form for harsh temperatures motivated by theory. This

functional form allows the sensitivity of crop yield to harsh temperatures to decline as

the frequency of harsh temperatures increases. It has no direct parallel in the previous

literature on agricultural productivity, but it is related to methods of estimating adaptation

to climate change in other spheres such as mortality (see Deschenes and Greenstone 2011)
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and economic growth (see Dell, Jones and Olken 2012).

The second method we propose involves directly estimating the heterogeneity of the

slope coefficient (on harsh temperatures) between counties and over time, which can be

viewed as an extension of the approaches in Butler and Huybers (2013) and Roberts and

Schlenker (2010). This method imposes less structure on the adaptation process, and thus

it provides a way of validating the theoretically-motivated functional form assumed in

the first approach. It is made possible by a new panel data estimator, developed in Neal

(2018), that allows for two-dimensional fixed effects in slopes. This new estimator, which

is applied here for first time, is described in detail in Appendix B.

The results of both methods suggest that significant adaptation occurred between coun-

ties, and over time from 1950 to 1989. However, adaptation has subsequently stalled, and

average sensitivity to harsh temperatures has slightly worsened over the last four decades.

This supports the conclusion of Lobell et al. (2014) that the trend towards higher sowing

densities (to produce more yield) is compounding the water stress from excessive heat.

We also find that ignoring adaptation in econometric models of crop yield leads to

significant underestimation of yield sensitivity to harsh temperatures. This is because

the heterogeneity in the slope coefficient on harsh temperatures is positively correlated

with the frequency of harsh temperatures (as hotter growing seasons generate financial

incentives to adopt adaptation measures). Our results suggest that standard panel data

estimators underestimate the heat sensitivity of crop yields by 35 to 40 percent.

Our second major contribution is to provide a comprehensive series of forecasts of corn

and soybean yield under various climate change scenarios. The whole purpose of estimating

the degree of adaptation to climatic change in the past is to gain insight into the extent to

which adaptation can mitigate the damage from climate change in the future. We forecast

crop yield annually from 2016 to 2100 using forecasts of temperature and precipitation from

nineteen climate models under three CO2 emissions growth scenarios. To our knowledge

no prior study has forecasted crop yield from the present until 2100 using a range of

climate model outputs across multiple emission growth pathways. The wide range of

climate models that we consider allows us to quantify the variability in outcomes between

models. And our econometric models allow us to isolate and compare the effectiveness of
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adaptation vs. emissions reduction as ways to mitigate crop damage.

The UN-IPCC uses a set of “representative concentration pathways” (RCPs) for CO2

emissions growth based on different policy scenarios. Our first prediction is that “business

as usual” emissions growth (known as the RCP85 scenario), along with no adaptation to

climate change, will cause very severe damage to corn yield - a 70% reduction by 2100

(80% prediction interval from 50 to 90%). Of the total cumulative damage over 2020-2100,

adaptation may avert from 10 to 45%. These prediction intervals account for uncertainty

across both econometric and climate models. Clearly, these results imply that the U.S.

cannot rely on adaptation alone to protect corn yields from substantial impacts.

In comparison, “moderate” emissions reductions (the RCP45 scenario, which is slightly

more ambitious than current government pledges) can avert 26 to 82% of the total damage

without any adaptation, or 33 to 90% with adaptation. Substantial emissions reductions

(the RCP26 scenario, consistent with the most ambitious targets under the Paris agree-

ment) can avert 42 to 91% of the damage. Under all three scenarios, most of the variability

in outcomes arises from disagreement between climate models, not econometric models.

Thus, we find that adaptation is less effective than emissions reductions in averting

damage to crop yield, yet nevertheless that adaptation can have a meaningful impact on

mitigating yield damage (contrary to the conclusions of several previous studies). Indeed,

adopting both emissions reductions and adaptation will be necessary to avert most of the

potential damage from climate change.

So far, we have discussed forecasts holding agricultural technology fixed at current levels

(aside from adaptation). In Appendix C we report forecasts of crop yield that incorporate

projections of technical progress in farm technology (based on historical trends). The

results suggest that even under an optimistic scenario for technical progress, climate change

still has a dramatic effect on the evolution of crop yields. Whether yields increase, stagnate,

or decline over the coming decades will depend on the particular combination of emissions

reductions, technological progress, and adaptation efforts that materialize.

Finally, in Appendix D we present our results for soybeans. We find that, without

emissions reductions or adaptation, yields would drop by 34 to 76% by 2100. Strikingly,

we find that adaptation is rather ineffective, reducing damage by only 3 to 22%, while



THE IMPACT OF CLIMATE CHANGE ON U.S. AGRICULTURE 5

emissions reductions are very effective - the moderate RCP45 scenario reduces damage by

36 to 88%. Most of this prediction variability is across climate models, not econometric

models. The sharp difference between the corn and soybean results reflects the different

growing areas for these crops (as these areas are affected differently by climate change).

The rest of the paper is structured as follows. The first section presents a theoretical

model of agricultural output with weather and adaptation, in order to provide a coherent

framework for the empirical work. The second section outlines previous approaches to this

topic, why pooled estimates of climate sensitivity are likely to be biased, the econometric

methodology that we adopt, and finally the sources for our climate and yield data. The

third section presents our econometric results for corn yield. The fourth section presents

our forecasting exercise for corn yield from 2016 to 2100. The fifth section concludes, while

four appendices extend the results of the article.

I. A Model of Agricultural Output with Weather and Adaptation

To guide our analysis, we require a model of agricultural output that includes not only

the standard factors of production (e.g., land, capital, labor, fertilizer), but also variables

that capture the influence of climate operating through temperature and precipitation.

Thus, we use a modified Cobb-Douglas production function to model crop yield:1

(1) Yit/Cit = AtI
δ
it (1 + β1(GDDit −GDDmin) + β2itKDDit)

where Yit is the output of a specific crop for farmer i at time t and Cit is the number

of acres planted for that crop. At is the state of farming technology at time t, and Iit

represents a composite of the conventional inputs into production (e.g., land, capital,

labor, fertilizer), while parameter δ captures returns to scale. The particular functional

form of the aggregator Iit is not relevant for our purposes, so we leave it unspecified. The

key variables that capture the influence of temperature are GDD and KDD. Specifically,

GDDit, or “growing degree days,” represents the number of hours in the growing season

that the crop experiences beneficial temperature, and KDDit, or “killing degree days,” is

1Using a more comprehensive production function, or incorporating more realistic features such as expectations
or dynamics, will not change the basic results of this section.



6

the number of hours in the growing season that the crop experiences harmful temperatures.

GDDmin represents the minimum number of hours of beneficial temperature necessary to

obtain any positive yield. (Precipitation is excluded here for simplicity, but will be included

in the econometric models.)

To account for the possibility of adaptation, the sensitivity of output to temperature

should (at least in part) be a choice variable for the farmer. Suppose the farmer can affect

the sensitivity of output to harmful temperatures, β2it by adopting a range of adaptation

techniques. We represent this adaptation effort by the continuous variable αit:

(2) β2it = s/(1 + αit)

where s < 0 is the effect of harmful temperatures (KDDit) on output in the abscence of

any adaptation. αit represents units of adaptation technology, which mitigate the harmful

effects of KDDit on crop production. Profit for farmer i at time t is:

(3) πit = pYit − γαit − rIit

where γ is the the price of a unit of adaptation technology, p is the market price for the

crop, and r is the exogenous rental rate per unit of Iit.
2 In order to maximize profit, the

farmer will invest in the optimal level of adaptation. Setting ∂π/∂α = 0 we obtain:

(4) α∗it =

√
−pCitAtIδitsKDDit

γ
− 1

Clearly, as KDDit increases the optimal level of adaptation also increases. Farms in

hotter regions or time periods have more incentive to adapt. Figure 1 graphs the optimal

level of adaptation α∗it and the resulting coefficient β2it against values of KDDit. As

we see, the relationship between KDDit and the heterogeneous coefficient β2it closely

resembles a log-linear function. Of course, this specific form may hinge on the functional

form in (2). However, this prediction of the simple model is testable, and it is supported

2Recall Iit is a composite of inputs such as capital and labor, and for our purposes it is unnecessary to elaborate
on its form. Given homotheticity, r can be interpreted as the constant marginal cost of the optimal bundle of inputs.
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by our econometric analysis. More importantly, the model shows how the very existence

Figure 1. Relationship between α∗it, β
∗
2it, and KDDit
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Note: This graph presents a hypothetical scenario of β∗2it and α∗it (secondary vertical axis) as a
function of KDDit where p = Cit = At = Iδit = 1 and s = −0.01.

of adaptation renders the coefficient on KDDit heterogeneous, and that the heterogeneity

will generally be correlated with the regressor itself. This has important implications for

the proper econometric methods to use in estimating adaptation.

A natural way to estimate equation (1) is to take the natural logarithm of crop yield:

yit = ln(AtI
δ
it) + ln (1 + β1(GDDit −GDDmin) + β2itKDDit)

where yit = ln(Yit/Cit). Then, using the approximation ln(1 + x) ≈ x, we obtain:

(5) yit = ln(At) + (ln(Iδit)− β1GDDmin) + β1GDDit + β2itKDDit

where it is clear that two-way fixed effects will be important to capture unobserved het-
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erogeneity in At and Iit, and slope heterogeneity will be important to identify β2it.

Below we use versions of (5) to study crop yield among U.S. counties. This a level of

aggregation above the farmer model of this section. But in Appendix A we show that the

main predictions of the farmer model (i.e., that β2it is negatively correlated with KDDit

and the relationship is approximately log-linear) do carry over to a county-level model.

II. Empirical Approach

A. Previous Approaches

Several recent papers attempt to estimate the impact of climate change on crop yields

(production per acre) using what we call the ‘GDD’ approach. This recognizes that tem-

perature can be either beneficial or harmful to a crop. While moderate temperatures

are beneficial, excessively high temperatures hamper photosynthesis, predominantly by

increasing the need for soil water to sustain carbon assimilation, and by increasing the

rate of transpiration (which drains the plant’s water supply). Both factors contribute to

water stress by increasing the vapour pressure deficit (see Lobell et al. (2013) for details).

High temperature can also damage plant tissue directly through heat stress. This anal-

ysis motivates separation of temperature into beneficial and harmful bands based on a

threshold value. This is typically set at 29 degrees Celsius for both corn and soybeans.

Examples of the GDD approach include Schlenker and Roberts (2009), Burke and Emer-

ick (2016), Kawasaki and Shinsuke (2016), and Lobell et al. (2011). These studies typically

estimate an equation similar to the following:

(6) yit = ci + ct + β1GDDit + β2KDDit + β3PRECit + β4PREC
2
it + εit

where yit is the log of crop yield for county i in year t. The literature typically operates

at the county level, as that is where data is more widely available.

To proceed, recall that GDDit measures hours of beneficial temperatures, while KDDit

measures hours of harmful temperatures. PRECit is total precipitation during the growing

season. ci captures intercept heterogeneity that is county i specific (such as soil quality),

while ct captures intercept heterogeneity that is constant across counties but varies between
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years t (such as farm technology). These fixed effects are important to disentangle effects

of weather from possibly omitted inputs. The key parameter of interest is β2, which

captures the extent to which high temperatures reduce crop yield.3

Several studies use the GDD approach to estimate the extent of adaptation to higher

temperatures. The idea is that the extent of historical adaptation informs us about the

scope for future adaptation. For instance, Schlenker and Roberts (2009) test for evidence

of historical adaptation to high temperatures by running regressions like (6) after splitting

the sample into northern and southern U.S. states and also by 1950-1977 and 1978-2005

periods. They find the coefficients do not differ significantly by region or time, which they

take as evidence that historical adaptation has been very limited.

In contrast, Butler and Huybers (2013) run separate regressions by county for 1981 to

2008, and conclude from the county-specific coefficients that there is adaptation occurring

between counties with different climates. When forecasting the effect of climate change on

crop yields they argue that yield losses could be halved by this type of adaptation. But

Roberts and Schlenker (2010) investigate whether corn and soybeans are becoming more

or less sensitive to high temperatures over time by estimating a time varying parameter

model, and conclude there is little evidence that heat sensitivity is trending up or down

over time (i.e. little evidence for adaptation).

Burke and Emerick (2016) adopt what they call a ‘long differences’ approach to mea-

suring the extent of historical adaptation. They estimate (6) using a U.S. county panel

dataset from 1980 to 2000, and then calculate the 1978-1982 and 1998-2002 averages of

climate and yield and estimate the following long difference regression:

∆yis =cs + β1∆GDDis + β2∆KDDis + β3∆PRECis

+ β4∆PREC2
is + ∆εis

(7)

3An alternative way to estimate the impact of climate change on agricultural productivity is the hedonic (or
‘Ricardian’) approach (e.g. Mendelsohn, Nordhaus and Shaw 1994 and Deschenes and Greenstone 2007). It relies
on estimating the relationship between climate and agricultural land value. By linking climate to land value, as
opposed to crop yield, these studies can examine the entire agricultural sector. Furthermore, they can account for
a broad range of adaptations and shifts in farmer behaviour, such as switching crops or changes in land use.

However, the hedonic approach does rely on some strong assumptions. It assumes output and input prices remain
constant, which is problematic if there are climate-induced price changes (see Darwin 1999a). Cross-sectional
estimates also suffer from omitted variable bias, due to variables that are related to both climate and land values,
such as irrigation and soil quality. Indeed, pooling irrigated and non-irrigated farms can lead one to underestimate
damage from climate change (Schlenker, Hanemann and Fisher 1994, Darwin 1999b).
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where ∆GDDis is the difference between the 1998-2002 average and the 1978-1982 average

for GDD in county i and state s, and similarly for the other variables. The extent of

adaptation is then calculated as 1− β̂LD2 /β̂FE2 , where β̂LD2 is the point estimate from the

long difference model and β̂FE2 is the point estimate from the panel fixed effects model.

They conclude from this exercise that adaptation has been fairly minor in magnitude.

It is important to recognize that both the GDD and long difference approaches rely on

a standard panel fixed effects model to provide consistent estimates of the sensitivity of

crop yield to variation in temperature. Subsection B demonstrates why this assumption

is unlikely to be hold in practice, while subsection C presents our alternative approach.

Finally, outside of agricultural production, there are several studies that attempt to

model adaptation by interacting weather variables with the average climate of a region.

This captures adaptation by allowing the marginal effect of high temperatures to depend

on climate. Deschenes and Greenstone (2011) use this approach in to estimate effects

of climate change on mortality, and Dell, Jones and Olken (2012) use it to estimate ef-

fects of climate change on economic growth. Neither paper finds evidence of systematic

heterogeneity in the marginal effect that would be indicative of adaptation.

B. Bias in fixed effects regressions under slope heterogeneity

In this section we demonstrate how adaptation can lead to bias in conventional estimates

of crop yield equations. As we showed in Section I, the use of adaptation techniques will

generate heterogeneity in the parameter β2 that captures sensitivity to high temperatures

in (6). This heterogeneity may occur across both the i and t dimension as in (2). We

can capture this multidimensional heterogeneity by applying an additive structure β2it =

λ2 + λ2i + λ2t, and then generalize the conventional specification (6) as follows:

(8) yit = ci + ct + β1GDDit + β2itKDDit + β3PRECit + β4PREC
2
it + εit

Note that this specification allows for additive random or fixed effects in the sensitivity of

crop yield to temperature, as well as unit and time fixed effects in the intercept.

To see the bias of a fixed effects estimator in a model containing adaptation through
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slope heterogeneity, first simplify (8) by excluding precipitation and stacking the variables:

(9) yit = ci + ct + z′itθit + εit

where z′it = (GDDit,KDDit) and θit = (β1, β2it)
′ = (β1, λ2 + λ2i + λ2t)

′. Consider a

two-way within transformation of (9) to remove the fixed effects:

(10) ỹit = z̃′itθ + vit

where ỹit = yit−N−1
∑N

i=1 yit−T−1
∑T

t=1 yit+NT
−1
∑N

i=1

∑T
t=1 yit is the two-way within

transformation of yit, similarly for z̃it, θ = (β1, λ2)′, and vit is defined as:

(11) vit = z̃′itθi + z̃′itθt + ε̃it

where z̃′itθi = z′itθi−N−1
∑N

i=1 z
′
itθi−T−1

∑T
t=1 z

′
itθi+NT

−1
∑N

i=1

∑T
t=1 z

′
itθi is the two-

way within transformation of z′itθi, similarly for z̃′itθt, θi = (0, λ2i)
′, and θt = (0, λ2t)

′.

The FE-OLS estimate of θ will be:

(12) θ̂ =

(
1

NT

N∑
i=1

T∑
t=1

z̃itz̃
′
it

)−1(
1

NT

N∑
i=1

T∑
t=1

z̃itỹit

)

Expanding on ỹit and simplifying yields:

θ̂ =θ +Q−1
zz,NT

(
1

NT

N∑
i=1

T∑
t=1

z̃itz̃′itθi

)

+Q−1
zz,NT

(
1

NT

N∑
i=1

T∑
t=1

z̃itz̃′itθt

)
+Q−1

zz,NT

(
1

NT

N∑
i=1

T∑
t=1

z̃itε̃it

)(13)

where Q−1
zz,NT =

(
1
NT

∑N
i=1

∑T
t=1 z̃itz̃

′
it

)−1
. If zit, θi, and θt are not independent the two

bias terms generated by the slope heterogeneity (i.e., the terms involving θi and θt) will

not vanish as sample size increases, and the fixed effects estimator will be inconsistent.

There is every reason to believe that the KDDit component of zit is not independent

of θi and θt. The theoretical model presented in Section I predicts a positive relationship
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between the two, which will result in the standard FE-OLS estimator overestimating (i.e.

estimates closer to zero in this case) the average sensitivity to harsh temperatures β2. This

is intuitive as farmers who experience hotter temperatures in their region or time period

have more incentive to adopt adaptation techniques. Indeed, Butler and Huybers (2013)

provide evidence that the estimate of β2 for an individual county is significantly positively

correlated with its relative experience of heat. Our key aim is to more precisely ascertain

the nature of the relationship between KDDit and β2it, and to use this information to

help predict the impact of climate change and how it may be mitigated by adaptation.

C. Econometric Methodology

In this section we propose two complementary approaches to modelling the degree of

adaptation to heat that is present in the data. A useful baseline of comparison for both our

new approaches is the conventional two-way fixed effects estimator (FE-OLS). Consider a

fixed effects regression of crop yield as a function of temperature and precipitation:

(14) yit = cit + β1GDDit + β2KDDit + β3PRECit + β4PREC
2
it + εit

where cit = ci+ct. Since the model includes both county and year fixed effects, parameters

are identified from deviations in county weather from the county average, after removing

annual weather shocks and/or technology trends that are common to all counties.

In Section II.B we showed that the FE-OLS estimate of β2 is likely to be biased upward,

because it ignores the correlation between KDDit and β2it generated by adaptation to

harsh temperatures. However, it is possible to incorporate adaptation in (14). In particu-

lar, as shown in Figure 1 our simple theoretical model implies the marginal effect of harsh

temperatures on crop yield will be a log-linear function of KDDit. Thus, if we estimate:

yit =cit + β1GDDit + β2KDDit + β3(ln(KDDit) ∗KDDit −KDDit)+

β4PRECit + β5PREC
2
it + εit

(15)
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by FE-OLS, then the marginal effect of KDDit on yit will be:

(16)
∂yit

∂KDDit
= β̂2 + β̂3ln(KDDit)

so we see that the marginal effect of KDDit is a log-linear function of KDDit itself. This

model allows us to estimate the extent of adaptation to climate, and furthermore, we can

also calculate the weighted average effect of KDDit on yit and compare it to the estimate

of β2 in the standard FE-OLS model in (14) to determine if there is evidence of bias.

Instead of imposing a particular relationship between KDDit and its marginal effect,

another approach to modelling adaptation is to estimate a model with slope heterogeneity.

But in order to capture adaptation it is essential to allow the heterogeneity to be correlated

with the regressors - standard estimators that only allow for random effects in slopes are

not appropriate. Our estimator allows for fixed effects in intercepts and slopes, as follows:

(17) yit = ci + ct + β1itGDDit + β2itKDDit + β3itPRECit + β4itPREC
2
it + εit

Estimating the heterogeneity directly provides a set of slope coefficients, and analyzing

the distribution of β̂2it post-estimation will determine the nature of the relationship be-

tween KDDit and β̂2it (if any). Indeed, we will fit a mapping from the regressor KDDit to

the heterogeneous slope, and use this to model adaptation in response to climate change in

the forecasting section. The average of β̂2it will also provide further evidence on whether

the estimate of β2 in the standard FE-OLS model is upwardly biased.

Of course, (17) involves more fixed-effects than data points. But if we assume hetero-

geneity is additive across county/time dimensions, such that β2it = λ+λi+λt as in (8), we

can estimate (17) using mean-observation OLS (or ‘MO-OLS’), introduced in Neal (2018).

Crucially, MO-OLS allows the slope heterogeneity to be correlated with the regressors,

and allows for county/year fixed effects. Briefly, the idea behind the estimator is to obtain

a pooled estimate, say generically β̂, then run a series of regressions for each individual to

collect β̂i, then a series of regressions for each time period to collect β̂t, and then construct

β̂it = β̂i+ β̂t− β̂ as well as an expression to remove remaining biases. Appendix B provides

a complete exposition, while asymptotic and Monte Carlo results can be found in Neal
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(2018). Consistency relies on large N and T , which is appropriate given our data.

Our two approaches to modelling adaptation are complementary. The FE-OLS approach

allows the marginal effect of KDDit on yit to vary log-linearly with KDDit, while MO-OLS

is less restrictive and allows the heterogeneity to also be related to unobserved variables.

Finally, it is important to be clear about the types of adaptation these approaches

capture. Modelling adaptation as heterogeneity in the marginal effect of KDDit on yit

will pick up all forms of adaptations related to the individual crop, whether short or long-

term in nature. This includes irrigation, cultivar adoption, fertilizers, improving water

retention, other techniques, and any technological advancement in these methods over

the sample period. But our methods will not capture other forms of adaptation such as

changing the planting and harvest date for the crop, crop switching, or land use changes.

These forms of adaptation may prove to be important, especially when climate change

becomes more severe. We leave investigation of these issues to future work.

D. Data and Variable Construction

The historical temperature and precipitation data we use in this study are from Schlenker

and Roberts (2009). It contains daily observations on maximum and minimum tempera-

ture, and precipitation, on a grid across the continental U.S. from 1950 to 2015.4 It also

contains code to map the grid-based data onto counties, weighting grid locations by the lo-

cation of agricultural production in each county. From the daily maximum and minimum

observations, we can approximate the hours each day that a crop is exposed to one-degree

Celsius temperature intervals using a sinusoidal function (consistent with the literature):

(18) DDC =


0 if C > Tmax

Tavg − C if C < Tmin

((Tavg−C)cos−1(S)+(Tmax−Tmin)sin(S)/2)
π−1 otherwise

where C is the temperature in Celsius, Tmax and Tmin are the supplied daily maximum

4The raw data comes from the PRISM Climate Group. Schlenker and Roberts subsequently extended the dataset
to 2015 after the publication of their paper. Temperature observations prior to 1950 are available, but it is harder
to convert them to national grid as fewer weather stations were operational.
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and minimum temperature, Tavg = Tmax+Tmin
2 and S = cos−1(2C−Tmax−Tmin

Tmax−Tmin ).

The temperature threshold that separates GDD from KDD is 29 degrees Celsius for

both corn and soybeans, again following the literature.5 Thus, using results from (18) we

calculate daily values of GDD and KDD as follows:

(19) GDDid = DD0 −DD29, KDDid = DD29

for each ounty i and day d. These are aggregated to yearly values of GDDit and KDDit by

summing over the days of the growing season. For both corn and soybeans we assume this

is May 1st to September 30th (in line with the literature). Allowing for growing seasons to

vary between counties and over time did not meaningfully change the econometric results,

and it presents complications for forecasting. Precipitation data is measured in terms of

inches and is also aggregated across the growing season from the daily data.

Following the literature, we exclude states west of the 100th Meridian from the sample

as they are more reliant on irrigation (although including them does not meaningfully

affect parameter estimates).6 Our regressions are weighted based on the average crop area

in each county, and standard errors are clustered at the state level.

Crop yield data is from the United States Department of Agriculture’s (USDA) National

Agricultural Statistics Service. The information is at the county-level and covers the same

annual sample period of 1950 to 2015, although not all counties contain crop yield data

across all years (creating an unbalanced panel). The USDA also provides the average crop

area of each county, which we use for regression weights.

III. Results

A. Pooled Models

Table 1 presents results from corn yield regressions pooling data over counties and time.

They incorporate county/time fixed effects but do not allow for heterogeneous temperature

coefficients. Thus, we refer to these as FE-OLS models. The table lists four specifications,

5 Butler and Huybers (2013) note that while 29 degrees may appear low as a threshold for damaging temperatures,
the temperature experienced by the plant itself is higher than the air temperature above the crop canopy.

6Note: The 100th Meridian separates the Great Plains to the east from the semi-arid lands to the west.
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where the first includes year fixed effects, the second and fourth include county/year fixed

effects, and the third includes county fixed effects and state-specific quadratic time trends.

The first three specifications do not model adaptation. The fourth specification, which is

motivated by the theory in II.C, includes as an additional regressor a nonlinear function

of KDD that is designed to capture adaptation to harsh temperatures (see equation (15)).

Table 1—Pooled Panel Estimates of the Impacts of Temperature on Corn Yields

Specification (1) (2) (3) (4)

GDD 0.0002 0.0003 0.0003 0.0004
(0.0001) (0.0001) (0.0001) (0.0001)

KDD -0.0053 -0.0063 -0.0063 -0.0159
(0.0012) (0.0007) (0.0005) (0.0024)

ln(KDD)*KDD - KDD 0.0022
(0.0005)

Precipitation 0.0013 0.0010 0.0013 0.0007
(0.0009) (0.0002) (0.0003) (0.0002)

Precipitation2 (x 10,000) -0.0001 -0.0001 -0.0001 -0.0001
(0.0001) (0.0000) (0.0000) (0.0000)

Constant 2.7941 2.7188 2.4767 2.1890
(0.6460) (0.2661) (0.2123) (0.2383)

Fixed Effects Yr Cty, Yr Cty, State-Yr Cty, Yr

Obs. 126,043 125,977

Notes: Results exclude states west of the 100th Meridian line. Sample range is 1950-2015, with
specifications (1) - (4) differing by type of fixed effects and the adaptation variable is included.
Regressions are weighted by average county harvest area for each crop. Standard errors are
reported in parentheses, and are clustered at the state level.

The second specification is closest to the baseline model (6) that is typically estimated

in the literature. Here, the estimated coefficient on KDD is −0.0063, which implies an

additional degree-day of heat above 29◦C leads to a decrease in overall corn yield of

0.63 percent. The estimates of sensitivity in the first and third specifications are not

significantly different, and do not change meaningfully when the regression is not weighted

by harvest area or a time trend replaces the fixed time effect. These results are similar to

those reported in Burke and Emerick (2016).

The fourth specification provides strong evidence of adaptation in the data. The added
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regressor that captures adaptation is positive and highly significant, indicating that the

level of adaptation is positively correlated with the level of KDD in a county and time

period. This implies that as KDD increases the negative marginal effect of KDD on crop

yield gets smaller in magnitude (i.e. closer to zero).7

According to model (4), the average marginal effect of KDD, after weighting by the

amount of corn grown in each county, is -0.0086. This is significantly more negative

than the average marginal effect in specifications (1)-(3), providing evidence of bias in the

standard FE-OLS models. Note however, that while model (4) implies the average negative

marginal effect of KDD on corn yield is 37 percent greater than the more conventional

model (2), it also implies this effect is diminishing as KDD increases. The results of model

(4) can be used to forecast future crop yield given climate change, taking into account the

adaptation of farming practices to higher temperatures.

B. Heterogeneous Slope Models

In this section we estimate a model that allows for heterogeneity in the slope coefficients

on temperature and precipitation along the two dimensions of county and time. This

provides a complete overview of the extent of adaptation both between counties and over

the sample period. In contrast to the pooled FE-OLS model in equation (15), a hetero-

geneous slope model allows us to model farm adaptation behaviour without imposing a

particular functional form a priori. We can use the estimates to investigate the nature of

the relationship between the slope heterogeneity and KDD, and this will be informative

about the nature of adaptation. We use the Mean-Observation OLS (MO-OLS) estimator

to model both dimensions of heterogeneity. Table 2 presents the results for corn.

The table presents the unweighted and weighted means of the distribution of slope coef-

ficients for each variable, as well as other features of the distribution. The mean coefficient

for KDD is significantly more negative than in models (1)-(3) in Table 1, reflecting the

heterogeneity bias that we outlined in Section II.B. The unweighted mean is -0.0096, im-

plying one extra degree day of temperatures over 29◦C will lead to a 0.96 percent reduction

in crop yield. Weighting by the harvested area of corn in each county reduces this slightly

7Note that the coefficient on KDD itself becomes significantly more negative at -0.0159 when the nonlinear term
is added. Meanwhile, the results for the other variables do not change meaningfully from the first three specifications.
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Table 2—Mean-Observation Estimates of the Impacts of Temperature on U.S. Corn Yields

Mean Weighted Median Standard 10th 90th
Mean Deviation Percentile Percentile

GDD 0.0005 0.0005 0.0005 0.0005 -0.0001 0.0011
(0.0000)

KDD -0.0096 -0.0089 -0.0085 0.0068 -0.0161 -0.0034
(0.0003)

Precipitation 0.0011 0.0015 0.0010 0.0028 -0.0020 0.0044
(0.0002)

Precipitation2 -0.0001 -0.0001 -0.0001 0.0002 -0.0003 0.0001
(x10,000) (0.0000)

Constant 2.7080 2.8947 2.8225 2.1363 0.1713 4.8419
(0.1208)

Obs. 126,043

Notes: Results exclude states west of the 100th Meridian line. The sample range is 1950-2015,
and standard errors are reported in parentheses.

to -0.0089. This is strikingly similar to the average marginal effect of -0.0086 in Table 1

column (4) where we modelled adaptation based on the theory in Section I. It represents

a 40% increase in sensitivity compared to the more conventional model (2) in Table 1.

We find substantial heterogeneity in the model coefficients. The standard deviation of

the slope for KDD is 0.0068, with the 90/10 percentile range being -0.0034 to -0.0161.8

Figure 2 plots the KDD coefficients between counties and over time. Clearly, there is

significant heterogeneity between counties. The 90/10 percentile range of KDD coefficients

is over .010 units in each year. Note that the lower light grey area, representing the 25/10

percentile range, is much wider than the 90/75 percentile range, so it is clear that the

distribution of KDD coefficients has a fat left tail.

Adaptation follows a clear trend over time. The median KDD coefficient increases from

1950 until the late 1980s, and then stagnates. Table 3 presents a regression of the median

coefficient for each year on a linear time trend, as well as tests for a structural trend break,

following the method of Andrews (1993). The results indicate that a significant break

occurred in 1989, coinciding with an extreme drought in the Midwest in 1988-89. This

supports the findings of Lobell et al. (2014), who used field-level data for corn and soybeans

and found that while average yields increased between 1995 and 2010, the sensitivity of

8It is reassuring that the 90th percentile coefficient is well below zero in almost all years.
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Figure 2. Distribution of KDD Slope Coefficients across Time and Counties for U.S. Corn
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Note: The black line plots the median coefficient of the KDD variable that is reported in Table
2, while the dark grey area represents the 25th to 75th percentile of coefficients, and the light
grey area represents the 10th to 90th percentile of coefficients.

crops to droughts or high heat increased because of the agronomic trend toward higher

sowing densities. While this may lead to higher average yield, it can accentuate problems

that arise when crops experience water stress.

Table 3 also presents a regression that accounts for the structural break by including a

post-1988 dummy and its interaction with a time trend. Compared to the simple linear

trend regression, this trend-break regression implies the time trend was twice as large

up until the structural break, after which it turns slightly negative. Indeed, the median

coefficient in 2015 is similar to that found in the 1970s, suggesting that no progress has

been made in adaptation (on aggregate) over the last four decades.

The main prediction of the theoretical model of Section I is that sensitivity to KDD will

decrease as KDD increases, giving farmers more incentive to adopt adaptation techniques.

In fact, the correlation between β̂2it and KDDit is 0.43, supporting this prediction. Fur-

thermore, as we showed in Section II.B, such a positive correlation leads to the upward
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Table 3—Analyzing the Median Coefficients to KDD for Corn

Regression Results β Std. Err. β Std. Err.

t 0.0001 0.0000 0.0002 0.0000

Constant -0.0123 0.0005 -0.0142 0.0006

dt>break 0.0067 0.0020

t*dt>break -0.0002 0.0000

Structural Break Test Statistic p-value

Supremum Wald 42.16 0.00

Average Wald 27.57 0.00

Supremum LR 34.24 0.00

Average LR 24.00 0.00

Notes: HC3 standard errors are reported for the regression results. The estimated structural
break date in the trend and constant is 1989 for corn.

bias in the KDD coefficient, which is what we we observe in pooled regressions that ignore

adaptation (see Table 1 columns (1)-(3)).

Figure 3 plots the average values of β̂2it and KDDit for each county, as well as a non-

linear regression of β̂2it on KDDit. The graph reveals a clear positive relationship, and

the best fitting line to approximate this relationship is log-linear, consistent with the

prediction of the simple theoretical model. Thus, the FE-OLS and MO-OLS approaches

to modelling adaptation both generate log-linear relationships between β̂2it and KDDit.

It is interesting to compare the relationship between between β̂2it and KDDit as calcu-

lated from the marginal effect of KDDit on crop yield in column (4) of Table 1, with that

obtained from the fitted log-linear relationship in Figure 3. Figure 4 plots the two curves

together, and confirms that the MO-OLS log-linear curve lies within a 95 percent confi-

dence interval of the FE-OLS log-linear curve. The MO-OLS curve implies a slightly more

negative marginal effect across all levels of KDDit, but the difference is not significant.



THE IMPACT OF CLIMATE CHANGE ON U.S. AGRICULTURE 21

Figure 3. Relationship between β̂2it and KDDit for U.S. Corn
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Note: This graph is a scatter plot of the average coefficient on KDD in each county reported
in Table 2 column (4) and the average measurement of the KDD variable for the same county.
The fitted line was obtained from the regression β̂2it = α1 + α2ln(KDDit). The estimates are
α1 = −0.0183 and α2 = 0.0025 and the 95% confidence interval for the curve is shaded.

IV. Forecasting the Effect of Climate Change on Crop Yield

A. Approach to Forecasting

Here we forecast effects of climate change on U.S. corn yields over the 21st century, and

examine the effectiveness of adaptation in mitigating these effects. We present annual

forecasts from 2016 to 2100 using the FE-OLS and MO-OLS models with and without

adaptation. We provide answers to several key questions: (i) the extent of damage that

climate change may have on corn yield, (ii) the effectiveness of adaptation to mitigate

this damage, (iii) the relative effectiveness of adaptation vs. emissions reductions as ways

to avert damage, (iv) the distribution of losses between counties, and (v) the extent of

heterogeneity in forecasts between climate models and/or econometric methods.

In order to forecast future corn yields, we need predictions of temperature (both KDD
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Figure 4. Comparison of log-linear relationships derived under MO-OLS and FE-OLS for Corn
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Note: This graph compares the fitted log-linear relationships between β̂2it and KDDit obtained
from (i) the county/time specific coefficients estimated with MO-OLS (see Figure 3) vs. (ii) the
FE-OLS regression results with adaptation, presented in Table 1 column 4.

and GDD) and precipitation in each corn growing county in the U.S. through the end

of the century. This requires predictions from a climate model, which further requires

that we input a CO2 emission scenario. To gauge the robustness of our predictions to the

scientific modelling assumptions, we use a large set of climate models and three emissions

scenarios. To our knowledge no prior study has forecast crop yield using a suite of climate

models and multiple emission scenarios. We now describe the procedure in detail:

We begin by taking the raw outputs of nineteen general circulation models (GCMs or

simply ‘climate models’)9 from the Coupled Model Intercomparison Project v5 (‘CMIP5’).10

The core of every GCM is a series of equations that describe the behaviour of rotating

9The list of models are: ACCESS 1.0, BNU-ESM, CANESM2, CCSM4, CESM1(CAM5), CSIRO-Mk3.6.0,
EC-EARTH, FGOALS-g2, FIO-ESM, GFDL-CM3, GFDL-ESM2G, GISS-E2-R, HadGEM2-ES, IPSL-CM5A-LR,
IPSL-CM5A-MR, MIROC-ESM, MIROC-ESM-CHEM, MPI-ESM-LR, and NorESM1-M.

10The CMIP protocol was introduced by The World Climate Research Program as part of the Working Group
on Coupled Modelling. It collects notable climate model outputs and ensures that their outputs are comparable on
a consistent basis, allowing scientists to analyze the outputs of GCMs in a systematic fashion. The fifth version of
CMIP is part of the broader effort for the IPCC Fifth Assessment Report.
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spheres of continuous fluid that simulate behaviour of the Earth’s atmosphere and oceans.

Climate models differ in how they represent a number of processes, such as chemical re-

actions, cloud formation, and vegetation growth, and, as we will see, they can generate

rather different predictions of how the climate will respond to CO2 emission growth.

Each GCM or climate model requires as an exogenous input the atmospheric concentra-

tion of greenhouse gases for each time period the model is run. In order to compare the

output of climate models consistently, every model is run using four standard emissions

scenarios known as representative concentration pathways (‘RCPs’). CMIP5 uses four

RCPs: RCP26, RCP45, RCP60, and RCP85.11 Each RCP contains assumptions regard-

ing the future trajectory of population growth, technological development, and government

policies, to produce predictions of global emissions.

We will henceforth refer to RCP85 as the “business as usual” scenario in the sense

that very little action is taken by the global community to curb emissions. Under this

scenario, emissions and consequently atmospheric concentrations of CO2 continue to grow

at present rates until the end of the forecast horizon.

We will refer to RCP45 as the “moderate” emissions reductions scenario. It corresponds

to a case that is slightly more ambitious than current government pledges. Under this

scenario, atmospheric CO2 concentrations continue to climb until the end of the century,

but the growth rate significantly declines after 2060.

Finally, the RCP26 scenario represents “substantial” emission reductions. It is consistent

with the most ambitious targets set under the Paris agreement. Under this scenario, CO2

concentrations peak in 2040 and then slowly decline until 2100.12 This requires that actual

emissions peak as early as 2020 and then begin to substantially decline, which would

require significant and immediate action on curbing emissions by the global community.

The nineteen climate models that we utilize take the predictions of atmospheric CO2

concentrations from the three RCP scenarios and use them to produce forecasts of daily

min/max temperature, as well as precipitation, across a 12x12km grid of the contiguous

11The RCP scenario numbers correspond to the radiative forcing values in 2100. For instance, RCP26 results in
a forcing value of +2.6W/m2 above pre-industrial levels at 2100. We do not consider RCP60 in this article due to
its similarity to RCP45.

12To be precise, atmospheric concentrations of CO2 (and all other forcing agents converted to CO2 equivalence)
reach 1240 parts per million by 2100 under the “business as usual”” scenario, 575 pp million under the “moderate”
scenario, and 435 ppm under the “ambitious” (or “substantial” reduction) scenario.
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U.S. Next, these grid level forecasts must be converted to county level forecasts. This inter-

polation procedure is known as “bias-correction and spatial disaggregation” (BCSD). We

take the BCSD output for our nineteen climate models from the United States Geological

Survey Geo Data Portal, who in turn rely on the Bureau of Reclamation (2013).

Finally, we convert the daily temperature and precipitation forecasts into growing season

specific values of GDDitrm, KDDitrm, and PRECitrm for county i, year t, RCP scenario

r and climate model m. This is done using the sinusoidal function in (18) and (19).

Each climate model in CMIP5 was run from 2006 to 2100, so county-specific forecast

errors for 2006-15 are observable. We center the forecasts so the average county-specific

forecast error of each model for 2006 to 2015 is zero. This corrects for level biases that

a particular climate model may have for specific counties. This provides a more accurate

picture of the future paths that would be optimally predicted by each model, as optimal

predictions should take into account already observed errors. Thus, for KDD we have:

(20) ˜KDDitrm = KDDitrm + ( ¯KDDi − ¯KDDirm)

for t = 2016, 2017, ..., 2100 where ¯KDDirm = 10−1
∑2015

t=2006KDDitrm and ¯KDDi =

10−1
∑2015

t=2006KDDit. We use the same procedure for ˜GDDitrm and ˜PRECitrm.

We are now in a position to use the econometric models in Section III, paired with each

climate model and CO2 emissions scenario, to forecast future corn yields with and without

adaptation. First, we forecast yields using the conventional FE-OLS model from Table 1

column (2) that does not account for adaptation, which we denote model 1. This gives:

ŷ1itrm =2.7188 + ĉi + 1.3385 + 0.0003( ˜GDDitrm)− 0.0063( ˜KDDitrm)+

0.0010( ˜PRECitrm)− 0.00000092( ˜PREC
2
itrm)

(21)

where all parameters can be read from Table 1, except for ĉi, which is the estimate of the

county-specific fixed effect, and 1.3385, which is the 2006-15 mean of the time fixed effect.
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Next, we use the FE-OLS specification in Table 1 column (4) that allows for adaptation:

ŷ2itrm =2.1890 + ĉi + 1.3574 + 0.0004( ˜GDDitrm)− 0.0159( ˜KDDitrm)+

0.0022(ln( ˜KDDitrm) ∗ ˜KDDitrm − ˜KDDitrm) + 0.0007( ˜PRECitrm)

− 0.00000067( ˜PREC
2
itrm)

(22)

where all parameters can be read from Table 1, except ĉi and 1.3574, which is the 2006-15

average of the time fixed effect. We call this model 2.

The MO-OLS model can provide yield forecasts with or without adaptation. First, it

is useful to define β̄ki as the mean of βkit over the 2016-15 period for k = 1, · · · , 4, and

similarly for ¯̂ct. Then, a yield forecast that does not allow for adaptation can be obtained

as:

ŷ3itrm =¯̂ct + β̄1i
˜GDDitrm + β̄2i

˜KDDitrm + β̄3i
˜PRECitrm + β̄4i

˜PREC
2
itrm(23)

Here the marginal effect of each variable is fixed at the 2006-2015 mean for each county,

so there is no adaptation. We call this model 3.

Finally, the MO-OLS model can allow for adaptation to high temperatures by setting

the slope coefficient on the ˜KDDitrm variable equal to the log-linear fitted relationship

shown in Figure 3. That is, we set β̂2it = α1 + α2ln(KDDit) where α̂1 = −0.0183 and

α̂2 = 0.0025. We refer to this as model 4:

ŷ4itrm =ĉi + ¯̂ct + β̄1i
˜GDDitrm + (log( ˜KDDitrm) ∗ 0.0025− 0.0183) ˜KDDitrm

+ β̄3i
˜PRECitrm + β̄4i

˜PREC
2
itrm

(24)

There is an asymmetry in (24) in that we allow the KDD coefficient to adapt over

time in response to high temperatures, but we do not allow other aspects of technology

to adapt.13 This is because we find no evidence that other parameters adapt to high

temperatures in our sample. For instance, the correlations of ĉit and β̂1it with KDDit

13Schlenker, Roberts and Lobell (2013) hypothesize, in a comment to Butler and Huybers (2013), that a model
where time effects and the GDDit coefficient also change as a function KDDit would be more realistic, as adaptation
techniques may lead to a decrease in overall farming productivity (a phenomenon known as ‘mal-adaptation’).
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are only 0.02 and -0.04, respectively. This is in sharp contrast to the strong relationship

between β̂2it and KDDit depicted in Figure 3. It is crucial to bear in mind the distinction

between adaptation per se (which we can forecast from historical data) and more general

forms of technical progress. Accounting for changes in ĉt and β1it that may occur due to

general technical progress is a more speculative exercise that we take up in Appendix C.

Our county-level yield forecasts are aggregated to the national level as follows:

(25) ŷtrm =

(
N∑
n=1

wi

)−1( N∑
n=1

ŷitrmwi

)

where wi is the average crop area of county i. For each econometric model and emissions

scenario r, we will report the mean forecast across all climate models, ŷtr. We also report

prediction intervals around this mean derived from the standard deviation of ŷtrm across

models m. This allow us to assess the extent of disagreement between climate models.14

We present the predictions as percentage changes relative to the 2006-2015 historical

average yield. Finally, we apply a five-period moving average to the ensemble average

prediction and prediction intervals, simply to reduce noise so as to help visualize trends.

B. Forecast Results

This section presents forecasts of corn yield from 2015 to 2100 using four econometric

model, thee RCP scenarios and nineteen climate models from CMIP5. This gives 4·19·3 =

228 different forecast scenarios. Before presenting the yield forecasts, it is useful to examine

the climate models’ projections of both KDD and GDD in the corn-growing regions of the

U.S., and their variability across climate models and RCP scenarios. Figure 5 presents the

average forecast of KDD across the ensemble of models for three RCPs, where the solid

line is the average forecast and the shaded areas are the 80% prediction intervals.

Over the historical period (1950-2015) it is clear that the moving average of KDD has

moved little, except for a few abrupt shifts. In the RCP26 scenario (green) the ensemble

average prediction is that KDD will increase slowly until 2050 and then plateau. The

increase is sufficiently minor that the level at 2100 is not above the levels of the mid-

14 Reporting results as an ensemble average of climate models and reporting the variability in impacts between
models is an approach that is recommended in Auffhammer et al. (2013).
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Figure 5. Forecast KDDit by Representative Concentration Pathway
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Note: This graph presents average forecasts of KDD (weighted by corn acreage) across three
representative concentration pathways, where the solid line is the average forecast across 19
CMIP5 climate models, and the shaded areas are the 80 percent prediction intervals.

1950s. Under the RCP45 scenario (orange), KDD grows at a similar pace until 2050, but

then continues to grow until around 2080. In 2100 the average forecast implies a level of

KDD more than double that we observed over the last five decades. But there is substantial

disagreement between climate models, with some predicting much more modest changes.

Finally, in the RCP85 scenario (purple) KDD rapidly diverges from the other two scenar-

ios after around 2040, and despite wide prediction intervals, every climate model predicts

severe increases in KDD relative to historical experience.

Figure 6 presents the forecasts for GDD. The predictions for the three RCPs are broadly

consistent with those for KDD, with RCP85 leading to the largest upward shift in the dis-

tribution of temperature. Thus, the climate models predict that both KDD and GDD will

increase in the absence of emissions reductions. As a result, cooler corn-growing regions
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Figure 6. Forecast GDDit by Representative Concentration Pathway
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Note: This graph presents average forecasts of GDD (weighted by corn acreage) across three
representative concentration pathways, where the solid line is the ensemble average forecast across
nineteen CMIP5 climate models, and the shaded areas are the 80 percent prediction intervals.

will experience less temperatures close to freezing over the growing season. Accordingly,

the effect of climate change on yields will be the net balance between the negative effect

of additional KDD and the positive effect of additional GDD.

Table 4 summarizes our main results for corn yield. We report forecast results for the

three RCP scenarios at four points in time: 2030, 2050, 2080, and 2100. The effect of

climate change on corn yield is expressed as a percentage change relative to the 2006-2015

average. The table also separates forecasts by the four econometric methodologies, which

are FE-OLS with and without adaptation, and MO-OLS with and without adaptation. We

present both the ensemble average forecast and the 80% prediction interval (in brackets).

As we see in Table 4, we predict extreme reductions in corn yield in a scenario without

emissions reductions (RCP85) or adaptation. The model ensemble average reduction is
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Table 4—The Effects of Climate Change on Corn Yield (pct)

No Future Adaptation Future Adaptation

Year
FE-OLS MO-OLS FE-OLS MO-OLS

RCP85

2030 -08 (-18, 02) -07 (-18, 04) -04 (-16, 07) -06 (-14, 02)
2050 -25 (-41, -09) -24 (-42, -07) -21 (-36, -05) -15 (-25, -05)
2080 -51 (-70, -32) -52 (-73, -30) -42 (-59, -26) -27 (-38, -16)
2100 -69 (-88, -50) -71 (-90, -51) -57 (-73, -42) -37 (-48, -26)

RCP45

2030 -05 (-17, 07) -04 (-17, 09) -02 (-15, 11) -04 (-13, 04)
2050 -16 (-30, -02) -15 (-31, 01) -12 (-26, 02) -11 (-20, -01)
2080 -27 (-44, -10) -27 (-45, -09) -23 (-38, -07) -17 (-26, -07)
2100 -27 (-47, -08) -27 (-48, -06) -22 (-41, -04) -16 (-28, -05)

RCP26

2030 -09 (-19, 02) -07 (-18, 04) -06 (-16, 05) -07 (-14, 00)
2050 -11 (-22, 00) -10 (-21, 01) -08 (-19, 03) -08 (-14, -02)
2080 -10 (-22, 01) -09 (-21, 03) -07 (-19, 06) -08 (-15, 00)
2100 -12 (-26, 02) -10 (-25, 05) -08 (-23, 06) -08 (-18, 01)

Notes: Results are expressed in terms of percentage change from the 2006-2015 historical
weighted average crop yield. Each number represents the ensemble average over nineteen climate
models, while the numbers in brackets represents the 80 percent prediction interval.

about 70% by 2100. Notice the predictions based on FE-OLS vs. MO-OLS are almost

identical. Even with “moderate” emissions reductions (the RCP45 scenario) we still ob-

serve significant reductions in yield, with an ensemble average loss of 27% by 2100. But

with significant immediate action on emissions (as in RCP26) we see only a 10% model

average reduction in yield (using MO-OLS), and the 80% prediction interval indicates that

some climate models even predict small gains.

Figure 7 charts forecasts of corn yield under the three RCP scenarios using the MO-OLS

estimator with no future adaptation. All three model ensemble average scenarios show

modest declines in corn yield between now and 2035-40, but then they start to diverge

appreciably. By 2100, RCP26 shows only a mild decline in yield. RCP45 shows a larger

mean decline, but with large disagreement between climate models (e.g., the prediction

interval overlaps greatly with RCP26). The decline under RCP85 is so severe that by the
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Figure 7. The Effect of Climate Change on Corn Yield by RCP (MO-OLS with no future adaptation)
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Note: This graph presents forecasts of the percentage change in corn yield (relative to the 2006-
2015 historical average) across three RCPs, where the solid line is the average forecast across
nineteen CMIP5 climate models, and the shaded areas are the 80 percent prediction intervals.

end of the century the 80% prediction intervals for RCP85 and RCP45 do not overlap.

The wide prediction intervals in Figure 7 reveal that climate models differ greatly in their

predictions of future conditions in the corn-growing states, so it is clearly important to use

a large ensemble of GCMs to predict future yields. In contrast, in the case of no adaptation,

the FE-OLS and MO-OLS econometric models generate very similar forecasts. This may

seem surprising given our earlier finding that FE-OLS with no adaptation gives upward

biased estimates of the KDD coefficient. However, FE-OLS also gives a smaller estimate of

the GDD coefficient. GDD and KDD both increase over time, so these differences between

the two models tend to cancel out, giving similar forecasts.

We now turn to forecasts that incorporate predicted future adaptation, which our models

infer from the historical adaptation patterns documented in Figure 4. Results are reported
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Figure 8. The Effect of Climate Change on Corn Yield by RCP (MO-OLS with future adaptation)
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Note: This graph presents forecasts of the percentage change in corn yield (relative to the 2006-
2015 historical average) across three RCPs, where the solid line is the average forecast across
nineteen CMIP5 climate models, and the shaded areas are the 80% prediction intervals.

in Table 4. Adaptation does appreciably mitigate the damage from climate change in the

RCP85 scenario. For example, using the FE-OLS model with adaptation, the average

decline in corn yield in 2100 drops from 69% to 57%. The MO-OLS approach implies that

adaptation is even more effective at mitigating damage. In 2100 the reduction in crop

yield decreases from 71% to “only” 37%.

Of course, with greater emissions reductions KDD increases are smaller, and the scope

for adaptation is reduced. For example, given the RCP45 scenario and the MO-OLS model,

the mean predicted drop in yield in 2100 is 27% without and 16% with adaptation. And

under RCP26 the analogous figures are 10% and 8%, so adaptation is almost irrelevant.

A key takeaway from Table 4 is that adaptation may substantially mitigate damage in

the “business as usual” scenario, but damage remains severe. In contrast, even moderate
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emission reductions are quite effective at reducing damage - e.g., for MO-OLS, compare the

37% mean drop in yield under RCP85 with adaptation with the 27% drop in yield achieved

under RCP45 even without adaptation (falling to 16% when adaptation is included).

Figure 8 charts forecasts of corn yield under the three RCP scenarios using the MO-

OLS estimator with adaptation. Comparison with Figure 7 reveals how adaptation reigns

in the most negative forecasts and brings the distribution of outcomes under the three

RCP scenarios closer together. Adaptation also reduces the disagreement between climate

models (which is also clear from Table 4). However, the extent of disagreement remains

large. While the mean prediction of yield damage by 2100 under MO-OLS with adaptation

and given current government emissions pledges (RCP45) may be viewed as fairly modest

at 16%, the 80% prediction interval still includes a much more severe 28% decline.

As we noted earlier, the MO-OLS estimates imply a greater scope for adaptation to

mitigate damage to yields than the FE-OLS estimates. This is likely due to differences in

how the effect of KDDit on yit changes as KDDit changes. Under the MO-OLS approach

in (24), the average effect of KDDit is always equal to the marginal effect, so adaptation

shifts both equally. But in the FE-OLS approach to modelling adaptation in (22), the

average effect of KDDit on yit is given by β̂2 + β̂3(ln(KDDit) − 1), which is always less

than the marginal effect given in (16). Thus, adaptation in the FE-OLS approach leads

to a much slower decrease in the average effect relative to the MO-OLS approach. The

MO-OLS approach is perhaps more intuitive here, as it implies that adaptation techniques

alter the impact of all units of KDDit on the crop, not simply the additional units.

C. Cumulative Losses from 2020-2100

Next we examine the effectiveness of adaptation and alternative emissions reduction

scenarios as ways to avert damage from climate change over the whole forecast horizon.

We first calculate the total damage to future crop yield as:

(26) Lossr,ad = M−1
M∑
m=1

2100∑
t=2020

(ŷtrm,ad − ȳ)

where ȳ is historical average crop yield from 2006 to 2015, r is the RCP scenario and ad
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is the adaptation scenario. The proportion of damage averted under emissions and adap-

tation scenario (RCPn, ad = k) for n = 26, 45, 85 and k = 0, 1 is then 1− LossRCPn,ad=k
LossRCP85,ad=0

,

where (RCP85, ad = 0) is the baseline of “business as usual” and no adaptation.15

Table 5—Proportion of Climate Change Damage Averted (pct)

Estimator RCP85 + Adapt RCP45 RCP45 + Adapt. RCP26

MO-OLS 33 (21, 45) 55 (28, 82) 57 (36, 78) 67 (43, 91)
FE-OLS 18 (10, 25) 52 (26, 78) 62 (33, 90) 64 (42, 87)

Table 5 presents the proportion of damage averted under four scenarios. Recall that

RCP85 is “business as usual”, RCP45 entails emissions reductions slightly greater than

current government pledges, and RCP26 is consistent with the most ambitious targets

under the Paris agreement. According to Table 5 column (3), the MO-OLS model predicts

that shifting from RCP85 to RCP45 without any adaptation will avert 55% of damage on

average, with the 80% prediction interval ranging from 28% to 82%. If we also account for

adaptation the mean damage reduction improves slightly to 57%, and the 80% prediction

interval narrows slightly to 36% to 78%. Thus, our point forecast is that current policies

combined with adaptation will avert more than half of climate change induced damage to

corn yields, but the extent of disagreement across climate models is substantial. Indeed, if

we look at the more ambitious RCP26 scenario, the mean damage abatement is 67%, but

the 80% prediction interval ranges from only 43% to a massive 91%. Note that FE-OLS

gives similar point forecasts and similarly large prediction intervals. Thus, most of the

forecast uncertainty is across climate models, not econometric methods.

According to Table 5 column (2), MO-OLS predicts that adaptation alone can avert

33% of total damage to yield (on average),16 while FE-OLS gives a much smaller mean

damage abatement of only 18%. This is a substantial difference, yet both econometric

15We could of course discount future losses in (26), but the proper way to discount losses of future generations
is highly controversial. Many have argued against discounting on ethical grounds. In our case, discounting scales
down losses, but has almost no effect on relative losses across scenarios, which is what we focus on.

16As the MO-OLS model predicts a mean yield reduction of 71% in 2100 without adaptation and 37% with
adaptation (see Table 4), one might conclude that adaptation averts about half of the damage from climate change.
However, the results in Table 5 are based on all years from 2020 to 2100, not merely 2100.
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approaches agree that adaptation alone cannot avert the majority of the severe damage

to yield that is forecast to occur with climate change. Emissions reductions are necessary

to avert substantial reductions in future yields.

It is also clear from our results that it is virtually impossible to avert all of the damage

from climate change. Even under the most optimistic RCP26 scenario with adaptation,

both models predict about a 30% reduction in yields (on average). Unfortunately, past

emissions growth will lead to increases in atmospheric CO2 concentrations irrespective of

ambitious efforts to reduce emissions growth in the near future.

In Appendix C we present forecasts of corn yield that also include forecasts of future

technological growth. These results suggest that the positive influence of technical progress

may counter much of the adverse effect of climate change, but only if emission reductions

are undertaken (at least to the extent of RCP45).

Finally, we present our forecast results for soybeans in Appendix D. The results suggest

that soybean yield is also likely to decline significantly as a result of climate change. Our

models are less optimistic about the scope of adaptation to mitigate this damage.

D. Distribution of Losses Across U.S. Counties

Here we examine the distribution of losses across counties due to future climate change.

Figure 9 plots kernel densities of the percentage change in corn yield (relative to the

2006-2015 historical average) across all corn-growing counties at three points in time. All

three plots are based on the MO-OLS forecasts without adaptation, and are the ensemble

average of the nineteen climate models. In 2030 the mean change in yield is negative, yet

a fair number of counties do receive benefits climate change. Severe losses, say over 30

percent, are not very common. But in 2050 about experience losses of over 30 percent,

and few counties have gains. By 2100 almost all counties suffer severe drops in yield, and

almost no counties experience gains. While not definitive, these results cast doubt on the

notion that corn production can be shifted to colder corn-growing counties as a way to

avert significant damage to yields.

Figure 10 graphs the percentage of counties that experience losses as a function of time,

RCP, and adaptation scenario. Consistent with Figure 9, the fraction that experience
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Figure 9. The Distribution of Losses Over Counties by Year
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Note: This graph presents the distribution of losses and gains for each county (defined as the
percentage change in corn yield relative to the 2006-2015 historical average) over three time
periods. Estimates use the MO-OLS econometric model with no future adaptation, and are the
ensemble average across nineteen climate models.

losses approaches one under RCP85 without adaptation by the end of the century. Al-

lowing for adaptation reduces this fraction, but not substantially, as over 80 percent of

counties still experience losses by 2100. Under more ambitious RCP scenarios we still

find that the proportion of counties that suffer losses increases over time, but at a much

slower rate. In the best case scenario (RCP26 with adaptation) roughly 60% of counties

experience losses from about 2040 onward, with about 40% experiencing gains. This sug-

gests that shifting production to colder counties may be a useful strategy if combined with

substantial emissions reductions and adaptation.
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Figure 10. Proportion of Corn-growing counties experiencing losses from climate change
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Note: This graph presents the percentage of corn-crowing counties that experiencing losses from
climate change under four combinations of RCP emissions scenario and the MO-OLS model:
i) RCP26 with future adaptation, ii) RCP45 with future adaptation, iii) RCP85 without future
adaptation, and iv) RCP85 with future adaptation.

V. Conclusion

We make two contributions to the literature on forecasting the effect of climate change

on crop yield. First, we propose two new methods to directly model adaptation in the

agricultural production function. The first method is motivated by a simple theory that

predicts the marginal effect of high temperatures should decrease as harsh temperatures

become more common. The theory generates a simple function form that is not rejected

by the data. The second method directly estimates two dimensions of fixed-effects slope

heterogeneity in the yield equation, using the newly developed “mean observation OLS”

estimator due to Neal (2016). This is the first panel data estimator to allow for two-

dimensional fixed effects in slopes. Ex post we find significant heterogeneity in the tem-
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perature effect. It tends to decrease as harsh temperatures are more common, again

consistent with the simple theory. Both methods generate strong evidence for adaptation

across hot vs. cold counties, but no evidence to suggest that the average level of adapta-

tion has increased since 1989. We also find that estimators that do not model adaptation

produce biased estimates of the effects of harsh temperatures.

Our second contribution is to apply these econometric models to generate comprehensive

county-level forecasts of corn and soybean yields from 2016 to 2100 using three standard

emission growth pathways and nineteen climate models. We are not aware of a previous

forcasting effort that encompasses such a wide range of econometric methods, climate

models and emission scenarios.

Our results imply several major conclusions regarding the impact of climate change on

corn yield: First, absent emissions reductions or adaptation, we predict very severe effects

on yield, with an average prediction across climate models of -70% by 2100. Second, adap-

tation methods are predicted to avert roughly 18 percent to 33 percent of that damage,

depending on the econometric method. Thus adaptation is important, but at best will

only avert a fraction of the damage to yields. Third, we predict that moderate emissions

reductions similar to current government pledges can be expected to avert roughly 60 per-

cent of the damage to yields, rising to roughly 70 percent under the more ambitious Paris

targets. These results imply that plausible emissions reductions can avert a large fraction

of the damage from climate change. Fourth, however, even under the most optimistic

scenario (e.g., Paris accords plus adaptation) U.S. corn yields are expected to drop by

about 30% (averaging across climate models). Thus, given past CO2 emissions, it may

well be too late to avert some serious damage to yields even given immediate action.

We also attempted to forecast future technical progress based on past trends (admittedly

a rather speculative exercise). We predict that technical progress and adaptation alone

(absent emissions reductions) will lead to yield increases that lag far behind the population

growth rate. But, an optimistic prediction of technical change, combined with moderate

to substantial emissions reductions and adaptation can, together, achieve yield growth

roughly in line with population growth according the mean climate model forecast. Still,

these figures deteriorate quickly under slightly less optimistic technology projections.
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A striking feature of our results is the wide variability of forecasts across climate models.

Indeed, we have focussed on mean predictions in this conclusion to avoid drowning the

reader in a morass of prediction intervals (all of which are presented in detail in the text).

Suffice it to say that even our more optimistic emissions/technology/adaptation scenarios

put non-negligible mass on rather adverse outcomes. Furthermore, our forecasts for the

second largest U.S. crop, soybeans, are generally a bit more pessimistic. So it is fair to

say that climate change poses a substantial risk to U.S. agricultural yields, even under

the more begin scenarios where our point forecasts of yield losses are moderate.
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Appendix A: Aggregation of the Farm Production Function

Here we verify that the main predictions of farm-level model in Section I aggregate to

the collection of farmers within each county. We directly observe crop yield for counties:

(A1) yct =

∑N
i=1 Yit∑N
i=1Cit

for county c at time t, where Yit and Cit are output and acreage of farm i, respectively.

Thus, the county-level sensitivity to KDDit is an average of the farm-level sensitivities

weighted by the size of the farm in terms of land and other inputs:

(A2) β∗2ct =

∑N
i=1CitI

δ
itβ
∗
2it∑N

i=1Cit
=

∑N
i=1CitI

δ
its
(
−pCitAtIδitsKDDct

γ

)−1/2

∑N
i=1Cit

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_climate.pdf
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_climate.pdf
https://esa.un.org/unpd/wpp/
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Assume that KDDit is common to farms within counties, giving KDDct. Since s < 0,

Cit > 0, and Iδit > 0 for all i and t, we can verify that the county sensitivity to harsh

temperature β∗2ct is strictly concave in KDDct, just as β∗2it is strictly concave in KDDit:

∂β∗2ct
∂KDDct

=

∑N
i=1∑N

i=1Cit

 s2AtCit(I
δ
it)

2p

2γ(
−spAtCitIδitKDDct

γ )3/2

 > 0 ∀ KDDct

∂2β∗2ct
∂KDD2

ct

=

∑N
i=1∑N

i=1Cit

 3s3A2
tC

2
it(I

δ
it)

3p2

4γ2(
−spAtCitIδitKDDct

γ )5/2

 < 0 ∀ KDDct

We can also show that β∗2ct is a log-linear function of KDDct. Thus, the two main predic-

tions of the theoretical model carry over to the county-level (even if farm-level production

functions cannot be aggregated into a ‘representative producer’).

Appendix B: A Description of MO-OLS

In this appendix we describe the MO-OLS estimator due to Neal (2016), which is the

first panel data estimator to allow for two-dimensional fixed effects in slopes (as well as

intercepts). Consider the following model, with fixed effects in intercepts and slopes:

(B1) yit = αit + β′itxit + eit

where xit = (x1it, · · · , xKit) is a Kx1 vector of regressors, βit = (β1it, · · · , βKit) is a

Kx1 vector of coefficients that vary across individuals and over time, and eit is an error

term satisfying E[eit|xit′ ] = 0, ∀t, t′, E[eitejt] = 0, i 6= j. We assume each heterogeneous

parameter consists of three components: (i) one that is common across all observations,

(ii) an individual-specific fixed-effect, and (iii) a time-specific effect. Thus we have αit =

α + ci + ct and βit = β + λi + λt, where β = (β1, · · · , βK), λi = (λ1i, · · · , λKi), and

λt = (λ1t, · · · , λKt). Finally, define θ = (α,β) as the mean effects, θi = (ci,λi) as the

individual effects, θt = (ct,λt) as the time effects, and zit = (1,xit) as the regressors

(including a constant, so fixed effects in levels are subsumed in the analysis).

We seek to obtain consistent estimates of the individual coefficients θit = (αit,βit) as

well as the average coefficient over the sample θ̄ = (α+E(ci) +E(ct),β+E(λi) +E(λt)).
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MO-OLS does this by combining three types of regressions: pooled, person-specific, and

time-specific. First, consider the pooled OLS estimator of θ. Equation (B1) can be written:

yit = z′itθ + vit

vit = z′itθi + z′itθt + eit

Then the pooled OLS estimator of θ is:

(B2) θ̂ =

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
it

)−1(
1

NT

N∑
i=1

T∑
t=1

zityit

)

Expanding on yit and simplifying yields:

θ̂ =θ +Q−1
zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
itθi

)

+Q−1
zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
itθt

)
+Q−1

zz,NT

(
1

NT

N∑
i=1

T∑
t=1

ziteit

)(B3)

where Q−1
zz,NT =

(
1
NT

∑N
i=1

∑T
t=1 zitz

′
it

)−1
.

Second, consider a set of regressions for each individual i. Equation (B1) can be written:

yit = z′it(θ + θi) + vit

vit = z′itθt + eit

Then the individual specific OLS regressions will yield:

(B4) θ̂i =

(
1

T

T∑
t=1

zitz
′
it

)−1(
1

T

T∑
t=1

zityit

)

Expanding on yit and noting that θi is now a scalar vector:

(B5) θ̂i = θ + θi +Q−1
zz,T

(
1

T

T∑
t=1

zitz
′
itθt

)
+Q−1

zz,T

(
1

T

T∑
t=1

ziteit

)
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where Q−1
zz,T =

(
1
T

∑T
t=1 zitz

′
it

)−1
.

Third, consider a set of regressions for each time period t. Equation (B1) can be written:

yit = z′it(θ + θt) + vit

vit = z′itθi + eit

The time-specific regressions yield:

(B6) θ̂t = θ + θt +Q−1
zz,N

(
1

N

N∑
i=1

zitz
′
itθi

)
+Q−1

zz,N

(
1

N

N∑
i=1

ziteit

)

where Q−1
zz,N =

(
1
N

∑N
i=1 zitz

′
it

)−1
.

We construct a preliminary estimate of θit by combining (B3), (B5), and (B6) as follows:

θ̂
Prel
it =θ̂i + θ̂t − θ̂ =

θ + θi +Q−1
zz,T

(
1

T

T∑
t=1

zitz
′
itθt

)
+Q−1

zz,T

(
1

T

T∑
t=1

ziteit

)
+

θ + θt +Q−1
zz,N

(
1

N

N∑
i=1

zitz
′
itθi

)
+Q−1

zz,N

(
1

N

N∑
i=1

ziteit

)

− θ −Q−1
zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
itθi

)

−Q−1
zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
itθt

)
−Q−1

zz,NT

(
1

NT

N∑
i=1

T∑
t=1

ziteit

)
(B7)

This simplifies to:

(B8) θ̂
Prel
it = θ + θi + θt + (RN −Ri,NT ) + (RT −Rt,NT ) +

(
Qze,N +Qze,T −Qze,NT

)
where RN = Q−1

zz,N

(
1
N

∑N
i=1 zitz

′
itθi

)
, Rt,NT = Q−1

zz,NT

(
1
NT

∑N
i=1

∑T
t=1 zitz

′
itθt

)
and

similarly for RT and Ri,NT , and also Qze,N = Q−1
zz,N

(
1
N

∑N
i=1 ziteit

)
and similarly for

Qze,T and Qze,NT .

The expression in (B8) can be decomposed into three parts. First, there are the true
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observation-level coefficients θ + θi + θt, then the biases originating from any correlation

between the regressors and the heterogeneity (including the fixed effect in the intercept)

(RN −Ri,NT )+(RT −Rt,NT ), and terms involving the errors
(
Qze,N +Qze,T −Qze,NT

)
.

These Q terms vanish asymptotically given our assumptions on the zit and eit.

Crucially, as shown in Neal (2016), the bias terms R can be calculated to arbitrary

accuracy and eliminated from (B8), leaving a consistent estimator of θit.
17 We now explain

the procedure: MO-OLS uses θ̂i as a first stage approximation for θi in (RN −Ri,NT ) to

form R̂N and R̂i,NT , and also uses θ̂t as a first stage approximation for θt in (RT −Rt,NT )

to form R̂T and R̂t,NT . Inserting (B5) and (B6) into these parts of (B8) yields:

(R̂N − R̂i,NT ) + (R̂T − R̂t,NT ) = (RN −Ri,NT ) + (RT −Rt,NT ) +Q−1
zz,N

1

N

N∑
i=1

zitz
′
itRT

+Q−1
zz,T

1

T

T∑
t=1

zitz
′
itRN −Q−1

zz,NT

1

NT

N∑
i=1

T∑
t=1

(
zitz

′
itRT + zitz

′
itRN

)
+ op(1)

(B9)

This expression is equal to the original heterogeneity bias (RN −Ri,NT ) + (RT −Rt,NT ),

plus a set of additional terms. Thus, the use of (B9) to remove the bias in (B8) eliminates

the original bias while introducing a new set of bias terms.18 Importantly, Neal (2016)

shows that these new bias terms must be smaller in magnitude than the original. They

can be again approximated by using R̂N , R̂i,NT , R̂T , and R̂t,NT in the remaining biases

in (B9). This in turn produces new bias terms that are even smaller in magnitude. This

process can be repeated L times to render the bias arbitrarily small, forming the bias

17If the slope heterogeneity is independent of the regressors, then a two-way within transformation prior to
estimation gives a consistent estimator of the average coefficient θ̄, while the preliminary estimate of θit in (B7)
will give a consistent estimate of the observation-level coefficients. However, absent independence, removing this
bias is required to provide consistent estimates of the observation-level coefficients and the mean coefficient.

18Some of the new bias terms relate to the idiosyncratic error term (which are op(1) under these assumptions)
while others relate to the slope heterogeneity.
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removed estimates:

θ̂it = θ̂i + θ̂t − θ̂+

L∑
`=0

(−1)`+1

(
Q−1
zz,N

1

N

N∑
i=1

zitz
′
itΓ1,` +Q−1

zz,T

1

T

T∑
t=1

zitz
′
itΓ2,`

−Q−1
zz,NT

1

NT

N∑
i=1

T∑
t=1

(
zitz

′
itΓ1,` + zitz

′
itΓ2,`

))(B10)

where Γ1,` = Q−1
zz,T ( 1

T

∑T
t=1 zitz

′
itΓ2,`−1) and Γ2,` = Q−1

zz,N ( 1
N

∑N
i=1 zitz

′
itΓ1,`−1) when

` > 0, Γ1,0 = θ̂i, and finally Γ2,0 = θ̂t. This is a Cauchy sequence in `, so a suitable

L can be determined endogenously by programming the sum to stop once the procedure

converges to a given level of tolerance. In practice, in all examples we have considered the

bias becomes negligible for reasonable values of L.

Finally, the average coefficients θ̄ = (α+E(ci)+E(ct),β+E(λi)+E(λt)) can be easily

constructed by taking a simple average over the sample:

(B11) θ̂MO =
1

NT

N∑
i=1

T∑
t=1

θ̂it

Please see Neal (2018) for proofs of consistency and asymptotic normality when (N,T )
j→

∞, more details on the assumptions needed to maintain these results, and a Monte Carlo

analysis of the estimator.

Appendix C: Forecasting Corn Yield with Technical Change

Here we report forecasts of corn yield that incorporate projected technical progress. In

the main text we reported predicted changes in yield that account for adaptation to high

temperatures, but that hold other aspects of technology fixed. We have a firm historical

basis for predicting adaptation, based on comparing historical production function param-

eters for hot vs. cold counties and time periods. But forecasting more general forms of

technical changed into the future is a more speculative exercise.

The econometric models in the main text do provide estimates of technological progress

over the 1950-2015 period. In the FE-OLS models, neutral technical progress is captured

by the time fixed effect, while in the MO-OLS model technology is more complex, as it may
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alter the time fixed effect or the time effects in the slope coefficients for the temperature

and precipitation inputs. Accordingly, it is possible to extrapolate trends in to these time

effects into the future to forecast future technical progress.

Of course, our sample period of 1950 to 2015 saw dramatic improvements in agricultural

technology from the spread of machines including tractors, cutters, harvesters, planters

and trucks, commercial fertilizer, insect and weed-resistant hybrid seeds, computers and

satellite technology, and genetic modification. It may be optimistic to assume that ad-

vances in agricultural technology can continue at such an impressive pace through 2100.

But that is in effect what we do here by extrapolating these historical trends.

Here we focus on the MO-OLS model, and forecast both the fixed effect and the coeffi-

cient on GDDit into the future using a VAR(1) system of two equations. We assume that

time effects in the KDD coefficient are already captured by our adaptation process, and

we ignore time effects in the PREC coefficients because we find no significant time trends

on these coefficients in the historical data.

An important issue in specifying the VAR is nature of the time trends. As equation

(8) is for log yield, we rule out using trends in t or t2 as this permits exponential yield

growth in levels. Accordingly, we consider two specifications for the trend terms: The first

is to include just log(t), which we call the ‘pessimistic’ scenario of technical progress. The

second is to include both log(t) and
√
log(t), which we call the ‘optimistic’ scenario. This

is because a negative coefficient on
√
log(t) allows diminishing returns to technology to

set in more slowly than when using log(t) alone. It is our intent to present both these

scenarios of future technology, without commenting on their likelihood. To conserve on

space we do not present the estimates of the VAR models. We note, however, that the

‘optimistic’ model had the best in-sample fit of several models we examined. Of course,

this does no necessarily make it preferable for out-of-sample forecasts.

Table C1 presents the results of our forecasting exercise broken down by technology

scenario, adaptation scenario and RCP scenario. We present mean forecasts across 19

climate models, as well as an 80% prediction interval, at four points in time. Figures C1

to C2 present some key results visually.

Turning to our forecasts, consider first the worst case scenario of pessimistic technology
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Table C1—The Effects of Climate Change on Corn Yield (MO-OLS)

Pessimistic Tech Growth Optimistic Tech Growth

Year No Adapt. Adapt. No Adapt. Adapt.

RCP85

2030 159 (142, 177) 158 (145, 171) 164 (146, 181) 162 (149, 175)
2050 148 (114, 182) 162 (142, 181) 162 (128, 196) 178 (159, 197)
2080 110 ( 62, 158) 160 (134, 185) 139 ( 84, 195) 206 (179, 232)
2100 73 ( 25, 121) 149 (121, 176) 103 ( 42, 164) 217 (189, 245)

RCP45

2030 163 (142, 185) 159 (146, 173) 168 (147, 189) 164 (150, 178)
2050 165 (136, 195) 170 (152, 189) 179 (149, 209) 185 (165, 204)
2080 165 (125, 206) 184 (162, 206) 196 (156, 235) 220 (201, 239)
2100 180 (128, 233) 201 (172, 229) 222 (169, 276) 251 (224, 278)

RCP26

2030 158 (140, 176) 156 (145, 168) 163 (145, 181) 161 (150, 172)
2050 176 (154, 197) 176 (164, 188) 188 (168, 208) 189 (179, 200)
2080 207 (181, 233) 206 (189, 222) 233 (208, 258) 233 (215, 251)
2100 221 (183, 259) 222 (198, 247) 259 (221, 298) 262 (235, 289)

Notes: Results are expressed in terms of actual crop yield. Each number represents a model
average over nineteen climate models, while the numbers in brackets represents the 80 percent
prediction interval of that ensemble average.

growth and no adaptation. As we see in Table C1, under the the RCP85 scenario the

mean forecast is a catastrophic drop in corn yield from roughly 150 today to 73 in 2100.

With adaptation yield stagnates and is about the same in 2100 as today.

It is important to understand that a stagnation of yield would itself be a catastrophic

outcome. As we see in Figure C1 historical corn yield tripled from roughly 50 in the 1950s

to roughly 150 in 2015, so rapid growth was the norm for the past 65 years. Further-

more, Figure C1 plots historical world population along with the median forecast from the

United Nations Population Division (2017). Note that U.S. corn yields closely track world

population growth from 1950 to 2015, as population also roughly tripled from 2.5 to 7.3

billion. The U.S. provides more than a third of the world’s corn exports, so a stagnation

of U.S. yields would have a devastating effect on world supply.

Next consider the RCP26 scenario of ambitious emissions reductions, while continuing
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Figure C1. Effect of Climate Change on Corn Yield with Pessimistic Tech Growth and No Adaptation
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Note: This graph presents forecasts of corn yield by RCP emission scenario using the MO-OLS
model where future adaptation is not modelled and technology is forecast using a VAR(1) with
a log(t) trend term. The solid lines are the average forecast across nineteen CMIP5 climate
models, and the shaded areas are the 80 percent prediction intervals.

to maintain the pessimistic technology scenario. As we see in Table C1, the mean forecast

yield in 2100 is 221 or 222, depending on whether we include adaptation.19 But as we see

in Figure C1, yield growth in this scenario is not nearly as rapid as population growth.

If we turn to the ‘optimistic’ technology assumption, we see in Table C1 that yield

forecasts increase rather substantially under all scenarios. In fact, the mean prediction

under RCP85 of a 217 yield in 2100 is similar to the prediction under pessimistic technol-

ogy and RCP26. Thus, being ‘optimistic’ about technology while assuming ‘business as

usual’ emissions leads to similar predictions as being ‘pessimistic’ about technology while

assuming ‘ambitious’ emissions reductions. Importantly, however, yield in either case falls

19Adaptation makes little difference for the mean forecast in this case, because temperature increases are mod-
erate. But it does reduce variance.
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well short of keeping pace with population growth.

Finally, consider the best case scenario of optimistic technology growth and ambitious

emissions reductions (RCP26). As we see in Table C1, the mean forecast yield in 2100 is

259 or 262, depending on whether we include adaptation. This is roughly what is necessary

for yields to increase at a rate that is commensurate with population growth. Even here

however, the 80% prediction interval extends down to 235, which is well short of keeping

pace with population growth. Thus, even in a best case scenario, climate change creates

an environment of considerable risk with respect to U.S. agricultural yields.

Figure C2. The Effect of Climate Change on Corn Yield with Optimistic Tech Growth and Adaptation
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Note: This graph presents forecasts of corn yield by RCP emission scenario using the MO-OLS
model where future adaptation is not modelled and technology is forecast using a VAR(1) with
log(t) and

√
log(t) as trend terms. The solid lines are the average forecast across nineteen

CMIP5 climate models, and the shaded areas are the 80 percent prediction intervals.
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Appendix D: Model and Forecast Results for Soybeans

The case of soybeans offers an interesting comparison to corn. This is the second largest

U.S. crop, and both it’s geographic distribution and growing characteristics are different.

Here, we apply the same econometric and forecasting methods as in the main text, except

with soybean yield as the dependent variable.

Table D1 presents the pooled panel results, organized in the same manner as Table 1 for

corn. We see that the sensitivity of soybeans to high temperatures is lower than it is for

corn. In the fourth specification, which models adaptation as a log-linear relationship with

KDDit, the coefficient on KDDit is more negative while the coefficient on the nonlinear

term is positive and statistically significant. This indicates, as it did with corn, that there

is heterogeneity in the marginal effect of KDDit and it has a positive correlation with the

level of KDDit.

Table D1—Pooled Panel Estimates of the Impacts of Temperature on Soybean Yields

Specification (1) (2) (3) (4)

GDD 0.0003 0.0005 0.0004 0.0006
(0.0001) (0.0001) (0.0000) (0.0000)

KDD -0.0057 -0.0048 -0.0043 -0.0090
(0.0008) (0.0003) (0.0003) (0.0005)

ln(KDD)*KDD - KDD 0.0009
(0.0001)

Precipitation 0.0017 0.0012 0.0012 0.0013
(0.0004) (0.0001) (0.0002) (0.0000)

Precipitation2 -1.3e-06 -9.1e-07 -9.2e-07 -9.1e-07
(3.1e-07) (1.1e-07) (1.4e-07) (3e-08)

Constant 1.6434 0.9127 1.2853 0.5788
(0.4169) (0.2702) (0.1461) (0.0667)

Fixed Effects Yr Cty, Yr Cty, State-Yr Cty, Yr

Obs. 87,767
R2 0.6237 0.7523 0.7509 0.3959

Notes: Results exclude states west of the 100th Meridian line. Sample range is 1950-2015, with
specifications (1) - (4) differing by type of fixed effects, and whether the adaptation variable
ln(KDD)*KDD - KDD is included. Regressions are weighted by average county harvest area for
each crop. Standard errors are in parentheses, and are clustered at the state level.
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Table D2 presents the results for the MO-OLS model. With soybeans, the mean coef-

ficient for KDDit (whether unweighted or weighted) is very similar to the pooled model

estimates. Moreoever, with a standard deviation of 0.0037 there is significantly less het-

erogeneity in the distribution than with corn. Figure D1 illustrates this, where the 10th

to 90th percentiles of the distribution of KDD slope coefficients comprise a much tighter

range than they did with corn.20 This is evidence for comparatively little historical adap-

tation between counties. This result is intuitive given the much greater success that corn

has had in developing seed hybrids that are more resistant to heat.

Table D2—Mean-Observation Estimates of the Impacts of Temperature on U.S. Soy Yields

Mean Weighted Median Standard 10th 90th
Mean Deviation Percentile Percentile

GDD 0.0004 0.0004 0.0004 0.0005 -0.0001 0.0010
(0.0000)

KDD -0.0053 -0.0048 -0.0049 0.0037 -0.0096 -0.0014
(0.0002)

Precipitation 0.0018 0.0017 0.0015 0.0025 -0.0009 0.0048
(0.0001)

Precipitation2 -1.5e-06 -1.4e-06 1.2e-06 2.1e-06 -3.8e-06 6.2e-07
(1.5e-07)

Constant 1.5328 1.6671 1.6375 1.9314 -0.8738 3.6623
(0.1440)

Obs. 92,373

Notes: Results exclude states west of the 100th Meridian line. The sample range is 1950-2015,
and standard errors are reported in parentheses.

The time trend of aggregate adaptation is somewhat difficult to interpret due to the

significant degree of random fluctuation in the median coefficient between years. An

unreported structural break test could not reject the null hypothesis that there is no

structural break in the parameters of this regression, and fitting a linear trend to the

median coefficient over time resulted in an extremely small positive trend.

Figure D2 plots the average values of β̂2it and KDDit for each county. The correlation

between β̂2it and KDDit is 0.25, which is weaker than for corn, yet still positive. We fit

a log-linear curve to these points to obtain the function we use to model adaptation.

20The relatively small amount of heterogeneity for soybeans presumably explains why the MO-OLS and pooled
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Figure D1. Distribution of KDD Slope Coefficients across Time and Counties for U.S. Soy
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Note: The black line plots the median coefficient of the KDD variable that is reported in Table
D2, while the dark grey area represents the 25th to 75th percentile of coefficients, and the light
grey area represents the 10th to 90th percentile of coefficients.

Figure D3 compares the log-linear relationships that are obtained using the FE-OLS and

MO-OLS models. Fortunately, the relationship derived from MO-OLS sits comfortably

within the 95% confidence interval for the FE-OLS relationship, indicating that they are

not significantly different from each other. In contrast to what we find for corn, the MO-

OLS relationship here implies less sensitivity to KDDit at every level of KDDit. We can

use these results to forecast soybean yield into the future under climate change.

Turning to the forecasts, Table D3 presents a summary of the main results for soybean

yield with and without adaptation. The format is identical to Table 4 in the text. Without

emissions reductions or adaptation, both econometric models predict large reductions in

yield. In 2100 the ensemble average is a 51 or 56% reduction (with 34 to 76% prediction

interval). However, the RCP45 and RCP26 scenarios illustrate the effectiveness of emis-

sions reductions in reducing the impact on soybean yields, particularly in RCP26 where

results are not very different. This is in sharp contrast to the bias we observe in corn.
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Figure D2. Relationship between β̂it and KDDit for U.S. Soybeans
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Note: This graph is a scatter plot of the average coefficient to the KDD variable for soybeans in
each county that is reported in Table D2 and the average measurement of the KDD variable for
the same county. The fitted line was obtained from the regression β̂it = α1 + α2ln(KDDit).

the prediction interval covers the possibility of no damage over the entire forecast horizon.

Figure D4 shows the trajectory of soybean yield under the three RCP scenarios using

the MO-OLS estimator with no further adaptation. The RCP85 scenario diverges from

RCP45 and RCP26 around 2035, leading to a decline in soybean yield of roughly 50

percent (ensemble average) by 2100. The prediction intervals for both the RCP85 and

RCP45 scenarios are fairly large, especially in the latter half of the century, indicating

that the climate models offer varied predictions of growing conditions under these two

emission pathways. Meanwhile, as we see in Table D3, the two econometric models give

very similar forecasts across all three RCP scenarios with no adaptation.21

We now turn to the forecasts that incorporate predicted future adaptation. Results are

reported in Table D3 and Figure D5. Similar to the case of corn yield, MO-OLS offers a

21The one exception is under RCP85 towards the latter half of the century, where MO-OLS becomes slightly
more optimistic in its forecasts.
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Figure D3. Comparison of Log-Linear relationships derived under MO-OLS and FE-OLS for Soybeans
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Note: This graph compares the fitted log-linear relationships between β̂ and KDDit obtained from
the county/time specific coefficients estimated with MO-OLS (see Figure D2) vs. the regression
results in Table D1 column (4).

more optimistic forecast than FE-OLS of the effectiveness of adaptation to avert climate

change damage. Nevertheless, both estimators predict that the benefits of adaptation are

much smaller for soybeans than they are for corn. This is intuitive since the econometric

results found much less heterogeneity in the slope coefficient on KDD for soybean yield

relative to corn yield. Consider first the RCP85 scenario. Using the FE-OLS approach

adaptation reduces the damage to yield from 56 to 51% in 2100. Using the MO-OLS

approach, the reduction in yield decreases from 51 to 41% in 2100. Of course, the benefits

of adaptation become even smaller under the RCP45 and RCP26 scenarios.

Lastly, Table D4 examines the effectiveness of adaptation and alternative emissions

reduction scenarios as ways to avert damage from climate change over the whole forecast

horizon. To construct the percent of damage averted we use the same methodology that we
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Figure D4. The Effect of Climate Change on Soybean Yield by RCP and Model

0
-.2

5
-.5

-.7
5

Pe
rc

en
ta

ge
 C

ha
ng

e 
in

 C
or

n 
Yi

el
d

2015 2025 2035 2045 2055 2065 2075 2085 2095
Year

RCP26 RCP45
RCP85

Note: This graph presents forecasts of the percentage change in soybean yield (relative to the
2006-2015 historical average) from the MO-OLS model by RCP and whether future adaptation
is modelled. The solid line is the average forecast across nineteen CMIP5 climate models, and
the shaded areas are the 80 percent prediction intervals.

used to construct Table 5 in the main text. The results suggest that adaptation can avert

only a small proportion of the total damage, between 13 and 22% according to MO-OLS

and 3 to 9% according to FE-OLS. In contrast, shifting from the RCP85 to the RCP45

emissions path offers significantly more damage mitigation, with between 36 to 85 percent

of the damage averted. The RCP26 path averts more damage still, with between half to

all of the total damage being averted. It is clear, relative to the results for corn, that

the potential for adaptation is far lower for soybeans, while emissions reductions are more

effective. Thus, emissions reductions are clearly essential to prevent significant harm to

soybean yields.
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Table D3—The Effects of Climate Change on Soybean Yield (pct)

No Future Adaptation Future Adaptation

Year
FE-OLS MO-OLS FE-OLS MO-OLS

RCP85

2030 -04 (-12, 05) -04 (-11, 04) -04 (-13, 06) -03 (-10, 04)
2050 -16 (-29, -03) -15 (-27, -03) -15 (-28, -02) -12 (-22, -03)
2080 -37 (-55, -19) -35 (-51, -20) -34 (-51, -18) -28 (-40, -15)
2100 -56 (-76, -36) -51 (-69, -34) -51 (-69, -33) -41 (-55, -26)

RCP45

2030 -02 (-12, 08) -02 (-10, 07) -02 (-13, 09) -02 (-09, 06)
2050 -09 (-22, 03) -09 (-20, 02) -09 (-22, 04) -08 (-17, 01)
2080 -17 (-30, -05) -17 (-28, -05) -17 (-29, -05) -14 (-23, -05)
2100 -18 (-33, -02) -17 (-30, -03) -17 (-31, -02) -13 (-24, -03)

RCP26

2030 -05 (-14, 03) -04 (-12, 03) -06 (-15, 03) -04 (-10, 02)
2050 -07 (-15, 01) -06 (-14, 02) -07 (-15, 02) -05 (-12, 01)
2080 -06 (-15, 03) -05 (-13, 03) -06 (-15, 04) -05 (-12, 02)
2100 -07 (-19, 04) -07 (-17, 04) -08 (-19, 04) -06 (-14, 03)

Notes: Results are expressed in terms of percentage change from the 2006-2015 historical
weighted average crop yield. Each number represents the ensemble average over nineteen climate
models, while the numbers in brackets represents the 80 percent prediction interval.

Table D4—Proportion of Climate Change Damage Averted for Soybeans (pct)

Estimator RCP85 + Adapt. RCP45 RCP45 + Adapt. RCP26

MO-OLS 17 (13, 22) 60 (36, 85) 64 (42, 86) 78 (53, 103)
FE-OLS 6 (3, 9) 63 (38, 88) 63 (38, 88) 78 (53, 103)
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Figure D5. The Effect of Climate Change on Soybean Yield by RCP (MO-OLS with future adaptation)
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Note: This graph presents forecasts of the percentage change in soybean yield (relative to the
2006-2015 historical average) across three RCPs, where the solid line is the average forecast
across nineteen CMIP5 climate models, and the shaded areas are the 80% prediction intervals.
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