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ABSTRACT. In the single-peaked domain, the median rules (Moulin [1980]) are of special inter-
est. They are, essentially, the unique strategy-proof rules as well as the unique Nash imple-
mentable ones under complete information. We show that, under mild assumptions on admissi-
ble priors, they are also Bayes-Nash implementable by the means of “detail-free” mechanisms.
That is, mechanisms that do not rely on the mechanism designer having detailed information
about the priors that the agents hold. Furthermore, detail-free implementation of the median
rules does not clash with truthful behavior. The provided mechanism is such that, in every
equilibrium, all agents reveal their true peak with probability one.
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1. INTRODUCTION

As it is well known, the domain of single-peaked preferences admits a unique set of imple-
mentation relevant welfare optima: the generalized median rules (see Moulin [1980]). Each
generalized median rule (henceforth, GMR) is strategy-proof and, correspondingly, it is im-
plemented in dominant strategies by its associated direct mechanism. Even though it seems
intuitive that agents reveal their true type whenever doing so is a dominant strategy, as Saijo
et al. [2007] argue, strategy-proof mechanisms have some drawbacks. One of them is that
many strategy-proof mechanisms may have a large set of equilibrium outcomes that are unde-
sirable from the point of view of the welfare optimum. This is, in particular, the case for the
direct revelation mechanisms associated to the GMRs.1 Since “one cannot simply assume that
agents will play a vector of dominant strategies when alternative Nash or Bayesian equilibria
exist” [Repullo, 1985] one should, whenever possible, turn to designing mechanisms that admit
a unique equilibrium outcome. Barberà and Jackson [1994], Sprumont [1995] and Berga and
Moreno [2009] show that, in environments with complete information, there are mechanisms
that Nash implement all GMRs. However, due to their more realistic assumptions, we are also
interested in studying implementation of GMRs in environments in which agents only have
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incomplete information about the peak profile of their opponents. Moreover, it is desirable
to consider an environment in which the mechanism designer is uninformed about the un-
derlying distribution of the voters’ preferences so that she has to design a mechanism that is
“detail-free” or, in other words, that does not rely on having available that specific information.

Existing results that assume complete information provide invaluable insights—and also
practical solutions to the few problems for which such an assumption is plausible—but, as
noted by Wilson [1987], “only by repeated weakening of common knowledge assumptions will
the theory approximate reality.” Hence, it is imperative to address whether GMRs can be
implemented when the subjects’ preferences are their private information (in the spirit of
Bayesian implementation, such as Jackson [1991]) and the mechanism designer does not have
information about the agents’ preferences or the beliefs that they hold about the preferences
of the rest of the agents (in the spirit of detail-free or robust approaches to mechanism design,
such as Bergemann and Morris [2005] or Saijo et al. [2007]).

In this paper, we adopt a mainly positive approach.2 We proceed by construction and build
detail-free direct mechanisms that implement GMRs in Bayes-Nash equilibria under mild as-
sumptions on the set of admissible priors. These mechanisms, the value-based medians (hence-
forth, VB-medians), are quite similar to the direct revelation games of the rules that they
implement. The direct revelation game of a GMR selects the median of the combined profile
made of (at most) n−1 exogenous points and the n peaks announced by the agents. In turn, a
VB-median mechanism selects the median of the combined profile made of the those exogenous
points and an endogenous selection of the announcements. For instance, consider the canonical
median mechanism with an odd number of agents. This mechanism selects the announcement
m(s1, . . . , sn) that divides the sample of announcements (s1, . . . , sn) in two exact halves. The
associated VB-median proceeds in two steps. It first deletes duplicates in the vector of an-
nouncements (s1, . . . , sn). This leads to the vector of pruned announcements (s′1, . . . , s′m) with
m ≤ n. If m is odd, the outcome of the VB-median is the median of (s′1, . . . , s′m). If m is even,
the median of pruned announcements is the midpoint between the lower-median m−(s′1, . . . , s′n)
and the upper-median m+(s′1, . . . , s′n).

We show that this detail-free mechanism Bayes-Nash implements the median when each in-
dividual’s beliefs regarding the preferences of the rest of the agents is smooth (i.e., an atomless
distributions with full support), and that a straightforward generalization implements other
GMRs. While the restriction to smooth priors is limiting, they arguably constitute the unique
most relevant class in the standard setting where GMRs were introduced by Moulin [1980].
The proposed mechanism also induces truthful behavior. In every equilibrium, every agent
reports her true peak with probability one. To our knowledge, this is the first time that the
GMRs are shown to be Bayes-Nash implementable in their natural setting—i.e., considering
a continuous policy space and a finite number of agents—and, also, by truth-revealing mecha-
nisms that do not require parametric alterations depending on environmental particularities.
In other papers in the literature, the alternative space is considered to be discrete and, thus,

2 This approach is quite common in the implementation literature, see Maskin [1999] and Abreu and Sen [1991].
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any unanimous rule that satisfies no-veto power3 in a single-peaked context (such as a GMR)
fails Bayesian monotonicity in several reasonable classes of priors [Jackson, 1991, Duggan,
1995]. That is, existing approaches have little to say regarding the problem tackled in this
paper.

Apart from establishing the above main results, the VB-median mechanisms are also the
first simple simultaneous direct mechanisms in the literature that Nash implement GMRs
under complete information. This is arguably of interest on its own, since, to our knowledge,
there is only one other simple simultaneous mechanism (the approval mechanism, see Núñez
and Xefteris [2017]) that Nash-implements the median rule (i.e., the Condorcet winner alter-
native) and this mechanism is indirect since the strategy set does not coincide with the peak
space. Intuitively, the VB-median mechanisms generate unique equilibrium outcomes because
they make every agent always decisive. This contrasts with the standard median mechanism
in which, for some instances, no individual agent can affect the outcome. For example, if ev-
ery agent is expected to announce the same outcome, under the standard median mechanism,
a unilateral deviation cannot affect the median announcement. On the other hand, under
the VB-median mechanism, identical announcements are ignored, which means that every
announcement always affects the outcome crucially, thus, making inefficient coordination im-
possible.

After briefly reviewing the literature, we present the model in Section 2, the results on
complete and incomplete information in Sections 3 and 4, and their extensions to GMRs in
Section 5.

1.1. Review of the Literature

This paper is at the intersection of two rich branches of the literature: Implementation and
Social Choice. Implementation focuses on designing mechanisms whose equilibrium outcome
coincide with the outcome of a welfare optimum or social choice rule. If a mechanism has the
property that, independently of the model’s primitives, the set of equilibrium outcomes coin-
cides with the set of outcomes identified by the welfare optimum, then the welfare optimum
is said to be implemented by the given mechanism. Among the different notions of implemen-
tation, dominant strategy and (Bayes-)Nash equilibrium are, arguably, the most classic ones.
Implementation in dominant strategies requires that each agent has a dominant strategy and
that if agents use their dominant strategies, the desired welfare optimum is attained. Imple-
mentation in (Bayes-)Nash equilibrium (or full implementation) requires that all equilibrium
outcomes of the mechanism be socially optimal.

The literature studying the single-peaked domain can be traced back to Galton [1907] and
to the pioneering contributions of Black [1948] and Moulin [1980]. This early literature under-
lines a distinct feature of this domain: strategy-proof, anonymous, and efficient peak-only rules
exist and are simple to describe. These mechanisms coincide with the direct revelation games
of the generalized median rules, that is, of the procedures that select as an outcome the median
of the peaks combined with some fixed weights (or phantoms) whose purpose is to calibrate the

3A rule that satisfies no-veto power selects an alternative if it is ranked at the top by all but at most one agent.
See Benoît and Ok [2008] for a discussion.
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final decision. Among the most recent contributions, Arribillaga and Massó [2016, 2017] com-
pare the degree of manipulability of these voting schemes in other domains, while Chatterji
et al. [2016] underline the salience of the single-peaked domain as the only one admitting a
wide class of well-behaved social choice rules. As discussed above, a negative feature of the
single-peaked domain was underlined by the secure implementation literature (Cason et al.
[2006], Saijo et al. [2007]). They note that no mechanism is able to implement a generalized
median rule both in dominant strategies and in Nash equilibrium. In other words, no direct
mechanism implements a generalized median rule simultaneously in dominant strategies and
in Nash equilibrium (i.e., no direct mechanism obtains full implementation).

As far as complete information is concerned, the literature has circumvented this impossi-
bility of secure implementation in primarily two ways. The first approach consists of building
direct mechanisms that help agents coordinate at the cost of removing incentives for truth-
telling (see, e.g., Yamamura and Kawasaki [2013]). So far, this approach has not obtained
implementation of the median rule since the only studied mechanisms (such as simple averag-
ing of agents’ reports) Nash implement generalized median rules with exactly n−1 interior and
distinct phantoms. Moreover, the designed mechanisms do not generate incentives for truth-
telling and for almost all admissible preference profiles, almost all agents largely misreport
their preferences. The second approach (see Núñez and Xefteris [2017]) has designed indirect
mechanisms that Nash implement any generalized median such that its interior phantoms
(if any) are all distinct. This allows, in particular, implementing the median rule. To achieve
this, agents approve of intervals of alternatives and the mechanism selects the median of these
intervals. Finally, in an incomplete information setting, Gershkov et al. [2017] succeeds in par-
tially implementing the median by building dynamic voting games in which agents vote until
a qualified majority is reached. Thus, the literature is so far using mechanisms quite distant
from a simple simultaneous direct mechanism to achieve the implementation of the median
rule. The current paper fills this gap.

2. SETTING

We consider a set of agents N := {1, . . . ,n} with n ≥ 3 and a set of alternatives A := [0,1]
with typical elements x and y. For the time being, we assume that n is odd and deal with
the case where n is even in Section 5. Each agent i has single peaked preferences with set of
possible peaks T := [0,1]. Agent i’s preferences are represented by means of the utility function
Ui : A×T →R. If agent i has peak ti then Ui(x | ti)<Ui(y | ti) whenever x < y≤ ti or ti ≤ y< x.
We let Tn := ∏n

i=1 T be the set of peak profiles. For any pair of alternatives x, y ∈ A, their
midpoint is δ(x, y) := (x+ y)/2.

An announcement profile is an element of the set of all finite profiles A = ⋃∞
m=1[0,1]m. For

each a ∈A we let c(a) denote its length. A profile a ∈A is odd if c(a) is odd and it is even
otherwise. For any two profiles a,b ∈A, we let (a,b) denote the profile of length c(a)+ c(b)
resulting from appending the profile b to the profile a. We define the lower-median, upper-
median, and median of an announcement profile as follows.

Definition 1. For any profile a ∈A with c(a)= m,
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• the lower-median m−(a) is the smallest ak for which #
{
` | a` ≤ ak

}
≥ m

2 , and

• the upper-median m+(a) is the largest ak′ for which #
{
` | a` ≥ ak′

}
≤ m

2 .

If a is odd, then m−(a)= m+(a) and such a common value is the median m(a) of the profile a.

We are interested in implementing generalized median rules (GMRs) which are, arguably,
the only interesting Nash implementable rules in the single-peaked domain. In this domain,
a welfare optimum is a GMR if and only if it has convex range and is both Pareto efficient and
Nash-implementable.4 We begin focusing on the median rule and extend the analysis to GMRs
in Section 5.

Definition 2. The median rule fM : Tn → A associates to each t ∈ Tn the alternative fM(t) :=
m(t). Its associated direct mechanism is the median mechanism θM : Tn → A and it satisfies
fM = θM .

To define the value-based median mechanism, we introduce the function v : A → A that
assigns to every a ∈A the ordered profile v(a) of distinct values in a. That is, v(a) ∈A is the
profile that is obtained after removing the minimum number of entries from a so that no two
remaining entries are the same and then ordering them from smallest to largest. To simplify,
the length of v(a) is denoted cv(a) rather than c(v(a)).

Definition 3. The value-based median mechanism θVB : Tn → A associates to each s ∈ Tn the
alternative

θVB(s) :=
m(v(s)) if v(s) is odd,

δ
(
m− (v(s)) ,m+ (v(s))

)
if v(s) is even.

(1)

Thus, instead of selecting the median of the announcements, the value based median selects
the median of the distinct announcements (if there are an odd number of them) or the mid-
point between the lower-median and upper-median of the distinct announcements (if they are
an even number). This difference generates different truthtelling incentives. To make them
explicit, we recall the definition of strategy-proofness and the fact that the median mechanism
θM satisfies it [Moulin, 1980].

Definition 4. A mechanism θ : Tn → A is strategy-proof if, for any agent i, revealing her true
peak ti is a best response to any s−i ∈ Tn−1, that is

Ui(θ(ti, s−i) | ti)≥Ui(θ(si, s−i) | ti) for any si ∈ T and any s−i ∈ Tn−1.

The median mechanism is strategy-proof because an agent cannot do better that announcing
her true peak given that any misreport can only shift the outcome further away from her peak.
This is not the case for the value-based mechanism θVB.

Example 1. Let N = {1,2,3} with t = (1/3,1/3,2/3). Consider the profile s = (1/3,1/3,2/3) in
which every agent sincerely announces her peak. We have θVB(s) = δ(1/3,2/3) = 1/2 because
t1 = t2 = 1/3. In turn, for any 0 ≤ x < 1/3, θVB(x, s−1) = 1/3 which coincides with agent 1’s peak.
4 GMRs are “peak-only” welfare optima, that is, they only depend on the agents’ peak profile and not on the shape
of their utility functions. Sprumont [1995] shows that any strategy-proof welfare optimum whose range is an
interval is a peak-only welfare optimum.
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Hence, for such values of x, we obtain U1(θVB(x, s−1) | 1/3)>U1(1/2 | 1/3), which shows that θVB

is not strategy-proof.

Even if the mechanism θVB is not strategy-proof, we show below that it still gives truth-
revealing incentives to every agent for almost every announcement profile of the other agents.
This motivates the following weakening of strategy-proofness.

Definition 5. A mechanism θ : Tn → A is almost strategy-proof if, for any agent i, revealing her
true peak ti is a best response to almost all s−i ∈ Tn−1. That is, if for each agent i there is some
set T̃i ⊂ Tn−1 of zero Lebesgue measure such that

Ui(θ(ti, s−i) | ti)≥Ui(θ(si, s−i) | ti) for any si ∈ T and any s−i ∈ Tn−1 \ T̃i.

Under the mechanism θVB, every agent i weakly prefers ti to any other announcement for
almost all announcement profiles of the other agents. In particular, agent i with peak ti may
have an incentive to misreport it only if some other agent already announces ti (as in Ex-
ample 1) or if, given the profile s−i, we have that cv(ti, s−i) is even and that ti is either the
lower-median or upper-median of the entire announcement profile (see Definition 3). The next
proposition establishes that the set of announcement profiles for which either of these alterna-
tives holds has zero Lebesgue measure.

Proposition 1. The value-based median mechanism is almost strategy-proof.

Proof. For each agent i, let T̃i := {
s−i ∈ Tn−1 | cv(ti, s−i) < n

}
. The closed subset T̃i has zero

Lebesgue measure because is the finite union of lower dimensional hyperplanes.
Take any s−i ∈ Tn−1 \ T̃i. Since cv(ti, s−i) is odd, θVB(ti, s−i) = m(ti, s−i). Consider an alter-

native message si , ti. If cv(si, s−i) is even, then θVB(si, s−i) = δ
(
m−(v(si, s−i)),m+(v(si, s−i))

)
,

but agent i can induce her preferred point on the interval
[
m−(

v(si, s−i)
)
,m+(

v(si, s−i)
)]

by
announcing ti, so that ti is a best response. If otherwise cv(si, s−i) is odd, then θVB(si, s−i) =
m(si, s−i) is no closer to ti than θVB(ti, s−i), which again implies that ti is a best response. �

3. COMPLETE INFORMATION

In this section, we show that the mechanism θV B Nash implements the median rule in a
complete information setting. We assume that all peaks are interior, so that no agent has a
peak at either zero or one.5 The strategy profile s ∈ Tn is a Nash equilibrium of the game
induced by the direct mechanism θ : Tn → A at the profile t ∈ Tn if for every agent i ∈ N and
every announcement s′i ∈ Si we have Ui(θ(si, s−i) | ti) ≥ Ui(θ(s′i, s−i) | ti). We denote by Nθ(t)
the set of Nash equilibria of the game induced by the mechanism θ at the peak profile t.

Definition 6. The mechanism θ : Tn → A Nash implements the welfare optimum f : Tn → A if
for each t ∈ Tn

(1) there exists an equilibrium s ∈ Nθ(t) satisfying θ(s)= f (t)
(2) for any s ∈ Nθ(t) we have θ(s)= f (t).
5 This assumption guarantees that the median peak is an interior point of the set of announcements. This is not
a substantial limitation and could be circumvented by means of alternative modelling choices (e.g. an unbounded
outcome space in the spirit of Moulin [1980]). Alternatively, we can also expand the message space to [−ε,1+ ε]
for some arbitrary ε> 0, thus, allowing agents to submit messages outside the interval [0,1].
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As emphasized by Repullo [1985], the direct mechanism associated to a rule does not neces-
sarily Nash implement such a rule. A prominent example of this fact is the median rule. The
median mechanism θM admits a continuum of Nash equilibrium outcomes because all agents
coordinating on the same announcement is always a Nash equilibrium. This is in contrast with
the value-based mechanism θVB.

Example 2. Consider three agents with peak profile t = (t1, t2, t3) such that t1 ≤ t2 ≤ t3 with at
least one strict inequality. Take any x ∈ A and consider the announcement profile (x, x, x). We
obtain θM(x, x, x) = x and no unilateral deviation modifies the alternative implemented by the
median mechanism because θM(y, x, x) = x for every y ∈ [0,1]. Thus, (x, x, x) is an equilibrium
of the mechanism θM . In contrast, (x, x, x) is not an equilibrium of the value-based median
mechanism θVB. Indeed, θVB(x, x, x) = x and note that we assumed that at least some agent
j has a peak t j different from x. Thus, if agent j deviates to t j, the mechanism θVB induces
δ(t j, x) which is closet to t j than x. That is, (x, x, x) is not an equilibrium of θVB.

Since the value-based median ignores redundant announcements, counting several equal
announcements as just one, agents have an incentive to make their announcements unique.
The next proposition formalizes this intuition.

Proposition 2. Let s ∈ Tn be an equilibrium of the mechanism θVB at the peak profile t ∈ Tn.
Then,

(1) if ti , θV B(s) then agent i’s announcement is unique, i.e. si , s j for every j ∈ N \{i}, and
(2) if ti < θVB(s) then si < θVB(s) whereas if ti > θVB(s) then si > θVB(s).

Proof. We prove each part in turn. To prove (1), take some equilibrium s ∈ Tn of θVB at the
peak profile t ∈ Tn. Assume first that cv(s) is even so that v(s) = (v1, . . . ,v2k) for some integer
k and, therefore, θVB(s) = δ(vk,vk+1). Since n is odd and cv(s) is even, there are i, j ∈ N with
si = s j. We claim that if ti , δ(vk,vk+1) then agent i has a profitable deviation. If ti ∈ (vk,vk+1),
agent i can profitably deviate announcing her true peak ti which induces θVB(ti, s−i) = ti. If
ti ≤ vk, agent i can induce θVB(x, s−i) = vk by playing some x with x < vk and x , s j for any
j , i. Finally, if ti ≥ vk+1 a similar argument to the case in which ti ≤ vk applies. Hence, in
any equilibrium s with an even number of announcements, the strategy of any agent i with
ti , δ(vk,vk+1) is unique.

Let s ∈ Tn be an equilibrium of θVB with cv(s) odd. Since cv(s) is odd, there is some integer
k such that v(s) = (v1, . . . ,vk+1, . . . ,v2k+1) so that θVB(s) = m(v(s)) = vk+1. Let i be an agent
with ti , vk+1 and assume to the contrary that si = s j for some j ∈ N. Again, agent i has
a profitable deviation. If vk ≤ ti < vk+1, then θVB(ti, s−i) = δ(ti,vk+1) so that ti is a profitable
deviation for agent i. If ti < vk, then any unique announcement s′i with s′i < vk induces outcome
θVB(s′i, s−i)= δ(vk,vk+1) which agent i strictly prefers to vk+1, so that any such s′i is a profitable
deviation for agent i. If vk+1 < ti a similar argument applies and shows that s is not an
equilibrium as assumed.

To show (2), consider an equilibrium s ∈ Tn of the mechanism θVB. If cv(s) is odd, there is
some integer k with v(s)= (v1,v2, . . . ,vk+1, . . . ,v2k+1) and θ(s)= m(v(s)). Assume to the contrary
that for some agent i we have ti < m(v(s)) and si > m(v(s)). If ti is not announced any agent
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under s−i and vk < ti < vk+1, then θ(ti, s−i) = ti, while if ti < vk, then θ(ti, s−i) = vk. If ti is
announced by some agent under s−i then, for any deviation s′i such that s′i < ti and s′i , s j

for every j , i, we obtain θ(s′i, s−i) = δ(vk,vk+1). In all of these cases, agent i has a profitable
deviation so that s is not an equilibrium. A similar contradiction arises when cv(s) is even and
when ti > m(v(s)) and si < m(v(s)), concluding the proof. �

Thus, in equilibrium, every agent whose peak does not coincide with the equilibrium out-
come makes a unique announcement that, furthermore, lies on the same side of the outcome
as her peak. Since we assumed that the number of agents is odd, this means that, the number
of different announcements is “typically” odd. The next example shows that equilibria with an
even number of different announcements are possible, but they have a very special structure.

Example 3. Let N = {1,2,3,4,5} with t = (1/5,2/5,2/5,2/5,3/5) so that m(t) = 2/5. The profile
s = (0,3/10,3/10,5/10,6/10) satisfies θVB(s)= δ(3/10,5/10)= 2/5= m(t). Agents 2, 3 and 4 do not
have a profitable deviation because the outcome coincides with their peak. Agent 1 and 5 are
best responding by making an announcement that is to the same side of the outcome as their
peak. Therefore, s is an equilibrium with an even number of different announcement in which
no agent announces 2/5. Regardless, those agents with peak at 2/5 coordinate in such a way to
make it the equilibrium outcome.

We are ready to conclude with the main result of this section.

Theorem 1. The value-based median θVB Nash implements the median rule.

Proof. We first show that m(t) is the unique equilibrium outcome for every peak profile t. Let
s be an equilibrium of θVB. From Proposition 2, every agent i with peak ti < θVB(s) plays
si < θVB(s) while every agent with peak ti > θVB(s) plays si > θVB(s). Furthermore, they send
unique announcements in equilibrium so that the difference between the number of agents
whose peak is strictly larger and strictly smaller than θVB(s) is no larger than the number
of agents whose peak is θVB(s). There is at least one agent with peak θVB(s) as otherwise s
would not be an equilibrium. Indeed, if no agent has peak θVB(s) then cv(s) = n because every
announcement would be different from each other. This would imply θV B(s) = m(s) and the
agent sending announcement m(s) would have a different peak and would not be optimizing.
But these observations about the number of peaks that are larger, smaller, and equal to θVB(s),
together with the fact that they must add up to n readily imply that θVB(s) = m(t), as we
wanted.

We now show that, for every t ∈ Tn, there is some equilibrium s of θVB such that θVB(s)= m(t).
Relabelling if necessary, let t = (t1, . . . , tn) be such that t1 ≤ . . . ≤ tk ≤ tk+1 ≤ tk+2 ≤ . . . tn, with
n = 2k+1 for some k. Select a strategy profile s satisfying (1) sk+1 = tk+1, (2) 0< si < tk+1 for any
i = 1, . . . ,k, (3) 1> si > tk+1 for any i = k+2, . . . ,n, and (4) for any 1≤ i, j ≤ n, if ti < t j then si < s j.
For any such s, v(s) = s and θVB(s) = tk+1. We must prove that s is an equilibrium. The agent
with peak tk+1 does not have an incentive to deviate by construction. Every agent with peak
ti < tk+1 announces si < tk+1 and has three possible deviations. If she deviates to s′i = s j for
some j ∈ N, induces outcome θV B(s′i, s−i) = δ(tk+1, sk+2) so that it is not a profitable deviation.
If she plays some unique announcement s′i < tk+1, then θV B(s′i, s−i) = θV B(si, s−i). Finally, if
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she plays some unique announcement s′i > tk+1, then the outcome θV B(s′i, s−i) is either s′i (if
s′i < sk+2) or sk+2 (if s′i > sk+2); and neither of these deviations are profitable for agent i since
ti < tk+1. An analogous argument applies if the agent has peak ti > tk+1. Therefore, s is an
equilibrium of the mechanism θVB. �

4. INCOMPLETE INFORMATION

We now extend the arguments of the previous section to an incomplete information environ-
ment. We show that the value-based median mechanism induces a unique equilibrium outcome
given that every agent reveals her peak truthfully with probability one. As already mentioned
in the introduction, the VB-median mechanism is “detail-free” or “nonparametric”, that is, it
does not depend on the priors held by the agents or the mechanism designer. Using the ter-
minology of Saijo et al. [2007] (see also Bergemann and Morris, 2005), the mechanism θVB

robustly and truthfully implements the median rule when each agents’ priors are restricted to
be a probability measure that is absolutely continuous with respect to the Lebesgue measure
over the set of peak profiles.

Nonetheless, to simplify notation, we make two additional assumptions on beliefs: (1) agents
have a common prior, and (2) peaks are independently distributed. But we remark that the
arguments of the proof do not depend on either of them. Intuitively, given that the VB-median
mechanism is almost strategy proof (Proposition 1), being truthful in the interim stage is opti-
mal against all but a subset of announcement profiles of zero Lebesgue measure. Furthermore,
it is the unique optimal action if it is expected that the true peak is the median of the announce-
ments with positive probability. Therefore, if an agent expects every other agent to be truthful
(so that they play according to the identity function) and she has an absolutely continuous prior
over the set of peak profiles, the subset of announcement profiles of the opponents for which
being truthful is not optimal always receives probability zero. And, moreover, every peak that
the agent may have is the median of the announcements with positive probability. Therefore,
truthtelling is an equilibrium.

In turn, the strategy of the proof to show that, in equilibrium, every agent truthfully reveals
her peak with probability one proceeds in two steps. We first show that no agent makes an
announcement with positive probability (i.e., for a positive probability subset of her peaks) if
she anticipates that some other agent will also make that same announcement with positive
probability. And, second, we note that that implies that there are, typically, an odd number of
announcements, fact that we use to prove that every agent must anticipate that her peak will
be the median of the announcements with positive probability. In both steps, the relevant piece
of information about beliefs is understanding which subsets of peak profiles have positive or
zero probability. As long as beliefs over peak profiles are absolutely continuous with respect to
the Lebesgue measure, those subsets are the same and common to all agents.

Thus, for every agent i, let Fi be an absolutely continuous distribution function over T.
For each i, we let F−i denote the probability distribution on Tn−1 induced by the family of
distribution functions F1, . . . ,Fi−1,Fi+1 . . . ,Fn. Given F1, . . . ,Fn, a mechanism characterized by
the Borel-measurable function θ : Tn → ∆(A) induces an n-agent Bayesian game. Agent i’s
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strategy set is the collection of all Borel-measurable functions σi : T → T. We write σ−i(t−i) =
(σ1(t1), . . . ,σi−1(ti−1),σi+1(ti+1) . . . ,σn(tn)).

A strategy profile σ = (σ1, . . . ,σn) is an equilibrium of the Bayesian game induced by the
mechanism θ : Tn → A if no agent has an incentive to unilaterally deviate, that is, if for every
agent i ∈ N, and any strategy ςi : T → T we have∫

T

[∫
Tn−1

Ui
(
θ(σi(ti),σ−i(t−i)) | ti

)
dF−i(t−i)

]
dFi(ti)≥∫

T

[∫
Tn−1

Ui
(
θ(ςi(ti),σ−i(t−i)) | ti

)
dF−i(t−i)

]
dFi(ti).

For every agent i, the distribution function Fi and the strategy σi induce a distribution
function over announcements G i defined by G i(a) := ∫

σ−1
i ([0,a]) dFi. We write G := ∏

i G i and
G−i := ∏

j,i G j. The support S (G i) of G i is defined as the collection of points x ∈ A such that
for every open subset O satisfying x ∈O we have

∫
O dG i > 0. Strategy ςi : T → T of agent i is a

best response against σ−i if it maximizes∫
T

[∫
Tn−1

Ui(θ(ςi(ti), s−i) | ti)dG−i(s−i)
]

dFi(ti). (2)

Before proving our main result, we formally recall what it means to implement a welfare
optimum in this incomplete information environment (see Jackson [1991], Duggan [1997] and
Saijo et al. [2007] among others).

Definition 7. The mechanism θ : Tn → A Bayes-Nash implements the welfare optimum f :
Tn → A in an incomplete information environment if

(1) the Bayesian game induced by θ : Tn → A has at least one equilibrium, and
(2) every equilibrium satisfies θ(σ1(t1), . . . ,σn(tn))= f (t) for almost every peak profile t ∈ Tn.

Recall that, in this incomplete information setting, the median mechanism admits a large
multiplicity of equilibrium outcomes (every point in A is an equilibrium outcome) and hence it
fails to implement the median rule.

Theorem 2. The value-based median mechanism θVB Bayes-Nash implements the median rule.
Furthermore, in every equilibrium, an agent’s strategy may only differ from truthful revelation
in a zero measure set of peaks.

Proof. Given Proposition 1, the strategy profile in which every agent reveals her true peak is
an equilibrium of θVB. Therefore, for almost every peak profile t ∈ Tn, the outcome induced by
θVB under such an equilibrium is m(t).

We now prove that, in every equilibrium, every agent plays truthfully apart from, possibly, a
set of peaks with zero measure.6 Let σ= (σi)i∈N be an equilibrium. For every agent i consider
the set of isolated announcements in [0,1] that are sent with positive probability by agents

6 By assumption, each distribution function Fi is absolutely continuous. Therefore, if ςi is a best response against
σ−i and ς′i coincides with ςi almost everywhere on T, the value of (2) does not change and shows that ς′i is also a
best response against σ−i. Hence, it is enough to show that, in any equilibrium, every agent is playing truthfully
apart from a set of peaks of measure zero.
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other than i under σ. That is, let Φσ
i be the set of points x ∈ [0,1] such that∫

σ−1
j (x)

dF j > 0 for some j , i. (3)

Similarly, we define the superset of Φσ
i that that contains all its midpoints, that is

Φ̃σ
i =Φσ

i
⋃{

x ∈ A | x = δ(y, z) for some y, x ∈Φσ
i

}
. (4)

We claim that, in equilibrium, no agent sends an announcement that coincides with some
other agent’s announcement with positive probability. To the contrary, assume that the set of
peaks σ−1

i (ai) for which agent i announces ai ∈ Φσ
i has positive positive probability. Agent i

has a profitable deviation to the strategy σ′
i obtained from σi by replacing the announcement

ai that is sent when agent i has a peak in σ−1
i (ai)\Φ̃σ

i by the corresponding truthful announce-
ment. After such a deviation, if ti ∈σ−1

i (ai)\ Φ̃σ
i , the truthful announcement ti is unique with

probability one, while ai is redundant with positive probability. Using the same arguments as
in Proposition 2, it follows that Ui(θVB(ti, s−i) | ti) >Ui(θVB(ai, s−i) | ti) for every s−i such that
s j = ai for some j , i and ti , θVB(ai, s−i). Therefore,∫

Tn−1
Ui(θVB(ti, s−i) | ti)dG−i(s−i)>

∫
Tn−1

Ui(θVB(ai, s−i) | ti)dG−i(s−i)

for every ti ∈ σ−1
i (ai) \ Φ̃σ

i because some agent other than i announces ai with positive proba-
bility and we only have ti = θVB(ai, s−i) with probability zero according to G−i. Since the set
Φ̃σ

i is at most countable, agent i’s peak ti belongs to σ−1
i (ai)\Φ̃σ

i with positive probability. That
is, the strategy σ′

i is indeed a profitable deviation.
Thus, there is a product set Q = ∏n

i=1 Q i ∈ A that receives positive probability under the
induced distribution function G and satisfies the following two properties:

(1) for every i ∈ N, the subset Q i is either a closed interval or a singleton, and
(2) for any two i, j ∈ N we have Q i ∩Q j =;.

Condition (2) implies that there is an agent, say agent k, such that for any arbitrary q ∈Q we
have qk = m(q). Consider the following two bounds,

ak :=max
{

x ∈ ⋃
i,k

Q i : x <min Qk

}
and bk :=min

{
x ∈ ⋃

i,k
Q i : x >max Qk

}
.

Given our choice of Q we have ak < bk. If agent k has peak tk ∈ (ak,bk) then the unique
announcement sk that maximizes Uk(sk, q−k | tk) is sk = tk. Therefore, if agent k has peak
tk ∈ (ak,bk)\Φσ

i the unique announcement sk that maximizes
∫

Tn−1 Uk(sk, s−k | tk)dG−k(s−k) is
also sk = tk. Hence, since the set Φσ

i is at most countable, agent k’s unique best response for
almost every peak she might have in (ak,bk) is to reveal her true peak. But this implies that for
almost every peak in (ak,bk) that agent i , k may have, agent i also plays truthfully under σ.
This is because, with positive probability under σ, each j ∉ {i,k} makes an announcement in Q j

and agent k makes an announcement in (ak,bk). Hence, if agent i’s truthful announcement lies
in (ak,bk), then it is the median of the different announcements with positive probability. We
conclude that, every agent with a peak almost everywhere in (ak,bk) plays truthfully under σ.

The set of open intervals (â, b̂) with (ak,bk)⊂ (â, b̂)⊂ [0,1] such that every agent with a peak
almost everywhere in (â, b̂) truthfully reports her peak under σ can be partially ordered by
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set inclusion. Furthermore, every totally ordered subset of such intervals has an upper bound.
Therefore, by Zorn’s Lemma, there is a largest interval (a∗,b∗) for which such a property is
true. Suppose that a∗ > 0. Because (a∗,b∗) is the largest interval of its family, there is at
least one agent, say, agent j whose support S (G j) is a subset of [a∗,1]. If agent j has peak
t j ∈ [0,a∗) \Φσ

j , then she strictly prefers a truthful announcement to any announcement in
(a∗,1] because the latter would induce a worse outcome with strictly positive probability. Since
S (G j) ⊂ [a∗,1], agent j announces a∗ with positive probability. This implies that any other
agent j′ , j with peak in [0,a∗) \Φσ

j′ strictly prefers a truthful announcement to announcing
a∗, which is redundant with positive probability, and also to any announcement in (a∗,1], for
the same reason as agent j above. Hence, for every agent j′ , j we have S (G j′)∩[0,a∗),∅ and,
in such a case, the optimal response for a positive measure set of peaks of agent j in [0,a∗) is
a truthful announcement. This contradicts S (G j)⊂ [a∗,1], therefore, a∗ = 0. For an analogous
reason, b∗ = 1.

We conclude that, in equilibrium, every agent makes a truthful announcement for almost
every peak in [0,1]. Therefore, every equilibrium σ satisfies θ(σ1(t1), . . . ,σn(tn)) = m(t) for
almost every peak profile t ∈ Tn. �

Remark 1. A similar proof shows that the mechanism θVB has a unique interim Bayesian
equilibrium and that, in such an equilibrium, truthtelling is the unique optimal action for
every agent at every information set.

To our knowledge, the above result is the first one showing that the median rule is Bayes-
Nash implementable in general environments of incomplete information. This confirms the
privileged empirical relevance that the median rule and its variants (see the next section)
have within the class of welfare optima in the single-peaked domain.

5. GENERALIZED MEDIAN RULES

Each generalized median rule (GMR) selects the median of a profile of peaks together with
a collection of fixed elements (called phantoms). For instance, the lowest peak in the peak
profile t of length n is the median of the profile obtained after adding n−1 points to the profile t
that are all smaller than any peak in t. Of course, any k-th order statistic of a peak profile
(which selects the k-th largest peak) can be expressed in a similar way.

Before formally defining GMRs, we enlarge the sets X and A to allow for points that are
smaller (larger) than any conceivable peak. Fix some arbitrary ε> 0 and define the expanded
set of alternatives Aε := [−ε,1+ε] and the set of finite profiles Aε := ⋃∞

h=1 [−ε,1+ε]h. Extend
the functions v, c, m, m−, and m+ to Aε in the obvious way.

We say that a profile y ∈Aε of length h is a permissible profile of phantoms if (i) h < n, (ii)
n+h is odd, and (iii) every entry in y is different.

Definition 8. Given a permissible profile of phantoms y, the welfare optimum f y : Tn → A is
the generalized median rule associated to y if for each t ∈ Tn we have

f y(t)= m(t, y).
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Example 4. Let n be even. Then y = (0) is a permissible profile of phantoms and we can say
that f y(t) is the median rule given that, for every t ∈ Tn, we have f y(t)= m(0, t)= m−(t). (Alter-
natively, if y= (1) the rule f y(t) selects the upper-median as the median of an even profile.)

Example 5. Take some integer k ≤ n/2. The social optimum that selects the k-th lowest (re-
spectively, highest) peak can be expressed as a GMR by selecting a permissible profile of phan-
toms y of length n−2k+1 and such that every one of its entries lies in the subinterval [−ε,0)
(respectively, in the subinterval [1,1+ε]).

Similarly to the median mechanism θM , using f y as the outcome function of a direct mech-
anism produces a game with a large multiplicity of equilibrium outcomes due to coordination
problems. To discourage agents from coordinating on the same announcement we construct a
value-based mechanism θy that counts several equal announcements as one.

Definition 9. The generalized value-based median mechanism associated to the permissible
phantom profile y is the direct random mechanism θy : Tn → ∆(Aε) defined so that, for each
strategy profile s ∈ Tn,

θy(s) :=
m(v(s, y)) if v(s, y) is odd , and

δ
(
m−(v(s, y)),m+(v(s, y))

)
if v(s, y) is even.

Notice that, under this mechanism, phantoms are treated as if they were announcements
made by sincere agents with known peaks.

Theorem 3. The mechanism θy implements the GMR f y under complete information.

Proof. Let h be the length of the permissible profile of phantoms y. We first argue that if s is
an equilibrium of the complete information mechanism at the peak profile t, then it satisfies
θy(s)= m(t, y). Because y is a permissible profile of phantoms, n+h is odd. Hence, the same ar-
guments used in Proposition 2 prove that, if s is an equilibrium, no agent makes an announce-
ment either equal to some other agent’s announcement or equal to a phantom. Furthermore,
they also show that every agent with peak different from θy(s) makes an announcement that
is to the same side of the outcome as her peak. Thus, the difference between the number of
entries in (t, y) that are strictly larger and smaller than θy(s) is no larger than the number of
entries in (t, y) equal to θy(s). Since at least one entry in (t, y) is equal to the outcome induced
by s, for analogous reasons as in the Theorem 1, such an outcome must coincide with m(t, y) as
we wanted.

To show that the complete information mechanism has at least one equilibrium s such that
θy(s) = m(s, y), construct a strategy profile along the lines of the second part of the proof of
Theorem 1. The only difference here is that elements in y are not agent announcements and,
therefore, have a fixed position. However, this difference does not impose any relevant restric-
tion and arguments analogous to those in that proof show that the mechanism has, indeed, at
least one equilibrium that induces the desired outcome. �

In the same vein, we also obtain an implementation result for GMRs under the incomplete
information environment described in Section 4.
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Theorem 4. The mechanism θy implements the GMR f y under incomplete information. More-
over, in every equilibrium, every agent reveals her true peak with probability one.

Proof. Proposition 1 implies that if agent i’s peak ti does not coincide with a phantom then she
cannot do better than reporting her true peak if her opponents truthfully report their peak as
well and, therefore, they announce ti with probability zero. Hence, truthful revelation is an
equilibrium of the mechanism.

Let h be the length of the permissible profile of phantoms y. With the same notation as in the
proof of Theorem 2 we argue that every equilibrium σ satisfies θy(σ1(t1), . . . ,σn(tn)) = m(t, y)
for almost every peak profile t ∈ Tn.

Therefore, let σ be an equilibrium and let the induced probability distribution G and the
set Φσ

i be as in the proof of Theorem 2. We can use analogous arguments to the ones used in
the proof of Theorem 2 to show that no agent i makes an announcement in Φσ

i ∪ {y1}∪·· ·∪ {yh}
with positive probability. Therefore, we can choose a collection of sets {Q i}n+h

i=1 such that {Q i}n
i=1

receives positive probability under G and:

(1) for i = 1, . . . ,n, the subset Q i is either a closed interval or a singleton,
(2) for i = n+1, . . . ,n+h we have Q i = {yi−n}, and
(3) for any two i, j ∈ N we have Q i ∩Q j =;.

The product set Q can be used to select an agent k such that for any q ∈Q we have m(q)= qk.
Instead of the interval (ak,bk) constructed in the proof of Theorem 2 we need to use the interval
(ak,bk)∩ [0,1] to make sure that it is a subset of the set of peaks T. From this point forward
the proof of Theorem 2 applies almost verbatim to the current case. �

Remark 2. The only reason why an agent with known peak may find it advantageous to mis-
report it is if there is a phantom that coincides with her peak. Therefore, any GMR with
no interior phantoms (i.e., any k-th order statistic) can also be implemented using interim
Bayesian equilibrium. Thus, under such an assumption, the value-based mechanism has a
unique and sincere equilibrium.
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