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1 Introduction

Several national statistical agencies are either using or considering the use of scanner data
from retail outlets that collect data on weekly unit value prices and the corresponding
quantities sold of specific products. These detailed data on prices and quantities can be
used in order to construct consumer price indexes for various product groups. Besides the
benefits from using more information in a more efficient way, there are additional benefits
that can arise. These include the potential for improving the timeliness of CPI releases and
the potential to move resources from data collection and processing to analytics.!

The 2004 International Labour Office Consumer Price Index Manual recommended
that chained superlative indexes be used in constructing national Consumer Price Indexes
(CPIs) when detailed price and quantity data are available. The reason why chaining was
recommended over the use of fixed base indexes was that more exact product matches
across periods will generally be found if chained indexes are constructed instead of fixed
base indexes; this is due to the fact that often one or two percent of products disappear
from the marketplace each month in many countries.? However, as more experience with
the use of chained indexes has become available, it has been noticed that chained indexes
frequently drift downwards as compared to corresponding fixed base indexes. It is a serious
problem and this paper examines possible solutions.

CPIs have traditionally been constructed by statistical agencies using bilateral index
number theory; i.e., the prices and quantities for a group of commodities for the current
period were compared to the same prices and quantities for a base period.  Multilateral
index number theory uses the prices and quantities for a group of commodities for multiple
periods (say T periods) and simultaneously constructs a sequence of price indexes for all
T periods. Ivancic, Diewert and Fox (2011) suggested that the use of multilateral indexes
in the scanner data context can largely solve the chain drift problem. Subsequently, there

has been a considerable amount of additional research on the use of multilateral methods

!The Australian Bureau of Statistics implemented the approach recommended in this paper in CPI con-
struction, starting from the December Quarter of 2017; see the Australian Bureau of Statistics (2017)(2018).

2Using Adobe Analytics data on online transactions from January 2014 to September 2017, Goolsbee
and Klenow (2018; 490) found that “roughly half of the sales volume online is for products that did not exist
in the previous year. Even without apparel, the figure is 44%. The products that disappear, meanwhile,
had about 24% of total sales before they left the market (22% excluding apparel).”



UNSW Economics Working Paper 2018-13

when detailed price and quantity data are available. We review and extend this research.

The chain drift problem is explained in more detail in section 2. Multilateral index
methods are explained in section 3, starting with the GEKS multilateral method due to
Gini (1931; 12), Elteté and Koves (1964) and Szulc (1964). The GEKS method uses the
bilateral Fisher (1922) ideal index as a basic building block. Instead of using the Fisher
index, it is possible to use Gini’s basic methodology but use the Tornqvist index as the
bilateral building block index. This idea was used by Caves, Christensen and Diewert
(1982) using distance functions, and adapted to the price index context by Inklaar and
Diewert (2016). This multilateral method, which we call the CCDI approach, will be
explained in section 3.2.> Section 3.3 reviews and introduces some new results on the
Weighted Time Product Dummy (WTPD) method which is a generalization of Summer’s
(1973) Country Product Dummy method for making price comparisons across countries.
Section 3.4 examines the Geary (1958) Khamis (1970) (1972) (GK) multilateral method.*

A multilateral index number method will determine a sequence of price indexes or
aggregate price levels for say T periods where T" > 3. When the data for period T+ 1
becomes available, CPI methodology typically does not allow for a revision of price levels
that have already been determined for periods 1 to 7', so those initially determined price
levels remain the same. If the multilateral method is used to form a new sequence of price
levels for periods 2 to T'+ 1, the following question arises: how exactly should the new price
levels be linked to the initial sequence of price levels? Various methods for accomplishing
this linking have been suggest in the recent literature, and in section 3.5 we will study
these alternative linking methods in the context of the CCDI multilateral indexes since
this facilitates comparisons.

Section 4 introduces Constant Elasticity of Substitution (CES) purchaser preferences

as a basis for a target cost of living index.® Although attracted to multilateral methods for

3Given that it is a variant of the GEKS approach advocated by Ivancic, Diewert and Fox (2011) in the
scanner data context, it is sometimes called “GEKS-Térnqvist.

4Ivancic, Diewert and Fox (2009) (2011) used the GEKS and the Weighted Time Product Dummy
multilateral methods which will be explained in section 3. Khamis (1970; 83-85) (1972; 101) noted that
Geary-Khamis multilateral indexes could be applied in the time series context as well as in the international
comparisons context. Balk (1981) also adapted Gini’s basic methodology to the time series context using
the Sato (1976) Vartia (1976) bilateral index number formula as the bilateral building block formula.

®Balk’s (1981) multilateral method, which adapted Gini’s basic methodology using the Sato-Vartia
bilateral price index as the basic building block, is exact for CES preferences.
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using scanner data in price indexes, statistical agencies have had difficulties in trying to
determine which multilateral method should be used to aggregate price data when detailed
price and quantity data are available for a stratum of their CPIs. The problem is that
the “truth” is not known. Thus in the later sections of this study, we will assume that
we know the “truth”; i.e., we will assume that purchasers have known CES preferences
and thus we can construct the corresponding true cost of living indexes given an artificial
data set. Then the various multilateral methods that have been suggested in the literature
can be constructed using the artificial data set and compared with the corresponding true
CES cost of living indexes. The assumption of CES preferences has been used in many
economics and marketing studies.®

We present our first artificial data set in section 4.1. We assume given price data on four
commodities for twelve periods along with total expenditures on the commodities. CES
preferences are assumed but we allow the elasticity of substitution parameter o to take
on six separate values: 0, 0.5, 1, 2, 4 and 10. For each of these values of o, we construct
quantity data based on the CES functional form. As o varies, the price data remain the
same but the quantity data change in order to be consistent with the CES preferences.
In section 4.1, we construct the six variants of the artificial data set along with the true
CES cost of living indexes and compare these true indexes with fixed base and chained
Fisher and Toérnqvist indexes as well as the single window GK, WTPD, GEKS and CCDI
multilateral price levels. It turns out that the best approximations to the true indexes vary
as the elasticity of substitution varies.

The methodological approach taken in section 4.1 does not address the chain drift
problem because it does not arise using the artificial data set. Hence in section 4.2, we
alter the data used in section 4.1 to reflect the chain drift problem. This problem is basically
caused by heavily discounted prices. Purchasers stock up on a product when it goes on
sale. In the period following the sale, consumers do not purchase the same amount of
the product that they did in the pre-sale period. This behaviour is not consistent with

the assumptions underlying the typical theory of the cost of living index, which does not

6For economics studies, see e.g. Balk (1981), Feenstra (1994), Ivancic, Diewert and Fox (2010), and
Goolsbee and Klenow (2018), and Baltas (2001) for an example from the marketing literature.



UNSW Economics Working Paper 2018-13

take into account the holding of stocks of consumer goods over multiple periods.” The net
effect of this stockpiling behaviour is to cause chained indexes to have a downward bias as
compared to a corresponding fixed base index.

In section 4.3, we use the adjusted artificial data set constructed in section 4.2 to study
the window linking problem of section 3.5. In section 4.4, we again use the adjusted artificial
data set in order to introduce two additional multilateral methods that are based on linking

observations that have the most similar structure of relative prices. Section 5 concludes.

2 The Chain Drift Problem

More than a decade has passed since the 2004 Consumer Price Index Manual was pub-
lished.® The main problem that the Manual did not address adequately is the chain drift.”
Suppose that a chosen group of households purchases N quantities in each of two periods
and the representative basket is defined by the positive quantity vector ¢ = [q1, ..., qn].
Given the price vectors for periods 1 and 2, p' = [pi,...,pN] and p* = [p,...,p%] re-
spectively, we can calculate the cost of purchasing this same basket in the two periods,

plog=N plg,and p?-q =3 p2q,. This leads to the Lowe (1823) price index, Pp,,

which is commonly used in CPI construction, defined as follows:

Pro(p',p* q) =p' - q/p" - q. (1)

There are two natural choices for the reference basket: the period 1 commodity vector
q' that was actually purchased by the group of households or the corresponding period

2 commodity vector ¢%.!° These two choices lead to the Laspeyres (1871) price index Pp

"In principle, this stockpiling activity could be modeled by treating the purchases as purchases of durable
goods and constructing user costs.

8See the ILO/IMF/OECD/UNECE/Eurostat/The World Bank (2004). The Manual was written over
the years 2000-2003. For brevity, in the future, we will refer to the CPI Manual as the Manual.

9Szulc (1983) (1987) demonstrated how big the chain drift problem could be with chained Laspeyres
indexes but the authors of the Manual did not realize that chain drift could also be a problem with chained
superlative indexes.

10Tn practice, the reference basket is often determined by the last survey of household expenditures.
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defined by (2) and the Paasche (1874) price index Pp defined by (3):

N
PLp' . p*d"q") = pd/pPd = sh(ph/ph); (2)
~1

N
Pp(p'.p*.q" . q*) = P’¢/p'd = > sapd/p)”! (3)

where the period t expenditure share on commodity n, s', is defined as p! ¢’ /p'q" for
n=1,...,N and t = 1,2. Thus the Laspeyres price index P, can be written as a base
period expenditure share weighted average of the N price ratios (or price relatives), p2 /pl.
The last equation in (3) shows that the Paasche price index Pp can be written as a period
2 (or current period) expenditure share weighted harmonic average of the N price ratios.

A problem with the Lowe, Laspeyres and Paasche indexes is that they are subject to
substitution bias. Typically, when the price of a commodity decreases, consumers purchase
more of it and conversely when a price increases, consumers purchase less of it. Diewert
(1976) introduced the concept of a superlative index number formula, which deals with this
problem of substitution bias.!* Fisher (1922) suggested taking the geometric mean of the

Paasche and Laspeyres indexes, which results in a superlative index, Pp:

Pr(p", 0% ¢", ¢%) = [PL(0", 1", ¢". ) Pr(p", . ¢", ¢*)]"/>. (4)

Another commonly used superlative index is the Tornqvist index, Pp:!'?

N
1 2s +s
PT(p17p27q17q E H pn/ 2 ) (5)

A superlative index number formula has the property that it is exactly equal to a Koniis (1924) true
cost of living index provided that the purchasing households have preferences that can be represented
by certain functional forms, where these functional forms can approximate arbitrary preferences to the
accuracy of a second order approximation.

12This index first appeared explicitly as formula 123 in Fisher (1922; 473). Pr is generally attributed
to Torngvist (1936) but this article did not have an explicit definition for Pr; it was defined explicitly in
Torngvist and Torngvist (1937); see Balk (2008; 26). This index requires that all prices in each period
are positive, which is a restrictive assumption. Implicitly, we assume that if say commodity n is not
available in period ¢ so that ¢t = 0, then there is a positive reservation price p!, > 0 that will induce
potential purchasers to demand a zero amount of the commodity. This methodological approach to new
and disappearing goods follows Hicks (1940; 114). The practical problem facing price statisticians is:
how exactly are these reservation prices to be determined? See e.g. Diewert and Feenstra (2017) and
Brynjolfsson, Collis, Diewert, Eggers and Fox (2018) for possible solutions.
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The Fisher and Tornqvist indexes were recommended in the Manual as target indexes.'?

In order to explain the chain drift problem, it is first necessary to explain how chained
indexes differ from fixed base indexes. Suppose that we have decided on a “best” price index
formula that compares the prices of period 1 with those of period 2, say P(p',p? ¢!, ¢?).
Suppose further that we have price and quantity data for three periods. The sequence of
the price levels for the three periods under consideration, P!, P? and P3, using fized base

(or direct) indezes can be constructed as follows:

;. PP=PO.,p%q.¢%); PP=PO'p’d. ). (6)

Thus the prices in period 3, p3, are compared directly with the prices in period 1, p'.
The sequence of the three price levels, P!, P? and P3, using chained indezes can be

constructed as follows:

P'=1, PP=P0.p%d.¢%); P =PO.pd.)PW, ¢ %) (7)

Thus fixed base and chained price levels coincide for the first two periods but in subsequent
periods t, the fixed base indexes compare the prices in period ¢ directly to the prices in pe-
riod 1 whereas the chained indexes simply update the price level in the previous period by
multiplying by the period over period chain link index P(p'~', p', ¢"=*',¢"). The two meth-
ods of index construction will coincide if the bilateral price index formula P(p', p?, ¢*, ¢*)

satisfies the following test:

Circularity Test: P(p',p*, ¢", @) P(*,p*,¢*,¢*) = P(p", v, 4", ¢*). (8)

If there is only one commodity in the aggregate, then the price index P(p',p? ¢', ¢?)
just becomes the single price ratio, p?/pl, and the circularity test becomes the equation

(02 /pil[p?/p3] = [p?/pi], which is obviously satisfied. The equation in the circularity test

13In the Manual, these indexes were regarded as preferred not only from the viewpoint of the economic
approach to index number theory but also from the viewpoint of the test approach (for the Fisher index)
and from the viewpoint of the stochastic approach (for the Térnqvist index; see Theil (1967; 136-137)). The
US Bureau of Labor Statistics uses the Térnqvist price index as its target index for its chained Consumer
Price Index (CPI); see Bureau of Labor Statistics (2007).
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illustrates the difference between chained index numbers and fixed base index numbers.
The left hand side of (8) uses the chain principle to construct the overall inflation between
periods 1 and 3 whereas the right hand side uses the fized base principle to construct an
estimate of the overall price change between periods 1 and 3.1

It would be ideal if our preferred index number formulae, the Fisher and Tornqgvist
indexes (Pr and Pr), satisfied the circularity test (8), but unfortunately, they do not.'
Hence, a statistical agency compiling a CPI has to choose between the two methods of index
construction. The Manual advocated chaining as the “set of seasonal commodities which
overlaps during two consecutive months is likely to be much larger than the set obtained
by comparing the prices of any given month with a fixed base month” and “rapid sample
attrition means that fixed base indices rapidly become unrepresentative and hence it seems
preferable to use chained indices which can more closely follow marketplace developments.”
ILO (2004; 407). Thus the Manual recommended chained Fisher or Tornqvist indexes as
target index concepts. As will be seen, this advice does not always work out too well.

If an index is to be produced at monthly or quarterly frequencies, it is not appropriate
to use chaining when prices oscillate or “bounce”.'® This phenomenon can occur in the
context of regular seasonal fluctuations or in the context of sales, resulting in chain drift;

see the Appendix for a simple numerical example. Consider the following test due to Walsh

(1901; 389), (1921; 540):'7

Muitiperiod Identity Test : P(p*,p% ¢',¢")P(0*,0°, ¢, ¢*)P(0*,p",¢*.¢') = 1. (9)

Thus price change is calculated over consecutive periods but an artificial final period is
introduced where the prices and quantities revert back to the prices and quantities in the
very first period. The test asks that the product of all of these price changes should equal

unity. If prices have no definite trends but are simply bouncing up and down in a range,

4 Fisher (1911; 203) introduced this fixed base and chain terminology. The concept of chaining is due to
Lehr (1885) and Marshall (1887; 373).

15See Alterman, Diewert and Feenstra (1999; 61-65) for cases when the Tornqvist index Pr will satisfy
the circularity test.

16See Szulc (1983)(1987), Hill (1988; 136-137) and Hill (1993; 388).

17This is Diewert’s (1993; 40) term for the test. Walsh did not limit himself to just three periods as in
(9); he considered an indefinite number of periods.
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then (9) can be used to evaluate the amount of chain drift that occurs if chained indexes
are used under these conditions. Chain drift occurs when an index does not return to unity
when prices in the current period return to their levels in the base period; see the ILO
(2004; 445).

There are at least three possible solutions to the chain drift that is associated with
the use of a superlative index in a situation where monthly scanner data are available to
the statistical agency for components of the CPI:!® (i) Use an annual basket Lowe index
that uses annual expenditure weights from a past year, which is the usual approach to
CPI construction in most countries. (ii) Pick a base month and use fixed base superlative
indexes relative to the chosen month. (iii) Use a Rolling Window multilateral index number
approach adapted to the time series context.

The problem with the first method is that the Lowe index is subject to a small amount
of upper level substitution bias, usually in the range of 0.15 to 0.40 percentage points
per year.' The widespread use of the Lowe index is due to its practical nature and the
fact that the amount of substitution bias is generally not all that large.? The problem
with the second method is that picking a base month and calculating superlative indexes
relative to this base is an asymmetric procedure and gives too much weight to the chosen
base. Moreover, some commodities may not be available in the chosen base month and some
commodities disappear in the later months of the comparison. Hence not all of the monthly
price and quantity information is used in a fixed base method. Thus in the remainder of

this paper, we will concentrate on the use of multilateral indexes as potential solutions to

8There is a possible fourth method to avoid chain drift within a year when using a superlative index
and that is to simply compute a sequence of 12 year over year monthly indexes, so that say January prices
in the previous year would be compared with January prices in the current year and so on. Handbury,
Watanabe and Weinstein (2013) use this methodological approach for the construction of year over year
monthly superlative Japanese consumer price indexes using the Nikkei point of sale data base. This data
base has monthly price and expenditure data covering the years 1988 to 2010 and contains 4.82 billion
price and quantity observations. This type of index number was recommended in the ILO (2004; chapter
22) as a valid year over year index that would avoid seasonality problems. However, central banks and
other users require month to month CPIs in addition to year over year monthly CPIs and so the approach
of Handbury, Watanabe and Weinstein does not solve the problems associated with the construction of
superlative month to month indexes.

DFor recent retrospective studies on upper level substitution bias for national CPIs, see Armknecht
and Silver (2013), Diewert, Huwiler and Kohli (2009) and Huang, Wimalaratne and Pollard (2017). For
studies of lower level substitution bias for a Lowe index, see Diewert, Finkel and Artsev (2009) and Diewert
(2013a).

20Recent Canadian research has indicated that the substitution bias can be reduced substantially by
more frequent updating of the annual basket; see Huang, Wimalaratne and Pollard (2017).
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the chain drift problem.?!

3 Multilateral Indexes

This section reviews some of the multilateral comparison methods that have been used in
the scanner data context. These will be compared empirically in section 4 using artificial

data sets where we know the truth by construction.

3.1 GEKS

The GEKS method for making international index number comparisons between countries
is due to Gini (1931; 12), Elteto and Koves (1964) and Szule (1964).2 Of course, it can
also be adapted to make comparisons between multiple time periods.

The GEKS method in the time series context works as follows. Suppose we have price
and quantity information for a component of the CPI on a monthly basis for a sequence of
13 consecutive months. Now pick one month (say month k) in this augmented year as the
base month and construct Fisher price indexes for all 13 months relative to this base month.
Denote the resulting sequence of Fisher indexes as Pp(1/k), Pr(2/k),..., Pr(13/k). The
final set of GEKS indexes for the 13 months is simply the geometric mean of all 13 of the
specific month indexes; i.e., the final set of GEKS indexes for the months in the augmented

year is any normalization of the following sequence of indexes:?

13 1/13 13 1/13 13 1/13
HPF(l/k)] ,HPF(2/k)] HPF(13/k)] . (10)

The GEKS indexes in (10) have a number of important properties: (i) They satisfy
Walsh’s multiperiod identity test of equation (9) so that if any two months in the augmented

year have exactly the same price and quantity vectors, then the index values will coincide

21For a recent study that takes a systematic look at the use of multilateral methods to create price
indices from scanner data, see the Australian Bureau of Statistics (2016).

221t was derived in a different fashion by Elteté and Koves (1964) and Szule (1964) and thus the method
is known as either the GEKS or EKS method for making multilateral comparisons.

23Balk (1981; 74) derived the GEKS parities using this type of argument rather than the usual least
squares derivation of the GEKS parities; see Balk (1996) and Diewert (1999) for these alternative deriva-
tions.
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for those two months; i.e., the indexes are free from chain drift. (i) The indexes do not
asymmetrically single out any single month to play the role of a base period; all possible
base months contribute to the overall index values.?* (iii) The indexes make use of all
possible bilateral matches of the price data between any two months in the augmented
year. That is, we are using what Ivancic, Diewert and Fox (2011; 26) called a “flexible
basket” approach that incorporates new items as they become available. (iv) Strongly
seasonal commodities make a contribution to the overall index values.

The last property explains why the augmented year should include at least 13 consecu-
tive months, so that strongly seasonal commodities can make a contribution to the overall
index.?®

The major problem with the GEKS indexes defined by (10) is that they change as
the data for a new month becomes available. A headline CPI cannot be revised from
month to month due to the fact that many contracts are indexed to a country’s headline
consumer price index. A solution to this problem was proposed by Ivancic, Diewert and
Fox (2011). Their method added the price and quantity data for the most recent month
to the augmented year and dropped the oldest month from the old augmented year in
order to obtain a new augmented year. The GEKS indexes for the new augmented year
are calculated in the usual way and the ratio of the index value for the last month in the
new augmented year to the index value for the previous month in the new augmented year
is used as an update factor for the value of the index for the last month in the previous
augmented year. The resulting indexes are called Rolling Window GEKS indezes, or for a
thirteen month window, Rolling Year GEKS indezes.

Numerical experiments with Australian and Dutch scanner data from grocery chains
showed that the Rolling Year GEKS indexes seem to work reasonably well; see Australian
Bureau of Statistics (2016) Ivancic, Diewert and Fox (2011), de Haan and van der Grient
(2011), and van der Grient and de Haan (2011). In particular, adding and dropping a

month of data and recomputing the GEKS indexes does not seem to change past index

24Thus the GEKS procedure seems to be an improvement over the suggestion of Feenstra and Shapiro
(2003) who chose only a single base month.
25 A strongly seasonal commodity is one that is not present in the marketplace for all months of the year.

10
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values very much.?® Basically, the method seems to control chain drift quite well.?

There are two additional issues with using Rolling Window GEKS in the scanner data
context: (i) How long should the window length be? The window length should be at
least 13 months (or 5 quarters if a quarterly CPI is compiled) in order to allow for the
influence of strongly seasonal commodities but what are the advantages and drawbacks of
increasing this “standard” window length??® (ii) When a new window is computed, how
should the index results from the new window be linked to the previous index values? As
noted, Ivancic, Diewert and Fox (2011) suggested that the movement of the indexes for
the last two periods in the new window be linked to the last index value generated by the
previous window, a method which has come to be known as the movement splice. However
Krsinich (2016), in a slightly different context, suggested that the movement of the indexes
generated by the new window over the entire new window period be linked to the previous
window index value for the second period in the previous window. Krsinich called this a
window splice. de Haan (2015a; 27) suggested that perhaps the linking period should be in
the middle of the old window, which the Australian Bureau of Statistics (2016; 12) terms
a half splice.

We will return to these questions after we have studied our other multilateral methods.

26Balk (1981; 77) also observed the same phenomenon as he computed his GEKS indexes using succes-
sively larger data sets. Diewert (2013a) also found that Rolling Year GEKS estimates were quite close to
their GEKS counterparts for his small data set on Israeli seasonal commodities.

2TIvancic, Diewert and Fox (2011; 33, footnote 19): “While a RWGEKS index, such as the RYGEKS,
will not satisfy transitivity in practice and hence will be potentially subject to chain drift, comparisons
within each window are transitive. Using this approach, chain drift is therefore unlikely to be a significant
problem in any context likely to be faced by a statistical agency. Also, alternative approaches to linking the
indexes could be investigated, such as using different overlapping periods for doing the linking, taking the
geometric mean of overlapping comparisons in multiple windows, and so forth. The most obvious approach
is pursued in this paper and works well in our empirical applications. An investigation into alternative
approaches is left for future research.” We return to this issue explicitly in section 11. The Australian
Bureau of Statistics (2017) implemented the version of the Rolling Window GEKS index recommended
by the current paper, from the fourth quarter of 2017 for twenty-eight expenditure classes, accounting for
approximately 17% of the CPI weight as of April 2017. Statistics Netherlands computed RYGEKS indexes
for some components of its CPI on an experimental basis with good results but they did not implement
the method officially; see de Haan and van der Grient (2011) and de Haan (2015a) (2015b). Statistics
New Zealand have implemented a version of RYGEKS, with adjustments for quality change, for consumer
electronics scanner data; see Krsinich (2015).

28Melser (2018) suggested a weighted GEKS approach to resolve the issue of the optimal window length.

11
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3.2 CCDI

The bilateral index Térnqvist index in (5) can be used to form a system of “star” indexes
where we choose each period in turn as the base, calculate a sequence of indexes for each
base and then take the geometric mean of the resulting star sequences. Thus a preliminary

price level for period t using this methodology is 7! defined as follows:

T 1T T N e 05(st s YT
o= \[[Prt/r)| = HH(@) L ot=1,...,T. (11)
T=1 T=1n=1 Pr
The normalized sequence of price levels is defined as 7'/ nt for t = 1,...,T. Obviously,

this methodology is entirely analogous to Gini’s methodology which led to the sequence of
GEKS (unnormalized) price levels defined by (10). The only difference is that the Térnqvist
bilateral price index formula, Pr(t/7), is used as the basic building block rather than the
Fisher formula, Pp(t/7).%

The expressions (11) that define the (unnormalized) price levels 7, can be simplified.
Define the sample average expenditure share for commodity n, s;,, and the sample geometric

mean of the prices for commodity n, p?, as follows:

T T
3;5%232; p;EH(pfl)l/T; n=1,...,N. (12)
t=1

=1
Definitions (12) can be used in order to define a new system of (unnormalized) price levels

p' for the T periods; i.e., define the logarithm of p! as follows:

L= ﬂ (p_?) B (13)
115 ; oo T
The sequence of normalized or final price levels for the T' observations in the sample is p'/p!
for t = 1,...,T. Note the similarity in structure of (5) and (13); the regular T6rnqvist
index Pr(t/T) compares the level of prices in period t with the corresponding level in period

whereas p' can be thought of comparing the level of prices in period ¢ with the corresponding

9de Haan and van der Grient (2011; 41) call the indexes (11) that use (5) as the bilateral building
block GEKS-Térnqvist indexes. Fox and Syed (2016; 401) call the indexes defined by (11) CCD indexes.
Caves, Christensen and Diewert (1982) used the GEKS methodology in the quantity context; i.e., they
used bilateral Tornqvist quantity indexes as their basic building block rather than bilateral Toérnqvist price
indexes.

12
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level of prices in an “average” observation which has expenditure shares equal to the sample
average expenditure shares s and sample average prices p; = [HtT:l pﬂ 1/T.

The price levels ¥ defined by (11) are closely related to the price levels p' defined by
(13); i.e., substituting definitions (12) into (13) and using definitions (11) leads to the

following relationship between the logarithms of 7¢ and p:
Int'=Inp'+a; t=1,...,T (14)

where the constant « is defined as follows:

T

(1/2)syInpy, — (1/27) Y > st Inpl,. (15)

1 t=1 n=1

o=

NE

n

Equations (14) mean that the normalized price levels using the 7" and p’ coincide; i.e., we
have:

at/at =pt/pt t=1,...,T. (16)

Comparing (11) to (13), it can be seen that making multilateral comparisons of prices
across the T periods using the price levels p* defined by (13) is analytically simpler than
using the price levels 7 defined by (11). Caves, Christensen and Diewert (1982; 78) intro-
duced the artificial country comparison idea into multilateral index number theory except
that they introduced the idea in the context of making quantity comparisons across pro-
duction units using distance functions. Inklaar and Diewert (2016; 429) extended the CCD
methodology to making price comparisons across production units and derived equations
(14). Thus we will call the multilateral price comparison method that uses the price levels
p' defined by (13) the CCDI method.

Using definitions (13) to define the (unnormalized) price levels pf, it can be seen that the
CCDI normalized price level in period ¢ relative to period r, (p'/p')/(p"/p'), is independent
of the choice of the normalizing period; i.e., (p'/p")/(p"/p') = (p'/p*)/(p"/p°) for any period

8.30

30The price levels p! defined by (13) also satisfy the following version of Walsh’s multiperiod identity
test (9): for periods r, s and t, we have (p"/p%)(p'/p")(p*/p') = 1. The price levels p' also satisfy the
time reversal test and the circularity test. A less obvious test that the price level p’ also satisfies is the
following price proportionality test: pf(Ap?) = Ap'(p') for arbitrary scalar A > 0 where p*(p?) is the function

13
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The direct bilateral comparison of the price level of period t relative to period 7 using
the Toérnqvist formula (5) depends only on the prices and expenditure shares pertaining to

periods 7 and ¢. The corresponding multilateral comparison of the price level in period ¢

to period 7 (in logarithms) is:3!
N N
In(p'/pT) =D (1/2)(s}, + sp)(mpl, —Inps) — Y (1/2)(sy, + ) (Inp), — lnpy) — (17)
n=1 n=1

Using (5), the prices of period t are compared directly to the prices in the base period
whereas in (17), the prices in period ¢ are compared to the prices in the artificial “average”
period and then the prices in the “average” period are compared to the prices in the base
period 7. Thus if there are smooth trends in prices and expenditure shares, chaining
the bilateral indexes defined by (5) would probably be preferable (since chaining tends to
reduce the spread between superlative indexes with smooth trends in the underlying price
and quantity data)®? whereas using the multilateral indexes defined by (17) essentially
compares the prices in any two periods through the fixed base observation that has the
sample average log prices and sample average expenditure shares. Of course, with monthly
or weekly data, trends in prices and quantities are often far from smooth and under these

nonsmooth conditions, the chain drift problem can become severe (as we shall see later)

and the use of multilateral indexes is recommended.

3.3 WTPD

Ivancic, Diewert and Fox (2009) suggested adapting the weighted country product dummy
multilateral method to the time series context for use with scanner data; this is now gener-
ally known as the Weighted Time Product Dummy (WTPD) method. Suppose that prices
vary in an approximately proportional manner from period to period. Thus we have the
following model:

plo=abel; t=1,....T;n=1,...,N. (18)

ptpt,...,pT, g, ..., q") defined by (13) regarded as a function of the period t price vector, p'. Note that
the period ¢ share vector s* and the sample average share vector s® = [s3, ..., s%] also depends on p.
3'Equation (17) can be used to establish the following bilateral identity test: if p' = p™ and ¢! = ¢”
(which implies s = s7), then p* = p".
32Gee Diewert (1978) on this point.
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The parameter a’ can be interpreted as the price level for period ¢, b, can be interpreted
as a commodity n quality adjustment factor and e, is a stochastic error term with mean
1. Define the logarithms of p! and €’ as y! = Inp! and !, = Ine!, for t = 1,...,T;n =
1,..., N, define the logarithm of a’ as o' =Ina’ for t = 1,...,T and define the logarithm
of b, as B, =Inb, forn =1,..., N. Then taking logarithms of both sides of (18) leads to

the following linear regression model:
yo=a'+B,+e; t=1,....T;n=1,...,N. (19)

The o and 3, can be estimated by solving a least squares minimization problem.?* This
is Summer’s (1973) country product dummy multilateral method but with time periods
in place of countries. Rao (2005) suggested a weighted-by-economic-importance version of
Summer’s method.?* Applying weighted least squares means finding the o, and 3, which

solve the following weighted least squares minimization problem:

min 3OSl h - o~ B.) (20)

atyear,Biy.-.B8N t=1 n=1

Denote the g solution vector as *. The corresponding parameters b which appear in

equations (18) are defined as the exponentials of the ;; i.e., we have:
by =exp(f;); n=1,...,N. (21)

Taking good N as a numeraire commodity, the quality adjustment parameter b} essentially
converts one unit of commodity n into the utility equivalent of b units of commodity N

forn=1,2....,N—-1%

33 A normalization on the parameters such as a' = 0 (which corresponds to a' = 1) is required to identify
the parameters.

34See also Diewert (2004) (2005) (2012).

35This interpretation follows that of Rao (2005; 574) and de Haan (2015a; 21) (2015b; 6) but can be
traced back to Summers (1973; 11).
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The logarithm of the period t price level, a'*, is then as follows:3¢

Oét*

> syl = 87 (22)

n=1

Recall that ¢!, = Inp! and 8% = In(b}) for each ¢ and n. The period ¢ (unnormalized)
price level as is the exponential of a'*. Thus exponentiating both sides of (22) leads to
the following formula for the (unnormalized) weighted time product dummy price level for

period t:

N o sh
af*:g<£) o ot=1,...,T. (23)
Thus the unnormalized price level for period ¢ is a period t expenditure share weighted
geometric mean of the N period ¢ quality adjusted prices p!, /.
Define the period t normalized weighted time product dummy price level 7t by dividing
at* by a'*:

m=ad*/d"; t=1,...,T. (24)

The Appendix considers some special cases for this index, which show that the WTPD
multilateral method is recommended from the viewpoint of the economic approach to in-
dex number theory if (i) purchaser preferences are well approximated by Cobb-Douglas
preferences, or (ii) purchaser preferences are well approximated by linear or additive pref-
erences.’’

Of particular note is a proof in the Appendix that the WTPD multilateral method is
an approzimately additive method.®® The problem with an additive multilateral method is
that, in general, it is not consistent with the economic approach to index number theory

once the number of periods is greater than two; see Marris (1984; 52) and Diewert (1999;
49).

36Rao (1995)(2005; 577). See the Appendix for a fairly simple definition of the optimal 3,.

37In the context of the Constant Elasticity of Substitution (CES) model to be discussed later, the WTPD
model is consistent with CES preferences if the elasticity of substitution is either 1 or plus infinity.

38We believe that this is a new result.
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3.4 GK

The GK multilateral method was introduced by Geary (1958), and Khamis (1970) showed
that the equations that define the method have a positive solution under certain conditions.
A modification of this method has been adapted to the time series context and is being
used to construct some components of the Dutch CPI; see Chessa (2016).

The GK system of equations for T' time periods involves the T (unnormalized) price
levels P', P%, ..., PT and a set of N quality adjustment factors by, by, ..., by. Let p' and ¢
denote the N dimensional price and quantity vectors for period ¢ (with components p!, and
¢% as usual) and let s' (with components s’) denote the period t expenditure share vector.
Define the total consumption vector ¢ over the entire window as the following simple sum

of the period by period consumption vectors:

T
4= q (25)

t=1
where ¢ = [q1, 2, - - -, qn]. The equations which determine the price levels P* and quality

adjustment factors b, (up to a scalar multiple) are the following:

gl e
b, = ==, n=1,...,N; 26
;{qn} {Pt} (26)
P = pt-¢'/b-¢'; t=1,...,T (27)

where b = [by, ..., by]| is the vector of GK quality adjustment factors. The share of period
t’s purchases of commodity n in total sales of commodity n over all T periods can be
defined as S! = ¢ /g, forn=1,...,Nand t =1,...,T. Thus b, = 3.,_, SL[p’,/P"] is a

(real) share weighted average of the inflation adjusted prices p /P* for commodity n over

N
n=1

all T periods. The period ¢ quality adjusted sum of quantities sold, b-¢' = >, b,q", is
divided into the value of period t sales, p' - ¢ = ZnN:1 phql, in order to obtain the period ¢
(unnormalized) price level, P*.

It can be seen that if a solution to equations (26) and (27) exists, then if all of the
period price levels P! are multiplied by a positive scalar A say and all of the quality

adjustment factors b,, are divided by the same A, then another solution to (26) and (27)
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is obtained. Hence, the b, and P! are only determined up to a scalar multiple and an
additional normalization, such as P! = 1 or by = 1, is required to determine a unique
solution to the system of equations defined by (26) and (27). It can also be shown that
only N + 7T — 1 of the N + T equations in (26) and (27) are independent.
Once the price levels P* have been determined, the real expenditure or volume for period
t, Q, can be defined as the period t value of sales, p'- ¢*, divided by its period ¢ price level,
pt.39
Qi=p"¢/P'=b-¢ wusing (27); t=1,...,T (28)

The second set of equations in (28) are the equations which characterize an additive method;
i.e., aggregate quantity or volume in each period is a quality adjusted sum of the individual
quantities. Hence an implication of the GK model is that it is consistent with utility
maximizing purchasers who have a linear utility function. Thus the GK estimates can
approximate the results that are based on a superlative index if substitutability between
the products in the aggregate is very high.?® In general, we would expect the GK price
level estimates to suffer from at least some substitution bias. Furthermore, in general, the
longer is the window length 7', the bigger will be the substitution bias for at least some
observations.

The usual method for obtaining a solution to equations (26) and (27) is to iterate
between these equations. Thus set b = 1y, a vector of ones and use equations (27) to
obtain an initial sequence for the P. Substitute these P! estimates into equations (26) and
obtain a sequence of b, estimates. Substitute these b, estimates into equations (27) and
obtain a new sequence of P! estimates. Continue iterating between the two systems until
convergence is achieved. In the Appendix, we derive an alternative method which is more
efficient.

In summary: from the viewpoint of the economic approach to index number theory, we
cannot endorse the use of the GK multilateral index in the time series context because it

is exactly consistent with the economic approach only if purchaser preferences are either

39Khamis (1972; 101) also derived equations (28) in the time series context.
40We shall see that the GK indexes can also approximate the results that are based on a superlative
index if substitutability between products is very low.
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linear, so that all commodities in the class of commodities under consideration are perfect
substitutes, or if purchaser preferences are Leontief, where there is a complete lack of
substitutability between the commodities. The GK system is dominated by the WTPD
multilateral system because the latter system is exact not only for linear preferences but

also for Cobb-Douglas preferences.

3.5 Rolling Window Methods and the Linking Problem

Suppose that the CCDI multilateral index of (17) is used to construct a sequence of price

2 ...,7l for T consecutive periods where T > 3. The period ¢ price level is

levels, 7!, 7

defined as
m=p/ph t=1,....T (29)

T+1

: T+1
. and prices p,,

where p' is defined by (13). Data on period T'+ 1 expenditure shares s
become available at the end of period T'+ 1 for n = 1,..., N. A new set of multilateral
indexes can now be constructed for the window of observations that include the data for

periods 2,3,...,7,T 4 1. Define the average expenditure share for commodity n, s* and

the average log price p?* for commodity n as follows:

1 T+1 T+1
se=my s =00 n=1 N (30)
t=2 t=2

Definitions (30) can be used in order to define a new system of (unnormalized) CCDI price

levels p** for the T periods in the new window; i.e., define p** as follows:

N P! 0.5(sh,+s7*)
p“EH(pZ) c t=2,...,T.T+1. (31)
n=1 n

The new price levels need to be linked to the price levels generated by the original
window of observations; i.e., we need to define a new price level for period 7'+ 1 that
extends the initial T price levels 7" defined by (29) for t = 1,...,T. Suppose we link the
new window price levels to the initial price levels at observation ¢ where ¢ could be any

observation between periods 2 and T. Let 77 1(¢) denote the resulting linked price level
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for period T'+ 1 that depends on choosing period ¢ as link period:

() = <p—I) (ﬂ); t=23,....T (32)

P pt*

where the p' are defined by (12) and (13) and the p™ are defined by (30) and (31). Thus
there are T' — 1 possible choices of period ¢ which can be used in (32) to link the price
level for period 7'+ 1 to the sequence of price levels 7',... 77 that were generated by
the results of the initial window of observations; i.e., see definitions (29). Using the GEKS
multilateral method rather than the CCDI method, Ivancic, Diewert and Fox (2009) (2011)
suggested using period T as the linking observation. In the context of a somewhat different
multilateral model, Krsinich (2016; 383) called this the movement splice method for linking
the two windows. Krsinich (2013) (2016; 383) also suggested that a better choice of the
linking observation in the context of her multilateral model was ¢ = 2 and she called this
the window splice method. de Haan (2015a; 26) suggested that the link period ¢ should be
chosen to be in the middle of the first window time span; i.e., choose ¢t = T'/2 if T is an even
integer or t = (T"+ 1)/2 if T is an odd integer. The Australian Bureau of Statistics (2016;
12) called this the half splice method for linking the results of the two windows. However,
without putting more structure on the underlying price and quantity data, it would seem
that each choice of a linking period ¢ running from ¢ = 2 to t = T is an equally valid
choice of a period to link the two sets of price levels. Thus it would seem that we have
T — 1 equally valid estimators for the period T + 1 price level, 77 1(¢) defined by (32) for
t=2,3,...,T+1, and so perhaps the “best” estimator for 77*! is the mean splice, defined

as the geometric mean of the 77 +1(¢):4!

T 1/(T-1)
7 (Mean) = [H WTH(t)] . (33)

In the context of very variable price data with little or no trends, choosing the mean

T+

estimator for 77+! is probably a satisfactory strategy. However, we suggest an alternative

strategy which may be superior.

41This method for linking the two windows was suggested by Ivancic, Diewert and Fox (2011; 33). Melser
(2018) suggests an alternative method for linking which similarly treats each period symmetrically.
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Suppose the price and quantity data for period T + 1 are identical to the price and

quantity data for some period ¢ such that 2 <t < T i.e., we have t such that:
sttl =gt pItl =pt- n=1,... N. (34)

Suppose further that we link the two windows at this observation ¢t. The identity test for
multilateral indexes requires that 77 1 (¢) = n* where 77 7(¢) is defined by (32) and 7’ is
defined by (29). Then, adapting formula (17) for the new window and using assumptions
(34), their ratio can be written as follows:

T+1 o
T+1 t N T+1 /., 0 0.5(sn ™ +s3")

t LE3
! [T, (pt,/pgr) o ntsm)

Thus if the price and quantity data for period 7'+ 1 are exactly equal to the price
and quantity data for period ¢, then linking the windows at observation ¢ will preserve
the identity test over the two windows; i.e., under these conditions it makes sense to link
the two windows at period t. This logic carries over to situations where the price and
quantity data of period t are closest (in some metric) to the price and quantity data of
period T+ 1; it makes sense to link the windows at the observation which has the most
“similar” price and quantity data. If the data are reasonably smooth, then it is likely that
the most similar price and quantity data will occur at observation 7" and thus under these
conditions, movement splicing is justified.

The exact result (35) can be extended to the case where the price data of period T'+1 is
proportional to the price data of period ¢t. Suppose the price and quantity data for period

T + 1 are related to the data of period ¢t (where 2 < ¢ < T') in the following way:

sTH gt pI = \pt: n=1,...,N (36)

where A is a positive scalar. Suppose further that we link the two windows at this obser-
vation t. A proportionality test for multilateral indexes requires that 727 71(¢) = Ar® where
7T +1(t) is defined by (32) and 7 is defined by (29). It can be shown that this property

also holds when the CCDI multilateral method is used for each consecutive window and
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the linking of the two windows is done at period ¢, where the data for periods ¢t and T+ 1
satisfy (36).

These results suggest that linking of the two windows in a rolling window multilateral
method be done at a period where the prices of period ¢ are proportional (or close to
being proportional) to the prices of period 7'+ 1. In order to implement this fifth method
of linking the rolling windows, it is necessary to have measures of price proportionality
between the two periods. Diewert (2009) suggested the following two measures of relative

price dissimilarity between the prices of periods t and T+ 1:*2

N
2
Ao, 0" g ™) = ) (1/2)(s T + sk (In(pl /P " g g k)]
n=1
(37)
N
Nar(@ 0" d g™ = Y (12 s P " g g TR
n=1
+ (POl oY) - 23 (38)

t g™ is a bilateral superlative index number formula.*® Apq is the

where P(p',pT™! q
weighted log quadratic index of relative price dissimilarity and A 4z, is the weighted asymp-
totically linear index of relative price dissimilarity. Both of these measures of relative price
dissimilarity will equal their lower bound of 0 if prices in periods ¢t and T+ 1 are propor-

T+l = \p' for some A > 0. The bigger are the measures Arg and A4y, the

tional; i.e., if p
less proportional are the prices in the two periods. In section 4.4, we will explain exactly
how these measures of relative price dissimilarity can be used to link the windows using

some test data.

4 Simulations with CES Preferences

The Australian Bureau of Statistics (2016) and the Dutch Central Bureau of Statistics®

have done extensive computations using scanner data in order to compare alternative meth-

42Gee Fox, Hill and Diewert (2004) for the use of dissimilarity indexes in the context of detecting data
outliers.

43Later in the paper, we will choose P to be Pr, the Térnqvist formula, when we use (37) and when we
use (38), we will choose P to be Pg, the Fisher ideal price index.

44See de Haan and van der Grient (2011) and de Haan (2015a).
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ods for aggregating prices at the first stage of aggregation. A problem with these compar-
isons is that it is not known which method is closest to the “truth”. We will attempt to
address this problem, at least in part, by constructing an artificial data set that is exactly
consistent with purchasers having Constant Elasticity of Substitution (CES) preferences
over a group of related items for a number of time periods. We will then determine how
well the various multilateral methods studied earlier in this paper approximate the “true”
indexes.

The CES functional form is another index number formula that is used in the first stage
of price aggregation.?” Using the economic approach to index number theory, it is assumed
that purchaser preferences can be represented by a utility function f(g) or by the unit cost
function ¢(p) which corresponds to the utility function. The CES unit cost function has

the following functional form:

N 1/(1—0)
c(p1,...,pN) [Z anpyll_"] ifo>0and o #1
n=1

N
Hpgn ifo=1 (39)
n=1

where ¢ and the «, are positive parameters, with 25:1 «, = 1. The unit cost function
defined by (39) corresponds to a Constant Elasticity of Substitution (CES) utility function
which was introduced into the economics literature by Arrow, Chenery, Minhas and Solow
(1961). The parameter o is the elasticity of substitution, which is a constant for all pairs of
commodities; when o = 0, the unit cost function defined by (39) becomes linear in prices
and hence corresponds to a fixed coefficients or Leontief utility function which exhibits 0
substitutability between all commodities. When o = 1, the corresponding aggregator or
utility function is a Cobb-Douglas function. When ¢ approaches 400, the corresponding
aggregator function f approaches a linear aggregator function which exhibits infinite sub-
stitutability between each pair of inputs. The CES unit cost function defined by (39) is not

a fully flexible functional form (unless the number of commodities NV being aggregated is 2)

45From January 2015, the Bureau of Labor Statistics uses this functional form to construct elementary
indexes in the initial estimates of the Chained Consumer Price Index for All Urban Consumers; see Bureau
of Labor Statistics (2018).
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but it is frequently used to aggregate commodities in a group of goods which are thought
to be highly substitutable with each other.

Suppose that we are given the price vectors p' = [pt,... pY] for t = 1,..,T. Then if
purchasers have CES preferences and are minimizing the costs of achieving their utility
levels in each period, it will turn out that the components of their period ¢ expenditure

share vectors ' = [st, ... sl] for t = 1,..,T will be equal to the following expressions:

t O‘n(p;)lio

SN e e b Nit=1 T (40)
n=1""\In

Thus given the price vectors p, the vector of positive parameters a = [y, . . ., av] whose

components sum to unity and the nonnegative parameter o where o # 1, then the share

vectors s' can be computed using equations (40) for ¢ = 1,...,T. If in addition we are given
total expenditures on the N commodities for period ¢, say e > 0 for t = 1,...,T, then we
can compute the components of the CES quantity vector for period ¢, say ¢* = [qi1, - - -, @in]
for t =1,...,T using the following equations:

¢ =est/pt: n=1,... N;t=1,...,T. (41)

Finally, the CES (unnormalized) period ¢ price levels, P, are computed as follows:

N 1/(1-0)
P'=c(p') = [Z an(pi)l”] ; t=1,...,T. (42)
n=1
The corresponding CES (unnormalized) period t quantity levels are defined as follows:
Q=e /P =p-¢ /P t=1,...,T. (43)

Of course, the CES normalized price levels can be defined as 7t = P*/P fort =1,...,T.
We will use this method for constructing an artificial data set that is consistent with CES

preferences in the following section.
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4.1 Artificial Data From CES Preferences

We now assume that 7'= 12 and N = 4, and that the parameters «,, which appear in (39)
are defined as follows: a = [ay, ag, asz, ay] =[0.2,0.2,0.2,0.4]. The elasticity of substitution
parameter o will take on the values 0, 0.5, 1, 2, 4, 10 and 20. In the scanner data context,
it is likely that it is between 1 and 5.%6

In order to calculate the period t (unnormalized) CES price level P* = ¢(p'), where
¢(p) is defined by (39), we require information on the period ¢ vector of prices, p' =
(D11, Pe2, Pe3, D) for t = 1,...,12. These prices are listed in Table 1. Once the unnormal-
ized CES price levels P* have been constructed, the normalized CES price levels can be
calculated as mhpg = P'/P' for t = 1,...,12. In order to calculate the CES quantity
vectors that match up with the given CES price vectors, we also require information on
total expenditures e’ on the four commodities for each period ¢. These exogenously given

expenditures are also listed in Table 1.

Table 1: Price and Expenditure Data for the Artificial Data Set
t pn p2 P pu €
2.00 1.00 1.00 0.50 10
1.75 0.50 0.95 0.55 13
1.60 1.05 0.90 0.60 11
1.50 1.10 0.85 0.65 12
1.45 1.12 0.40 0.70 15
1.40 1.15 0.80 0.75 13
1.35 1.18 0.75 0.70 14
1.30 0.60 0.72 0.65 17
1.25 1.20 0.70 0.70 15
10 1.20 1.25 0.40 0.75 18
11 1.15 1.28 0.70 0.75 16

12 1.10 1.30 0.65 0.80 17
Note: Sales prices are in bold type.

O O Ul Wi

Ne}

The prices of commodities 1 and 3 trend downward throughout the sample period while
the prices of commodities 2 and 4 trend upward. The trends in commodities 1 and 4 are
very smooth but the trends in commodities 2 and 3 are interrupted by sales: item 2 goes
on sale in periods 2 and 8 and item 3 goes on sale in periods 5 and 10. Total expenditures

e! on the commodity group trend upwards except in the four periods after a sale when

46See the empirical evidence on the magnitude of o using Australian scanner data in Ivancic, Diewert
and Fox (2010).
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aggregate expenditures fall a bit.

For each value of the elasticity of substitution o, we can evaluate the period ¢t expen-
diture share vectors s' = [s, sk, sk, si] using the p’ vectors that are listed in Table 1 and
equations (40). Once the share vectors have been constructed, the components of the
corresponding quantity vectors ¢' = [qi1, Gi2, @13, ua] can be constructed using equations
(41).

Once the set of twelve price vectors p! and twelve quantity vectors ¢! have been con-
structed for the alternative values, we can compare the period t chained Fisher, chained
Tornqvist, Weighted Time Product Dummy, Geary-Khamis, GEKS and CCDI normal-
ized price levels (Moo Trom Twrpps Tak Tapks, Toopr respectively) to the correspond-
ing true CES normalized price level, nlpg. These alternative indexes are evaluated for o
equal to 0, 0.5, 1, 2, 4, 10 and 20 and are listed in Table A5 of the Appendix, and plotted
in Figure 1 for the considered values of o up to 10.47

Figure 1: Alternative Price Levels for Different Methods and Elasticities of Substitution
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When o = 0, the CES, chained Fisher (FCH), GK and GEKS indexes all coincide.
Furthermore the chained Térnqvist (TCH) and CCDI indexes are so close to the CES that

they cannot be distinguished from each other in Figure 1. The only outliers in this case

47To simplify programming, o = 1.001 was actually used throughout for the “oc = 17 case.
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are the WTPD indexes which lie below the other indexes after period 2. Preferences which
allow for no substitution between products are not realistic, but the results provide a check
on our computations.

For ¢ = 0.5, the GK indexes have a modest upwards bias while the WTPD indexes
have a modest downward bias as compared to the true cost of living index. The remaining
indexes are all very close to the CES price levels and cannot be distinguished separately in
Figure 1.

When o = 1 the chained Tornqvist, CCDI and WTPD price levels should be exactly
equal to the corresponding CES price levels and this expectation is borne out. The chained
Fisher and GEKS indexes are also very close to the corresponding CES indexes and can-
not be distinguished from each other in Figure 1. The GK price levels turn out to be
substantially above the other indexes after period 2.

When ¢ = 2, the GK price levels are substantially above the corresponding WTPD
levels after period 2 and the WTPD price levels are well above the CES price levels. Thus
these indexes have substantial amounts of substitution bias for our numerical example.
The chained Tornqvist and CCDI price levels are very close to the corresponding CES
price levels while the chained Fisher and GEKS price levels end up being slightly below the
CES price levels.

When o = 4, the GK and WTPD price levels are substantially above the CES price
levels for most observations.*® Thus these indexes have substantial amounts of substitution
bias for our numerical example in this case. The chained Tornqvist and CCDI price levels
are 2-3% under the corresponding CES price levels at the end of the sample period while
the chained Fisher and GEKS price levels end up being 4-5% below the CES price levels at
the end of the sample period. Thus none of our approximations to the true CES indexes
end up being very close at the end of the sample period but the upward bias in the GK
and WTPD indexes is very large indeed (13.8% and 8.8% respectively).

When o = 10, the WIPD and GK price levels are virtually identical?*® and these

48The vector of WTPD quality adjustment factors is byrpp = [1.84,1.26,0.93,1.00] and the vector of
GK quality adjustment factors is bgx = [1.78,1.16,0.87,1.00].

49The new vector of WITPD quality adjustment factors is byyrpp = [1.66,0.93,0.98,1.00] and the vector
of GK quality adjustment factors is bgx = [1.64,0.92,0.97,1.00]. Thus the two additive methods are
converging to the same preferences as o becomes large.
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indexes turn out to give the best approximation to the true CES indexes although for
many observations, they lie well above the corresponding true indexes. The remaining
indexes lie below the CES indexes, with the chained Tornqvist and chained Fisher indexes
coming the closest to the corresponding CES indexes.

From Table A5 of the Appendix, when o = 20, the WTPD and GK price levels are
again virtually identical.®® For most observations, these price levels are either very close to
the corresponding CES price levels or are above them, although at the end of the sample
they are slightly below. The remaining indexes are generally substantially below the CES
price levels. Thus for very high elasticities of substitution, the WTPD and GK methods
provide the best approximation to CES preferences, as might be expected due to their
being additive methods; see sections 3.3 and sec:GK.

In summary: for elasticities of substitution in the most likely range of 1 to 4, the four
methods based on the use of bilateral superlative indexes approximate CES preferences
reasonably well with the chained Tornqvist generally doing the best. The GK indexes
have substantial upward biases in all cases while the WTPD indexes also have substantial

upward biases when equals 2 or 4, but they are unbiased when o = 1.

4.2 Artificial Data Adjusted for Sales

The CES indexes which were constructed in section 4.1 did not suffer from a chain drift
problem; i.e.; if prices and quantities in any two periods were exactly the same, the CES
index levels for those two periods would also be the same. However, in actual practice,
the assumptions which the Kontis (1924) true cost of living methodology relies on are not
met: when a commodity goes on sale at say one half of its regular price, consumers tend to
purchase amounts that not only satisfy their needs for the sale period but also they stock up
to partially satisfy their needs for the subsequent period. This violates a basic assumption
that is used in the economic approach to index number theory; i.e., the economic approach
to index number theory assumes that purchases of goods made during a period coincide

with the consumption of these purchased goods within the period. As was explained earlier,

50The new vector of WTPD quality adjustment factors is byyrpp = [1.64,0.91,0.99, 1.00] and the vector
of GK quality adjustment factors is bgx = [1.64,0.91,0.99,1.00]. Thus the two additive methods have
converged to the same preferences when o = 20.
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this stockpiling activity will cause chained superlative indexes to drift downwards.?!

To model this situation, we will use the price and expenditure data listed in Table 1
and the assumption of CES preferences for varying o as in section 4.1 but the quantity
data for commodities that go on sale will be adjusted. Thus commodity 2 goes on sale
in periods 2 and 8. For periods 3 and 9, we take the predicted quantities for these items
that are generated by the CES model described in section 4.1 and we somewhat arbitrarily
adjust these quantities downward to half of the predicted levels that were generated by the
CES model. Similarly, commodity 3 goes on sale in periods 5 and 10. Again, for periods 6
and 11, we adjust the quantities of these commodities to half of the predicted levels that
were generated by the CES model in section 4.1 Thus for periods ¢t = 3,6,9 and 11 and for
each alternative value of o, we have a new ¢' vector and so for these periods, we need to
define a new level of expenditure €' = p' - ¢* and new expenditure shares s’ = pl ¢’ /e’ for
t=3,6,9and 11 and n =1, 2, 3, 4.

As an illustration, for ¢ = 2 the resulting prices, quantities and expenditures for com-
modity 2 are plotted in figure 2, where it can be seen that the sales periods generate spikes
in quantities sold and in the corresponding expenditures.

Thus for the eight periods 1,2,4,5,7,8,10 and 12, the unnormalized and normalized
CES price levels, P! and 7l = P'/P? for the new data set, are the same as in section 4.1.
For periods 3, 6, 9 and 11, there are no CES price levels but for convenience, in Table A6
and Figure 3, we simply use the normalized CES price levels 7l from section 4.1 for all
periods.

Once the new set of twelve price vectors p' and twelve quantity vectors ¢* have been con-
structed for the alternative o values,’® we can compare the period ¢ chained Fisher, chained
Tornqvist, fixed base Fisher, fixed base Tornqvist, Weighted Time Product Dummy, Geary-
Khamis, GEKS and CCDI normalized price levels (T p, Troms Terg, Treg, TwreDs Ters

Taprs, and Thopy, respectively) to the corresponding true CES normalized price level,

51Szule (1983) (1987) was perhaps the first modern price statistician to note the chain drift problem
in the context of sales. However, Persons (1921; 110) using his data set on crop production noted the
downward drift of Fisher chained indexes relative to a Fisher index that measured price change directly
between periods 1 and T" and he also applied Walsh’s (1901; 389) multiperiod identity test to demonstrate
this downward drift. Frisch (1936; 9) noted Persons’ research in his survey paper on index numbers.

52The new p! and ¢* will coincide with the pt and ¢* that were used in section 4.1 except for periods 3,
6, 9 and 11, we use new g¢°.
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Figure 2: Sales Adjusted Data, Commodity 2
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Tepg, for all periods except periods 3, 6, 9 and 11. These alternative indexes are evaluated
for o equal to 0, 0.5, 1, 2, 4, and 10 and are listed in Table A6 of the Appendix, and plotted
in Figure 3.

Using this adjusted data set, the chained Fisher and chained Tornqvist indexes have
substantial downward biases as compared to the corresponding true CES indexes (excluding
periods 1, 3, 6, 9 and 11). The new data set illustrates that superlative indexes are
indeed subject to substantial downward chain drift when products are sold at substantially
discounted prices.

From Figure 3 (and Table A6 of the Appendix), for o = 0, it can be seen that the fixed
base Fisher (FFB) and GK price levels coincide with the CES price levels for all periods
except periods 3, 6, 9 and 11 where the CES indexes are not well defined for the new
data.”® The fixed base Tornqvist (not plotted in Figure 3), GEKS and CCDI price levels
are very close to the corresponding CES price levels. The WTPD price levels have a small
amount of downward bias while the chained Fisher and the chained T6érnqvist (not plotted

in Figure 3) price levels have substantial downward biases.

53Recall that we are using the CES normalized price levels from section 4.1 for all periods in the present
section in order to simplify the charts for this section.
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Figure 3: Alternative Price Levels for Sales Adjusted Data
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When o = 0.5, the fixed base Fisher (and fixed base T6rnqvist), GEKS and CCDI price
levels are all very close to the corresponding CES price levels. The GK indexes are slightly
above and the WTPD indexes are slightly below the corresponding CES index levels. The
two chained superlative indexes end up well below the other indexes; i.e., the chain drift
problem for superlative indexes is severe for this artificial data set. We move on to the
more applicable ¢ equals 1, 2 and 4 results.

When o = 1, the two chained superlative indexes have a large downward bias compared
to the target CES index. The GK price levels are substantially above the corresponding
CES price levels. The remaining indexes are all fairly close to their CES counterparts.
The fixed base Tornqvist indexes are exactly equal to their CES counterparts (except for
observations 3, 6, 9 and 11 when the CES indexes are not applicable); see Table AG.

When o = 2, the fixed base Tornqvist and CCDI price levels are very close to their
CES counterpart price levels. The GEKS price level for period 12 ends up 1.5% below the
corresponding CES price level while the fixed base Fisher price level ends up 2.5% below
the target index. The chained Fisher and chained Tornqvist indexes end up 9.0% and

11.5% below the target index in period 12 while the WTPD and GK price levels for period
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12 end up 3.2% and 8.5% above the CES price level.

When o = 4, the CCDI indexes are closest to their CES counterparts and the CCDI
price level for period 12 ends up 2.7% below the corresponding CES level. The fixed base
Tornqvist and GEKS price levels end up 4.4% and 5.5% below the CES price level at period
12. The fixed base Fisher, the chained Tornqvist and the chained Fisher indexes all have
substantial downward biases and end up 8.3%, 10.2% and 10.3% below the corresponding
CES price level for period 12. The WTPD and GK indexes have substantial upward biases
and end up 9.0% and 14.2% above the corresponding CES price level at period 12.

When o = 10, all of the alternative indexes have some significant biases for some periods.
The WTPD and GK price levels are close to each other and are substantially above their
CES counterparts for many observations. These price levels end up being only 1.7% and
2.5% above the corresponding CES price level for period 12. The worst performing indexes
are the fixed base Fisher and fixed base Tornqvist indexes which end up 19.4% and 16.8%
below the CES price level for period 12. The chained Fisher and Tornqvist indexes end
up 10.2% and 9.4% below the CES price level for period 12. Finally the GEKS and CCDI
price levels end up 11.0% and 9.1% below the CES price level for period 12. However, it
should be kept in mind that in most empirical applications, the elasticity of substitution
will be well below 10.

Some tentative conclusions that can be drawn from the material presented in this section
are as follows: (i) Chained superlative indexes are not useful target indexes for a CPI when
dealing with aggregating scanner data where discounted prices are prevalent. (ii) The
CCDI multilateral method worked best overall for our numerical example for elasticities of
substitution in the range 0 < ¢ < 4. (iii) GK indexes had substantial upward biases relative
to the corresponding CES true cost of living price levels for elasticities of substitution in
the range 1 < o < 4. (iv) Weighted Time Product Dummy indexes will work well if o = 1
or if ¢ > 10 but for our example, they had substantial upward biases for elasticities of
substitution in the range 2 < o < 4.

We turn now to an examination of the problems associated with linking the results from

one window of observations to another subsequent window.
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4.3 Single Window versus Linked CCDI Price Levels

In this section, using the sales adjusted data, we draw on the results in section 3.5 and
compare the single window &, price levels which were listed in section 4.2 for various
data sets that depended on the elasticity of substitution with the corresponding CCDI
price levels that use linked windows. The single window results were based on a window
that consisted of all 12 observations. These CCDI price levels of course depended on o
and we denote their period 12 values as T p;(0) in this section. For each of our o values,
we will form two windows of length 11. The first such window will consist of the data for
periods 1 — 11 and the second window will consist of the data for periods 2 —12. In keeping
with CPI methodology which does not allow revisions to occur for the flagship CPI, we
assume that the final linked series for periods 1 to 11 will consist of the CCDI normalized
price levels using the first window of length 11. The linked in CPI for period 12 will be
formed by using equations (32) in section 3.5 to link in the results from the second window
by choosing the link periods ¢ = 2,3,...,11. Denote these alternative linked normalized
price levels for period 12 by 71%(¢, o) for choice of link period ¢ = 2,3,...,11. Define the
geometric mean of these ten alternative period 12 price levels as m*(Mean, o).

We first compare the period 12 linked normalized price levels 71%(¢,0) to the period
12 single window normalized price level, 0% p;(c). Define the differences between these

period 12 price levels as follows:

D(t,0) = 71%(t,0) — nep;(0); t=2,3,...,11;0 = 0,0.5,1,2,4,10. (44)

We also define the difference between the period 12 single window CCDI price level for
each o, m}%p;(0), and the mean period 12 price level using the geometric mean of the 10

alternative link periods, 7}*(Mean, o), as follows:

D(Mean, o) = ;> (Mean, o) — nip;(0); o =0,0.5,1,2,4,10. (45)

If these differences are large in magnitude, then this indicates a chain drift problem with
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the use of successive CCDI linked windows.?* Table 2 lists these differences.

For o in the range 0 < ¢ < 2, it can be seen that the differences in the period 12
CCDI price levels due to the choice of alternative link periods are small. Choosing the link
period to be period 4 or 10 leads to virtually zero differences but the differences are also
small when periods 2, 5, 7 or 8 are chosen. Choosing the mean of the ten period specific
estimates also leads to a fairly low difference between the single window period 12 CCDI
price level and the two window linked period 12 price levels.

The differences are much larger when the true cost of living index elasticity of substi-
tution is equal to 4 or 10. It can be seen that the differences are smallest when the linking
period is chosen to be periods 2, 5 or 10. Note that sales occurred during each of these
periods. When o = 10, the period 12 linked CCDI price level is always at least 1 percentage
point above its single window CCDI price level for period 12 and for the choice of period

6 as the link observation, it is 3 percentage points above.

Table 2: Differences at Period 12, D(t, o), between the Single Window CCDI Price Levels
and the Linked CCDI Price Levels as Functions of the Linking Period t and the Elasticity
of Substitution

t  D(,0) D(t05) D1 D2 D4 D(10)
2 0.00030 0.00014 0.00021 0.00067 0.00212 0.01004
3 -0.00197 -0.00149 -0.00098 0.00050 0.00567 0.02197
4 -0.00001 0.00011 0.00021 0.00098 0.00603 0.02640
5 -0.00029  0.00000 0.00021 0.00006 -0.00222 0.01370
6 0.00154 0.00206 0.00265 0.00442 0.01035 0.03114
7 0.00002 0.00011 0.00021 0.00092 0.00537 0.02639
8 0.00041 0.00022 0.00021 0.00125 0.00645 0.02581
9 -0.00177 -0.00137 -0.00098 0.00014 0.00451 0.02312

10 -0.00015  0.00003  0.00021 0.00010 -0.00202 0.01647
11 0.00151  0.00204 0.00265 0.00432  0.00946 0.02675
Mean -0.00004 0.00019 0.00046 0.00133 0.00457 0.02216

We now compare the period 12 linked normalized price levels 7i%(¢, o) to the period 12
true cost of living index, m{7¢(c). Define the biases between these period 12 price levels

as follows:

B(t, o) = n2(t,0) — nius(o); t=2,3,...,11;0 =0,0.5,1,2,4,10. (46)

541f the Térnqvist bilateral indexes satisfied the circularity test exactly, then these differences would all
be 0 and there would be no chain drift problem with the use of chained Térnqvist indexes. However, as
was seen in section 4.2, the circularity test does not hold exactly and there is a chain drift problem.
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We also define the difference between the period 12 CES price level for each o, mi4(0),
and the mean period 12 price level using the geometric mean of the ten alternative link

periods, m2(Mean, o), as follows:

B(Mean,o) = 72 (Mean, o) — migs(0); o =0,0.5,1,2,4,10. (47)

For each o, these differences measure the bias in the various two window CCDI period 12
price levels compared to the corresponding period 12 true cost of living indexes, mi4¢(0).
Table 3 lists these differences. It can be seen that the bias in the two window CCDI price
levels at period 12 for elasticities of substitution in the range 0 < ¢ < 4 fairly small for
all choices of the linking point but smallest if periods 2, 4, 5, 7, 8 or 10 are chosen. Note
that the bias is largest in magnitude if periods 3, 6, 9 or 11 are chosen as the linking
observations. These four periods are the periods that immediately follow a sale. Since in
real life, a sale could occur during any period, this result indicates that it will be difficult to
come up with a general rule as to which period in the first window is the “best” period to
choose in terms of minimizing bias. Under these circumstances, choosing the mean splice

method may be a conservative strategy which would avoid large biases.

Table 3: Biases at Period 12, B(t,0), as Functions of the Linking Period t and the
Elasticity of Substitution
t  B(t,0) B(t,0.5) B(t1) B(t,2)  B(t,4) B(t,10)
-0.00002  0.00068 0.00249 0.00187 -0.03189 -0.11420
-0.00230 -0.00094 0.00130 0.00169 -0.02833 -0.10227
-0.00034  0.00065 0.00249 0.00218 -0.02797 -0.09784
-0.00061  0.00054 0.00249 0.00126 -0.03622 -0.11054
0.00122  0.00260 0.00494 0.00562 -0.02365 -0.09310
-0.00031  0.00065 0.00249 0.00212 -0.02864 -0.09785
0.00008  0.00076 0.00249 0.00244 -0.02756 -0.09843
9 -0.00210 -0.00083 0.00130 0.00134 -0.02949 -0.10112
10 -0.00048  0.00057 0.00249 0.00130 -0.03603 -0.10777
11 0.00118 0.00258 0.00494 0.00551 -0.02455 -0.09749
Mean -0.00037  0.00073 0.00274 0.00253 -0.02944 -0.10208

0 3 O U i~ W N

Table 3 shows that for large elasticities of substitution, the bias pattern has shifted:
linking at observations 6 and 11 now reduces the bias. When o = 10, the bias is greatest
in magnitude when the linking observation is chosen to be observations 2, 5 or 10. Note

that observations 2, 5 and 10 are periods when sales occurred.
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Our conclusion at this point is that no clear pattern emerged as to which observation
in the window was the “best” one for linking the second window to the first. Until more

conclusive evidence on this problem is obtained, it seems advisable to use the mean splice.

4.4 Relative Price Similarity Linking

As was suggested in section 3.5, it is likely that price comparisons between two periods
will be more accurate if the structure of relative prices is more similar.”> A key aspect of
this methodology is the choice of the measure of similarity (or dissimilarity) of the relative
price structures of two countries. Various measures of the similarity or dissimilarity of
relative price structures have been proposed by Allen and Diewert (1981), Kravis, Heston
and Summers (1982; 104-106), Hill (2009), Sergeev (2009), Aten and Heston (2009) and
Diewert (2009).%

We use the two measures of relative price dissimilarity defined by (37) and (38), Aar
(the weighted asymptotic linear index of relative price dissimilarity), and A ¢ (the weighted
log quadratic index).”” These measures are nonnegative and the bigger they are, the more
dissimilar are the relative prices for periods r and t. Note that the measures defined by
(37) and (38) require that a bilateral index formula, P(p",p",q",q"), be specified so that
these measures can be calculated. For the asymptotic linear measure of relative price
dissimilarity, we will use the Fisher price index Pr defined by (4) and for the log quadratic
measure, we will use the Térnqvist index Pr defined by (5) as the bilateral indexes that
appear in (37) and (38) respectively. We use the same price and quantity data that were
used in sections 4.1 and 4.2; see the Appendix for details of the application.

In Table 4, we list the mean absolute difference between our ten approximating indexes
to the corresponding true cost of living indexes, mhpg(o) for each of our representative
values. However, we exclude periods 3, 6, 9 and 11 from this comparison because the true

cost of living is not defined for these observations.

55Tn the context of making comparisons of prices across countries, this method of linking countries with
the most similar structure of relative prices has been pursued by e.g. Hill (1999) (2009) and Diewert
(2013b). Hill (2001) (2004) also pursued this similarity of relative prices approach in the time series
context.

56See Diewert (2009) for a discussion of the relative merits of the various measures.

57This measure is a weighted generalization of the nonproportionality measure suggested by Allen and
Diewert (1981; 433).
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Table 4: Mean Absolute Differences in Percentage Points between 75 ¢(0) and Ten Ap-
proximating Indexes as Functions of the Elasticity of Substitution

o Brcw Brcuw Brre Brre Bwrpp Berx Beexs Bceepr Bar Brg
0 3.78 4.77 0.00 0.11 1.66 0.00 0.12 0.08 0.55 0.63
0.5 3.89 4.84 0.12 0.04 0.89 1.19 0.05 0.17 0.47 043
1 4.06 4.81 0.46 0.00 0.00 2.58 0.17 0.29 0.53 0.27
2 4.81 4.75 1.91 0.37 2.19 5.68 1.40 0.10 1.07 047
4 6.84 5.65 5.96 3.41 5.37 8.90 4.98 247 269 1.61
10 9.08 7.68 10.83 9.19 491 5.01 9.57 7.83 6.05 5.08

When o = 0, the fixed base Fisher and GK indexes are exactly equal to the CES indexes.
The fixed base Tornqvist, CCDI and GEKS indexes are all very close to the true cost of
living index. When o = 0.5, GEKS does best followed closely by the fixed base Fisher and
CCDI indexes. When o = 1, the fixed base Tornqvist and WTPD price levels are exactly
equal to the corresponding CES price levels. The GEKS, CCDI and LQ price similarity
linked price levels are all fairly close to the corresponding CES price levels. For o = 2,
The CCDI price levels are very close to the corresponding CES price levels followed by the
fixed base Térnqvist and the log quadratic price similarity linked indexes (LQ indexes).
The GK price levels are on average furthest from the corresponding CES price levels when
o =2 and 4. For 0 = 4, the L(Q indexes are closest to the corresponding true cost of living
indexes followed by the CCDI and Asymptotic Linear price similarity linked indexes (AL
indexes). Finally, for 0 = 10, the WTPD, GK and LQ indexes are the clear winners.

The results can be summed up as follows:

e The Chained Fisher and Chained Tornqvist indexes performed poorly for all elastic-

ities of substitution.

e The Weighted Time Product Dummy indexes worked well for our numerical example
when the elasticity of substitution was equal to 1 or 10 but they did not work well

when was equal to 2 or 4.

e The Geary-Khamis indexes worked well when o = 0 or 10 but poorly when o = 1,2

or 4.

e For 0 < o < 0.5, the Fixed Base Fisher, Fixed Base Tornqvist, GEKS and CCDI

indexes all worked well. However the cases where 1 are the cases of interest.

37



UNSW Economics Working Paper 2018-13

e For 1 <o <2, the CCDI indexes performed well.

e The LQ price similarity linked indexes performed the best by a substantial margin

for o = 4 and the LQ generally performed well for 1 < o < 10.

In applications of multilateral methods using scanner data at the elementary level of
aggregation, it is likely that the elasticity of substitution is greater than one so the very lim-
ited results in this section support the use of the CCDI and Log Quadratic price similarity
linked indexes in this context.’®

We have not directly addressed the possibility of using the price dissimilarity measures
for choosing the period for linking windows in applying multilateral methods. However,
we can make some observations on this from the price dissimilarity measures of Appendix
tables A3 and A4. Using the Log Quadratic measures from Table A4, Ai% suggests the
optimality of using period 11 as the link period for updating an initial 11 period window as
period 12 data becomes available, with the smallest dissimilarity value being 0.003. This
suggests that the movement splice updating method is optimal, i.e. using the immediately
prior period as the linking period. However, if we have, say, an initial 10 period window,
as period 11 data becomes available, AlLlé suggests the linking period should be period 9,
which means that movement splice updating is not optimal.

What this example demonstrates is that it is not necessarily the case that, for any

window length, the previous period is the optimal linking period. Again, in the absence of

additional information, this suggests the use of the mean splice.

5 Conclusion

The dot points at the end of the previous section will not be repeated here but they could
serve as the main conclusions.

There are two important limitations of our study. First, while we believe this paper

58We have not recommended the use of the Sato-Vartia formula to compute price indexes that are
consistent with CES preferences because a limitation of the CES functional form is that the degree of sub-
stitutability between every pair of commodities is constrained to be the same. Methods like GEKS, CCDI
or similarity linking are based on the use of superlative bilateral index number formulae as building blocks
and thus these methods will allow for an arbitrary pattern of substitutability between each commodity
pair.
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has significantly advanced understanding, more research into how the different multilateral
methods perform under different conditions is needed. Second, we have assumed that
all prices and quantities are positive over all periods. Our results will still be valid if
some quantities are zero in some periods but the assumption of positive prices cannot
be entirely relaxed. Many of the multilateral methods depend on taking the logarithms
of prices and if prices are 0 in some periods, this can cause the multilateral method to
be undefined. The economic approach to index number theory can deal with new and
disappearing commodities using the shadow price approach due to Hicks (1940) which can
in theory generate positive reservation prices to go along with the associated zero quantities.
However, it will be difficult for statistical agencies to estimate these reservation prices.

An important result is that linking the price and quantity data for a new period to
the data of previous periods by using a price dissimilarity measure is the only multilateral
method that is consistent with Walsh’s powerful multiperiod identity test; i.e., if the price
data for the new period is equal to or proportional to the price data of a previous period,
then the price level for the new period will be equal to or proportional to the price level of
the previous period. The drawback to the use of this multilateral method is that it requires
agreement on how to measure the degree of price dissimilarity. For our sales adjusted
data sets, we found that the Log Quadratic measure of price dissimilarity worked well. It
remains to be seen whether this result will hold up under other conditions.

In the meantime, for elasticities of substitution in reasonable ranges that are expected
to be found empirically, overall our results suggest the use of the CCDI index combined

with a new method, the mean splice, for updating.
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Online Appendix

A Numerical Example of the Chain Drift Problem

Suppose that we are given the price and quantity data for two commodities for four periods.
The data are listed in Table A1.

Table A1l: Price and Quantity Data for Two Products for Four Periods
t PPy d @

1.0 1.0 10 100

0.5 1.0 5000 100

1.0 1.0 1 100

1.0 1.0 10 100

W N =

The first commodity is subject to sales (in period 2), when the price drops to half of its
normal level of 1. In period 1, we have a “normal” off-sale demand for commodity 1 which
is equal to 10 units. In period 2, the sale takes place and demand explodes to 5000 units.?”
In period 3, the commodity is off sale and the price is back to 1 but most shoppers have
stocked up in the previous period so demand falls to only 1 unit. Finally in period 4, the

“normal” demand of 10 units. Commodity 2

commodity is off sale but we are back to the
is dull: its price is 1 in all periods and the quantity sold is 100 units in each period. Note
that the only thing that has happened going from period 3 to 4 is that the demand for
commodity one has picked up from 1 unit to the ” normal” level of 10 units. Also note that,
conveniently, the period 4 data are exactly equal to the period 1 data so that for Walsh’s
test to be satisfied, the product of the period to period chain links must equal one.

Table A2 lists the fixed base Fisher, Laspeyres and Paasche price indexes, Pprp),
Prppy and Pprp) and as expected, they behave perfectly in period 4, returning to the
period 1 level of 1. Then the chained Fisher, Tornqvist, Laspeyres and Paasche price
indexes, Prcny, Prcn), Prcn) and Ppcpy are listed. Obviously, the chained Laspeyres
and Paasche indexes have chain drift bias that is extraordinary but what is interesting is
that the chained Fisher has a 2% downward bias and the chained Tornqvist has a close to
3% downward bias.5°

If these data were monthly, and they repeated themselves three times over the year, the
overall chain drift bias would build up to the 6 to 8% range, which is significant.

The problem is this: when commodity 1 comes off sale and goes back to its regular price
in period 3, the corresponding quantity does not return to the level it had in period 1: the

period 3 demand is only 1 unit whereas the “normal” period 1 demand for commodity 1

®This example is taken from Diewert (2012). It is based on a similar example due to de Haan and van
der Grient (2011; 39), and draws on actual movements observed in Dutch scanner data. When the price
of a detergent product went on sale at approximately one half of the regular price, the volume sold shot
up approximately one thousand fold; see de Haan (2008). This paper brought attention to the magnitude
of volume fluctuations due to sales.

80Feenstra and Shapiro (2003) also looked at the chain drift problem that was caused by sales and
restocking dynamics. Their suggested solution was to use fixed base indexes.

46



UNSW Economics Working Paper 2018-13

Table A2: Fixed Base and Chained Fisher, Tornqvist, Laspeyres and Paasche Indexes

Prrpy Prire) Pprsy Pricny Promy Prem) Ppem
1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.698 0.955 0.510 0.698 0.694 0.955 0.510
1.000 1.000 1.000 0.979 0.972 1.872 0.512
1.000 1.000 1.000 0.979 0.972 1.872 0.512

=~ W N | T

was 10 units. It is only in period 4 that demand for commodity one recovers to the period
1 level. However, since prices are the same in periods 3 and 4, all of the chain links show
no change (even though quantities are changing) and this is what causes the difficulties. If
demand for commodity one in period 3 had immediately recovered to its “normal” period
1 level of 10, then there would be no chain drift problem.

B Relationships Between Bilateral and Multilateral

Indexes

The difference between the direct Térnqvist index (5) and the corresponding multilateral

index (17) simplifies to the following expression:®!

n Pr(t/T) —In(p/p-)

N N
Z 1/2 Stn — Son)<lnptn - lnpon Z 1/2 Stn — Son)<lnp7—n - lnpon)- (Bl)
n=1 n=1

This formula can be used to show that if 7" = 2, then In Pr(2/1) = In(ps/p1) so that the
direct Tornqvist bilateral index Pr(2/1) equals the multilateral CCDI index ps/p; if there
are only two periods in the multilateral comparison.

Comparing the WTPD price level for period t relative to period 7,7'/x", with the
corresponding Térnqvist bilateral index, Pr(t/7), defined by (5). Using (D18), we have:

N N
In(r'/x7) = st (Inpl, — B5) = > si(Inp], — By). (B2)
n=1 n=1

Using (5) and (B2), it can be shown that:

N

In Pr(t/7) —In(x'/z7) = Y (1/2)(s = s,)(yh, + yn — 25;)

n=1
N

= > (sn = s)[(1/2) In(p},/b;) + (1/2) In(pa/b})] - (B3)

n=1

S1'Formula (B1) shows that if p! = p™ and ¢! = ¢” (which implies st = s7), then Pr(t/7) = ps/pr = 1.
Formula (B1) also shows that if expenditure shares are constant over time so that s;, = se; for all ¢ and
n, then Pr(t/7) = pi/pr-
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where the b’ are defined by (21). It is difficult to determine the sign of the right hand side of
(B3) except in the case (D23) where expenditure shares are constant across all observations
in which case the right hand side of (B3) is equal to zero and thus Pr(t/7) equals 7*/7" in
this case.

Using (17) and (B2), it is possible to compare the logarithm of the CCDI price level
for period ¢ relative to period 7, In(p’/p7), to the logarithm of the WTPD price level for

period t relative to period 7, In(7"/77):

In(p'/p") = In(x"/77) = i(l/Q)(Si +s3)(Inpj, — Inp})
- i(lﬂ)(srﬁ +s3)(Inp, —Inp;) — iSZ(lnpi —B) - is;(lnp; — )
= nz:(&ﬁ = 53) [(1/2) In(pp,/67,) + (1/2) In(p}, /7))
- ;:(stn = sp)[(1/2) In(p, /87) + (1/2) In(p}, /7). (B4)

Again, it is difficult to determine the sign of the right hand side of (B4) except in the case
(D23) where expenditure shares are constant across all observations, in which case the right

hand side of (B4) is equal to zero and thus p'/p™ equals 7' /7™ in this case.

C The Weighted Time Product Dummy Method: Es-

timation Details

The first order necessary (and sufficient) conditions for solving (20) are the following T
equations (C5) and the N equations (C6):

N N
atJrZsflﬁn = Zs;yfl; t=1,...,T; (C5)
n=1 n=1
T T T
S shar+ (&z) B = S shafs n=LoN (co
=1 =1 =1

Multiply both sides of equation ¢ = 1 in equations (C5) by s;1, equation ¢ = 2 in (C5)
by $a1,..., equation ¢ = T in (C5) by sp1, sum the resulting equations and subtract this
summed equation from both sides of the first equation in (C6). The resulting equation has

no oy terms. Do similar summations of equations (C5) to eliminate the terms Zthl st ay
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in each of the equations (C6). The resulting system of N equations is the following one:

T T T T
D siBi= D ()L =Y shshB— ) sishf - —Zststﬁfv
t=1 t=1 t=1 t=1
T T T T
= syl =D ()P =) slshyh = > stshyb— . - Z 81500
t=1 t=1 t=1 t=1
T T T T T
D shBy =Y shsiBi— Y shehfy— > shsifs— ... = > (sh) By
t=1 t=1 t=1 t=1 =1
T T T T T
= shyh = shstyl = shshyh =Y shshyb — .. =) (sh)%yl
t=1 t=1 t=1 t=1 t=1
(C7)
Note that s{ = 1— Zn o S, sh=1—s— Ziv g Skt =1— Zf:[ ~' st Substituting these

equations into the N equations (C7) leads to the following equivalent system of equations:

T T T T T
Zsi(sg +...88)8 — Z st s By — Z shishfBs — ... — Z S1SNy_10n—1 — Z stst By
=1 =1 t=1 t=1
T
= Z s5(Yn — Ye2) + Z s153(Yn — Yiz) -t Z $150 (Y — Yp);
t=1 =1
T T T T
Zsflstlﬂl - Z stshfBs— ... — Z Shsty_18n-1+ Z st(sh+...s%_)Bn
t=1 t=1 t=1 t=1
T T T
= shst(uh —yn) + Y shsb(Wh —wy) + .+ shsh y (uv — yev—1). (C8)
=1 t=1 =1

Recall that 3! = Inp!. Thus the right hand side of the first equation in (C8) is a
weighted sum of the logarithmic price ratios In(py/pi2), n(pa/pe3), - - - In(pa /ph).  Simi-
larly, the right hand side of the last equation in (C8) is a weighted sum of the logarithmic

price ratios In(pl, /pn ), In(pt /pi2), - - ., In(p, /pen—1).
Equations (C8) can be simplified if we define the following TN? weights wy,;:

Winj = 323§>0; n#jn=1....N;7=1,....N;t=1,....T,
Wi = 0 n=1,...,N;t=1,...,T. (C9)

Define the N? weights w,,; as follows:*

Wy = wyy; n=1... N;jj=1,... N (C10)

62Note that wp, =0 forn=1,...,N.
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Using these definitions, equations (C8) simplify to the following N equations:

N N T N T N
anj ﬁn_zwnjﬁj = Zzwtnjyz_zzwtnjytj; n = 17"'7N‘ (C]']')
= =1

t=1 j=1 t=1 j=1

Equations (C11) can be further simplified if we divide both sides of equation n in (C11) by

Z;V:l wy; for n =1,..., N. The resulting system of equations is:
N T N
5n—2fnjﬁj:Zthnj(ny—ytj)S n=1...,N (C12)
j=1 t=1 j=1
where the fractions f,; > 0 and f;,; > 0 are defined as follows:%?
N
Foi = Wai) > wak; mj=1,...,N; (C13)
k=1
N
finj = wtnj/ank; n,jg=1,...,N;t=1,...,T. (C14)
k=1

It can be verified that Zjvzl fnj =1forn=1,...,N and Zthl Zjvzl Jinj = 1 forn =
1,...,N. Let F' = [f,;] be the N by N matrix which has element nj equal to f,; for
n=1,...,Nand j=1,...,N. Let f = [f1,..., fn]! where f, = Zlezﬁlftnj(yfl—ytj)
forn =1,...,N.% Then the N equations in (C12) can be written using matrix notation
as:

Un—F]5=f (C15)

where Iy is the N by N identity matrix and 8 = [f,...,8y]7 is the column vector of
the §,. Thus it would appear that the solution to the weighted least squares minimization
problem (20) is equal to 8* = [Iy — F]~' f. However, the inverse of the matrix [Iy — F] does
not exist since its columns are linearly dependent; i.e., we have [Iy — F]1y = Oy where 1y
is a vector of ones and Oy is a vector of zeros. The solution to this problem is simple: set
one of the 3, equal to a definite number and drop one of the equations in the system of N
equations defined by (C15).% In our empirical work, we will choose to set By equal to 0

and to drop the last equation in (C15). Under these conditions, the remaining betas can

63f n=0forn=1,..,Nand fi, =0forn=1,...,N and t = 1,...,T. The remaining fractions are
positive under our assumptions that each price pf, and quantity ¢!, is positive for all n and t.

64Note that the elements of the matrix F' depend on just expenditure shares whereas the elements of the
vector f are share weighted averages of the logarithmic price ratios y!, — yi; = In(p’, /p;).

65This step can be justified as follows. First note that equations (C5) can be replaced by the equivalent
equations: (C5)* SN sty + S0 st B, = SN styt for t = 1,...,T. Now sum equations (C5)* for
t=1,...,T and note that this sum is equal to the sum of equations (C6) for n =1,..., N. Thus the last
equation in (C6) is linearly dependent on the remaining equations and can be dropped. This implies that
the last equation in (C8) and (C15) can be dropped. Note that if we have found a solution to equations
(C5)* and (C6), say of, ..., a4, 87, ..., On, then of + p, ..., + 1, 7 — p, ..., B — 1 is also a solution
to these equations where p is an arbitrary number. Thus a normalization on these parameters is required
in order to obtain a unique solution to the minimization problem (20).
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be obtained by solving equations (C15). Denote the solution values to the modified system
of equations as [+, Ba, ..., On1+ and let * denote the column vector of all of these betas
including Sy« = 0. The corresponding parameters b,« which appear in equations (18) are

defined as the exponentials of the [3,+; i.e., we have:
by = exp(fn+); n=1,...,N. (C16)

The logarithm of the period t price level, a!*, is then as follows:

i s, (C17)

n=1

D The Weighted Time Product Dummy Method: Spe-

cial Cases

Substituting (23) into (24) and recalling that v, = Inp!, and 5% = Inb? leads to the following

expression for the logarithm of 7'

N N
lnwt:Zsfl(yfl—B:;)—Zs;(y}l—ﬁ;‘l); t=1,...,T. (D18)
n=1 n=1

It is useful to consider some special cases for the multilateral indexes (D18). Our first
special case is the case where we have only two periods, so that T' = 2. In this case, Diewert
(2005; 564) showed that the logarithm of 72 is defined as follows;

N
In7® =) sn(yn — un) (D19)
n=1

where the share weights s; are defined as the following normalized harmonic averages of

the observed expenditure shares s} and s? for the two periods:

N
s¥ = h(s),s2) [Zhsk,sk]; n=1,...,N (D20)
k=1

where h(s}, s2) = [0.5(s))™" + 0.5(s2)7']~!. Diewert (2005; 564) noted that the bilateral
price index defined by 72 approximated the corresponding Tornqvist index to the second
order around a point where p! = p? and ¢! = ¢2.% Thus it may appear that if there are
only two periods in the window, the weighted time product dummy (WTPD) multilateral
method is a perfectly satisfactory method from the viewpoint of the economic approach
to index number theory. Unfortunately, second order approximation results may not be

adequate in our present context where a sale for a product. Consider the following example

66This second order approximation property will hold if p? = Ap! and ¢? = pug' where A and u are
arbitrary positive scalars.
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where there are only two commodities and two periods so that N =2 and T' = 2. Suppose
that the period 1 and 2 price vectors are equal to p! = [1,1] and p* = [1, pss] and the period
1 and 2 share vectors are equal to s' = [0.5,0.5] and s? = [0, 1], where py, is a small positive
number that is less than 1. Thus the logarithm of pgs is less than zero; i.e., r = Inpyy < 0.
The price of commodity 2 in period 2 is so low that purchasers stop buying commodity 1 in
period 2 even though the price of commodity 1 has not changed. Using formula (5) for the

Tornqgvist index between periods 2 and 1, the logarithm of this index is defined as follows:

2
In Pr(2/1) = (1/2)(s10 + Son) In(pon/p1n)
n=1
= (1/2)[(1/2) + 0] 1In(1/1) 4 (1/2)[(1/2) + 1] In(p22/1)
= (3/4)r (D21)
where 7 = Inpyy and is negative by assumption. Under our assumptions, h(si,s?) =

h(0.5,0) = 0 and h(sl, s3) = h(0.5,1) = 2(0.5)1/[0.5 + 1] = 2/3. Thus the sum h(si, s?) +
h(sd, s2) = h(s}, s3) = 2/3 and substituting these numbers into formula (D19) shows that
the logarithm of the WTPD normalized price level for period 2 is equal to the following

expression:

2
In 72 > s (Y20 — y1n) = 0In(1/1) + 1In(pp2/1)

n=1

= r< (3/4)r =InPpr(2/1) (D22)

where the inequality follows from r < 0 by assumption, and the last equality follows using
(D21) for our example. This is only a specific numerical example but it shows that price
levels based on the weighted time product dummy method may have a substantial bias as
compared to the price levels generated by a superlative index.

The second special case that we will consider is the case where the expenditure shares
are constant in each period. This case is consistent with purchasers having Cobb-Douglas
preferences for the N commodities under consideration. Thus assume that the data satisfy
the following conditions:

st =8, t=1,....,T;n=1,...,N. (D23)
Substituting conditions (D23) into (D18) leads to the following formula for the logarithms
of the normalized WTPD price levels:

N
7' =Y sa(yh —vn); t=1....T. (D24)

n=1

Thus 7t = H,]Ll(pfl/pln)s", a weighted geometric mean of the ratios of the period t prices

to the period 1 prices, pt,/p1n, using the constant expenditure shares, s,, as weights.
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The third special case we consider is the case where the error terms &’ in equations (19)

are all equal to 0. In this case, equations (18) become the following equations:
pl=ab,; t=1,....,T;n=1,...,N. (D25)

Thus in this special case, the period t price vector pt is equal to a;b, where b is the vector
[b1,...,by] and thus the price vectors are proportional to each other. As usual, we can
interpret the scalar a; as the (unnormalized) period t price level. The corresponding period
t quantity level, (), can be defined as period ¢ value, 25:1 phql, divided by the price level,
a:. Thus we have:

Q = pqJay; t=1,....T
= ab-q'/a; using (D25)
= b-¢. (D26)

Thus if the error terms in equations (19) are all equal to 0, the period ¢ quantity aggregate,

N
n=1

Q:, is equal to the linear function b-¢' = >, b,¢!, for all ; i.e., @, is equal to a quality
adjusted sum of the period t quantities purchased. Thus in the case of zero errors in
equations (19), the WTPD multilateral method is consistent with purchasers of the N
commodities maximizing a linear utility function, which implicitly assumes that the N
commodities are perfectly substitutable after quality adjustment. A multilateral method
which has this property is called an additive method. In the general case where there are
nonzero error terms in equations (19), it can be seen that the WTPD multilateral method
is an approximately additive method.

The problem with an additive multilateral method is that, in general, it is not consistent
with the economic approach to index number theory once the number of periods is greater

than two; see Marris (1984; 52) and Diewert (1999; 49).

E The Weighted Time Product Dummy Method and
the Linking Problem

Suppose that the WTPD multilateral method explained in section 3.3 is used to construct

2

a sequence of price levels, ', 7%, ... 7! for T consecutive periods where 7" > 3. Recall

that the logarithms of these price levels can be defined by equations (D18), In7* = of —
s = Zivzl st(yt — B5) — 2521 Sin(Y1n — BF) for t =1,..., T, where the ay«, ags, ..., ar
and fi«,..., % solved the weighted least squares minimization problem (20) with the

normalization 83 = 0.

T+1

; T+1
.~ and prices p, " become

Assume that data on period T + 1 expenditure shares s
available at the end of period T4+ 1 for n = 1,..., N. A new set of multilateral indexes
can now be constructed for the window of observations that include the data for periods

2,3,...,T.T + 1. The weighted least squares problem that is solved to generate the price
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levels for the new window of observations is the following one:

T+1 N
] t,t ot 9
0‘2""7“%13%%1,-..”5% Z Z sn(y” @ Bn) : (E27)
t=2 n=1
Denote the solution to (E27) as o®** o3 ... ot g . B3 with the normalization
BN = 0. The (unnormalized) logarithms of the price levels for the new window are defined
as follows:

=S yh - B t=2.3,... T+1. (E28)

Recall that ! = Inp! and 8 = In(b**) for t = 2,3,..., T+ 1and n=1,...,N. The

period ¢ (unnormalized) price levels a™** are defined as the exponentials of the a!**:
a*=e*; t=23,...,T+1 (E29)

The new WTPD price levels need to be linked to the price levels generated by the original
window of observations; i.e., we need to define a new price level for period T'+ 1 that
extends the initial 7' normalized price levels 7" defined by equations (D18) for t =1,...,T.
Suppose we link the new window price levels to the initial price levels at observation ¢t where
t could be any observation between periods 2 and T'. Let 77 +1(t) = wt[a? T1** /a**] denote
the resulting (normalized) linked price level for period 7'+ 1 that depends on choosing
period t as link period. Thus the logarithm of this period T+ 1 price level is defined as

follows:%7
Int™'(t) = Ina' —Ina™ + e ™ t=2,3,...,T
N N
= > b =B = shlys—Br) — '+’ using (D18) and (F29)
n=1 n=1
N N N
= sl -8 = syl = 8 = > sy — B
n=1 n=1 n=1
N
+ > " sh Yl — ) using (E28)
n=1
N N N
= > syt =) =) shun = B+ Y sk (B = By). (E30)
n=1 n=1 n=1

Thus the choice of the linking observation ¢ between the two windows will only affect the
last term in (E30); i.e., the term 25:1 st (Bp — %) will in general change as ¢t changes
because the period t expenditure shares s, will usually change as ¢ changes. However, as
the window length T increases, it is possible that the quality adjustment parameters will
stabilize so that B ~ BF for n = 1,...,N.%® 1In this case, the last term on the right

67de Haan (2015b) essentially obtained the formula (E30).
68 This observation is likely to be true in a stable market situation where the number of varieties remains
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hand side of (E30) will be close to 0 and it will not matter much which period is chosen as
the linking period. It can also be seen that in the case where the expenditure shares are

constant for all 7'+ 1 periods, (E30) simplifies to the following weighted Jevons formula:

N
na () = salyn ™ =) t=2,3,...,T (E31)
n=1
where s, is the constant share for commodity n for n = 1,...,N. Thus in the case

of constant expenditure shares, the WTPD price level estimate for period T'+ 1 will be
independent of the choice of the link period.

In the general case where the shares are not constant, it can be seen that we are faced
with the same set of problems that were discussed in section 3.5: we could choose period 2,
T or (T'+1)/2 (if T is odd) as the linking period or we could take the geometric average of
the T'— 1 estimates for 771 defined by (E30).%? In the context of very variable price data
with little or no trends, choosing the mean estimator for 77+! is probably a satisfactory
linking strategy.

Finally, suppose the price and quantity data for period 7"+ 1 are identical to the price
and quantity data for some period t such that 2 <t < T i.e., we have t such that:

T+l _ b, T+l _ ¢,

n STL7 n pn’

s n=1,...,N. (E32)
Suppose further that we link the two windows at this observation ¢. The identity test for
multilateral indexes requires that 77 ™ (¢) = 7% where 77 1(¢) is defined by (E30) and 7' is

defined by (D18). Using equation (E30) for period ¢, we calculate In 77+ (¢) minus In 7t as

follows:
In 7TT+1(t) —In7t = Ina™ —Ilna”
N N
N N
= Z Sgﬂ(ygﬂ — Ppes) — Z SZ(yZ — Ppe+)  using (E28)
n=1 n=1
=0 (E33)

constant. However, this situation is not likely to occur in practice due to the appearance of new items
and the disappearance of existing items; i.e., up to now, we have neglected the new goods problem. Thus
if the window length T is chosen to be very large, the lack of matching items becomes a problem. Our
methodology up to this point has assumed that prices p!, and shares s!, are all positive. It can be shown
that our analysis of the various multilateral methods remains valid when some shares s, are equal to
zero provided that the corresponding reservation prices p!, remain positive; see Hicks (1940; 114) on the
concept of reservation prices. Hausman (1997) estimated these reservation prices econometrically for new
breakfast cereals. For a diagram explaining the Hicks methodology, see Diewert (1996; 32). However,
the estimation of reservation prices is not a practical alternative for statistical agencies. Feenstra’s (1994)
CES methodology avoids the estimation of reservation prices since his methodology assumes that they are
infinite but in general, an estimate for the elasticity of substitution is required. A more complete treatment
of the problems associated with modeling quality change is beyond the scope of this paper.
69Gee definition (33) which also applies in the present context but using the new definitions for the .
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where the last equation follows using assumptions (E32). Thus if the price and quantity
data for period T + 1 are exactly equal to the price and quantity data for period ¢, then
linking the windows at observation ¢ will preserve the identity test over the two windows;
i.e., under these conditions it makes sense to link the two windows at period ¢. This logic
carries over to situations where the price and quantity data of period ¢ are closest (in some
metric) to the price and quantity data of period T + 1: it makes sense to link the windows

0 The main

at the observation which has the most “similar” price and quantity data.
advantage of this method is that it will preserve a Walsh type multiperiod identity test
across the two windows. The main drawback to this method of linking is that it depends on
a relative price and expenditure share similarity measure and it may be difficult to achieve

consensus on exactly what the appropriate measure is.

F An Efficient Method for Calculating the Geary-
Khamis Multilateral Index

Following Diewert (1999; 26), substitute equations (27) into equations (26) and after some
simplification, obtain the following system of equations which will determine the compo-

nents of the b vector:

Iy — Clb =0y (F34)

where I is the N by N identity matrix, Oy is a vector of zeros of dimension N and the C'

matrix is defined as follows: .
C=q"! Z sttt (F35)
=1

where ¢ is an N by N diagonal matrix with the elements of the total window purchase
vector ¢ running down the main diagonal and ¢~! denotes the inverse of this matrix, st is
the period ¢ expenditure share column vector and ¢'T is the transpose of the column vector
q' and is equal to the row vector of quantities purchased during period ¢. Note that the N

by N matrix s'¢'T has rank 1 for each ¢. Let ¢T denote the transpose of the column vector

"0 As in section 3.5, the exact result (E33) can be extended to the case where the price data of period
T + 1 is proportional to the price data of period .
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q. Then:

T
= Z ¢'T  since 15Tst =1 for each t
= ¢ using definition (25). (F36)

Using (F36), we have ¢*[Ix — C] = ¢* — ¢ = Oy. Thus the matrix Iy — C is singular
which implies that the N equations in (F34) are not all independent. In particular, if
the first N-1 equations in (F34) are satisfied, then the last equation in (F34) will also be
satisfied. It can also be seen that the N equations in (F34) are homogeneous of degree one
in the components of the vector b. Thus to obtain a unique b solution to (F34), set by
equal to 1, drop the last equation in (F34) and solve the remaining N — 1 equations for
bi, by, ..., by_1. This is the solution method we used in subsequent sections of this study.”

Once the vector of quality adjustment factors b has been determined, the period ¢
(unnormalized) price and quantity levels, P* and @, are defined using equations (27) and
(28); i.e., we have P' = p'-¢'/b-¢' and Q; = b-¢" for each period t in the window. As usual,
the sequence of normalized price levels can be defined by 7 = P*/P! fort =1,...,T.

Equations (28) show that the GK multilateral indexes will be consistent with the eco-
nomic approach to index number theory provided that purchasers maximize the linear
utility function, f(¢) =b-q = Zf:[:l bnq.. However, perhaps somewhat surprisingly, the
GK indexes will also be consistent with the economic approach to index number theory if
purchasers have Leontief or no substitution preferences.” Thus suppose that purchasers of
the N products have preferences which can be represented by the utility function f defined
as follows:

fla1,q2, ..., qn) =min{q,/B, :n=1,...,N} (F37)

where the (3, are positive constants. Let 8 = [0, .., On] the vector of these coefficients. The
unit cost function that is dual to these preferences, ¢(p), turns out to be ¢(p) = - p where

p is the vector of prices that purchasers face. If purchasers in period ¢ face the price vector

"'In order to establish that the solution b, are all positive, use the argument in Diewert (1999; 27)
which proceeds as follows. From (F36), ¢ is a strictly positive solution to ¢TC = ¢TIy = 1¢T and hence
q is a strictly positive left eigenvector of the strictly positive matrix C' which corresponds to the positive
eigenvalue 1. Hence by the Perron (1907) Frobenius (1909) Theorem, A = 1 is the maximal eigenvalue of
C and thus C also has a strictly positive right eigenvector b which corresponds to this positive eigenvalue.
Hence b satisfies the equation Cb = 1b = Iyb or [Ixy — C]b = O which is (F34).

Diewert (1999; 27) showed that linear and Leontief preferences are the only preferences for which the
GK system is exact.
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p' and chose the quantity vector ¢" which maximizes the utility function f(q) defined by
(F37) so that period ¢ purchaser utility is u; = f(q"), then it can be shown that p’, ¢* and

u, satisfy the following equations:

¢ =Ve(pu = Puy; t=1,...,T (F38)

where V,c(p') is the vector of first order partial derivatives of the unit cost function ¢(p') =
Zgzl Bnpt, and u, is the period t utility level. Note that equations (F38) imply that the
quantity vectors vary in strict proportion over the 7' time periods. Recall (25) where the
vector of total commodity sales over the T periods, q = Zle q', was defined. It can be
seen that conditions (F38) imply that period ¢’s share of commodity n in total sales of
commodity n over the T periods, say of, = ¢, /¢y, does not depend on n. Thus we have the
existence of shares o' = ¢! forn=1,...,N and t = 1,...,T such that period ¢’s quantity

vector ¢' is equal to o times the vector of total sales ¢; i.e., we have:
¢ = o'q¢g t=1,....T (F39)

1= >0 (F40)

We will use equations (F39) and (F40) to exhibit an explicit solution to equation (F34).

Equation (F34) can be rewritten as follows:

b = Cb
T

= ¢! Z s'¢'Th using definition (F35) for C

t=1

T
= ¢! Zstathb using (F39)
t=1
T
= ¢ Z o'stq - . (F41)
=1

We are allowed one normalization on the components of the vector b. We choose the
following normalization:
b-q=1. (F42)

Equation n in the matrix equation (F41) can be rewritten as follows if we make use of the

normalization (F42):

T
bnzqglzatsfl; n=1,...,N. (F43)
=1

We need to check that the b, defined by (F43) satisfy (F42); i.e., we need to show that
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q-b=qTb=1. Using definitions (F43), we have:

T
qu — 1NT Z O_tst
t=1
T
= ZathTst
t=1
T
= o' since 1NTst:Z£[:15£L:1fort:1,...,T
t=1
— 1 using (F40). (F44)

Thus the b, defined by (F43) satisfy equations (26) subject to the normalization (F42) and
these b,, can be used to define the period ¢ (unnormalized) price levels P using equations
(27); i.e., define P* = p' - ¢'/b-¢' for t = 1,...,T. Finally, the sequence of normalized
price levels can be defined by nt = P'/P! for t = 1,...,T. Thus the GK price levels are
consistent with purchasers having either linear or Leontief preferences over their purchases

of the N commodities.

G Details of Similarity Linking Application

Using the sales adjusted data data, the dissimilarity measures Aar(p", p', ¢", ¢') defined
by (38) using the Fisher bilateral price index as our P(p",p', ¢", ¢") are calculated for r =
1,...,12 and for t = 1,...,12. The A4r(p',p', ¢, ¢') are listed in the column of Table A3
under the heading A 41, the Aar(p?, p', ¢%, ¢') are listed in Table A3 under the heading
A%, . and so on. Note that when r = ¢, A%, = 0 for each ¢ as expected. Note also that
the matrix of measures listed in Table A3 is symmetric so that A", = A%, for all r and ¢.

For each representative elasticity of substitution that we have chosen, we will construct
relative price similarity linked normalized price levels, 7, (o). As each new observation
becomes available, we link the current observation to the most similar previous observation.
Thus for ¢ = 0, we use the measures listed in Table A3. We set 7}, (0) equal to 1. For
period 2, we set 74, (0) = Pr(p', p?, ¢*, ¢*), the Fisher price index for period 2 relative to
period 1. For period 3, we look at the first two entries in the column in Table A3 that
has the heading A 473. The smaller of these two numbers, 0.027, occurs at t = 1, so we
use the Fisher formula to link the prices of period 3 directly to the prices of period 1; i.e.,
we set 73, (0) = Pr(p',p*, ¢*,¢%). For period 4, we look at the first three entries in the
column in Table A3 that has the heading A ar4;. The smallest of these numbers, 0.004,
occurs at t = 3, so we link the period 4 price level to the price level of period 3 using the
Fisher price index for period 4 relative to period 3. Hence the period 4 normalized price
level is 47 (0) = Pr(p?, p*, ¢, ¢*)7%,(0). For period 5, we look at the first 4 entries in the
column in Table A3 that has the heading A ars5;. The smallest of these numbers, 0.074,

occurs at t = 4, so we link the period 5 price level to the price level of period 4 using the
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Table A3: Asymptotic Linear Measures of Price Dissimilarity for o = 0

1t
Ay}

2t
Ay )

3t
Ay}

4t
Ay )

5t
Ay}

6t
Ay )

Tt
AAL

8t
AAL

9t
AAL

10t
AAL

11¢
AYY)

12t
AYy)

O O Ul W N |+

—_ =
N = OO

0.000
0.064
0.027
0.051
0.179
0.102
0.099
0.096
0.130
0.255
0.180
0.221

0.064
0.000
0.070
0.119
0.282
0.166
0.184
0.053
0.187
0.384
0.288
0.324

0.027
0.070
0.000
0.004
0.105
0.025
0.025
0.042
0.039
0.140
0.068
0.096

0.051
0.119
0.004
0.000
0.074
0.008
0.009
0.046
0.018
0.096
0.038
0.058

0.179
0.282
0.105
0.074
0.000
0.040
0.048
0.126
0.049
0.016
0.049
0.058

0.102
0.166
0.025
0.008
0.040
0.000
0.001
0.049
0.004
0.046
0.015
0.025

0.099
0.184
0.025
0.009
0.048
0.001
0.000
0.064
0.002
0.052
0.011
0.022

0.096
0.053
0.042
0.046
0.126
0.049
0.064
0.000
0.064
0.170
0.112
0.126

0.130
0.187
0.039
0.018
0.049
0.004
0.002
0.064
0.000
0.043
0.004
0.013

0.255
0.384
0.140
0.096
0.016
0.046
0.052
0.170
0.043
0.000
0.026
0.027

0.180
0.288
0.068
0.038
0.049
0.015
0.011
0.112
0.004
0.026
0.000
0.003

0.221
0.324
0.096
0.058
0.058
0.025
0.022
0.126
0.013
0.027
0.003
0.000
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Table A4: Log Quadratic Measures of Price Dissimilarity for o =0

AL

A%,

AT

1

N

N
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0.000
0.063
0.027
0.050
0.174
0.101
0.098
0.095
0.128
0.248
0.177
0.217

0.063
0.000
0.068
0.116
0.268
0.161
0.178
0.052
0.180
0.364
0.276
0.311

0.027
0.068
0.000
0.004
0.102
0.025
0.025
0.041
0.039
0.137
0.068
0.096

0.050
0.116
0.004
0.000
0.071
0.008
0.009
0.045
0.018
0.094
0.038
0.058

0.174
0.268
0.102
0.071
0.000
0.039
0.047
0.122
0.048
0.016
0.048
0.057

0.101
0.161
0.025
0.008
0.039
0.000
0.001
0.049
0.004
0.045
0.014
0.025

0.098
0.178
0.025
0.009
0.047
0.001
0.000
0.063
0.002
0.051
0.011
0.022

0.095
0.052
0.041
0.045
0.122
0.049
0.063
0.000
0.063
0.164
0.109
0.123

0.128
0.180
0.039
0.018
0.048
0.004
0.002
0.063
0.000
0.042
0.004
0.013

0.248
0.364
0.137
0.094
0.016
0.045
0.051
0.164
0.042
0.000
0.026
0.027

0.177
0.276
0.068
0.038
0.048
0.014
0.011
0.109
0.004
0.026
0.000
0.003

0.217
0.311
0.096
0.058
0.057
0.025
0.022
0.123
0.013
0.027
0.003
0.000




UNSW Economics Working Paper 2018-13

Fisher price index for period 5 relative to period 4. Thus the period 5 normalized price
level is 5, (0)Pr(p*, p°, q*, ¢°)7%(0). For period 6, we look at the first 5 entries in the
column in Table A3 that has the heading A s76:;. The smallest of these numbers, 0.008,
occurs at t = 4, so we link the period 6 price level to the price level of period 4 using the
Fisher price index for period 6 relative to period 4. Thus the period 6 normalized price
level is 74, (0) = Pr(p*, p%, ¢*, ¢%)7%,(0). Continue this sequential process until all 12 of
the price similarity linked price levels 7%y, (0) have been defined. These price levels are
listed in Table A6; see the column with the heading 7, .

It can be seen that the price similarity linked price levels 7%y, are quite close to the cor-
responding target CES price levels, nl ;¢ but not as close as the CCDI price levels, m&qp;,
when o = 0. Define the mean absolute difference between the nf 5 and the corresponding
7'y, as the average bias, By, and define the mean absolute differences between the other
approximating indexes in a similar manner. Then it turns out that the CCDI and GEKS
indexes have the smallest average biases at 0.18 and 0.19 percentage points whereas the
price similarity linked indexes 7;; have an average bias of 0.58 percentage points. The
average absolute differences with the 7f ¢ for the other indexes are listed in Table 4.

We turn now to the Log Quadratic measures of relative price dissimilarity defined by
(37). Again, we use the same price and quantity data that were used in the previous two
sections. The dissimilarity measures Apg(p", ', ¢", ¢) using the Térnqvist bilateral price
index as our P(p",p',q",¢") are calculated for r = 1,...,12;¢t = 1,...,12. The resulting
dissimilarity measures Apo(p”, p', ¢", ¢") for o = 0 are listed in Table A4. Note that when
r =t, Argu = 0 for each t as expected. Note also that the matrix of measures listed in
Table A4 is symmetric so that Arg = Apge for all r and ¢. Finally, we note that the
alternative dissimilarity measures listed in tables A3 and A4 are fairly similar.

For each representative elasticity of substitution o, we construct relative price similarity

.® For ¢ = 0, as each new observation becomes

linked normalized price levels, 77 ,(o)
available, we link the current observation to the most similar previous observation as was
done when we constructed the price levels 7%, (0), except that we now use the dissimilarity
measures listed in Table A4 instead of those listed in Table A3. The resulting sequence of
price similarity linked price levels 77, (0) is listed under the heading 77, in Table A6. It can
be seen that the price similarity linked price levels thQ are fairly close to the corresponding
target CES price levels, 5 ,g, when o = 0 with an average absolute difference of 0.62
percentage points. Thus the approximation of the Log Quadratic price similarity linked
index WtLQ(O) to the target CES index is similar to the approximation of the Asymptotic
Linear price similarity linked index 7%, (0) to 75 s and both of these approximations are
not as good as the approximations provided by the GEKS and CCDI indexes when the
elasticity of substitution is 0.

We can construct counterparts to tables A3 and A4 for o equal to 0.5, 1, 2, 4 and 10

"3 As o changes, the prices do not change but the expenditure shares change. Hence the measures of
relative price dissimilarity change as o changes. We have not listed all of the counterpart tables to tables
A3 and A4 but we note that for fixed o, the AL and LQ dissimilarity measures were quite similar.
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and form the price similarity linked indexes 7'y, (0) and 7 (o) for these values of using

this linking methodology. The resulting price levels are listed in Table A6.
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H Tables

Table A5: Alternative Price Levels for Different Methods and Elasticities of Substitution
t  Tops  Trom  Trem  Twrep TeKk TeEKs TCoDI
Alternative Price Levels when o0 = 0
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8600 0.8600 0.8585 0.8830 0.8600 0.8600 0.8571
0.9500 0.9500 0.9515 0.9227 0.9500  0.9500 0.9507
0.9500 0.9500 0.9515 0.9179 0.9500 0.9500 0.9506
0.8740 0.8740 0.8726 0.8612 0.8740 0.8740 0.8724
0.9700 0.9700 0.9705 0.9367 0.9700 0.9700 0.9705
0.9360 0.9360 0.9364 0.9042 0.9360 0.9360 0.9366
0.7840 0.7840 0.7829 0.7717 0.7840 0.7840 0.7832
9 0.9100 0.9100 0.9109 0.8816 0.9100 0.9100 0.9106
10 0.8700 0.8700 0.8698 0.8645 0.8700 0.8700 0.8689
11 0.9260 0.9260 0.9268 0.9040 0.9260 0.9260 0.9265
12 0.9300 0.9300 0.9308 0.9144 0.9300 0.9300 0.9303
Alternative Price Levels when o = 0.5
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.8639 0.8626 0.8635 0.8753 0.8523  0.8620 0.8633
3 09831 0.9839 0.9834 0.9680 1.0005 0.9831 0.9831
4 09915 0.9923 0.9918 0.9735 1.0126  0.9915 0.9915
5 0.8951 0.8935 0.8946 0.8898 0.9046  0.8931 0.8944
6
7
8

0O Ui Wi =

1.0223 1.0221 1.0223 1.0033 1.0458 1.0221 1.0222
0.9831 0.9829 0.9831 0.9650 1.0053 0.9829 0.9831
0.8213 0.8200 0.8208 0.8138 0.8314  0.8202 0.8209

9 0.9570 0.9572 0.9571 0.9406 0.9776  0.9568 0.9569
10 0.8990 0.8981 0.8987 0.8974 0.9053 0.8971 0.8983
11 09770 0.9770 0.9770 0.9637 0.9948 0.9766 0.9768
12 0.9817 0.9818 0.9817 0.9719 0.9966 0.9811 0.9815

Alternative Price Levels when o = 1
1 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000  1.0000
2 0.8716 0.8675 0.8716 0.8716 0.8529  0.8668 0.8716
3 1.0172 1.0183 1.0172 1.0172 1.0538 1.0160 1.0172
4 1.0346 1.0357 1.0346 1.0347 1.0803 1.0329 1.0346
5 0.9137 0.9078 0.9137 0.9137 0.9329 0.9062 0.9137
6 1.0771 1.0750 1.0771 1.0771 1.1299 1.0744 1.0771
7 1.0321 1.0301 1.0321 1.0322 1.0818 1.0297 1.0321
8 0.8616 0.8567 0.8616 0.8616 0.8857  0.8570 0.8616
9 1.0058 1.0047 1.0058 1.0059 1.0526  1.0033 1.0058
10 0.9244 0.9205 0.9244 0.9244 0.9373 0.9172 0.9244
11 1.0301 1.0285 1.0301 1.0301 1.0719 1.0270 1.0301
12 1.0355 1.0339 1.0355 1.0355 1.0717 1.0316 1.0355
Alternative Price Levels when o = 2

1 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000  1.0000
2 0.8953 0.8801 0.8926 0.8803 0.8776  0.8809 0.8927
3 1.0794 1.0770 1.0790 1.1131 1.1496 1.0696 1.0775
4 11151 1.1125 1.1146 1.1588 1.2095 1.1023 1.1126
5 0.9366 0.9156 0.9328 0.9442 0.9774 0.9086 0.9312
6 1.1817 1.1676 1.1791 1.2341 1.3023 1.1643 1.1783
7 1.1248 1.1114 1.1223 1.1738 1.2364 1.1090 1.1217
8 0.9418 0.9207 0.9380 0.9647 1.0013 0.9205 0.9378
9 1.0981 1.0874 1.0961 1.1447 1.2068  1.0818  1.0950
10 0.9559 0.9387 0.9527 0.9558 0.9842  0.9270 0.9502
11 1.1312 1.1186 1.1288 1.1742  1.2348 1.1125 1.1276
12 1.1370 1.1243 1.1346 1.1738 1.2325 1.1153 1.1328
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Table A5 (cont.): Alternative Price Levels for Different Methods and Elasticities of
Substitution

t  Tops  Trom  Trcw  Twrpp TGk TGEks  Tcopr
Alternative Price Levels when o = 4
1.0000 1.0000 1.0000 1.0000 1.0000  1.0000  1.0000
0.9465 0.8924 0.9196 0.9406 0.9670  0.8988  0.9220
1.1558 1.1337 1.1447 1.2174  1.2298 1.1177  1.1343
1.2209 1.1972 1.2090 1.3145 1.3389 1.1704 1.1925
0.9305 0.8881 0.9078 0.9336 0.9771  0.8661 0.8931
1.3293 1.2745 1.3000 1.4674 1.5194 1.2610 1.2915
1.2529 1.2013 1.2253 1.3772 1.4222 1.1910 1.2185
1.0640 0.9890 1.0254 1.1351 1.1815 0.9830 1.0205
9 1.2259 1.1811 1.2017 1.3502 1.4003 1.1627  1.1909
10 0.9453 0.9132 0.9279 0.9297 0.9726  0.8832  0.9088
11 1.2728 1.2244 1.2467 1.3979 14545 1.2022 1.2339
12 1.2745 1.2260 1.2484 1.3870 1.4509 1.1954  1.2309
Alternative Price Levels when o = 10
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0088 0.8565 0.8885 1.0835 1.0912 0.8752 0.9010
3 1.1981 1.1439 1.1568 1.2072 1.2061 1.1266 1.1376
4 1.2933 1.2341 1.2483 1.3174 1.3158  1.1888  1.2046
5 0.8630 0.8710 0.8777 0.8188 0.8293 0.8174 0.8240
6
7
8

0O U i Wi =

1.4582 1.3399 1.3687 1.5312 1.5342 1.3042 1.3309
1.3631 1.2526 1.2795 1.4270 1.4300 1.2256  1.2490
1.1896 0.9935 1.0381 1.3051 1.3141 0.9741 1.0125

9 1.3380 1.2386 1.2629 1.4086 1.4151 1.1962 1.2218
10 0.8636 0.8923 0.8921 0.8165 0.8275  0.8383 0.8429
11 1.3934 1.3216 1.3464 1.4626 1.4726  1.2372 1.2658
12 1.3618 1.2935 1.3172 1.3827 1.3942  1.1997 1.2257

Alternative Price Levels when o = 20

1 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000  1.0000
2 1.0218 0.7971 0.8173 1.0962 1.0962  0.8237 0.8408
3 1.2000 1.1328 1.1411 1.2001 1.2001 1.1249 1.1318
4 1.2998 1.2269 1.2359 1.3011 1.3010 1.1855 1.1949
5 0.8297 0.8727 0.8787 0.8065 0.8107 0.8104 0.8144
6 1.4892 1.3172 1.3387 1.5141 1.5146  1.3048 1.3226
7 1.3907 1.2301 1.2502 1.4129 1.4133  1.2272 1.2427
8 1.2197 0.9157 0.9478 1.3126  1.3125 0.9169 0.9427
9 1.3704 1.2186 1.2376 1.4038 1.4062 1.1960 1.2165
10 0.8297 0.8762 0.8721 0.8065 0.8107 0.8320 0.8349
11 14194 1.3645 1.3836 1.4418 1.4461  1.2258 1.2475
12 1.3456 1.3028 1.3198 1.3204 1.3260 1.1755 1.1876
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Table A6: Price Levels for the Sales Adjusted Data

t Tops Trcum  Trow  Trrp  Trre  TwrpD Tax  TGeks  Toopr Ty 7TtLQ
Alternative Price Levels when o = 0
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.8600 0.8600 0.8585 0.8600 0.8585 0.8828 0.8600 0.8624 0.8612 0.8600 0.8585
3 0.9500 0.9232 0.9169 0.9444 0.9450 0.9296 0.9559  0.9524 0.9531 0.9444 0.9450
4 0.9500 0.9205 0.9141 0.9500 0.9502 0.9179 0.9500 0.9495 0.9505 0.9416 0.9421
5 0.8740 0.8468 0.8384 0.8740 0.8712 0.8615 0.8740 0.8759 0.8751 0.8663 0.8640
6 0.9700 0.9216 0.9091 0.9794 0.9813 0.9357 0.9654  0.9688 0.9691 0.9651 0.9657
7 0.9360 0.8904 0.8784 0.9360 0.9364 0.9042 0.9360 0.9354 0.9364 0.9325 0.9330
8 0.7840 0.7458 0.7343 0.7840 0.7858 0.7715 0.7840 0.7863 0.7863 0.7942 0.7965
9 0.9100 0.8394 0.8224 0.8937 0.8956 0.8659 0.8937  0.9010 0.9008 0.9036 0.9041
10 0.8700 0.7970 0.7789 0.8700 0.8680 0.8648 0.8700  0.8706 0.8703 0.8623 0.8600
11 0.9260 0.8350 0.8140 0.9385 0.9398 0.9103 0.9286  0.9272 0.9279 0.9168 0.9172
12 0.9300 0.8412 0.8201 0.9300 0.9299 0.9144 0.9300 0.9290 0.9297 0.9236 0.9241
Alternative Price Levels when o = 0.5
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 1.0000
2 0.8639 0.8626 0.8635 0.8626 0.8635 0.8751 0.8527 0.8644 0.8672 0.8626 0.8635
3 0.9831 0.9574 0.9493 0.9790 0.9796 0.9718 1.0020 0.9849 0.9851 0.9790 0.9796
4 0.9915 0.9634 0.9552 0.9915 0.9915 0.9735 1.0126  0.9916 0.9921 0.9852 0.9857
5 0.8951 0.8674 0.8615 0.8919 0.8940 0.8900 0.9045 0.8963 0.8984 0.8870 0.8891
6 1.0223 0.9712 0.9578 1.0354 1.0364 1.0018 1.0392 1.0220 1.0218 1.0206 1.0211
7 0.9831 0.9351 0.9223 0.9830 0.9831 0.9650 1.0053  0.9833 0.9838 0.9827 0.9832
8 0.8213 0.7801 0.7701 0.8224 0.8217 0.8137 0.8317 0.8230 0.8246 0.8334 0.8365
9 0.9570 0.8861 0.8677 0.9427 0.9447 0.9250 0.9606  0.9496 0.9490 0.9539 0.9544
10 0.8990 0.8261 0.8086 0.8960 0.8979 0.8976 0.9052  0.8992 0.9013 0.8907 0.8929
11 0.9770 0.8825 0.8597 0.9923 0.9944 0.9711 0.9964 0.9796 0.9799 0.9719 0.9724
12 0.9817 0.8901 0.8671 0.9806 0.9813 0.9719 0.9965 0.9816 0.9822 0.9802 0.9808
Alternative Price Levels when o = 1
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.8716 0.8675 0.8716 0.8675 0.8716 0.8716 0.8537  0.8691 0.8754 0.8675 0.8716
3 1.0172 0.9929 0.9845 1.0145 1.0154 1.0181 1.0510 1.0170 1.0186 1.0145 1.0154
4 1.0346 1.0083 0.9998 1.0341 1.0346 1.0347 1.0804 1.0338 1.0359 1.0303 1.0311
5 0.9137 0.8838 0.8829 0.9020 0.9137 0.9137 0.9331 0.9106 0.9190 0.9031 0.9106
6 1.0771 1.0225 1.0107 1.0931 1.0950 1.0743 1.1203 1.0756 1.0777 1.0787 1.0795
7 1.0321 0.9810 0.9697 1.0305 1.0321 1.0322 1.0818 1.0312 1.0339 1.0349 1.0357
8 0.8616 0.8159 0.8094 0.8633 0.8616 0.8616 0.8864  0.8605 0.8659 0.8559 0.8578
9 1.0058 0.9345 0.9171 0.9917 0.9960 0.9906 1.0356  0.9982 1.0001 1.0062 1.0069
10 0.9244 0.8512 0.8371 0.9129 0.9244 0.9244 0.9375 0.9208 0.9290 0.9135 0.9213
11  1.0301 0.9318 0.9096 1.0463 1.0524 1.0376 1.0717 1.0321 1.0352 1.0294 1.0302
12 1.0355 0.9407 0.9184 1.0298 1.0355 1.0355 1.0717 1.0336  1.0378 1.0392 1.0402
Alternative Price Levels when o = 2
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.8953 0.8801 0.8926 0.8801 0.8926 0.8809 0.8802 0.8830 0.8960 0.8801 0.8926
3 1.0794 1.0561 1.0517 1.0782 1.0800 1.1080 1.1395 1.0700 1.0781 1.0782 1.0800
4 1.1151 1.0904 1.0859 1.1111 1.1144 1.1589 1.2102  1.1047 1.1153 1.1133 1.1151
5 0.9366 0.8974 0.9088 0.8920 0.9277 0.9439 0.9793 0.9154 0.9390 0.9163 0.9332
6 1.1817 1.1151 1.1123 1.1983 1.2063 1.2257 1.2850 1.1684 1.1812 1.1885 1.1903
7 1.1248 1.0626 1.0598 1.1142 1.1229 1.1739 1.2373 1.1126  1.1256 1.1325 1.1342
8 0.9418 0.8802 0.8857 0.9382 0.9411 0.9651 1.0039  0.9251 0.9432 0.9356 0.9383
9 1.0981 1.0224 1.0129 1.0763 1.0896 1.1309 1.1913  1.0809 1.0934 1.1039 1.1056
10 0.9559 0.8787 0.8757 0.9094 0.9462 0.9555 0.9861 0.9336 0.9579 0.9347 0.9523
11 1.1312 1.0210 1.0068 1.1404 1.1601 1.1792 1.2290 1.1222 1.1370 1.1378 1.1397
12 1.1370 1.0320 1.0178 1.1085 1.1315 1.1738 1.2336 1.1204 1.1382 1.1500 1.1521
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Table A6 (cont.): Price Levels for the Sales Adjusted Data

~+

t t t t t t t t t t
Tces TrcH TrcH  TrrB  TrrB  TWTPD Tex Tgexs Tccbpi TAL TLQ

Alternative Price Levels when o = 4
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9465 0.8924 0.9196 0.8924 0.9196 0.9439 0.9735 0.9006 0.9244 0.8924 0.9196
1.1558 1.1236 1.1311 1.1539 1.1560 1.2062 1.2171 1.1193 1.1355 1.1539 1.1560
1.2209 1.1868 1.1949 1.2084 1.2152 1.3153 1.3405 1.1750 1.1970 1.2187 1.2212
0.9305 0.8804 0.8972 0.8200 0.8608 0.9347 0.9833 0.8758 0.9035 0.9041 0.9170
1.3293 1.2284 1.2414 1.3299 1.3486 1.4516 1.4947 1.2698 1.2978 1.3390 1.3419
1.2529 1.1584 1.1706 1.2126 1.2337 1.3783 1.4251  1.1979 1.2252 1.2627 1.2653
1.0640 0.9537 0.9796 1.0193 1.0411 1.1386  1.1891 0.9891 1.0269 0.9912 1.0281
9 1.2259 1.1309 1.1373 1.1694 1.1979 1.3398 1.3912 1.1681 1.1957 1.2347 1.2373
10 0.9453 0.8726 0.8760 0.8358 0.8737 0.9308 0.9790 0.8932 0.9197 0.9183 0.9315
11 1.2728 1.1328 1.1338 1.2487 1.2877 1.4002 1.4445 1.2198 1.2503 1.2856 1.2885
12 1.2745 1.1433 1.1446 1.1691 1.2180 1.3887 1.4560 1.2050 1.2405 1.2975 1.3007
Alternative Price Levels when o = 10
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 1.0000
2 1.0088 0.8565 0.8885 0.8565 0.8885 1.0846 1.0924 0.8768 0.9025 0.8565 0.8885
3 1.1981 1.1434 1.1562 1.1971 1.1974 1.2061 1.2052 1.1305 1.1410 1.1971 1.1974
4 1.2933 1.2337 1.2477 1.2847 1.2874 1.3176  1.3159  1.1949 1.2100 1.2916 1.2921
5 0.8630 0.8707 0.8773 0.7515 0.7539 0.8210 0.8309 0.8284 0.8352 0.9116 0.9085
6
7
8

0O Ui Wi =

1.4582 1.3077 1.3280 1.4227 1.4406 1.5206 1.5217 1.3163 1.3394 1.4632 1.4649
1.3631 1.2223 1.2412 1.2860 1.3094 1.4278 14305 1.2346 1.2574 1.3676 1.3692
1.1896 0.9695 1.0070 1.0239 1.0585 1.3065 1.3156 0.9809 1.0190 0.9948 1.0368

9 13380 1.2082 1.2246 1.2114 1.2462 1.4088 1.4152 1.2058 1.2308 1.3464 1.3481
10 0.8636 0.8703 0.8650 0.7762 0.7776 0.8187 0.8291  0.8501 0.8549 0.9122 0.9091
11 1.3934 1.2356 1.2468 1.2805 1.3252 1.4768 1.4828  1.2620 1.2892 1.4097 1.4115
12 1.3618 1.2228 1.2336 1.0983 1.1325 1.3857 1.3963 1.2120 1.2376 1.3950 1.3966
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