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Abstract

We study the contribution of health shocks to earnings inequality and uncertainty
in labor market outcomes. We calibrate a life-cycle model with idiosyncratic health,
earnings, employment and survival risk, where individuals make labor supply and sav-
ings decisions, adding two novel features. First, we model health as a complex multi-
dimensional concept. We differentiate between functional health and latent health risk,
and between temporary/persistent and predictable/unpredictable health shocks. Sec-
ond, we model interactions between health and human capital accumulation. We find
that, in an environment with both costly health shocks and means-tested transfers, low-
skill workers find it optimal to reduce their labor supply in order to maintain eligibility
for transfers that protect them from potentially high health care costs. Thus, means-
tested transfers generate a moral hazard effect that causes agents (especially those with
low productivity) to invest less in human capital. Provision of public insurance can
alleviate this problem and enhance labor supply.
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1 Introduction
In this paper we study the contribution of health shocks to earnings inequality and un-

certainty in labor market outcomes. Our work can be viewed as a structural extension of
Smith (2004), who studied effects of major health shocks on employment and earnings in
the Health and Retirement Study (HRS), finding large negative effects over horizons of two
to ten years. We embed health shocks in a life-cycle labor supply/consumption framework
that enables us to investigate both their direct effects and indirect effects operating through
behavioral responses. We extend prior work by incorporating both health shocks and en-
dogenous human capital formation in one model, and we find they interact in important
ways over the life-cycle.

A key contribution of our work is the detailed data on health shocks that we construct
using the Medical Expenditure Panel Survey (MEPS). In our framework people are subject
to health shocks that may be temporary or persistent, and predictable or unpredictable. We
categorize all health shocks in MEPS by these criteria. This allows us to capture how health
shocks contribute to transitory vs. persistent and anticipated vs. unanticipated variation in
wages and employment. Importantly, our model allows us to distinguish between exogenous
earnings risk generated directly by health shocks, and endogenous labor supply and human
capital responses to health shocks. We find these behavioral responses considerably amplify
the contribution of health shocks to inequality.

In our model health shocks are specific events, whose probability of occurrence is influ-
enced by one’s health state. We model health as a multi-dimensional concept. We distinguish
between "functional health" (H) and asymptomatic "risk factors" (R). The state variable
H includes aspects of health that directly affect labor productivity. The state variable R
captures underlying risk factors that have no immediate effect on productivity, but that
affect the evolution of functional health (H) and the probabilities of adverse health shocks
in the future. The most important risk factors in R are hypertension and high cholesterol.

Our stochastic process for the arrival of health shocks incorporates the fact that some
are predictable based on H and R, while others are idiosyncratic. The nature of health
shocks - i.e., their predictability and persistence - has an important impact on the nature
of fluctuations in both productivity and medical expenses. The extent to which health-
induced shocks to productivity and medical costs are mainly transitory/predictable vs. per-
sistent/unpredictable is important to how well individuals can self-insure against theses risks
and for the value of health insurance. The degree to which health shocks can be anticipated
is important for precautionary savings and the degree of pass-through to consumption.

The second major contribution is the study of human capital accumulation in the presence
of health risk.1 Individuals accumulate human capital via learning-by-doing, as in Keane and
Wolpin (1997) and Imai and Keane (2004). But in our model health affects human capital
accumulation in several ways.2 For instance, returns to current investments in human capital

1These two features have not been combined in a life-cycle framework, with the notable exceptions of
Hokayem and Ziliak (2014) and Hai and Heckman (2015). But the way we model health risk is very different.

2We define “human capital,” as comprising skill generated by education and work experience, which we
distinguish from the stock of health. Both impact on worker productivity in our model. The distinction
between health and human capital was first made by Grossman (1972). While our modeling is different, we
also stress the ways in which human capital and health interact.
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depend on an agent’s future ability to work, which can be diminished by adverse health
shocks. Thus, if one anticipates poor health and reduced work in the future, the incentive
to work today and invest in human capital is lower. Our framework allows us to predict
the dynamic effect of a health shock on future earnings, incorporating the evolution of both
health and human capital after the shock.

Aside from our approach to building health and health shocks into the life-cycle model,
three other features of our framework are notable. First, we model job offers that may or
may not include employer sponsored health insurance (ESHI), where probabilities depend
on education. This is a key aspect of the US environment and an important aspect of risk,
as the vast majority of insurance for those under 65 is employer linked.

Second, following De Nardi et al. (2010), French and Jones (2011) and Capatina (2015),
we take the view that if a health shock occurs the realized cost of treatment (net of insurance)
must be borne by the agent.3 Thus, medical expenditures are not a choice, but rather an
exogenous realization from an expenditure distribution. This distribution specifies the level
of medical expenditures associated with each possible combination of functional health and
health shocks. Within each health state, we also allow for the possibility of "normal" vs.
"catastrophic" expenditures based on the observed distribution of costs.

Third, we model the US tax and social insurance system in some detail. In particular, if
a person has sufficiently low financial resources he may qualify for a transfer that guarantees
a minimum level of consumption, calibrated to approximate social insurance benefits. We
capture disability insurance (DI) benefits by allowing for a positive probability that the
transfer amount is increased for those in poor health (for discussions of the probabilistic
nature of DI eligibility see Benítez-Silva et al. (1999) or Low and Pistaferri (2015)).

A brief overview of our model is as follows. Individuals begin every period with stocks of
functional health (H), risk factors (R), assets and human capital. Working age individuals
receive employment offers (part or full-time) which they accept or reject. A fraction of
offers include employer provided health insurance. Wage offers depend on human capital
and functional health, and are subject to transitory and persistent shocks. The disutility
of working also depends on health. After the employment decision is made, health shocks
occur with probabilities that depend on H and R. These health shocks, along with functional
health and age, determine medical expenditures and sick days suffered by workers. Finally,
individuals make consumption/savings decisions. At the start of the next period, new stocks
of health and human capital are revealed (based on their laws of motion).

To summarize, the direct pathways through which health and health shocks affect labor
market outcomes include effects on wages, sick days, and the disutility of work. The indirect
pathways include effects on incentives for human capital accumulation, demand for employer
health insurance and reliance on means tested social insurance programs.

We calibrate our model to the U.S. male population using the Medical Expenditure
Panel Survey (MEPS).4 The MEPS contains detailed information on respondents’ medical
conditions, coded according to the International Classification of Diseases (ICD). Based on
expert medical advice, we categorized medical conditions according to (i) whether they affect
productivity, (ii) whether they are risk factors for other health problems, (iii) predictability

3Our view is that patients have little ability to know the cost of their treatment ex-ante, or to make
informed choices whether to bear that cost. Hence, they pay for whatever treatment is prescribed.

4We also use the CEX, CPS and PSID to estimate various moments that are used in the calibration.

2



and (iv) persistence.5 The MEPS also contains detailed measures of total and out-of-pocket
medical expenditures. Using this information, we estimate stochastic processes for health,
health shocks, and medical costs. These are critical inputs to our model.

Our main results are as follows: To begin, we use our model to estimate the fraction
of variance (across people) in the present value of lifetime earnings (PVE) that can be
explained by initial conditions vs. other factors. Following Keane and Wolpin (1997), we
run regressions of the PVE (for simulated individuals) on initial conditions. Similar to
their results, we find that 86.8% of the variance in the PVE can be explained by initial
conditions at age 25, primarily education and a fixed productivity type. There is only a
small contribution of initial health, which varies little across people at age 25. When we add
measures of realized health shocks to this regression, the R2 increases to 92.4%, implying an
incremental contribution of health shocks of 5.6% to the variance of the PVE.

Next, we simulate lifetime earnings in a counterfactual world without health shocks. In
this world the variance of the PVE is reduced by 11.2% relative to the baseline. This figure
is twice as great as the contribution of health shocks implied by the Keane and Wolpin
(1997)-style regression analysis. The reason for the difference is that the regression analysis
assesses the “direct” impact of differential incidence of health shocks in a world with fixed
decision rules for labor supply and consumption.6 In contrast, if we simulate elimination
of health shocks, the decision rules for labor supply and consumption change in important
ways, generating a “behavioral” response. Much of our analysis is devoted to understanding
the direct and behavioral channels through which health shocks affect earnings inequality:

First, consider how health shocks contribute to earnings inequality in a fixed environment.
Differential exposure to health shocks over the life-cycle generates increasing inequality with
age in functional health, which directly affects productivity. Lost work time due to health
shocks also generates increasing inequality with age in accumulated work experience and
human capital. These are the two main “direct" channels.

Now consider the behavioral responses: Health shocks have significant negative effects
on labor supply for low-skill workers. Our model implies that uninsured medical expenses
push a large fraction of low-skill workers onto means tested social insurance (SI) programs.
Low skill workers have an incentive to reduce their earnings to maintain eligibility for social
insurance. This, in turn, reduces human capital accumulation, amplifying the negative effect
of health shocks on productivity.7 Conversely, health shocks have positive effects on labor
supply and savings of high-skill workers who wish to save more in order to self-insure against
expenses from health shocks. Via these two behavioral mechanisms, the elimination of health
shocks causes low-skill workers to work and earn more, and high-skill workers to work and
earn less, thus reducing lifetime earnings inequality.

Finally, we analyze the impact of providing mandatory public health insurance to people
who lack employer provided insurance. Publicly provided insurance against medical costs

5We thank Dr Philip Haywood for his assistance in classifying health shocks based on the ICD codes.
6In other words, the regression analysis assesses the role of heterogeneity across agents in the incidence

of health shocks on earnings inequality, holding the environment - including the risk of health shocks - fixed.
7Low-skill workers have lower labor supply from early on in the life-cycle due to low wages and the option

to use means tested insurance. Non-employment and low incomes lead to poorer functional health and a
higher probability of health shocks as they age. This creates a vicious cycle, as worse health feeds back to
further lower wage offers and labor supply, amplifying earnings inequality.
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eliminates the perverse incentive for low skill workers to reduce their labor supply to maintain
eligibility for means-tested social insurance. It has the opposite effect on high skill workers,
as it reduces their incentive to work and save for self-insurance purposes. Our simulations
imply that positive work effect for low skill workers is much larger. Public health insurance
raises additional tax revenue and saves on means-tested social insurance costs through this
positive labor supply mechanism, counteracting a large share of the cost of provision. To
our knowledge this benefit of public health insurance has not been noted previously.

The outline of the paper is as follows. Section 2 reviews the literature and Section 3
presents our model. Section 4 describes our MEPS data. Section 5 describes the calibration,
and section 6 discusses model fit. Section 7 presents results and Section 8 concludes.

2 Relation to Literature
Our paper contributes to the large literature on earnings inequality by assessing the

importance of health risk as a contributing factor. The large literature on earnings dynamics
(e.g., MaCurdy (1982), Gottschalk and Moffitt (1994), Geweke and Keane (2000), Moffitt
and Gottschalk (2002), Meghir and Pistaferri (2004), Meghir and Pistaferri (2011), Guvenen
(2009), Blundell et al. (2013)) does not attempt to disentangle the sources of shocks to the
earnings process. Attempts to open the “black box" of earnings shocks include Abowd and
Card (1989), who considered joint fluctuations in hours and earnings, and later Low et al.
(2010) and Altonji et al. (2013), who extended the income process to allow for endogenous
fluctuations in employment, hours and wages.

We also contribute to the rapidly growing literature on life-cycle models with health
uncertainty (e.g., Palumbo (1999), French (2005), Jeske and Kitao (2009), Khwaja (2010),
Attanasio et al. (2010), De Nardi et al. (2010), French and Jones (2011), Kitao (2014),
Capatina (2015), Pashchenko and Porapakkarm (2016), Jung and Tran (2016), De Nardi
et al. (2017), Cole et al. (2018), and Hosseini et al. (2018)). We extend this work by using
a richer model of the health process, and by incorporating endogenous human capital.

Our work is closely related to the reduced form literature on effects of health shocks on
employment and earnings. Much of that work defines health shocks as changes in the stock of
self-reported or objective health (Au et al. (2005), García Gómez and López Nicolás (2006),
Lenhart (2019)). These papers find declining health reduces earnings and employment.

Because the stock of health and employment/earnings are jointly determined over the
life-cycle, Smith (1999, 2004) argues the best way to identify the effect of health on labor
market outcomes is to control for baseline health and human capital and estimate effects of
the onset of specific health shocks. Adopting this approach, he finds that onset of cancer,
heart and lung disease have substantial negative effects on employment and earnings. For
example, in the HRS he estimates a cumulative income loss of $37k over ten years (1994-
2003) following a major health shock. Using a similar approach, Pelkowski and Berger (2004)
find that onset of permanent health conditions reduces wages and hours.

Our work can be viewed as a structural extension of this type of analysis, where we build
health shocks into a life-cycle labor supply model. As we emphasized in the introduction,
our model distinguishes several mechanisms through which health shocks affect labor market
outcomes. As we also discussed in the introduction, we classify health shocks as persistent vs.
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transitory and predictable vs. unpredictable, as these types of shocks should have different
impacts on earnings, labor supply and consumption. To our knowledge, the only prior work
that estimates effects of persistent vs. transitory health shocks on employment and earnings
is Blundell et al. (2016), who find much larger effects of persistent shocks.

We also contribute to the literature on life-cycle models of human capital accumulation
(e.g., Shaw (1989), Eckstein and Wolpin (1989), Keane and Wolpin (1997, 2001), Imai and
Keane (2004)) by incorporating health and health shocks into such models. The interaction
between health and human capital has received little attention in that literature until rela-
tively recently. Hai and Heckman (2015) and Hokayem and Ziliak (2014) estimate structural
models where health and human capital formation interact over the life-cycle. Those papers
view medical spending as an investment, while we treat it primarily as a cost of treatment
shock induced by health shocks.

Our paper is also closely related to the literature studying how public insurance programs
interact with health risk in determining labor supply and earnings. French (2005) studies the
pattern of job exits at old ages and the roles of Social Security benefit rules. French and Jones
(2011) study the roles of employer-based health insurance, Medicare and Social Security on
labor supply and retirement behavior. Benıtez-Silva et al. (2010), Low and Pistaferri (2015),
and Kitao (2014) study the impact of Disability Insurance policies on employment decisions.
Pashchenko and Porapakkarm (2016) show that means-tested Medicaid significantly distorts
labor supply decisions, leading to a large fraction of Medicaid enrollees not working in order
to qualify. We contribute to this literature by showing that insuring health risk through
means tested social insurance has the unintended negative consequences of reducing labor
supply and human capital accumulation, and increasing earnings inequality.

Finally, there is a large literature that studies the impact of various aspects of socioeco-
nomic status (education, income, wealth) on health. For example, see Adams et al. (2003),
Stowasser et al. (2011), Currie and Madrian (1999), Hall and Jones (2007) and Galama and
Van Kippersluis (2018). As Smith (1999, 2004) discusses, this literature faces difficult issues
of disentangling causality. He recommends analyzing effects of employment and earnings
shocks on health status while controlling for lagged health and human capital. Along these
lines, several papers have examined the effect of exogenous job separations on health (Eliason
and Storrie (2009), Black et al. (2015), Schaller and Stevens (2015)). They find that job loss
leads to worse health behaviors, worse self-reported health, and worse mental health. How-
ever, they do not find short-run effects on chronic conditions or frequency of health shocks.
Similarly, Adda et al. (2009) look at effects of permanent and transitory income shocks on
health using cohort level data. They find no effects on health over a 3-year horizon, but they
do find effects on mortality and health related behaviors.

We argue that in order to estimate the effects of income and employment on health, the
health production should also control for health shocks. Health shocks may affect contem-
poraneous earnings and labor supply, so a failure to control for health shocks may cause one
to falsely assign the effects of health shocks to earnings and employment. In other words, it
could be that lower employment is associated with worse health transitions in part because
unobserved innovations to health affect both variables negatively. This leads to an upward
bias in the estimated effect of employment on health. We contribute to this literature by
estimating the effect of employment (and income) on health transitions using a model that
explicitly controls for the onset of health shocks, eliminating this potential bias.
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3 Model
In our life-cycle model agents face idiosyncratic risk to wages, employment, earnings,

health and survival. They enter the economy at age 25 and face survival risk every period.
The model period is one year, and the maximum lifespan is 100. Retirement is exogenous
at age 65. From age 25 to 64, agents receive employment offers probabilistically each year,
and decide on whether to accept or reject them. They also make a continuous consump-
tion/savings decision, but borrowing is not allowed. Workers accumulate human capital
through work experience. The model is solved in partial equilibrium, assuming a fixed in-
terest rate and a fixed rental rate on skill.

Education is taken as given at age 25 when agents enter the model. We assume three edu-
cation groups: high school (HS) or less, some college (1-3 years), and college graduates.8 We
allow most model parameters, including the health and human capital production functions,
tastes for leisure and job offer probabilities, to differ by education group. Consistent with
prior work, we find the heath production function differs in important ways by education,
but a limitation of our analysis is that we do not attempt to explain why.9

3.1 The Timing of Decisions and Shocks

Agents begin each period (t) with stocks of assets At, human capital HCt, functional
health Ht, and asymptomatic risk factors Rt. Working age individuals in poor functional
health also know their disability insurance (DI) status IDIt , which affects the level of govern-
ment transfers received. Immediately after the start of the period, working age individuals
receive an employment offer, which can be either full or part-time, and with or without
employer health insurance. Wage offers are determined by health and human capital and
are subject to temporary and persistent shocks. Agents decide whether to accept or reject
the tied wage/hours/insurance offer. Then health shocks are realized. These, together with
functional health, determine mortality, medical expenditures and sick days. Sick days reduce
work hours and reduce the accumulation of human capital. Next, agents make a continuous

8These three education groups make up 40%, 27% and 33%, respectively, of the working age population
in the CPS from 2000-2010. The fraction of HS dropouts is relatively small (11%), so we combine them with
the HS graduates (29%).

9Grossman (2006) provides a survey of the literature on the relationship between health and education.
The literature suggests that educational attainment leads to greater efficiency in health production (e.g.,
Lleras-Muney (2006), Oreopoulos (2007), Grossman (2000, 2006)). We abstract from modeling the effect of
health on formal education choices, an issue that is analyzed in Hai and Heckman (2015).
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consumption/saving decision. Finally, next period state variables become known, and the
next period begins. We let t denote both the time period and the age of the individual.

3.2 Health and Health Shocks

An important feature of our model is a detailed specification of the processes for health
and health shocks over the life-cycle. There are two stocks of health: functional health (Ht)
and underlying asymptomatic health risk (Rt). And in each period agents can experience
three types of health shocks: predictable and persistent (dpt ), unpredictable and persistent
(dut ), and unpredictable and transitory (st). Details are as follows:

Functional health status Ht measures the ability to perform daily activities and function
in a work environment. Thus, it impacts on productivity. It is discrete and can take three
values: poor, fair or good (Ht ∈ {P, F,G}). In contrast, the stock of underlying health risk
Rt has no impact on current productivity. Rt captures asymptomatic risk factors whose only
effect is to increase the probability of predictable health shocks (dpt ) in the future. Examples
are obesity and high cholesterol, which increase the probability of heart disease. Rt is also
discrete with three values: low, medium or high (Rt ∈ {L,M,H}). Ht and Rt evolve from
year-to-year with transition probabilities that we describe below.

Let Υt = (dpt , d
u
t , st) be a vector of indicator functions for occurrence of health shocks. All

three types of health shock affect ability to function in the current period. The persistence
of shocks is categorized as short or long-term. For example, a broken is a short-term shock
that affects the individual only in the current period. Long-term shocks, such as damage to
the spinal column, have effects that last for multiple periods. Our model captures this by
letting the transition probabilities for Ht and Rt depend on persistent shocks (dpt , dut ).10

Persistent shocks are classified as predictable (dpt ), or unpredictable (dut ). We assume all
transitory shocks (st) are unpredictable.11 The “predictable” shocks (dpt ) have a probability
of occurrence that depends on Ht and Rt, along with age and education. Examples are stroke
and lung cancer. Probabilities of “unpredictable” shocks dut and st depend only on age.

The following table lists the state variables that enter the transition probabilities for Ht

and Rt and the probabilities of health shocks dpt , dut and st. For example, functional health
Ht evolves according to a transition matrix that depends on the current level of H, age,
long-term health shocks (dpt , dut ), employment and health insurance status (summarized by
the categorical variable O), education, and income group (inc). We assume the probabilities
of initial levels of H and R at age 25 depend only on education.

Variable Transition Probability Matrix / Probability
Ht ΛH(H ′, H, t, dp, du, O, educ, inc)
Rt ΛR(R′, R, t, dp, du, H,O, educ, inc)
dpt Γdp(R,H, t, educ)
dut Γdu(t)
st Γs(t)

10Thus, lagged shocks are not state variables. Effects of all lagged shocks are embedded in Ht and Rt.
11In the data section, we show there are very few medical conditions that are predictable but short lasting.
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Finally, the survival probability (year-to-year) depends on functional health, age, and
long-term health shocks, and is given by ϕ(Ht, t, d

p
t , d

u
t ). The risk factors R affect the survival

probability indirectly, by altering the probability of adverse health shocks dpt .

3.3 Medical Expenditures

We treat medical expenditures as exogenous cost shocks. They are a function of health,
health shocks, age, and a stochastic term εME, and are given by ME(Ht,Υt, t, ε

ME). The
shock εME determines whether the person must bear the normal level of treatment cost
associated with their state (εME = 0), or a higher “catastrophic" level of cost (εME = 1).
The catastrophic level of costs varies by health state (Ht,Υt, t), but we assume the probability
of a catastrophic shock is uniform across health states (Ht,Υt, t), and is given by δ.

We assume that all individuals must bear the cost of treatment associated with their
medical condition (as drawn from ME(.)). In reality people may have choices about their
course of treatment, and thus have some control over costs. But we abstract from this, in
effect assuming people lack the medical knowledge to make such decisions.12

Our model directly captures the costs of health shocks dpt , dut and st only in the year in
which they occur. However, persistent health shocks dpt and dut lead to higher probabilities
of poor health in future periods, and hence higher expected future medical expenditures.

3.4 Health Insurance

Health insurance is of three types: (1) employer provided, (2) Medicare, and (3) all other
forms of public insurance, including Medicaid and disability. Employer provided insurance is
available to a fraction of workers, as described in the next section. Workers whose employers
provide health insurance pay an out-of-pocket premium pEI .13 Employer insurance pays for
a fraction qEI of workers total medical costs. Medicare is available to those 65 and older,
and it covers a fraction qMed of medical expenditures. The Medicare premium is pMed is paid
by those 65 and over, and a payroll tax τMed is paid by workers.

Given their resources, some individuals may be unable to afford the level of medical costs
they draw fromME(.), at least not while also maintaining a minimum level of consumption.
In such cases, we assume the government provides a guaranteed consumption floor, described
in section 3.6. This is meant to capture programs like Medicaid that cover medical expenses of
the poor, as well as other social programs like Food stamps. It also captures the possibilities
of simply not paying hospital bills or declaring medical bankruptcy.14

12Thus medical expenditures are non-discretionary, and they do not directly affect health in our model.
De Nardi et al. (2010) argue that medical spending that supplements Medicaid, Medicare, and private
insurance has very small effects (if any) on health of the U.S. elderly. Finkelstein and McKnight (2008) find
that Medicare did did not significantly increase life expectancy in the first 10 years after its introduction.
There are a few studies that find expenditures are positively related to survival, but these consider only a
subset of conditions, mainly related to emergency room visits (see Card et al. (2009) and Doyle (2011)).

13Employers pay on average 81% of health insurance premiums for singles (Kaiser Family Foundation
(2010)). We only model the part paid for by the employee. The premium for employer provided health
insurance does not vary with health status, age or other personal characteristics.

14As we rule out borrowing, we cannot explicitly model bankruptcy decisions. Himmelstein et al. (2009),
Livshits et al. (2010) and Gross and Notowidigdo (2011) specifically study medical bankruptcies.
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Finally, to capture disability insurance benefits in a simple way, we assume working age
people in poor functional health are probabilistically eligible for a higher consumption floor
(see Benítez-Silva et al. (1999), Low and Pistaferri (2015)). This is meant to approximate
benefits from the SSI and SSDI programs. See Section 3.6 for details.

3.5 Employment

3.5.1 Employment Offers

At the start of each period, and before health shocks are realized, individuals aged 25 to
64 receive employment offers probabilistically. If an offer is received, an individual decides
whether to accept or reject it. Employment offers are characterized by a wage, number of
hours, and the provision of employer health insurance. Letting ∗ superscripts denote offers,
we have: {W ∗, h∗, ins∗}. Wage offers are continuous, and are described in detail in section
3.5.4. The number of hours h∗ takes one of three values, 0 (no offer), hrsPT (part-time)
or hrsFT (full-time), h∗ ∈ {0, hrsPT , hrsFT}. Insurance ins∗ ∈ {0, 1} is an indicator for
whether the offer includes health insurance. We let the categorical variable O∗ summarize
employment offers based on the five possible combinations of hours and insurance.15

The probability of receiving each type of offer O∗ depends on education and age, and
is given by Π(O∗, educ, t). To help capture the decline in hours at older ages observed in
the data, we allow for a positive probability of receiving no offer at ages 54+. This may be
interpreted as a simple way to capture various reasons that employers are reluctant to hire
older workers. At younger ages, all non-employment is voluntary.

When employment offers are accepted or rejected, medical expenditures are not yet
known, as health shocks occur after the decision is made. However, individuals know Ht

and Rt, so they can calculate expected medical expenditures.
After individuals accept/reject their employment offer(s), employment and health insur-

ance status are summarized by the categorical variable O = {W,h, ins}.

3.5.2 Hours Worked and Sick Days

When an individual accepts an employment offer, he commits to working h∗ hours at
wage W ∗. This commitment is fulfilled unless the worker experiences sick days. Sick days
sd(educ,Ht,Υt) are a function of education, health and health shocks. The actual number of
hours worked by those who participate in the labor force is given by ht = h∗−sd(educ,Ht,Υt).

We assume health shocks do not affect wages within a period. Employers cannot lower
wages immediately if an employee receives a negative health shock. However, health shocks
may force workers to reduce work hours so as to attend doctor appointments, undergo
treatment, or simply rest. Thus, the model captures the fact that a worker may have high
human capital and high wages, yet, have little earning capacity for health reasons. We allow
sick days to vary by education level to capture the fact that ability to work after health
shocks differs by occupation. We assume all sick days are unpaid.16

15Specifically, the five possibilities are: no offer (h = 0), part-time offer with and without insurance, and
full-time offer with and without insurance.

16In reality, workers have on average 7 paid sick days per year (BLS Statistics).
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3.5.3 Human Capital Accumulation

Human capital HC is defined as a function of education and work experience. It evolves
probabilistically according to the law of motion:

HCt+1 = (HCt + ht)ε
HC
t+1 (3.1)

where initial human capital HC1 differs by education, and εHC is a shock governed by:

εHCt+1 =


1 + ν with probability p1(educ, Iw)

1 with probability 1− p1(educ, Iw)− p2(educ, Iw)

1− ν with probability p2(educ, Iw)

(3.2)

Probabilities of human capital “shocks” (i.e., increments) depend on education and an
indicator Iw equal to 1 if an agent is employed and 0 otherwise. We expect more educated
employed workers are more likely to receive positive shocks, given the evidence they have
faster wage growth with experience (Imai and Keane (2004)). We expect unemployed workers
are more likely to receive negative shocks, due to skill depreciation during unemployment
(e.g., Low et al. (2010), Rogerson and Schindler (2002), Ljungqvist and Sargent (1998)).

3.5.4 The Wage Offer Function

The wage offer function is given by:

lnW ∗ = w(educ,HC,H, h∗) + κj(educ) + εW (3.3)

w(educ,HC,H, h∗) = β0 + β1HC + β2HC
2 + β3HC

3 + β4IH∈{F,G} + β5IH=G + β6Ih∗=hrsPT

(3.4)

Wage offersW ∗ depend on (1) a function w(educ,HCt, H, h
∗) that depends on education,

human capital, health and hours, (2) the agent’s productivity type κj, and (3) transitory
shocks εWt . The latent type κ is age invariant and discrete, with j indexing types (see
Section 5.2.4 for details). Transitory wage shocks are distributed as εW ∼ N(0, σ2

εW (educ)).
We assume observed log wages include additive measurement error εN ∼ N(0, σ2

N(educ)).
The function w(educ,HC,H, h∗), that combines human capitalHC and functional health

H to determine the mean of the (log) wage offer distribution, is given in equation 3.4. Here
IH∈{F,G} is an indicator equal to 1 for people in fair or good health and 0 for those in poor
health, while IH=G is an indicator equal to 1 for those in good health and zero otherwise.

We also let the mean of the wage offer distribution depend on Ih∗=PT , and indicator equal
to one for part-time offers, to capture the observation that part time-wages tend to be lower
than full-time wages - see Moffitt (1984), Lundberg (1985), and Aaronson and French (2004).

The parameters β0 − β6 of 3.4 are all allowed to be education-level specific.
Persistent shocks to wages arise from three distinct sources: 1) the persistent shocks εHCt+1

to the human capital process in 3.1, 2) the persistent health shocks that affect wages through
persistent effects on H, and 3) long-term effects that arise endogenously through workers’
responses to all current period shocks - including transitory shocks - as these responses are
embedded in the next period’s human capital and assets.
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Transitory health shocks affect current earnings through sick days that reduce current
work hours. This generates persistence as next period human capital and assets are reduced.
Similarly, employment offer risk (i.e., the possibility of no offer) and labor force participation
decisions also generate persistence through their effects on HC and A.

3.6 Taxes, Social Security and Social Insurance

We assume all workers retire at age 65, at which point they start to receive Social Se-
curity payments. Social Security rules are complex, and our focus is on sources of earnings
uncertainty for working age men, so we abstract from the details of the rules. We simply
assume the Social Security benefit is a constant SS(educ) that depends only on education.17

For individuals aged 25 to 64, taxable income yt equals the sum of labor and capital
income, minus the employee health insurance premium pEI for those with insurance, and
minus the tax deductible part of out-of-pocket medical expenditures (i.e., expenses in excess
of 7.5% of income). The taxable income for retirees is similar, except Social Security income
replaces labor income. Letting Iw be an indicator for employment, we have:

yt<65 = max[0, rA+ Iw(W ∗h− pEIins∗)−max(0,ME(1− qEIIwins∗)− 0.075(rA+ IwW
∗h))]

yt≥65 = max[0, rA+ SS −max(0,ME(1− qMed)− 0.075(rA+ SS))] (3.5)

We follow Jeske and Kitao (2009) and Pashchenko and Porapakkarm (2016) in modeling
income taxes. All individuals pay an income tax T (yt) that consists of a progressive and a
proportional tax. The function T (y) includes non-linear and linear components:

T (y) = a0[y − (y−a1 + a2)
−1/a1 ] + τyy. (3.6)

The non-linear component approximates the progressive US federal tax schedule, following
Gouveia and Strauss (1994). The linear component captures other taxes, such as State taxes.

Workers also face payroll taxes. They pay a Medicare tax τMed (on earnings minus the
premium pEI) and a Social Security tax τSS (on earnings minus the premium pEI , up to the
income threshold yss). Total income and payroll taxes are given by:

Tax = T (y) + Iw[τSSmin(W ∗h− pEIins∗, yss) + τMed(W ∗h− pEIins∗)] (3.7)

Consumption is taxed at the rate τ c, which captures sales taxes.
We assume there exists a public social welfare program that guarantees a minimum level

of consumption c̄(educ, IDI) to every individual. This consumption floor approximates a
range of benefits we do not explicitly model, such as Medicaid, Food stamps, unemployment
benefits, workers’ compensation, Social Security Disability Insurance (SSDI), and Supple-
mental Security Income (SSI). IDI is a 1/0 indicator for disability insurance (DI) eligibility.

As we noted in Section 3.4, our model incorporates a simple form of disability insurance.
Individuals are eligible for disability with a probability η(educ,H, t) that depends on educa-
tion, functional health, and age. Only working age individuals in poor health have positive

17This is a common assumption in the macro-health literature that focuses on working age individuals.
See for example Jung and Tran (2016), Pashchenko and Porapakkarm (2016) and De Nardi et al. (2017) who
also assume that Social Security payments depend only on fixed types.
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probability of DI eligibility. Those eligible for DI have a higher level of the consumption
floor c̄(educ, IDI). We calibrate c̄(educ, IDI) to match benefits observed in the data.

When disposable income (net of medical costs) falls below c̄, the person receives a transfer
tr that compensates for the difference. Thus the transfer is given by:

trt<65 = max{0, (1 + τ c)c̄+ME(1− qEIIwins∗)− (1 + r)A− Iw(W ∗h− pEIins∗) + Tax}
trt≥65 = max{0, (1 + τ c)c̄+ME(1− qMed) + pMed − (1 + r)A− SS + Tax} (3.8)

3.7 Preferences

In each period, agents derive utility from consumption (c) and leisure (l). The within-
period utility function is given by:

u(c, l) =
1

1− σ
[cαl(1−α)](1−σ) + ζIdeath. (3.9)

Leisure is equal to the total time endowment (normalized to one) minus the dis-utility of
work expressed in units of leisure time, given by φ(educ,H, h∗). We have:

l = 1− Iwφ(educ,H, h∗). (3.10)

The time cost of work depends on education, health and hours of work (part-time or
full-time). Workers in poor health must expend more effort to work any agreed number
of hours h∗, so they have greater dis-utility of work (expressed in leisure units). Also, the
dis-utility of work φ depends on h∗, not on the actual number of hours worked after sick
days are realized h. This embeds an assumption that sick days provide no additional leisure
to workers. For retirees, leisure is equal to 1, so utility is only a function of consumption.

The utility function in 3.9 creates an incentive for individuals to smooth the consump-
tion/leisure aggregate cαl(1−α) over time. This causes consumption to drop at retirement.
Also, given that poor health reduces effective leisure time of workers in 3.10, consumption
will tend to increase if workers are in poor health (ceteris paribus).

We assume a utility cost of death ζ that is incurred only in the period when the individual
dies, in which case the indicator Ideath = 1. We introduce this feature because the first term
of 3.9 can be negative. This is not a problem in life-cycle models without health, but here it
could have the perverse effect of causing individuals to value behaviors that lower H so as
to reduce the survival probability. Introducing a dis-utility of death avoids this problem.

3.8 Individual’s Problem

3.8.1 Working Age Individuals

At the beginning of every period, an agent’s state includes his age, education, fixed
productivity type, functional health, health risk, human capital, assets, DI eligibility, and
the employment offer. Letting χ denote the state vector we have:

χ = (t, educ, κ,Ht, Rt, HCt, At, I
DI
t , (W ∗

t , h
∗
t , ins

∗
t )) (3.11)
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Given χ, an agent decides whether to accept or reject the employment offer, so as to
maximize the expected present value of lifetime utility. This decision is summarized by the
indicator function Iw. After the labor supply decision is made, health shocks are realized.
Then the agent draws medical expenses, including the shock εME that determines if expenses
are “catastrophic.” The agent experiences sick days given by the function sd(educ,Ht,Υt).
At this stage, the state of the agent is summarized by χ, Iw, the vector of health shocks
Υ = (dp, du, s), and εME. Finally, he makes the consumption/savings decision.

The agent solves the problems in two stages. First, he solves for the policy function for
consumption conditional on χ and all possible realizations of Υ , and εME, for both Iw = 0
and Iw = 1. This policy function c(χ, Iw, Υ, εME) is the solution to the problem:

G(χ, Iw, Υ, ε
ME) = max

c
{u(c, l) + βEΨV (χ′)} (3.12)

where the expected value of the next period’s state is calculated over the probabilities of all
possible realizations of Ψ ≡ (O∗

′
, H ′, R′, IDI

′
, εHC

′
, εW

′
), which uniquely determineW ∗′ , and

where the maximization is subject to equations 3.5 to 3.10 and:

A′ = (1 + r)A+ Iw(W ∗h− pEIins∗) + tr − (1 + τ c)c

−ME(H,Υ, t, εME)(1− qEIIwins∗)− Tax (3.13)

c ≤ 1

1 + τ c
[(1 + r)A+ Iw(W ∗h− pEIins∗) + tr

−ME(H,Υ, t, εME)(1− qEIIw)− Tax] (3.14)

Equation 3.14 is the no-borrowing constraint. After solving for the policy functions, the
agent chooses whether to accept or reject the employment offer by solving:

V (χ) = max
Iw

E(Υ,εME)

{
ϕG(χ, Iw, Υ, ε

ME)
}
. (3.15)

Here the expectation is taken over the probabilities of all possible Υ and εME. The survival
probability ϕ = ϕ(Ht, t, d

p
t , d

u
t ) was defined in Section 3.2.

3.8.2 Retired Individuals

After age 65, when retirement occurs exogenously, an individual makes decisions on
consumption only. At the time these decisions are made, the state of the individual is given
by age, education, health, health risk factors, assets, health shocks and medical expense
shocks. The agent maximizes the expected present value of lifetime utility by solving the
problem:

V (t, educ,H,R,A, Υ, εME) = max
c

{
u(c) + βEϕV

(
t+ 1, educ,H ′, R′, A′, Υ ′, εME ′)} (3.16)

subject to equations 3.5 to 3.10 and:

A′ = (1 + r)A+ SS + tr − (1 + τ c)c−ME(H, Υ, t, εME)(1− qMed)− pMed − T (y) (3.17)

c ≤ 1

1 + τ c
[(1 + r)A+ SS + tr −ME(H,Υ, t, εME)(1− qMed)− pMed − T (y)] (3.18)

The solution algorithm is described in Appendix A.

13



4 Data and Variable Construction
Our main data set is the Medical Expenditure Panel Survey (MEPS), a rotating panel

in which each household is interviewed 5 times over two and a half years. A new panel is
sampled every year. We use panels 5 to 16 covering years 2000 to 2012. Panels 1-4 are not
used because some key variables are not available before 2000. Our sample consists of males
25 years of age and older as of the beginning of the survey. We also use the CPS, HRS, PSID
and CEX to construct other statistics used in the analysis.

4.1 Constructing Health Shocks (dp, du, and s)

An important advantage of MEPS over other panel surveys is that it contains information
on respondents’ detailed medical conditions. The medical conditions and procedures reported
by respondents were recorded by interviewers as verbatim text which was then coded by
professional coders into three digit ICD-9 codes.18 The high level of detail in the classification
of conditions allows us to distinguish the different types of health shocks in our model.

We categorize each of the 989 3-digit ICD-9 medical conditions based on four criteria:
1) short-term productivity loss, 2) long-term productivity loss, 3) predictive power, and 4)
predictability.19 Productivity loss includes both productivity at work and limitations in daily
functioning. We define a short-term productivity loss as one that lasts for at least 2 weeks per
year but for less than two years.20 A long-term productivity loss occurs if a medical condition
has an impact for at least 2 weeks per year for more than two years. A medical condition
is classified as a predictor if it increases the probability of other medical conditions arising
in the future. Finally, a condition is classified as predictable if health related behavior and
prior health conditions are together implicated in at least 50% of its occurrences.21

Table 2 shows how we map ICD-9 conditions that satisfy different combinations of these
four criteria into the dp, du, and s shocks. Conditions with no effect on current productivity
are not classified as health shocks, but they may be risk factors (see below). Conditions with
both current and long-term effects are classified as dp shocks if predictable, and du shocks
if not. Conditions with only short-term effects are labeled s shocks. We define dpt , dut , and
st as 1/0 indicators of whether a respondent has one or more conditions of each type. They
are constructed at the annual level, based on the the two years of interviews in each panel.

Table 2 also reports the number of ICD-9 codes in each category. A total of 65 conditions
are classified dp, while 290 are du and 315 are s. Note that only 9 short-term conditions are
classified as predictable, and in our sample their combined prevalence is only 0.5%. Rather
than have a separate category for such rare shocks, we include them as part of s. We
also include the “unknown” conditions as part of s, because the Appendix shows they have
characteristics similar to the short-term unpredictable health shocks.

18The International Statistical Classification of Diseases and Related Health Problems (abbreviated ICD)
is published by the World Health Organization and is used world-wide for morbidity and mortality statistics,
reimbursement systems and automated decision support in medicine.

19We are grateful to Dr. Phil Haywood, a clinician and research fellow at the Centre of Health Economic
Research and Evaluation at University of Technology Sydney, who classified ICD codes based on our criteria.

20The two week minimum is meant to rule out short-run minor illnesses like the common cold.
21Some ICD codes have different characteristics by age. We split these into separate conditions by age.
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4.2 Constructing Health (H)

Our functional health measure (H) combines self-reports and objective measures. Specif-
ically, it is constructed from the following MEPS variables: 1) self-reported health, 2) self-
reported mental health, 3) activities of daily living (ADL) limitations, 4) instrumental activi-
ties of daily living (IADL) limitations, and 5) a set of eight physical functioning limitations.22

Self-reported health and mental health take values from 1 to 5 indicating poor, fair, good,
very good and excellent. The ADL and IADL variables are binary indicators for the presence
of any limitations. We construct a score for physical functioning limitations from the eight
categorical variables. All five variables are standardized using data on all men 25 and over.

We conduct factor analysis on these five standardized variables. The results are reported
in Appendix B. All five variables load highly on the first factor, which we interpret as
functional health. We use the factor scores to construct functional health for all individuals
in interviews 1, 3, and 5. These correspond to initial health, and health 1 and 2 years later.

Finally, as this health measure is continuous, we discretize it into three categories corre-
sponding to poor, fair and good functional health (as in the model).23 Figure 1 presents the
distribution of H by age. Of course, the fraction of people in good health declines with age.
The figure also reveals a strong positive correlation between education and good health even
at young ages. At age 25 over 80% of college types are in good health, compared to about
60% of high school types. By age 65 the divergence swells to about 60% vs. 35%.

4.3 Constructing Asymptomatic Health Risk (R)

Table 2 also lists the criteria a medical condition must satisfy to be categorized as an
asymptomatic risk factor. These conditions do not affect current (short-term) productivity
but they predict future health conditions and/or long-term productivity. There are 41 ICD-9
conditions that meet our criteria. Of these, only 28 are present in our sample. In addition,
we use 8 items in the ICD-9 classification that measure family history of disease. The 36
ICD-9 codes used in the construction of R are listed in Appendix B.

We first construct three variables that summarize these 36 conditions: 1) an indicator
for essential hypertension, which has no identifiable cause, 2) an indicator for disorders of
lipoid metabolism, e.g., high cholesterol, and 3) the count of all other ICD-9 conditions used
to construct R. Hypertension and high cholesterol are by far the most common risk factors,
which is why we group all others together. We construct a measures of excessive BMI and a
measure of low BMI. All five variables are standardized using data on all men 25 and over.

We take a weighted sum of these five variables to form a scalar measure. The weights
are based on the relative importance of each variable for predicting the health shocks dpt
(see Appendix B for details).24 We do this to construct measures of R for all individuals in

22These measure difficulty with 1) lifting 10 pounds, 2) walking up 10 steps, 3) walking 3 blocks, 4) walking
a mile, 5) standing 20 minutes, 6) bending/stooping, 7) reaching overhead, and 8) using fingers to grasp.

23Our discretization is based on the distribution of the continuous health factor among all males aged 25
and over. Good health corresponds to values of the health factor above the median. Poor health corresponds
to values at least one standard deviation below the mean. Fair health corresponds to the interval in between.

24The astute reader may notice an asymmetry: We form H by combining conditions using factor scores,
while we form R by taking a weighted sum based on predictive ability. We think this makes sense, given that
H is meant to be a scalar measure of overall health, which is the type of measure factor analysis is designed
to construct, while R plays a very different role as a best predictor of future medical conditions.
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interviews 1, 3, and 5. These correspond to initial R, as well as 1 and 2 years later.
Finally, we discretize the health risk variable into three categories corresponding to low,

medium, and high risk, as in the model.25 This is done separately by education, so a fixed
fraction of individuals falls into each risk class within each education group.26 Figure 1 shows
the distribution of the final health risk variable by age. The fraction of high risk individuals
is almost zero at age 25, but grows to approximately 30% at age 65.

4.4 Reduced Form Regressions

Table 1 presents regressions of labor market outcomes on health shocks, along with
controls for lagged health and human capital, using data from the MEPS. These specifications
are consistent with Smith (1999)’s approach to estimating effects of health shocks. We find
no significant effects of health shocks on current wages, consistent with our assumption that
wages do not respond immediately. But we see significant declines in work hours and annual
earnings following all three types of shocks (dp, du, s). The finding that health has greater
short-run effects on hours than wages is consistent with our modeling assumptions.

5 Calibration
Our benchmark model is calibrated to features of the US economy for the period 2000

to 2010, for civilian, non-institutionalized 25+ year old males who are not in school. We
estimate some parameters directly from the MEPS data, while calibrating others (i) to match
moments of the data, or (ii) based on prior work. Most parameters are calibrated separately
for the three education groups (high school, some college, college).

5.1 Parameters Estimated from the MEPS Data

5.1.1 Transition Probabilities: Functional Health and Health Risk

As H and R are discretized into 3 levels, we specify their laws of motion as multinomial
logits. Recall we have ΛH(H ′, H, t, dp, du, O, educ, inc) and ΛR(R′, R, t, dp, du, H,O, educ, inc).
We estimate separate models for the 25-64 and 65+ populations. This is because O and inc
are irrelevant for the latter, as we assume everyone retires at 65 and is covered by Medicare.
The estimates are reported in Appendix B.27

Our logit specification for health transitions implies the existence of “idiosyncratic” health
shocks that cause H and R to change from t to t+1 for reasons not captured by the observed
health shocks or other state variables that enter ΛH(.) and ΛR(.). This “idiosyncratic” health
risk is accounted for by agents when they solve the problem in Section 3.8. However, as these
logit errors are not revealed until time t+ 1, they cannot directly affect time t decisions.

It is internally consistent to estimate the law of motion for health separately from our
structural labor supply model if the errors in theH equation are independent of other sources
of error in the structural model. That is true, given our assumption that the errors in the

25We discretize continuous R analogously to how we discretized H. That is, R is “Low” if its value is below
the median, “High” if it is above the mean plus one standard deviation, and “Medium” if it falls in between.

26We do this because the role of R in the model is to predict dp shocks, and education is also a predictor.
27We find that income and employment do not significantly affect the transitions for R, so in practice the

R transitions entered in the model are independent of income and employment.
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logit model ΛH(.) capture purely “idiosyncratic” health shocks, revealed after time t decisions
are made. Then, the covariates in the H equation are exogenous. We argue this assumption
is plausible given our rich controls for current health shocks and lagged health. In contrast,
a failure to adequately control for time t health shocks may render O and inc endogenous in
the H equation, as the omitted current health shocks could affect time t labor supply as well
as H transitions. This illustrates why it is important to use the MEPS data to construct
rich measures of health and health shocks. (A similar argument applies to the R equation,
but we exclude O and inc from that equation as they were not significant).

Figure 1 shows distributions of predicted vs. actual H and R by age. Our models capture
well the pattern that the prevalence of fair/poor health H both starts higher (at age 25)
and increases much more quickly with age for less educated workers. In contrast, the rate of
increase in risk factors R with age is similar for all education groups.

The left panel of Figure 2 shows how transition rates from fair-to-poor health vary by
age and employment status for high school types with a du shock. The right panel shows
the transition rate is small but positive even with no observed health shocks. This reflects
the purely “idiosyncratic" health risk captured by the logit errors, as well as natural effects
of aging. As expected, we see that the fair-to-poor transition rate increases substantially if
a du shock occurs. Clearly, our measures of persistent health shocks are strong predictors of
health transitions. Both panels show the transition rate increases if a person is not employed.
In contrast, we find that R transitions are strongly predicted by lagged R, du and dp shocks,
but not by employment status or income.

5.1.2 Probabilities of Health Shocks (dp, du, and s)

The stochastic processes for the three types of health shock Γdp(R,H, t, educ), Γdu(t),
and Γs(t) are specified as logits. The estimation results are reported in Appendix B.

Figure 3 shows that the frequency of unpredictable health shocks (du, s) increases rapidly
with age, but it does not differ by education level (see Appendix B). In contrast, predictable
health shocks (dp) are more likely for men with less education, particularly at older ages.

5.1.3 Survival Probabilities

We specify the annual survival probability ϕ(Ht, t, d
p
t , d

u
t ) as a logit (see Appendix B).

Consistent with Pijoan-Mas and Ríos-Rull (2014), we find that mortality does not depend
on income or education once we condition on health. Nor is it significantly affected by
temporary shocks st or health risk Rt.

5.1.4 Medical Expenditures

We use MEPS data on total annual medical expenditures to construct the expenditure
function ME(Ht,Υt, t, ε

ME), where Υ = (dp, du, s).28 For each (Ht,Υt, t) cell, we take the
95th percentile as the cutoff between regular and catastrophic expenditures. We then calcu-
late mean medical expenditures for men below and above the 95th percentile in each cell. In
order to obtain smooth age profiles, we run regressions of these mean values on age and age

28Total medical expenditures in MEPS are defined as the sum of direct payments for health care services
provided during the year, including out-of-pocket payments and payments by private insurance, Medicaid,
Medicare, and other sources. Payments for over-the-counter drugs are not included.

17



squared (see Appendix B) and use the fitted values to construct ME(.). Consistent with
this, we set the probability of catastrophic expenditures in each (Ht,Υt, t) state, δ, to 5.0%.

It is well known that MEPS tends to underestimate aggregate medical expenditures
(Pashchenko and Porapakkarm (2016), De Nardi et al. (2017)). Therefore, we follow De Nardi
et al. (2017) and multiply the estimated medical expenses by 1.60 for men under 65, and by
1.90 for men 65 or older. This brings aggregate medical expenses computed from the MEPS
in line with statistics in the National Health Expenditure Account (NHEA).

5.1.5 Hours Worked and Sick Days

We set hours in full and part-time employment offers, hrsFT and hrsPT , to 40 and 20
per week, respectively. These values are equal to median full and part-time hours of workers
in good health with no health shocks in the MEPS.29

Next, we estimate sick days as the difference in annual hours worked between workers
with no health shocks and those with various combinations of health shocks. Specifically, to
estimate the function for sick days sd(educ,Ht,Υt) we run regressions of weekly hours worked
on age, age2, and all possible combinations of health shocks Υ = (dp, du, s), separately by
health H and education group. We report the results in Table 3.

Table 3 reveals that the long-term shocks dp and du generate substantial losses of work
hours. For example, for workers in fair health, and with college or some college education,
a dp shock reduces work hours by about 2.6 hours per week (or about 135 annually). Hours
lost are much greater if multiple shocks occur together. For example, for workers in fair
health, and with college or some college education, the joint occurrence of dp and du shocks
reduces work hours by about 7.3 hours per week (or about 380 annually).

5.2 Calibration of Remaining Parameters

We take several parameters from prior literature. These include utility function param-
eters, and parameters related to taxes, social security and health insurance. The values are
listed in Table 4. The coefficient of relative risk aversion σ is set to 2.0, a widely used value.
We take the progressive tax function parameters a0 and a1 from Gouveia and Strauss (1994).
We take mean SS benefit levels (by education) from the HRS. The ESHI and Medicare cov-
erage rates are set to 70% and 50% of medical expenditures, respectively, consistent with
Attanasio et al. (2010) and Pashchenko and Porapakkarm (2016).

Table 5 lists all calibrated parameters and key moments we target for each. Of course,
all calibrated model parameters affect all moments, but some parameters are relatively more
important for particular moments. We now discuss identification of each parameter:

5.2.1 Time Discounting

We calibrate the discount factor β(educ) to match the average asset to income ratio
observed in the PSID data for working age individuals aged 30 to 55, by education. As we
see in the first row of Table 5, the college types are more patient.

29According to our definitions, “not employed” means annual hours worked less than 520, “part-time”
means annual hours between 520 and 1,500, and “full-time” means annual hours of 1,500+.

18



5.2.2 Dis-utility of Work

The leisure cost of work φ(educ,H, h∗) is calibrated by targeting the shares of 30-50 year
old men working full and part-time in the MEPS, by age, education, and health (H). To
eliminate the effect of sick days on hours we look at these statistics only for those without
health shocks. The calibrated taste for work parameters are near the top of Table 5. Interest-
ingly, they differ modestly by education/health, implying that differences in employment by
education/health are mostly explained by differences in productivity and offer probabilities.

5.2.3 Employment Offer Probabilities

We calibrate job offer probabilities Π(O∗, educ, t) to target the shares of men employed
full and part-time in the CPS, with and without insurance, conditional on education. The
calibrated job offer probabilities are presented in Table 6. Clearly, the probability of receiving
a full-time offer with health insurance is strongly increasing in education.

We assume men aged 25-53 always get a job offer, so all unemployment is voluntary.30
At ages 54+, we allow for the possibility of receiving no offer, to better match the decline in
labor force participation at later ages. We let the no-offer probability follow a linear trend
in age, with a notch at 60, and parameters that differ by education.31 In Table 5 we see the
probability of receiving no offer increases more rapidly with age for the less educated.

5.2.4 The Offer Wage Function and Other Wage Parameters

In the data, we only observe earnings of those who choose to work. So the coefficients
of the wage offer function would be subject to selection bias if estimated directly from
observed wage data in a first stage.32 Instead, we follow the internally consistent procedure
of simulating data from the model, calculating the distribution of accepted wages among
men who choose to work, and iterating on the wage parameters until the mean of simulated
accepted wages matches as closely the means of accepted wages in the data (conditional on
age, health status, full and part-time status, and education).

We also calibrate parameters that determine higher moments of wages. These are: (1)
the levels of the latent productivity types κj(educ), (2) the variance of the transitory shocks
σ2
εW (educ), (3) the variance of measurement error in log wages, σ2

N(educ), and (4) the pa-
rameters that characterize the human capital shocks (ν, p1(educ, Iht>0), and p2(educ, Iht>0)).

To identify these parameters, we target: (i) the structure wage residuals, (ii) the variance
of log wages by education, and (iii) transition rates from employment to non-employment for
individuals in good health in consecutive periods.33 We can separately identify measurement
error from true wage shocks because measurement error affects (i)-(ii) but does not affect
transition rates (iii).

30Of course, some transitions from employment to non-employment before age 54 are due to involuntary
separations. Our model captures this implicitly through the possibility of poor wage draws.

31Specifically, Π(O∗, educ, t) = δO(educ, t)(t − 29) for t > 29 and O∗ = 1 (no offer). Note that t = 30
corresponds to age 54. We let δO(educ, t) increase at t=35, which is age 60.

32It is useful to compare the logic here, as to why the wage equation must be estimated simultaneously
with the full structural model, with our previous argument in Section 5.1.1 that it is consistent with the
internal logic of our model to estimate the health transition process separately in a first stage.

33Transitions are also induced by health shocks, so to identify effects of wage shocks we target only
transition rates for workers in good health in consecutive periods.
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To obtain residual wages, we regress wages on a cubic in age, separately by education.
Then, as in indirect inference, we use residual wages from both the simulated and real data
to estimate a random effects plus AR(1) process, which we view as a descriptive model of the
wage process. We target the following estimates from this descriptive model: the variance of
the individual random effect, the variance of the transitory component, the AR(1) parameter
and variance of the innovation in the AR(1) process.34

To calibrate the parameters of equation 3.2 that characterize the shocks to human cap-
ital, we set the increment ν to 0.3 and calibrate the probabilities of positive and negative
shocks. For employed workers, we assume the probabilities of positive and negative shocks
are equal (p = p1 = p2). Higher values of p generate more dispersion in wages and higher
transition rates between employment and non-employment. For the unemployed, we assume
the probability of a positive human capital shock is zero (p1 = 0), so we only calibrate the
probability of a negative shock (p2). A higher p2 during non-employment periods implies
more wage depreciation and a lower transition rate from non-employment to employment.

Finally, we allow for two fixed productivity types (κ) in the “college” and “some college”
groups, and three in the “high school” group (as it also includes dropouts). Within education
groups, all productivity types are equal in size. They cover a range of roughly +0.30 sd. All
calibrated wage process parameters are presented in the second panel of Table 5.

5.2.5 Consumption Floor, Disability Benefits, Dis-utility of Death, Taxes

We calibrate the consumption floor for non-disability recipients to match the percent
of working age men who receive non-DI government transfers (conditional on education).
We calibrate disability benefits to match average DI benefits in the CPS. We estimate DI
benefits to be $10,400 for the HS type, $14,040 for the Some College type, and $17,160 for
the College type. These DI benefit levels are roughly double the basic (non-DI) floors.

Working age men in poor health are eligible for DI benefits with a positive probability
η(educ,H, t). Because we model DI as a higher consumption floor, only those who qualify
for the floor c̄(educ, IDI) get positive DI benefits. We calibrate η so the model matches the
fraction of working age men who are DI recipients in the CPS.35 We define DI benefits as
including SSDI, SSI, and workers’ compensation.

We set the utility cost of death ζ to equal the present value at age 25 of discounted future
utility evaluated at the minimum consumption floor and a level of leisure associated with
full-time employment in poor health, for those with high school or less. This ensures that
all individuals prefer to live in all possible states. The final parameter value of ζ = −30 is
set after calibrating the minimum consumption floor and dis-utility of work.

Finally, we calibrate the tax parameters a2 and τy in eqn. 3.6 to match effective tax
rates by income level. Table 4 and the bottom panel of Table 5 lists calibrated values of the
tax/transfer rule parameters discussed in this section.

34It is well known that wage data contains measurement error (Bound and Krueger (1991), Bound et al.
(2001), Gottschalk (2005)). Therefore, we add noise to simulated wage data before constructing moments.
The variance σ2

N (educ) of this measurement error term clearly has an effect on the overall variance of log
wages, but it has no effect on the rates of transition between employment and non-employment. This enables
us to identify the amount of actual wage risk without confounding it with measurement error in wages.

35Assuming all DI recipients are in poor functional health, we can back out the percent of working age
men who receive DI conditional on poor H.
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6 Model Fit
A novel feature of our model is that workers receive tied wage/hours/insurance offers.

Table 6 reports on the model fit to the proportions of workers employed full and part-
time with and without employer sponsored health insurance. The model captures well the
pattern that more educated workers are more likely to receive full-time offers that include
health insurance. For example, at ages 35-44, the model predicts that 82.4% of college types
have full-time jobs with insurance, compared to only 56.8% of high school types, and these
fractions align well with the data frequencies (82.3% and 59.7%).

Table 6 also shows that the model captures well the rapid declines in employment as
workers approach age 65.36 Less educated workers tend to stop working sooner, both in the
model and the data. An important consequence is that only one-third of high school types
have full-time jobs with insurance at ages 55-64.

Our model fits patterns of full and part-time employment by age and education very
well, as we see in Figure 4. An exception is that part-time employment rises a bit as workers
approach age 65, but the model does not generate this.

Figure 5 shows life-cycle paths of full-time employment, conditional on education and
health. Clearly, both higher education and better health generate more full-time employ-
ment, and our model captures these features of the data well. The low full-time employment
rate of workers in poor health is striking. It hovers around 40% regardless of age/education.
As we saw in Table 5, tastes for work only differ modestly by health in our calibration, and
offer probabilities do not depend on health. So our model implies the low employment rate
of workers in poor health is mostly due to low wage offers. This interacts in an important
way with the consumption floor and disability insurance, as we will show in Section 7.37

Next, in Table 8, we show the model’s fit to many of the key data moments that we listed
in Table 5. The model gives a very good fit to asset/income ratios, which are higher for
the college types. The second panel of Table 8 shows how the model fits full and part-time
employment rates, conditional on education and health. The fit is generally very good. We
are less accurate in the case of men in poor health with no health shocks, but the data
moments are very noisy in those cells.

The third panel of Table 8 shows our fit to targeted moments of involving mean full-time
wages, conditional on education, health and age. Again the fit is quite good. Figure 6 reports
on how we fit the age profiles of wages more generally. It is evident that poor health shifts
wage profiles downward, and the model captures this well. The model also captures the facts
that wages start higher and grow faster over the life-cycle for more educated workers. The
one area where the model fails is that it systematically overestimates wages at ages 55-64.

The fourth panel of Table 8 focuses on moments involving wage variability. The model
matches moments of the stochastic process for residual wages fairly well, except that, for high
school types, it understates the variance of the permanent error component and exaggerates
that of the transitory component. Table 9 reports on how we fit quantiles of the distribution

36Recall that, starting at age 54, we assume a positive probability of receiving no job offer. This captures a
number of reasons firms may be reluctant to hire older workers. For example, a match with an older worker
is less valuable as it is likely to last for a shorter period of time. There may also be age discrimination.

37As we see in Table 5, our calibration implies full-time work reduces leisure by about 52 to 55% for those
in good or fair health. This only increases substantially with poor health for the some college type.
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of wages, conditional on age and education. The model’s fit to the quantiles of the wage
distribution is very impressive, except at the 99th percentile for college types.

Regarding transition rates between employment states, the model slightly understates the
transition rate from employment to unemployment, while slightly exaggerating the transition
rate from unemployment to employment (for non-college types). In reality, unemployed
workers without a college degree may not always have job offers, a possibility our model
does not capture at ages younger than 54.

The bottom panel of Table 8 shows our fit to moments that involve the consumption floor
and disability benefits. We slightly under-predict the (very high) fraction of men in poor
health who receive disability benefits. For instance, for high school types, this fraction is 80%
in the data vs. 74% in the model. We capture fairly accurately the (much smaller) fraction
of working age men who receive non-DI transfers, which is about 4% to 9% depending on
education. In our model this means these men are at the consumption floor.

Figure 8 describes the distribution of medical spending in our model vs. the MEPS data.
The model does a reasonably good job matching the extreme skewness of the expenditure
distribution (i.e., the top 1% of spenders account for 25% of total costs).

Finally, Figure 7 shows how our model fits the Gini coefficient for income by age, where
income is defined as labor earnings plus asset income. This is an untargeted moment in
estimation, yet we fit it quite well. This is critically important, as much of the next section
focuses on how health shocks (and other factors) contribute to income inequality.

7 Results

7.1 Effects of Health Shocks on Key Outcomes

We begin by examining the impact of health shocks (s, du, dp) on some key outcomes in
our baseline model. To this end, we compare simulated life-cycle histories from the baseline
model with alternative simulations in which agents are “lucky” and do not experience health
shocks. We hold the perceived risk of health shocks unchanged.

In these experiments, agents’ decision rules are unchanged, and they still behave as if
they expect to draw health shocks from the distributions Γdp(R,H, t, educ), Γdu(t), and/or
Γs(t). This allows us to examine what we call “direct” effects of health shocks. Later, in
Section 7.3, we run counterfactuals where we shut down health risk, and let agents’ decision
rules adapt. That will allow us to also study “behavioral” responses to health risk.

To proceed, we run several experiments in which agents never receive s, du or dp shocks.38
Table 10 presents results for working age individuals (age 25-64), emphasizing effects on med-
ical costs, health, labor supply, wages and transfers. First consider the effect of eliminating
all three types of observed health shocks (s, du, dp). Our model predicts this would reduce
average annual medical expenditures from $4465 to $1041. Note that even people with no
health shocks have some medical expenses, due to minor illnesses that we do not classify
as shocks, preventive care, etc. According to our model, elimination of all health shocks

38As we discussed in Section 5.1.1, our logit model for health transitions implies the existence of “idiosyn-
cratic” health shocks that cause H and R to change from one year to the next for reasons not attributable
to the observed health shocks (s, du, dp) or other state variables. Here we focus entirely on the effects of the
observed health shocks (s, du, dp) that we can identify and categorize.
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at ages 25-64 would raise the probability of survival to age 65 from 85% to 92%, increase
lifetime labor supply from 29.8 years to 32.1 years, increase the mean hourly wage offer from
$22.88 to $23.25, and reduce the fraction of men who receive government transfers (including
disability) from 12.9% to 8.9%. (Appendix A presents these results by education.)

It is also interesting to compare the impact of different types of health shocks. Our model
implies that among working age men, unpredictable shocks (s, du) have larger effects than
predictable shocks (dp). Together, eliminating s and du shocks reduces medical expenditures
by 65% and sick days by 86%. Eliminating the predictable shocks (dp) reduces them by only
14% and 25%, respectively. This is not because unpredictable shocks are more severe, but
because they are much more prevalent.39 As we see in Table 10, life expectancy, labor supply
and wage offers all increase more in the absence of unpredictable shocks.

We also assess the importance of asymptomatic health risk R. Specifically, we run an
experiment where we give all agents a low risk level initially (at age 25), and shut down
transitions to higher levels of R. Agents’ decision rules are again held fixed. Thus, all
changes in outcomes arise solely due to “luck” rather than changes in decision rules.

We find that giving all individuals low health risk has fairly small effects. The probability
of having a dp shock falls by 41%. However, as only about 11% of working age men experience
dp shocks, the overall benefit of reducing R is modest. In the bottom row of Table 10, we see
that average medical expenditures decrease by only 5.6% and the fraction of those relying
on social insurance decreases by only 5.8%. The fraction of men in good functional health
would increase by only 1.2 percentage points. In general, most health shocks that occur at
working ages are unrelated to R, so reducing health risk has fairly small effects.

These findings suggest a limited potential impact of policies aimed at reducing risk factors
like high blood pressure, cholesterol and obesity, as they are not likely to have large effects
on health or labor market outcomes for the working age population. Of course, the potential
benefits of reducing health risk are greater at ages over 65, when predictable shocks such as
heart attack become more prevalent.

7.2 Decomposing Sources of Earnings Inequality

Next we use our model to estimate the fraction of variance (across people) in the present
value of lifetime earnings (PVE) that is explained by initial conditions and health shocks.
We generate simulated life-cycle histories from the benchmark model, and calculate the PVE
discounted to age 25 for each simulated agent. Then, similar to Keane and Wolpin (1997), we
run regressions of the PVEs on initial conditions (i.e., education, skill type, initial health).
But we also include measures of health shocks that occur at ages 25-64.

Table 11 presents the R2 values from alternative specifications of these regressions, both
run separately by education and for all groups combined. First we focus on the combined
results. Similar to results in Keane and Wolpin (1997), we find that a substantial 86.8%
of the variance in the PVE across agents can be explained by initial conditions at age 25,
primarily education and a fixed productivity type. There is only a small contribution of
initial health H and the initial risk level R, which vary little across people.

Next, we add a set of variables designed to capture flexibly the impact of health shocks

39The most prevalent shocks are transitory s shocks (39% of working age individuals experience these each
year), followed by du (21%) and lastly by dp (13% for HS, 12% for Some College, and 8% for College).
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throughout working life. We include the number of times the agent experienced each of
the eight possible combinations of the three health shocks (s, du, dp). We enter these as
separate variables to allow the health shocks to have different effects when they occur in
combination. We also enter as separate variables the counts of health shocks that occurred
when the agent was in poor, fair, or good health. This captures the fact that health shocks
may have a larger effect if the person was in worse health to begin with. We also include
the number of years the person spent in good, fair or poor health, primarily to pick up the
effects of the “idiosyncratic” health shocks (i.e., the logit errors in the health transitions).
Finally, to control for mortality shocks, we include the number of years prior to age 65 when
the individual died, if positive. We were not able to find additional health variables that
significantly improved the fit of our PVE regression.

When we include this array of health shock measures, the R2 of our PVE regression
increases to 92.4%. Thus, initial conditions (at age 25) and health shocks together can “ex-
plain” (or predict) 92.4% of the variance of lifetime earnings. The independent contribution
of health shocks to explaining the variance of the PVE, beyond what can be predicted based
solely on initial conditions, is 5.6%.40, 41

Finally, Table 11 row three presents regressions that only control for initial health and
the array of health shock variables, while omitting education and the skill endowment. Here,
we find that initial health and health shocks explain 40.0% of the variance in the PVE across
all agents. Almost all of this is due to the health shock variables because, as we noted earlier,
initial health at age 25 does not vary much across people.

Combining these results, we see that initial conditions independently explain 52.5% of
the variance of the PVE, while health shocks independently explain 5.6%. A substantial
34.4% of the variance is “explained” by the covariance between initial conditions and health
shocks. The covariance term is so large because of the strong negative correlation between
education/productivity and the incidence of health shocks.42

There are three basic explanations for this correlation: First, causality may run from edu-
cation to health, perhaps because more educated people have a better understanding of health
risks and good nutrition, are better are utilizing health improving technologies/treatments,
and so on. Second, there may be some omitted factor that causes people to get more edu-
cation and to take better care of their health. This might be a personality trait like “good
judgment” or “self control.” Third, it is possible that fore-knowledge of one’s health transition
function impacts one’s human capital investment decisions. Thus, we cannot rule out that
causality runs from health outcomes to education, despite the fact the education decision is
temporally prior to those outcomes.

This discussion highlights the limitation of using a regression decomposition of variance
to assess the importance of health shocks for earnings inequality. What we can say is that,

40We run similar regressions for the present values of utility and consumption. We find that initial
conditions explain 82% of the variance of the present value utility and 87% of the variance of the present
value of consumption. Both these figures increase to 93% when health shocks are included.

41If we look within education types, the results are very similar, except that health shocks are somewhat
more important, particularly for the less educated. Within education types, the initial conditions (primarily
the latent skill endowment) explain 79% to 86% of the variance of the PVE. The incremental contribution
of health shocks ranges from 7.0% for the some college type to 10.1% for the high school type.

42The source of the positive correlation between education and health, often called the “SES gradient,” is
of course one of the great open questions in the social sciences. See Smith (2004) for a discussion.
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for all workers, health shocks “explain” roughly 40.0% of the variance of the PVE, but 34.4%
of that variation is predictable based on one’s initial education and skill type. Thus, it is
not clear how much of that 34.4% is actually caused by health shocks, and, indeed, our
prior is that most of it reflects causality running from education to health, or from some
omitted third factor to both education and health. What is clear, however, is that 5.6% of
the variance of lifetime earnings is directly attributable to “luck” whereby agents with the
same initial conditions experience different incidence of health shocks.

7.3 The Role of Health Shocks in Generating Earnings Inequality

Next, we use our model to conduct counterfactual experiments that clarify how health
shocks contribute to earnings inequality. Specifically, we eliminate health shocks from the
baseline model and simulate life-cycle histories for agents in the new environment. Shutting
down health shocks affects earnings inequality for three reasons: (1) it eliminates the “luck
of the draw” whereby agents with the same initial conditions (education/productivity/initial
health) experience different health shock realizations, (2) it eliminates the advantage of
better-educated workers that arises because they face more favorable probability distribu-
tions of predictable health shocks, and (3) it induces a behavioral response as agents update
their decision rules in response to the new health risk environment.43 We call effects that
arise given fixed decision rules the “direct” effects of eliminating health shocks, and effects
that arise from changing decision rules the “behavioral” response to reduced health risk.

An advantage of the counterfactual simulation approach is that we can run simulations
where we hold decision rules fixed (i.e., the same as the baseline model), just as we did in
Section 7.1. Comparing the results of such simulations with ones that also allow decision
rules to adapt enables us to isolate both the direct effect of health shocks and the behavioral
response to reducing health risk.

To proceed, Table 12 reports both means and measures of dispersion for the present
value of lifetime earnings (PVE), both in the baseline model and in counterfactuals where
we eliminate health shocks for working-age men.44 In the baseline, the mean PVE is $762k,
with a standard deviation of $422k, implying a coefficient of variation of 0.555. The great
heterogeneity of the PVE across education/productivity types, already apparent from the
regressions of Section 7.2, is clearly evident. The mean PVE ranges from only $294k for
low-skill high school types to $1, 522k for high-skill college types.

The middle columns of Table 12 show how the distribution of the PVE is altered when
we eliminate health shocks for working-age men, while holding their decision rules fixed.
The mean PVE increases by 5.6% to $805k. The coefficient of variation (CV) of the PVE
decreases 4.9% from 0.555 in the baseline to 0.528 in the experiment. And the Gini inequality
measure also decreases 4.9% from 0.304 to 0.289.

The right columns of Table 12 show how the distribution of the PVE is altered when we
also allow agents’ decision rules to adapt to the lower health risk environment. Compared to

43These counterfactuals differ in important ways from the regression decompositions of variance reported
in Section 7.2. The regressions do not capture channel (3), the behavioral response to reduced risk. They
only capture the impact of different incidence of health shocks (due to “luck”) in a fixed risk environment.

44Eliminated health shocks for men aged 65+ leads to an increase in average lifespans of 10 years, drastically
changing the savings needs for retirement, and affecting savings and labor supply decisions. On the other
hand, eliminating shocks only at working ages leads to an increase in average lifespans of only 1.5 years.
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the baseline, the mean PVE increases by 9.3% to $833k. The coefficient of variation (CV)
of the PVE decreases by 13.7% from 0.555 in the baseline to 0.479 in the experiment, and
the Gini inequality measure decreases by 15.1% from 0.304 to 0.258.

Thus, health shocks generate about 15% of inequality in present value of lifetime earnings
for men. Notably, direct effects of health shocks on health/productivity account for only
about 1/3 of their impact on inequality, while behavioral responses account for 2/3.

The reason behavioral responses to health risk contribute substantially to inequality
becomes apparent if we examine how mean PVE changes for different education and pro-
ductivity types when health shocks are eliminated. We report this in the bottom panel of
Table 12. For the low-skill high school type the direct effect of eliminating health shocks
is to increase mean PVE by 12.9% (from $294k to $331k). But when we factor in their
behavioral response, mean PVE increases by 37.5% (to $404k).

The large behavioral effect of health risk on earnings arises because, in the baseline model,
low-skill high school types have a strong incentive to hold down their labor supply and human
capital accumulation so as to maintain eligibility for social insurance that cushions against
high medical costs. In fact, as we see in Table 14, eliminating health shocks increases the
employment rate for low-skill high school types from 57.1% to 84.3%, and reduces the fraction
who receive social transfers from 42% to 9%. As we report in Appendix Table A4, only ten
points of that decline is due to health shocks per se, while 24 points is due to the behavioral
response. Thus, in an environment with costly health shocks, social insurance creates a type
of “moral hazard” that reduces labor supply and human capital investment (analogous to
how health insurance generates moral hazard by reducing the incentive to invest in health).

Next, consider the effects of health shocks on the medium and high productivity types
within the high school group. For them, the direct effects of eliminating health shocks are
to increase mean PVE by 7.1% and 5.5% respectively, but the additional behavioral effects
are trivial. Thus, among the medium and high skill types, social insurance has no significant
moral hazard effect on labor supply and human capital investment.

The same pattern holds within the some college and college groups: For low skill types
there is a large behavioral effect of health shocks on mean PVE, while for high skill types the
behavioral effects are very small. In fact, within all three education groups, the behavioral
effect of eliminating health shocks is to slightly reduce PVE for the high skill type. These
agents are unlikely to use transfers to help pay medical costs, and they instead self-insure.
Removing health shock risk reduces the need for precautionary savings, slightly reducing the
incentive to supply labor. For instance, in Table 14 we see the employment rate of high skill
college types declines slightly from 93.7% to 92.6% when health shocks are eliminated.

7.3.1 The Role of Medical Cost Shocks

Next, we consider simulations where, instead of eliminating health shocks, we eliminate
only the medical expenses created by those shocks.45 This allows us to disentangle effects of
health shocks operating through their impact on health and productivity vs. effects operating
through their impact on the lifetime budget constraint.

45This is a partial equilibrium experiment where we insure all health care costs, but we do not finance the
program by raising taxes. It is only meant to clarify how health care costs affect behavior. Later, in Section
7.6 we consider experiments where we introduce health insurance financed by premiums and/or taxes.
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Table 13 reports our results. The middle columns show how the distribution of the PVE
is altered when we eliminate the medical costs of health shocks for working-age men, while
holding their decision rules fixed. Notice that the effects on both mean PVE and measures
of inequality are trivial, and this is true for all education/productivity types.

The right columns of Table 13 show how the distribution of the PVE is altered when we
also allow agents’ decision rules to adapt to the lower medical cost risk environment. Com-
pared to the baseline, across all agents, the mean PVE increases by 2.5% to $781k, and the
Gini measure of inequality drops by 8.6% to 0.278. This masks substantially heterogeneity
across types: The mean PVEs of low-skill types within the high school, some college and
college types increase by 16.3%, 8.9% and 9.2% respectively. And inequality measures drop
by about 1/4 to 1/3 within the low productivity types. In contrast, the behavioral responses
among high-productivity types are trivial within all education groups.

These results highlight the strong impact of health care costs on the behavior of the low
productivity types. According to our model, they have strong incentives to reduce labor
supply and invest less in human capital so as to maintain eligibility for social insurance that
protects them from high medical costs. In fact, as we see in Table 14, the employment
rate of the low-skill high school type increases from 57.1% to 71.7% when the cost of health
shocks is eliminated. The increases in employment for the low productivity types within the
college and some college groups are substantial as well. Reliance on social insurance declines
dramatically for almost all groups, but the largest absolute decline is observed for the low
productivity high school type, for whom receipt of transfers drop from 42% to 22%.

7.3.2 Effects of Health Shocks on Income Inequality over the Life Cycle

Next we examine how income inequality varies over the life-cycle. Figure 9 plots the
Gini coefficient for cross sections of agents at each age from 25 to 64. Recall from Figure 7
that our model fits the life cycle pattern of income inequality very well. In both the model
and the data, cross-sectional income inequality increases as people age. The increase is very
gradual in the 40s, but accelerates for agents in their 50s and 60s. Much of the increase at
later ages is driven by retirement behavior, but much is also due to health shocks.46

Consider the experiment where we eliminate health shocks, and allow agents to update
decision rules. As we see in Figure 9, this causes income inequality to drop at all ages, but
the drop is much greater for workers in their 50s and 60s. For example, at age 55 the Gini
drops substantially by .11 points (from .46 to .35), while at age 40 it only drops by .03 (from
.34 to .31). Half the drop (even more at younger ages) arises from the behavioral effect.

It is interesting to contrast these figures with the drop of .046 (from .304 to .258) that
we saw in Table 12 for the present value of lifetime earnings evaluated at age 25. The drop
in PVE is relatively modest because later ages, where health shocks are more influential, are
discounted in the present value calculation. There is no inconsistency in finding that health
shocks can explain about a quarter of income inequality for people in their 50s and 60s and
our earlier finding that health shocks only explain about 15% of PVE inequality at age 25.

46The model generates a jump in income inequality at age 60 because the probability of receiving no job
offer jumps at 60. Figure 4 shows how the model also generates a drop in full-time employment at 60.
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7.4 Direct and Behavioral Effects of Health Shocks

In the previous section we explored how health shocks contribute to earnings inequality.
In this section we explore how health shocks affect a range of behaviors and outcomes includ-
ing health itself, work experience, wage offers, and reliance on social transfers and disability
benefits. This clarifies the channels through which health shocks affect earnings.

To disentangle direct and behavioral effects of health shocks, we compare results from
three experiments: (1) eliminate health shocks but hold labor supply and savings fixed, (2)
eliminate health shocks but hold decision rules fixed (allowing labor supply and savings to
change according to the optimal policy functions of the benchmark environment), and (3)
eliminate health shocks and allow agents to update their optimal decision rules. As we
explained in Section 7.3, the first two simulations capture the direct effects of health shocks,
while the latter experiment incorporates the behavioral response to reduced health risk.47

7.4.1 Effects of Health Shocks on Health

Figure 10 shows how the evolution of health itself (H) is altered in counterfactuals where
we shut down health shocks for working age men. The figure reports the fraction of men
in fair and poor health in the baseline model and in the three counterfactual simulations
described above. We label these "No Shocks 1," "No Shocks 2," and "No Shocks 3."

Not surprisingly, the direct effect of eliminating health shocks (without any decisions
changing) is to improve health substantially (as health shocks are key drivers of H and R
transitions). For example, the fraction of men in poor or fair health at age 64 drops from
.56 in the baseline to only .42 in the absence of health shocks. This improvement in health
leads to higher wage offers, higher employment and higher incomes. These in turn have an
additional positive reinforcement effect on H as seen in experiments (2) and (3). However,
Figure 10 reveals that these effects are relatively minor: the fraction of men in poor or fair
health at age 64 drops by only an additional .01 when decision rules remain fixed and an
additional .01 when decision rules are allowed to adapt. Thus, the bulk of the inequality in
H generated by health shocks is accounted for by the immediate effect of health shocks on
H, not the reinforcement effect operating through employment and income.

7.4.2 Effects on Employment, Human Capital and Wage Offers

Figure 11 plots the mean and coefficient of variation of experience, human capital, and
wage offers from the same set of three experiments. In the first experiment experience and
human capital remain unchanged from the benchmark, because we hold labor supply fixed.
But offer wages can change, because they depend on H. Thus, the first experiment shows
only the direct effect of health shocks on wages through their direct impact on H.

As we see in the third panel of Figure 11, the direct effect of health shocks on wages
(operating through H itself) is very modest. Only when workers reach their 50s and 60s
does it start to become a non-negligible factor. For example, the mean offer wage of 50 year
old workers only increases from $25.0 to $25.2 per hour if health shocks are eliminated, but
that of 60 year old workers increases from $25.5 to $25.9.

47Experiments (1) and (2) can be interpreted as a situation where all agents are “lucky” and experience
no health shocks, but where the perceived probabilities of health shocks are unchanged (at baseline levels).
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In the second experiment we let elimination of health shocks alter labor supply decisions
and employment. We still call this a “direct” effect because decision rules are held fixed, but
it includes the reinforcement effect that arises because increased employment and income
further improve health and increase human capital.48 In this experiment work hours increase
both because sick days are eliminated and because improved health leads to higher wage
offers, which increases labor supply. As we saw earlier in Table 10, the elimination of health
shocks causes lifetime work experience to increase by 2.3 full-time equivalent years. However,
as we now see in the top two panels of Figure 11, impacts on accumulated work experience
and human capital are very modest until workers are in their 50s and 60s.

When we account for how eliminating health shocks alters the accumulation of work
experience and human capital, the implied effect on offer wages roughly doubles. Now, as
we see in the third panel of Figure 11, the mean offer wage of 50 year old workers increases
from $25.0 to $25.4 per hour, while that of 60 year olds increases from $25.5 to $26.3.

Finally, in the third experiment we let agents’ decision rules for labor supply and saving
adapt to the reduced risk environment. As we see in Table 15, elimination of health shocks
causes lifetime full-time equivalent work to increase by 4.5 years (or 15%). This is almost
double the increase of 2.3 years that we found from the direct effects of health shocks (holding
decision rules fixed). Once all three channels of effects are factored in, the mean offer wage of
50 year old workers increases from $25.0 to $25.9 per hour when health shocks are eliminated,
while that of 60 year olds increases from $25.5 to $26.8.

It is worth emphasizing that the reduced form studies reviewed in Section 2 do not
attempt to capture behavioral effects of health risk on employment and wages. They estimate
only what we call the “direct” effects of differential incidence of health shocks (i.e., “luck”)
within a given risk environment (with fixed decision rules). But we find that the behavioral
effects on employment and wages are as large as the direct effects.

Inequality in work experience drops very sharply when we allow decision rules to adapt to
the lower risk environment (see the top right panel of Figure 11). This is primarily because
labor supply of low-skill workers increases sharply when health shocks are eliminated, as they
no longer have an incentive to constrain their labor supply and human capital accumulation
to maintain eligibility for social insurance that protects them from high medical costs. For
example, in Table 15, note that lifetime full-time equivalent work increases from 19.9 to 31.1
years for low-skill high school types. As we see in the bottom panel of Figure 11, the drop
in inequality in work experience translates into a sharp drop in inequality in wage offers.

Eliminating health shocks only has large direct effects on hours at older ages, but it has
a substantial positive behavioral effect on hours of low-skill workers even at young ages. As
a result, the behavioral response generates noticeable increases in mean offer wages, and
declines in wage inequality, at much younger ages than implied by direct effects alone.

As a summary of how health shocks affect wage inequality through the three channels,
note that the coefficient of variation of wage offers at ages 50 (60) declines by 0.9% (1.7%)
in the first experiment due to changes in H, by an additional 1.6% (2.0%) in the second
experiment due to less dispersion in human capital, and by an additional 3.8% (4.3%) in the
third experiment due to the behavioral response to reduced health risk. Thus, the behavioral

48In contrast to our model De Nardi et al. (2017) introduce heterogeneity by having different health types
within each education group. Then, the poor health types tend to spend longer periods in poor health states
and non-employment, but there is no feedback effect of employment or income on health.
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response to health risk accounts for the bulk of the effect of health shocks on wage inequality.
Next, we examine how health shocks affect wage offers for different education groups.

Figure 12 plots age profiles of the mean and coefficient of variation of offer wages, separately
by education. The mean offer wage at age 25 is normalized to 1.0, so one can read wage
growth off the graphs. In the benchmark, wage growth from age 25 to 55 is 27% for the high
school and some college types, and 74% for the college type. When we shut down health
shocks, and allow decision rules to adapt, wage growth increases to 35% for the high school
type, 34% for some college types, and 81% for college types.

In the baseline model, the coefficient of variation (CV) of offer wages grows substantially
from age 25 to 55, from .37 to .45 for the high school type, .40 to .48 for the some college
type, and .42 to .58 for the college type. Thus, for the more educated, the CV starts higher
and grows more with age. When we shut down health shocks and allow decision rules to
adapt, the growth of the CV declines by 2/3 within the high school and some college types.
But for the college type the figure is only 23%. Thus, health shocks account for only a
modest fraction of the growth in offer wage inequality over the life-cycle for college workers,
but for a very large share within the high school and some college groups. And, as we see in
Figure 12, most of that large share is due to the behavioral response to health risk.

Table 15 reports how eliminating health shocks at ages 25-64 affects mean offer wages
across all ages. Averaged over all types, the mean offer wage increases from $22.88 in the
baseline to $23.56 in the counterfactual, which is only 3%. However, Table 15 also reveals
that the growth in mean offer wages is very concentrated among the low-skill types. Within
the high school, some college and college types the mean offer wage of the low-skill types
grows by 11.1%, 7.5% and 7.1%, respectively. The growth for higher skill types is much
smaller. This largely reflects the increased labor supply and human capital accumulation of
low skill workers in the absence of health shocks.

Finally, the results in Table 15 show that eliminating health shocks at ages 25-64 causes
mean lifetime work hours to increase by 15.1% while the mean offer wage increases by only
3%. Thus, health shocks reduce work hours far more than they reduce offer wages. We saw
in Table 12 that elimination of health shocks increases PVE by 9.3%, which is much less than
the roughly 18% increase in undiscounted earnings. This is because most of the increases in
hours and wages are concentrated at older ages.

7.4.3 Health Shocks and Social Insurance

As we saw in Table 8, our baseline model accurately predicts the fraction of working age
men who receive social transfers or disability benefits. In Table 14, our model predicts the
elimination of health shocks would cause the fraction who receive social transfers to drop
from 12.9% to 2.0%. This is a much larger than the drop to 8.9% that we saw in Table 10
in the exercise where we held decision rules fixed. Thus, roughly 2/3 of the drop in social
transfer receipt is due to the behavioral response to reduced health risk.

The behavioral response is a substantial increase in labor supply, concentrated among
low-skill workers. In Table 10 we saw the direct effect of eliminating health shocks is to
increase lifetime work from 29.8 full-time equivalent years to 32.1 years, while in Table 15 we
see that the behavioral effect leads to an additional increase to 34.3 years. Among low-skill
high school types the increase in work is 19.9 to 31.1 years, the drop in all social transfer
receipt is 41.6% to 8.6%, and the drop in disability receipt is 8.4% to 1.5%.
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The behavioral response of reduced health risk generating increased labor supply arises
because, once health risk is reduced, agents have less incentive to constrain labor supply so as
to maintain eligibility for social insurance. Similarly, Pashchenko and Porapakkarm (2016)
find that means-tested Medicaid discourages labor supply, as individuals would rather exit
the labor force and receive Medicaid than work and pay medical costs out-of-pocket.49

New from prior literature, in our model health risk and social insurance also interact to
reduce incentives for human capital investment. Agents anticipate that future health shocks
and the possibility of qualifying for means tested transfers will reduce future employment.
As human capital generates zero returns in periods of non-employment, this reduces the
incentive for human capital investment today, further reducing current labor supply.

7.5 The Effect of Health Risk on Earnings Inequality

Next we ask how heterogeneity in health risk contributes to earnings inequality. In our
model, the probability distribution of predictable health shocks (dp) and the laws of motion
for health (H) and risk factors (R) differ by education. Less educated workers face a higher
probability of predictable health shocks, and they face higher probabilities of transition to
inferior health states (see Figures 1 to 3).50 To what extent do these differences in health risk
by education generate differences in labor supply, human capital investment and earnings?

To address this question, we conduct counterfactuals where we equalize heath risk across
different types of agents. Specifically, we give all agents, regardless of education, the health
transition functions and health shock distribution of the some college type.51 The results are
reported in Table 16. Our key finding is that the mean present value of earnings (PVE) of
high school types only increases by 2.8% in this experiment. In contrast, in Table 12, when
we eliminated health shocks entirely, the PVE of high school types increased by 11.8%.
Furthermore, because the earnings of high school types increases so modestly, the overall
Gini coefficient actually increases from .304 to .319 when we equalize health risk.52

Do these results imply that heterogeneity (by education) in the risk of health shocks is
not an important source of earnings inequality? That would be an incorrect interpretation.

49Hubbard et al. (1995) quantify the degree to which social insurance, that cushions against idiosyncratic
income shocks, discourages labor supply and saving for self-insurance purposes. Our results extend theirs
by quantifying how means-tested health insurance programs (like Medicaid) discourage labor supply in an
environment with health shocks that generate health care costs.

50It is well known that education is positively associated with health (e.g., Grossman and Kaestner (1997),
Grossman (2000), Smith (2004, 2007), Cutler and Lleras-Muney (2008, 2010). Smith calls the reason for the
“education/health gradient” one of the greatest open questions in the social sciences. We discuss possible
reasons for the correlation in Section 7.2, but it is beyond the scope of our analysis to explain what ultimately
drives the positive education/health association. Instead, we focus on using our model to examine how
differences in health risk by education level - taken as given - affect earnings inequality, labor supply and
other behaviors.

51We do this because the level of health risk faced by the some college type is intermediate between that
faced by the high school and college types. Alternatively, we can also re-estimate the H, R and dp functions
with education omitted, and simulate the behavior of all agents when they face these common equations
describing health risk. That approach generates very similar results.

52What drives the increase in the Gini is that low-skill college types work quite a bit less when their health
risk is increased to the level of the some college type. With lower level they stay eligible for transfers in the
event of expensive health shocks. Thus, inequality increases substantially within the college type.
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Rather, what drives these results is that, even in the lower risk environment, high school
types still have a strong incentive to constrain their labor supply so as to maintain eligibility
for transfers that protect them from high medical costs. Reducing the health risk they face
to the some college level does little to change that fact. In contrast, the larger risk reduction
generated by removing health shocks entirely does change their incentives fundamentally.

7.6 Providing Public Health Insurance to the Uninsured

Finally, we use our model to simulate the impact of providing government funded health
insurance to uninsured workers. In the baseline environment 35% of working age men lack
employer provided health insurance (ESHI), and 12.9% resort to social insurance (including
disability benefits) to pay health care costs. As we saw in Table 7, rates of coverage by ESHI
vary greatly by age, education and full or part-time employment status, and our model
provides a good fit to these patterns.53 The fractions of high school, some college and college
types with ESHI are 54%, 67% and 77%, respectively.

In our counterfactual experiments we leave ESHI as in the benchmark, but assume that
all uninsured individuals participate in a mandatory government funded health insurance
program.54 Participants in the public plan pay an annual premium equal to the employee’s
share of the ESHI premium in the benchmark ($652/year), and this is tax deductible. They
face a co-insurance rate of 30%, which is comparable to the typical ESHI plan.

Tables 17 and 18 present the results. The mandatory public insurance program spends on
average $4,031/year per privately uninsured individual. A large fraction of this is accounted
for by expenditures on those who were previously covered by Medicaid/DI. The average
Medicaid/DI expenditures per uninsured person decline from $2,886 in the baseline to $599.
The average out-of-pocket medical expenses of the uninsured decline from $2,858 to $1,130.

The employment rate increases from 83.1% to 85.3% when the public plan is introduced.
Not surprisingly, this is primarily driven by an increase in the fraction of job offers without
ESHI that are accepted, from 84.8% in the baseline to 89.8%. Lifetime labor supply increases
from a mean of 29.8 years in the baseline to 30.6 years in the experiment (a 2.7% increase).
Because labor supply increases, human capital accumulation, wage offers and lifetime earn-
ings increase as well. The mean offer wage increases from $22.55 per hour to $22.68 per hour,
and the present value of lifetime earnings increases from $762k to $772k, a 1.3% increase.
Increases in labor supply and earnings are greater among the low-skill types.

In addition to increasing labor supply, introduction of public insurance also reduces the
fraction of working age men who rely on social insurance (including Medicaid and disability),
from 12.9% in the benchmark to 8.8% in the experiment. As we see in Table 17 government
expenditures on social insurance decline by $762 per capita (36%) from the benchmark, a
substantial cost savings.

53A limitation of our model is we assume all unemployed workers lack ESHI. In reality, 10% (17%) of
unemployed men aged 26-44 (45-64) were covered by their previous employer’s plan in 2010 (Janicki (2013)).
Accounting for this would significantly complicate the model, as we would need to add a state variable for
whether an agent had access to health insurance through a previous employer.

54If we were to introduce a universal health insurance plan that replaced employer provided health insurance
we would need to account for how wage/job offer distributions and government revenues change when firms
no longer receive tax benefits for providing ESHI. But this is beyond the capacity of our partial equilibrium
model. For this reason, we only present results from experiments where ESHI remains unchanged.
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Together, the declines in social insurance payments slightly outweigh the $689 per capita
cost of the new public insurance plan. After taking into account all changes in expenditures
on other programs, as well as the increase in government revenue stemming from the increase
in labor supply, we find that the introduction of the public insurance plan actually saves the
government $64 per capita.55

There are two important caveats to this finding: First, we abstract from moral hazard
effects of enhanced insurance coverage on total medical expenditures. Second, provision
of public insurance could increase demand for medical services, which could increase their
price. Thus, our experiment is likely to understate the cost of providing public insurance.56
Given these limitations, our aim is simply to quantify the extent to which provision of public
health insurance would (i) increase labor supply and tax revenues, and (ii) reduce reliance
on Medicaid and other social transfers, reducing government spending. These two channels
are important enough to outweigh the direct cost of the program, so that any cost increase
arises through the secondary effects of moral hazard and increased prices.

Finally, assuming it would be self-financing, we find that the consumption equivalent
variation (CEV) of introducing the public insurance plan is 1.44% of baseline consumption.57
In Table 18 we see that the low educated groups experience larger welfare gains: 2.0% in
CEV for the HS, 1.1% for some college and 0.9% for college graduates.58

8 Conclusion
In this paper, we provide a detailed study of how health contributes to earnings inequality.

We construct a rich life-cycle framework of labor supply and asset accumulation decisions,
with two novel features: (1) a detailed health process over the life cycle that includes several
dimensions of health: functional health, underlying health risk, and health shocks that are
predictable/unpredictable and temporary/persistent, and (2) interactions between health
risk and human capital accumulation (learning-by-doing). We show that both of these fea-

55In this calculation, we factor in all expenditures on social insurance, social security, and medical expenses
covered by Medicare and the public insurance program, as well as all taxes and premiums collected.

56We may also understate the benefit of public insurance if it improves health. We do not know how H
and R transitions would change for the uninsured who obtain public insurance, so we take a conservative
approach and assume they have the same H and R transitions as the uninsured in the benchmark economy.
If public insurance leads to better health transitions, our experiments will underestimate its value.

57The consumption equivalent variation (CEV) is given by: CEV =
[
V (c∗,l∗)−D(c0,l0)
V (c0,l0)−D(c0,l0)

] 1
α(1−σ) − 1, where

(c0, l0) and (c∗, l∗) are the consumption-labor allocations in the benchmark and in the counterfactual, V is
the expected discounted value at age 25, and D(c0, l0) is the expected discounted sum of death costs at age
25 in the benchmark. D depends on (c, l) up to age 65 since these affect employment decisions and income,
which in turn affect H and R transitions and thus the probability of death. The CEV takes into account
changes in welfare arising from different life expectancies in the counterfactuals.

58Within education groups, gains are larger for those with high productivity. For example, for those with
high school or less, the welfare gains are 1.0%, 2.4%, and 2.7% for the low, medium and high productivity
groups. The higher productivity types benefit more because fewer of them are at the consumption floor,
and hence fewer of them can rely on government transfers to cover medical costs. Note that the new public
insurance plan covers 70% of medical expenditures, which are on average $4,500/year. Given the premium
is $652/year, those not at the consumption floor get approximately $2,500 in additional disposable income,
which translates into a 2-3% increase in consumption.
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tures are important in allowing the model to capture the degree to which and the pathways
through which health impacts earning inequality.

We find health shocks explain roughly 15% of the inequality in present value of lifetime
earnings (PVE) across all workers. Within education groups, they explain roughly 25% of
inequality within high school workers, 21% within some college workers, and 17% within
college workers. However, analogous with results in Keane and Wolpin (1997), we find that,
even in a life-cycle model extended to include health and health shocks, worker’s education
and skill endowment still explain over 80% of the heterogeneity in the PVE.

Importantly, health shocks mostly affect earnings of older workers, which are discounted
when taking present values at age 25. We find that health shocks can explain about a quarter
of income inequality for people in their 50s and 60s.

We decompose the effect of health shocks on earnings into “direct” effects that hold
decision rules fixed, and “behavioral” effects that arise because health risk changes decision
rules for labor supply and savings. Notably, direct effects of health shocks account for only
about 1/3 of their impact on earnings inequality, while behavioral responses account for 2/3.

The large behavioral effect of health risk on earnings inequality arises because low-skill
workers have a strong incentive to hold down their labor supply so as to maintain eligibility
for social insurance that cushions against high potential medical costs. This reduces their
rate of human capital accumulation, leading to slower wage growth over the life-cycle, and
lower earnings. In contrast, among high skill workers, social insurance has no significant
effect on labor supply. This asymmetry in responses generates the positive behavioral effect
of health risk on earnings inequality.

Thus, in an environment with costly health shocks, social insurance creates a type of
“moral hazard” that reduces labor supply and human capital investment of low skill workers
(analogous to how health insurance may generate moral hazard by reducing the incentives
to invest in health). Quantitatively, we find this moral hazard effect on labor supply is
substantial. Providing public health insurance to the uninsured counteracts it, leading to
both (i) substantial government cost saving on Medicare, disability and other social insurance
programs, and (ii) increased tax revenues due to increased labor supply. Hence, our model
predicts that a program providing heavily subsidized mandatory public health insurance to
the uninsured would be self-financing and welfare improving.

A limitation of our analysis is we ignore any effect of public insurance on (i) health
care spending of the newly insured (via the ex-post moral hazard effect), or (ii) the price
of medical care (via increased demand for services). So we likely understate the cost of the
program. Nevertheless, our key point is that any cost evaluation of public health insurance
should factor in the positive effect on labor supply and the savings on social transfers.

Previous literature has considered the potential for public health insurance to generate
an ex-ante moral hazard effect that reduces the incentive to invest in health. In contrast,
we find that public health insurance alleviates the moral hazard problem that arises because
means-tested social insurance discourages human capital investment in the presence of health
risk. Health insurance has very different effects in our framework depending on whether it
is means-tested. For example, increasing the income threshold for means-tested Medicaid
would worsen the moral hazard effect on human capital accumulation, while provision of
public health insurance alleviates it.
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Tables

Table 1: Wages, Hours and Earnings Regression Results, MEPS

Dependent Var Log Wage Weekly Hours Annual Earnings
Mean 3.056 35.098 82.888
SD 0.563 19.283 38.564
s 0.003 -0.397∗∗∗ -0.717∗∗∗

(0.004) (0.174) (0.305)
dp 0.003 -1.216∗∗∗ -2.543∗∗∗

(0.006) (0.284) (0.522)
du 0.005 -1.375∗∗∗ -2.123∗∗∗

(0.005) (0.227) (0.405)
Lagged Dep. Var. 0.878∗∗∗ 0.679∗∗∗ 0.734∗∗∗

(0.006) (0.007) (0.006)
Education

Some College 0.031∗∗∗ 1.040∗∗∗ 2.588∗∗∗
(0.005) (0.211) (0.368)

College 0.085∗∗∗ 2.166∗∗∗ 7.005∗∗∗
(0.006) (0.192) (0.377)

Initial Health
Fair 0.020 5.151∗∗∗ 8.916∗∗∗

(0.020) (0.405) (0.761)
Good 0.036∗ 6.543∗∗∗ 12.020∗∗∗

(0.020) (0.429) (0.796)
R2 0.836 0.552 0.643
Observations 22,875 37,004 38,065
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: s, dp and du are health shock indicators defined in the text. All regressions include year
dummies, and a cubic in age. The wage regression is estimated using only workers employed in
both interviews 1 and 5. The Weekly Hours regression is estimated on all workers, including those
with zero hours. For the 79.2% of the sample with positive hours, mean hours are 43.083 with a
standard of 10.620. The earnings regression also includes non-employed workers, and incorporates
a Box-Cox transform of annual earnings, with lambda = 0.326. If we drop controls for health and
health shocks, the R-squared of the three regressions decline to 0.836, 0.543 and 0.635, respectively.
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Table 2: Classifying Medical Conditions

Assignment Short-Term Long-Term Predictor Predictable Number of
Productivity Productivity ICD codes

dp YES YES YES YES 27
du YES YES YES NO 18
dp YES YES NO YES 38
du YES YES NO NO 272
s YES NO YES YES 3
s YES NO YES NO 8
s YES NO NO YES 6
s YES NO NO NO 298
s Unknown condition or condition details missing 1
R NO YES YES YES 5
R NO YES YES NO 6
R NO YES NO YES 1
R NO YES NO NO 0
R NO NO YES YES 6
R NO NO YES NO 23

Not used NO NO NO YES 9
Not used NO NO NO NO 269

Table 3: Work Hours Lost Due to Health Shocks (Sick Days)

HS or Less Some College and College
Health Shocks H=Poor H=Fair H=Good H=Poor H=Fair H=Good

du = 0, dp = 1, s = 0 0.0 4.0 0.0 0.0 2.6 1.4
du = 0, dp = 0, s = 1 0.0 2.5 0.0 1.3 1.5 0.6
du = 0, dp = 1, s = 1 4.2 6.0 5.5 7.6 6.1 3.6
du = 1, dp = 0, s = 0 5.0 7.5 1.4 1.7 1.6 1.0
du = 1, dp = 1, s = 0 8.5 9.6 0.0 8.3 7.3 3.9
du = 1, dp = 0, s = 1 7.1 9.1 4.0 7.1 5.8 3.6
du = 1, dp = 1, s = 1 6.1 13.4 9.5 19.7 14.3 12.1

Note: We estimate weekly lost work hours using a regression of weekly hours worked on health risk, age, age2 and
all health shock combinations (no health shocks is the base group). Regressions are run separately by functional
health and education. Coefficients that are not statistically significant at the 10% level are set to zero.
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Table 4: Model Parameters

Parameter Value
Preferences
CRRA parameter α 0.4
Intertemporal substitution parameter σ 2.0
Cost of death ζ -30.0
Interest rate
r 0.04
Tax Parameters
Consumption tax τ c 5.70%
Social Security tax τSS 6.20%
Medicare tax τMed 1.45%
Income threshold yss $98,000
Tax function parameter a0 0.258
Tax function parameter a1 0.768
Social Security Income

HS or Less $13,655
Some College $14,678
College $15,883

Health Insurance
Fraction of ME paid by Medicare qMed 50%
Fraction of ME paid by Employer Insurance qEI 70%
Medicare premium pMed $854
Employer Insurance Premium (Employee’s Share) pEI $652

Note: Average Social Security income is calculated from the HRS. The tax function parameters a0
and a1 are taken from Gouveia and Strauss (1994). The co-insurance rates qEI and qMed are taken
from Attanasio et al. (2010). The Medicare premium pMed is set to the average annual Medicare
Part B premium over the sample period, adjusting for the CPI. The average employee’s share of
the ESHI premium pEI for a single’s plan is calculated using the MEPSnet/IC Trend Query tool
available at https://www.meps.ahrq.gov/mepsweb/data_stats/MEPSnetIC.jsp.
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Table 6: Calibrated Employment Offer Probabilities, ages 25-53

HS or Less Some College College
PT, no ESHI 0.050 0.031 0.013
PT, ESHI 0.050 0.030 0.032
FT, no ESHI 0.288 0.167 0.100
FT, ESHI 0.613 0.772 0.855

Notes: At ages 54-64, we allow for a positive probability of having no employment offer. The
probabilities of PT and FT offers are scaled down appropriately.

Table 7: The Distribution of Employment, Model and Data

<=HS Some College College
Model Data Model Data Model Data

Ages 25-34
NE 7.5 8.2 8.4 6.0 8.0 4.9
PT, no ESHI 4.6 5.7 2.9 4.2 1.1 2.4
PT, ESHI 4.5 2.8 2.7 3.4 2.6 4.1
FT, no ESHI 26.5 31.1 15.3 17.5 9.1 9.6
FT, ESHI 56.9 52.2 70.7 68.9 79.1 78.9
Ages 35-44
NE 8.1 10.2 6.3 6.5 3.8 3.5
PT, no ESHI 4.6 4.4 2.9 2.6 1.3 1.3
PT, ESHI 4.5 2.7 2.8 2.9 3.0 2.7
FT, no ESHI 26.0 23.1 15.3 14.0 9.6 10.2
FT, ESHI 56.8 59.7 72.7 74.1 82.4 82.3
Ages 45-54
NE 16.8 18.0 15.7 12.3 8.0 6.3
PT, no ESHI 4.0 3.8 2.6 2.6 1.2 1.4
PT, ESHI 4.0 3.2 2.4 3.6 2.9 3.1
FT, no ESHI 22.8 17.8 13.3 12.9 9.1 10.2
FT, ESHI 52.4 57.2 66.0 68.6 78.8 78.9
Ages 55-64
NE 50.0 43.7 41.4 36.3 34.0 26.1
PT, no ESHI 2.5 4.1 1.9 3.1 1.0 2.3
PT, ESHI 2.3 4.9 1.6 6.3 2.1 6.8
FT, no ESHI 12.9 11.4 8.8 10.0 6.1 9.3
FT, ESHI 32.4 35.8 46.3 44.3 56.7 55.5
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Table 8: Calibration Moments, Model and Data

HS or Less Some College College
Model Data Model Data Model Data

1. Identifying β
Assets/income ratio, ages 30-55 1.22 1.21 1.27 1.32 1.85 1.88
2. Identifying the leisure cost of work
% emp FT, no shocks, ages 30-50: H = Poor 26.11 31.01 17.53 11.11 34.68 57.14

H = Fair 78.43 78.00 80.64 82.22 86.54 88.26
H = Good 85.97 85.22 90.25 89.21 92.47 91.42

% emp PT, no shocks, ages 30-50: H = Poor 3.08 11.63 1.23 0.00 1.50 0.00
H = Fair 8.31 6.13 5.14 6.43 3.98 6.33
H = Good 9.30 5.13 5.84 4.30 4.22 3.82

3. Identifying deterministic wages
Wages, FT, H = Good: ages 25-34 16.57 15.30 20.66 19.47 27.60 29.94

ages 45-54 20.53 18.98 25.70 25.44 39.38 37.95
Wages, FT, ages 30-55: H = Poor 13.88 15.59 18.92 21.52 25.06 29.32

H = Fair 18.18 16.14 22.21 22.32 32.68 32.65
H = Good 19.01 17.68 23.71 23.77 35.37 35.81

Wages PT/ Wages FT, ages 30-55 0.93 0.93 0.94 0.94 0.90 0.90
4. Identifying wage risk and wage noise
Var fixed effect 0.03 0.11 0.06 0.08 0.09 0.08
Var transitory shock 0.20 0.07 0.12 0.07 0.11 0.08
Permanent shock persistence 0.85 0.94 0.86 0.84 0.89 0.93
Var of innovation 0.01 0.02 0.01 0.04 0.01 0.03
Var log wages, FT, ages 30-55 0.26 0.26 0.23 0.24 0.27 0.28
% Emp to Non-Emp trans. rate, ages 30-55, Good H 2.61 3.02 2.29 2.86 1.51 2.29
% Non-Emp to Emp trans. rate, ages 30-55, Good H 63.08 42.51 66.20 46.59 48.57 48.72
5. Identifying Consumption floor and DI (%)
% non-DI individuals getting transfers, ages 30-55 8.46 9.26 7.22 7.53 5.02 3.68
Average DI benefits 10,268 9,920 14,175 11,941 17,653 16,839
% receiving DI if H=Poor 73.87 80.33 78.41 83.56 55.85 64.30
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Table 9: Wage Distribution, Model and Data (CPS)

HS or Less Some College College
Distribution of Wages Model Data Model Data Model Data
Percentiles, Ages 30-35
5 6.5 7.1 8.6 9.1 11.3 12.2
25 10.5 11.7 13.3 15.6 17.8 21.0
50 14.8 16.5 18.6 21.1 25.6 29.3
75 20.9 22.6 26.2 28.3 37.2 41.4
90 28.4 29.7 34.9 37.4 50.4 54.8
95 34.0 36.1 40.6 44.3 58.8 66.8
99 46.9 50.8 51.9 65.1 76.7 114.0
Percentiles, Ages 50-55
5 8.0 7.7 10.9 9.7 14.7 12.0
25 12.8 13.5 16.6 17.1 23.9 23.4
50 18.0 19.3 23.1 24.4 34.9 34.3
75 25.4 26.4 32.3 33.1 50.7 48.9
90 34.6 35.3 42.5 43.5 69.7 68.1
95 41.5 41.7 49.5 52.0 83.3 89.2
99 57.4 59.2 63.9 76.2 120.5 168.1

Notes: Hourly wages expressed in constant 2010 CPI adjusted dollars. The data is from the CPS,
screening out workers in the top 1% of the wage distribution, or with wages below $3.50/hour.

Table 10: The Importance of Health Shocks and R in the Benchmark Model

ME Sick days Surv to 65 (%) Emp (%) Yrs Worked SI (%) Wage Offer
Benchmark 4,465 8.26 85.18 83.13 29.82 12.86 22.88
No s shocks 2,894 4.35 85.74 83.87 30.60 11.42 22.98
No du shocks 3,050 3.85 90.09 84.66 31.24 10.48 23.13
No dp shocks 3,858 6.23 89.64 83.55 30.47 12.08 22.95
No s and du 1,571 1.15 90.10 85.08 31.74 9.53 23.18
No s, du, dp 1,041 0.00 92.38 85.41 32.14 8.92 23.25
Low R 4,211 7.47 87.22 83.73 30.25 12.11 22.92

Notes: Data are simulated from the Benchmark model, with the indicated health shocks shut down at ages 25-64,
but with decision rules unchanged. ME is total annual medical expenditure in dollars. Sick days are expressed
in number of lost full time work days per year. “Yrs Worked” is lifetime labor supply in full time equivalent years
(max = 40 years). Statistics are for ages 25-64 only, and we combine all education groups.
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Table 11: Explaining the Variance of the Present Value of Lifetime Earnings

R2 from PV Earnings Regressions
Independent Variables Included <=HS Some College College All
1. Initial conditions∗ 0.797 0.855 0.787 0.868
2. Health, health shocks + Initial conditions 0.898 0.928 0.866 0.924
3. Health, health shocks only 0.358 0.337 0.230 0.400

Notes: The table reports R2 from regressions of the present value of lifetime earnings on initial conditions
and/or health measures, using simulated data from the benchmark model. Initial conditions are the latent
skill type (κ) and H and R at age 25. In the “All” column that combines education groups, we also include
education and its interactions with κ, H25 and R25. In Rows 2 and 3, “health, health shocks” are H and R
at ages 25 and 64, age of death if less than 65, ages that du and dp shocks first occur, total years the agent
was in Poor/Fair/Good health, and the total number of times each possible combination of health shocks
occurred between the ages of 24 and 64, entered separately by health status at the time of occurrence.

Table 12: Inequality in the Present Value of Earnings, Evaluated at Age 25

Benchmark No Health Shocks No Health Shocks
Decision Rules Fixed Decision Rules Change

Mean CV Gini Mean CV Gini Mean CV Gini
All 762,177 0.555 0.304 +5.56% 0.528 0.289 +9.26% 0.479 0.258
By Education
≤High School 523,423 0.376 0.216 +7.41% 0.350 0.200 +11.83% 0.286 0.163
Some College 711,746 0.435 0.245 +5.72% 0.411 0.231 +9.94% 0.350 0.194
College 1,091,345 0.445 0.253 +4.42% 0.425 0.241 +7.41% 0.375 0.210
By Productivity
≤High School
Low Productivity 293,730 0.300 0.170 +12.85% 0.273 0.155 +37.49% 0.169 0.089
Med Productivity 539,185 0.150 0.077 +7.14% 0.130 0.063 +7.43% 0.125 0.060
High Productivity 734,667 0.134 0.065 +5.47% 0.122 0.059 +5.36% 0.124 0.059
Some College
Low Productivity 425,701 0.256 0.144 +9.18% 0.233 0.130 +23.80% 0.140 0.072
High Productivity 997,662 0.127 0.059 +4.24% 0.114 0.053 +4.04% 0.114 0.053
College
Low Productivity 661,093 0.312 0.172 +7.09% 0.279 0.149 +17.34% 0.166 0.086
High Productivity 1,521,622 0.158 0.080 +3.26% 0.152 0.077 +3.10% 0.150 0.076

Note: The mean (across simulated agents) of the present value of earnings (PVE) is expressed in
2010 dollars. CV denotes the coefficient of variation.
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Table 13: Inequality in the Present Value of Earnings, Evaluated at Age 25

Benchmark No ME of Health Shocks No ME of Health Shocks
Decision Rules Fixed Decision Rules Change

Mean CV Gini Mean CV Gini Mean CV Gini
All 762,177 0.555 0.304 +0.23% 0.551 0.302 +2.49% 0.511 0.278
By Education
≤High School 523,423 0.376 0.216 +0.37% 0.372 0.213 +3.28% 0.329 0.188
Some College 711,746 0.435 0.245 +0.15% 0.434 0.245 +2.73% 0.395 0.221
College 1,091,345 0.445 0.253 +0.18% 0.440 0.250 +1.93% 0.395 0.223
By Productivity
≤High School
Low Productivity 293,730 0.300 0.170 +1.08% 0.302 0.172 +16.32% 0.232 0.129
Med Productivity 539,185 0.150 0.077 +0.63% 0.148 0.075 +1.04% 0.141 0.070
High Productivity 734,667 0.134 0.065 -0.12% 0.132 0.064 -0.01% 0.134 0.064
Some College
Low Productivity 425,701 0.256 0.144 +0.20% 0.260 0.146 +8.87% 0.198 0.107
High Productivity 997,662 0.127 0.059 +0.14% 0.125 0.059 +0.11% 0.123 0.059
College
Low Productivity 661,093 0.312 0.172 +0.90% 0.303 0.165 +9.21% 0.206 0.108
High Productivity 1,521,622 0.158 0.080 -0.13% 0.158 0.080 -1.24% 0.162 0.082

Notes: The mean (across simulated agents) of the present value of earnings (PVE) is expressed in
2010 dollars. CV denotes the coefficient of variation.
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Table 14: Counterfactual Experiments: Employment and Social Insurance

Employment (%) Social Insurance (%)
Bench No HS No ME-HS Bench No HS No ME-HS

All 83.1 91.2 87.6 12.9 2.0 5.6
≤High School 80.2 89.6 85.6 15.9 2.9 7.6
Some College 82.7 92.5 87.7 14.1 1.9 6.6
College 86.9 92.2 89.9 8.2 0.9 2.4
≤High School
Low Productivity 57.1 84.3 71.7 41.6 8.6 22.1
Med Productivity 89.0 91.8 91.1 7.3 0.4 1.6
High Productivity 92.7 92.2 92.7 0.7 0.1 0.2
Some College
Low Productivity 69.9 89.9 79.9 28.1 3.7 13.2
High Productivity 95.4 95.2 95.3 0.2 0.1 0.1
College
Low Productivity 80.1 92.0 88.5 16.4 1.8 4.9
High Productivity 93.7 92.5 91.2 0.0 0.0 0.0

Notes: In the “No HS” counterfactual we eliminate health shocks at working ages. In “No ME-HS”
we remove (only) the medical expenditures associated with health shocks at working ages. In each
counterfactual, agents update their decision rules (for labor supply and saving) to reflect the new
environment. The full-time employment rate and the rate of receiving government transfers are
both calculated in the cross-section of working age men.
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Table 15: Counterfactual Experiment: Effects of Eliminating Health Shocks

FT Yrs Worked Mean Wage Offers DI (%)
Bench No HS Bench No HS Bench No HS

All 29.83 34.33 22.88 23.56 2.46 0.38
≤High School 27.96 33.11 16.07 16.64 3.62 0.61
Some College 29.94 35.01 20.78 21.41 2.79 0.47
College 32.01 35.26 32.03 32.90 0.82 0.05
≤High School
Low Productivity 19.93 31.13 10.76 11.95 8.40 1.53
Med Productivity 31.04 33.92 15.95 16.31 2.42 0.25
High Productivity 32.38 34.14 21.44 21.71 0.31 0.10
Some College
Low Productivity 25.32 33.99 13.70 14.73 5.43 0.83
High Productivity 34.56 36.03 27.81 28.09 0.17 0.11
College
Low Productivity 29.44 35.16 20.53 21.98 1.61 0.08
High Productivity 34.58 35.35 43.47 43.81 0.03 0.02

Notes: In the counterfactual we eliminate health shocks at ages 25-64, and let agents re-optimize
their decision rules to the new environment. Full-time equivalent years worked over the life-cycle
is an average over all simulated agents. All other statistics are calculated in the cross-section of
working age men. Mean offer wages are calculated using only individuals with full-time employment
offers.

Table 16: Inequality in the Present Value of Earnings, Evaluated at Age 25

Benchmark Some College ΛH , ΛR and Γdp

Mean CV Gini Mean CV Gini
All 762,177 0.555 0.304 -3.14% 0.581 0.319
By Education
High School or Less 523,423 0.376 0.216 +2.81% 0.353 0.203
Some College 711,746 0.435 0.245 +0.00% 0.435 0.245
College 1,091,345 0.445 0.253 -8.23% 0.560 0.319
By Productivity
≤High School
Low Productivity 293,730 0.300 0.170 +8.85% 0.275 0.156
Med Productivity 539,185 0.150 0.077 +2.08% 0.145 0.072
High Productivity 734,667 0.134 0.065 +1.00% 0.135 0.065
College
Low Productivity 661,093 0.312 0.172 -24.34% 0.516 0.297
High Productivity 1,521,622 0.158 0.080 -1.22% 0.161 0.081
Notes: The counterfactual sets the distribution of health shocks, and (H,R) transition rates, for
all education types, to the Some College levels. The mean (across simulated agents) of the present
value of earnings (PVE) is expressed in 2010 dollars. CV denotes the coefficient of variation.
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Table 17: Mandatory Public Health Insurance

Benchmark Public HI
Average Medical Expenses, ages 25-64
- If covered by ESHI 3,775 3,770
- If no ESHI:

-Out-of-pocket 2,858 1,130
-Public HI - 4,032
-SI 2,886 599
-Total 5,743 5,761

Wage Offers 22.55 22.68
FT Yrs of Work 29.83 30.61
Mean Government Expenditures per capita
-Public HI - 689
-SI 2,098 1,336
Government Deficit per capita 2,694 2,630

Notes: Mean government expenditures per capita are calculated as the total expenditures across
all ages, divided by the total number of agents in the economy.

Table 18: Mandatory Public Health Insurance Covering 70% of Medical Expenditures

EMP (%) SI (%) PV Earnings CEV (%)
Bench Public Bench Public Bench Public Public

All 83.1 85.3 12.9 8.8 762,177 +1.3% 1.44
≤High School 80.2 83.3 15.9 11.0 523,423 +1.9% 2.00
Some College 82.7 85.0 14.1 10.4 711,746 +1.3% 1.12
College 86.9 87.9 8.2 4.9 1,091,345 +0.9% 0.86
≤High School
Low Productivity 57.1 65.1 41.6 31.6 293,730 +9.4% 1.03
Med Productivity 89.0 90.6 7.3 2.8 539,185 +0.9% 2.37
High Productivity 92.7 92.7 0.7 0.3 734,667 -0.1% 2.70
Some College
Low Productivity 69.9 74.6 28.1 20.8 425,914 +4.5% 0.83
High Productivity 95.4 95.3 0.2 0.2 997,566 +0.0% 1.49
College
Low Productivity 80.1 84.2 16.4 9.8 661,093 +4.8% 0.72
High Productivity 93.7 91.5 0.0 0.0 1,521,622 -0.8% 1.01

Notes: “EMP (%)” is the percentage of individuals employed either part or full time. All statistics are
calculated in the cross-section of individuals 25-64 years of age.
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Figures

Figure 1: Distribution of H and R, Model and Data
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Figure 2: Selected Probabilities of Transitions from Fair to Poor Health (H), High School or Less
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Note: All transitions are conditional on income quintile equal to 3.

Figure 3: Fractions with du, s and dp Shocks by Age (Model and Data)
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Figure 4: Distribution of Employment, Model and Data (CPS)
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Figure 5: Distribution of FT Employment by Health and Age, Model and Data (MEPS)
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Note: The figure is constructed for workers with no persistent health shocks (du or dp).
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Figure 6: Wage Profiles of Full Time Workers by Health, Model and Data (MEPS)
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Figure 7: Income Inequality over the Life-cycle, Model and Data (CPS)
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Note: Income equals earnings plus interest (both pre-tax). In the CPS, income inequality is calculated using men

who are not in school or the armed forces. To reduce sensitivity of the Gini to outliers, we drop the top 2% of

income observations at each age, as well as observations on employed workers with reported wage rates below the

minimum wage. In the model, income is constructed using wages that include simulated measurement error.

Figure 8: Distribution of Medical Spending, Ages 25-64, Model and Data (MEPS)
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Figure 9: Income Inequality over the Life-cycle
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Figure 10: Effects of Health Shocks on the Distribution of H
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Note: In all three experiments we shut down health shocks at ages 25-64. (1) In “No Shocks 1” we hold employment,

income and savings fixed at baseline values, so they cannot feedback and affect health. (2) In “No Shocks 2” we let

agents adjust their labor supply and savings according to the optimal decision rules of the baseline model. (3) In

“No Shocks 3” we let agents update their decision rules for labor supply and savings to reflect the new environment.
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Figure 11: Effects of Health Shocks on Experience, Human Capital and Wage Offers
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Note: In all three experiments we shut down health shocks at ages 25-64. (1) In “No Shocks 1” we hold employment,

income and savings fixed at baseline values, so they cannot feedback and affect health. (2) In “No Shocks 2” we let

agents adjust their labor supply and savings according to the optimal decision rules of the baseline model. (3) In

“No Shocks 3” we let agents update their decision rules for labor supply and savings to reflect the new environment.
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Figure 12: Effects of Health Shocks on Wage Offers, by Education
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Note: In all three experiments we shut down health shocks at ages 25-64. (1) In “No Shocks 1” we hold employment, income and

savings fixed at baseline values, so they cannot feedback and affect health. (2) In “No Shocks 2” we let agents adjust their labor supply

and savings according to the optimal decision rules of the baseline model. (3) In “No Shocks 3” we let agents update their decision

rules for labor supply and savings to reflect the new environment. In the figures, the mean full-time offer wage is normalized to 1.0 at

age 25, within each education group. The actual means at age 25 are $13.5, $17.4 and $21.4 for the High School, Some College and

College groups, respectively.
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