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1 Introduction

Several studies have documented and modeled the stickiness of consumer goods prices,

while price rigidity of long-term financial services remains less examined. This is impor-

tant because such products constitute a non-negligible fraction of household spending. For

example, the share of married household expenditures on personal insurance and pensions

in 2016 was 11.1%, compared to 11.8% on food or 17.5% on transportation.1 This paper

documents the high degree of price rigidity for a specific long-term financial contract, life

insurance. We propose a novel theory of endogenous price rigidity based on the trade-off

between commitment and flexibility for the life insurance company, which is generated by

the consumer hold-up problem in long-term contracting.

We show that life insurance premiums are characterized by long periods of rigidity with

occasionally sizable adjustments. This is intriguing because the underlying marginal cost

of life insurance is volatile over time, with a monthly coefficient of variation of 6.3% and

the average absolute month-to-month change of 1.4% of the mean. In the data though, the

overall probability of a monthly premium change amounts to just 2.6%.2 This implies an

average premium duration of roughly 39 months, placing life insurance on the far-right tail

of the price change frequency distribution documented by Bils and Klenow (2004). Figure 1

presents an illustrative plot of premiums over time for the most significant and longest-

observed companies in our sample. Remarkably, some products have maintained a constant

premium for over 20 years, rendering it possible that a son could pay the same amount for life

insurance as his father used to, as the title of this paper goes. More generally, our empirical

findings indicate that life insurance companies tend to maintain stable profiles of premiums

with respect to age. This means that over the life cycle, young policyholders will likely pay

the same amount as what older cohorts used to.

To explain the empirical findings, we construct an OLG model where the firm faces a

commitment versus flexibility trade-off, which stems from the consumer hold-up problem.

Consumers live for three periods and buy one of two types of policies from monopolisti-

cally competitive firms, renewable or non-renewable. They incur a transaction cost before

purchasing, which represents the monetary expenses and opportunity cost of research and

medical examination. They may also experience adverse health shocks in the second period,

which could lead to significant premium hikes if they searched for a new policy. In the

second period, non-renewable policyholders potentially face all these costs, while renewable

policyholders are guaranteed coverage at no additional expense. Therefore, renewable pol-

1Bureau of Labor Statistics, Consumer Expenditures 2016.
2Addressing a common concern, we control for the phenomenon of firms launching new products whenever

they attempt to change premiums.
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Note: For illustration, we plot here the companies with: i. a share in the California life insurance

market of at least 1% according to California Department of Insurance (2004), and ii. a continuous

presence in our sample for at least 180 months (15 years). The total share in the life insurance market

for these four companies was 9.3% in 2003.

Source: Compulife Software, 1990-2013.

Figure 1: ART premiums over time for selected companies

icyholders are locked into a long-term relationship with the company, limiting their future

options. This creates an incentive for the firm to raise renewal prices, which also lowers the

consumers’ ex ante willingness to sign. In essence, the firm is time-inconsistent and values

commitment. The firm also faces stochastic cost shocks in the second period, so it values

flexibility. Policyholders do not observe the shocks, so they are unsure if premium hikes are

due to being held-up or due to changes in the cost. Consequently, the firm needs to design

premiums that leave consumers with no doubt that price changes are caused by cost shocks.

To balance the need for commitment and the desire for flexibility, the firm optimally

commits to a constant premium for small cost variations, while premium adjustments are

large and only possible when cost shocks are substantial. The renewal demand of locked-

in policyholders is inelastic to small price increases. This implies that small variations in
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prices are not credible because the firm could increase premiums slightly without losing any

consumers. Since the premium adjustment is minor for small cost shocks, the firm commits

to a single low premium for all shocks sufficiently small to gain credibility. For premium

adjustments to be credible, increases from the low premium need to be significant to induce

enough reduction in demand. This way, premium changes can only be attributed to large

cost shocks and not ascribed to opportunistic behavior.

We show that the optimal premium as a function of cost has a simple cutoff rule: pre-

miums are low and rigid for marginal costs below an endogenously determined threshold,

while above this threshold premiums are high and initially rigid before full flexibility is possi-

ble.3 Our model explains why level-term insurance policies have a non-guaranteed premium

schedule that affords them the room to be flexible, while the finalized premiums rarely de-

viate from it. We show that the optimal premium is self-enforcing through a reputation

mechanism where future consumers cease to sign with the firm if deviation occurs.

Having established the general properties of an optimal premium, we proceed to solve the

model numerically and calibrate it to match the quantitative features of ten-year renewable

insurance. The model generates realistic premium amounts and predicts a jump in the

premium of 12% when the cost shock switches between the low and high regions, in line with

what we observe on average in the data. Interestingly, we find that in the numerical exercise

the company does not find it optimal to allow for the premium to be fully responsive to

cost, even for the largest cost shocks. Instead, the company switches between a low rigid

premium and a high rigid premium. We then use the quantitative model to perform several

comparative statics exercises, highlighting the subtle differences between the consumer’s

hold-up problem and the traditional monopoly power.

We finally test the model predictions directly on our dataset of insurance premiums. First,

we find that between the 1990s and the 2000s, a period of time when the consumer’s hold-up

problem was likely weakened due to falling transaction costs and less adverse health shocks,

the frequency of premium changes increased and the average size of such adjustments fell,

bringing the pricing patterns of life insurance companies closer to those in typical consumer

goods markets. Second, we show that as the level-term of a renewable policy increases, which

weakens the hold-up problem due to a higher probability of policy termination before the

renewal date, premiums are also more likely to be adjusted and exhibit smaller jumps. Third,

we demonstrate that life insurance companies tend to respond to cost shocks predominantly

on the extensive margin, by increasing the hazard of a premium change, while no apparent

effect is detected on the intensive margin, by varying the size of a premium change. This

observation is in line with our model where pricing is based on a threshold rule. Fourth, we

3The upper rigidity result is similar to Melumad and Shibano (1991) or Alonso and Matouschek (2008).
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contrast life insurance premiums with prices of annuities, a related product whose buyers

are not held-up by the firm. We find that these prices adjust very frequently and by small

margins, providing a validation for our theory. Finally, we test several common alternative

models of price rigidity, such as time- and state-dependent sticky price models, and show

that their predictions are not consistent with the facts about life insurance premiums.

To summarize, our paper makes three contributions. On the empirical side, we provide

evidence for the frequency and size of price changes in the life insurance market, and propose

an explanation for this phenomenon. On the theoretical side, we build a model where the

optimal incentive compatible contract necessarily features price rigidity and a discrete jump.

Finally, we calibrate our commitment versus flexibility model to the life insurance market

and show that the predicted premium rigidity and jumps are quantitatively significant.

Our paper provides support for a crucial assumption in the literature on life insurance

contracts. In a seminal paper, Hendel and Lizzeri (2003) examine cross-sectional data on

life insurance premiums to show that when policyholders lack commitment and face health

reclassification risk, the optimal insurance contracts exhibit front-loading. However, the anal-

ysis of Hendel and Lizzeri (2003) relies on the assumption that insurers keep their promises

in that premiums for older cohorts are the future premiums. In essence, they use the data

from a single point in time (July 1997), making an implicit yet crucial assumption that

companies never deviate from the current non-guaranteed premiums.4 Several papers have

since extended this framework while retaining this implicit assumption. Daily et al. (2008)

analyzed the effect of secondary markets on front-loading. Fang and Kung (2018) consid-

ered the consequences of introducing health-contingent cash surrender values, which work

in a similar fashion to secondary markets. The front-loading of contracts motivated Fang

and Kung (2012) to ask whether lapsation is driven by income, health or bequest shocks.

Fang and Wu (2019) examined a setting where policyholders underestimate the probability

of lapsing due to the loss of bequest motives, and showed that secondary markets could im-

prove welfare. Alternatively, Gottlieb and Smetters (2016) show how front-loaded contracts

exploit policyholders who underestimate the probability of an adverse income shock.5

This paper also contributes to the empirical literature on life insurance. Koijen and Yogo

(2015) show that life insurers have recently been posting highly negative markups which can

be explained by financial frictions around the 2008 crisis. Our paper provides an alternative

theory for why many of these companies were reluctant to increase premiums in the presence

of large marginal cost. Ge (2019) shows that firms often adjust life insurance premiums in

4The authors support this by citing a July 1993 issue of Consumer Reports.
5Recent developments in the literature has focused on departures from the fully rational model, which

help explain many empirical facts. For example, Gottlieb (2018) finds that prospect theory helps explain
several puzzling behavior in the life insurance market.
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response to shocks to their divisions in other markets. Her story suggests that on their own,

life insurance premiums may be even more rigid than the analysis in our paper indicates.

Our model is also related to the literature on optimal delegation and self-control. These

papers analyze a principal-agent setting with no transfers in which a biased agent is better

informed. The principal has full commitment and chooses a set of actions that the agent can

take. This is similar to our paper since the firm commits to a subset of renewal premia that

it chooses from ex-post. Main references for the literature on delegation include Holmstrom

(1984), Melumad and Shibano (1991), Alonso and Matouschek (2008) and Amador and

Bagwell (2013). Similar frameworks have been applied to the commitment versus flexibility

trade-off for time-inconsistent agents (Amador et al., 2006). Our paper differs from the

literature in three distinct ways. First, in our model, the time inconsistency of the firm

is endogenous. The firm is able to decrease or even eliminate its intertemporal conflict,

but we show quantitatively that it does not under empirically relevant parameters. Second,

the optimal premium will always contain a discontinuous jump if the firm has discretion in

adjusting the premiums in the future. This is in contrast to previous literature which has

found conditions for interval delegation to be optimal. Third, our paper provides empirical

support for the trade-off between commitment and flexibility, which has not been quantified

or tested in this literature.

The remainder of the paper is structured as follows. Section 2 describes the construction

of our dataset and summarizes the main findings about price dynamics in the life insurance

market. Section 3 develops the theoretical model. In Section 4 we present the main qualita-

tive predictions of the model, calibrate it and perform a numerical analysis of the solution.

Section 5 empirically tests the main predictions of the model and addresses common alter-

native theories, and Section 6 concludes. The Appendices contain the proofs to theorems

and lemmas presented in the main text, a description of the numerical algorithm, and some

more nuanced discussions of our data.

2 Life Insurance Prices

In this section we describe the empirical setting of our paper. We start by explaining

how renewable level-term insurance works, introduce the dataset of historical premiums, and

discuss our findings on premium rigidity. We then show that marginal cost of life insurance

is volatile over time, which presents a puzzle in light of the rigid premiums. We conclude by

explaining how these findings motivate the construction of our model in Section 3.
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2.1 Contract Description

We focus our attention on the renewable level-term form of insurance. These contracts

require a down payment of yearly premium at the moment of signing and stay in force

for a pre-defined period, typically between one and twenty years. After the term expires,

customers face a premium schedule that increases with age and are allowed to renew the

policy without undergoing a medical reclassification. Table 1 presents the structure of an

one-year level-term insurance policy, commonly referred to as the Annual Renewable Term

(ART), for the first 10 policy years. In order to help the consumers undertake this long-

term commitment, the contract stipulates a projected path of premiums based on the rates

currently offered to older individuals in the same health category (the “Non-Guaranteed

Current” column). This schedule is not binding though, and the company may change it

at any point in the future. From a legal standpoint, the insurer only commits to an upper

bound on future premiums (the “Guaranteed Maximum” column), which vastly exceeds the

amounts that can be expected in a market equilibrium.

A natural question to ask is: how often do life insurance companies change their premium

schedules? The next section answers this question by constructing a dataset of historical

premiums to verify that companies indeed tend to honor these non-binding commitments.

This in turn supports the assumption in Hendel and Lizzeri (2003) that consumers know

the renewal contract upon signing.

Table 1: Structure of an Annual Renewable Term (ART) contract

Age
Guaranteed Maximum

Contract Premium
Non-Guaranteed Current

Contract Premium
30 270.00 270.00∗

31 550.00 280.00∗

32 565.00 285.00∗

33 582.50 297.50∗

34 605.00 302.50∗

35 632.50 325.00∗

36 670.00 330.00∗

37 712.50 332.50∗

38 757.50 350.00∗

39 820.00 360.00∗

Note: Sample contract offered by the Guardian Life Insurance Company of America (first

ten years). Face value = $250, 000. The asterisk in the last column is a standard feature and

indicates that premiums are non-guaranteed. Source: Compulife Software, December 2004.
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We measure the insurance companies’ adherence to these non-binding promises by col-

lecting premiums data for a fixed-age customer, as described in the next section.6 This

approach is reasonable because we generally observe in the data that companies tend to ad-

just entire age schedules, rather than individual premiums separately. So while there is some

measurement error involved, in Appendix A we show that it is likely to be small. Moving on

to the next section, we thus assume that the pricing patterns for a fixed profile are a good

approximation for how credible these non-binding projections are.

2.2 Data Construction

We construct a sample of life insurance premiums from Compulife Software, a commercial

quotation system used by insurance agents. The programs are released monthly, spanning

the period from May 1990 until October 2013. For each of the 282 months collected, we

recover the premiums for 1-, 5-, 10- and 20-year renewable term policies offered by different

companies.7 Even though Compulife is not a complete dataset, it covers most of the major

life insurers with an A.M. Best rating of at least A-. As the default customer characteristics

we use a 30-year-old male, non-smoker, with the “regular” health category, purchasing a

policy with face value of $250,000, in California. The choice of this particular state is by

Compulife’s recommendation, due to a relatively large population and wide representation

of insurance companies. The obtained sample consists of 55,829 observations on annual

premiums for 578 different policies offered by 234 insurance companies.8 Naturally, over the

course of 23 years these firms tend to disappear or merge, as well as discontinue their old

products and launch new ones. Some new policies may actually be launched as a deliberate

strategy to adjust premiums. We keep track of all such transformations whenever possible,

merging the premium series of products with seemingly identical characteristics. We also

eliminate the seemingly duplicate products offered by the same company, always keeping the

one with lower price. In the resulting sample, on average we observe each product for around

96 months (with a median of 84). The fact that different policies have variable duration of

lifespan in our data may be related to Compulife’s own policy for selecting the companies to

include in their listings.

6As explained in Section 2.2, we undertake this approach for practical reasons. Even though finding
the full schedules of premium renewals with respect to age for each company in each month is theoretically
possible, it would be prohibitively costly as we would not be able to automate the data collection.

7To extract the data from Compulife programs, we obtain screenshots with premium listings and apply
a dedicated optical character recognition (OCR) script to convert them into numeric data. This approach is
particularly useful for the pre-1997 programs which can only be run under MS-DOS operating system.

8Because of occasional incompleteness of Compulife data (especially in the 1990s), we impute the prices
whenever a discontinuity appears for up to at most 12 months. The imputed data constitutes roughly 1% of
the final sample size. We also drop all the products that are observed for less than 12 continuous months.
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2.3 Historical Premiums

Table 2 provides a statistical description of price rigidity in our dataset. Among 578

distinct insurance products that appear for at least 12 continuous months in the sample, only

369 change their premium ever. The probability of a change in any month is 2.59%, resulting

in an average premium duration of roughly 39 months. Table 2 includes a vast number of

companies that do not adjust prices even once. This may be a deliberate business strategy,

but it may also result from other, non-market-oriented factors.9 Hence, we also calculate the

statistics for the subsample of insurance policies that display at least one premium change.

Among those products the probability of a monthly price adjustment increases slightly, but

still remains low at 3.4%, resulting in an average duration of almost 28 months. It should

also be noted that products whose price adjusts in the dataset, also tend to stay around

for a longer time (114 months as opposed to an unconditional average of 96 months). This

observation suggests that certain insurance policies tend to be discontinued (and replaced

by new ones) rather than to deviate from the previously promised premium schedule.

We observe a total of 1432 instances of premium adjustment, consisting of 580 hikes and

852 drops. Whenever they occur, premium changes tend to be of large magnitude, over 10%

on average, although we also observe many small changes which yields a median change of

around 8%. Overall, the size distribution of price changes in the life insurance market looks

similar to the broad class of consumer products, as documented by Klenow and Kryvtsov

(2008).10 In particular, the distribution is leptokurtic (kurtosis is around 5.5) meaning that

more mass is concentrated around zero and in the tails relative to a normal distribution

(kurtosis = 3). However, it is unclear how this distribution compares to other financial

services, because very little evidence is available in the literature.

In order to visualize these findings, Figures 2(a) and 2(b) take a closer look at the

distribution of premium durations and adjustment sizes. The former depicts a standard

view of a distribution of durations with significant positive skewness and a long right tail

reaching up to 20 years! Each bin in the histogram represents 6 months, which means that

roughly 35% of premiums spell last up to 12 months, while the majority last longer than

a year. The second chart presents the distribution of relative sizes of price adjustments,

together with a fitted normal density plot. As it is clear from the summary statistics in

9For instance, an insurance company that has no interest in selling certain types of policies may still
offer them as a reference for tax authority.

10Naturally, life insurance is different from typical CPI basket goods in that it provides a nominal face
value rather than a real consumption value. Hence, inflation provides at best a second-order pressure on
premium changes (via the company’s strategic behavior), as we show in more detail in Appendix B. Hence,
all else constant it should not be surprising that life insurance premiums are rigid even in the presence of
positive inflation. On the other hand, as we demonstrate in Section 2.4, life insurance products exhibit
volatile cost shocks which is not necessarily the case for many goods included in the CPI basket.
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Table 2: Price rigidity in the sample

Total number of observations 55,829
Total number of insurance products observed 578
Total number of products that change price 369

Whole sample:
Probability of a monthly price change (in %) 2.59
Median probability of a price change (in %) 1.73
Average number of observations per product 96.59

Excluding the companies that never adjust:
Probability of a monthly price change (in %) 3.44
Median probability of a price change (in %) 3.23
Average number of observations per product 113.82

Total number of premium adjustments:
All premium changes 1432
Premium hikes only 580
Premium drops only 852

Distribution of adjustment size (in %): Average Median Kurtosis
All premium changes 10.74 7.94 5.56
Premium hikes only 10.58 7.41 5.99
Premium drops only 10.85 8.49 5.14

Table 2, premium drops occur more often and are of slightly larger magnitude. The size of

adjustments reach as much as 50% in both directions. The distribution also exhibits fatter

tails and more concentration around zero than the normal one.
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Figure 2: Distribution of premium durations and adjustment sizes
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In a final piece of data analysis, we explore the distribution in insurance premiums in

our sample by examining the relative price dispersion. Figure 3 sketches a histogram of all

premiums relative to the current monthly average (for a given renewable term), which is

normalized to 100. The striking feature of the graph is the long right tail which implies that

some life insurance policies are offered at a premium 2.5 times as high as the average in that

category, at a given point in time. More generally, even though life insurance may seem to be

a rather homogeneous financial product, we observe a significant dispersion across policies.

This may be attributed to varying terms and conditions of different policies (we aggregate all

products in the category “renewable level-term” by term duration), as well as the imperfectly

competitive environment in which life insurance companies operate. These imperfections

may include search frictions (Hortacsu and Syverson, 2004), information frictions or product

differentiation (e.g. with respect to company reputation or brand loyalty).

Figure 3: Distribution of insurance premiums, relative to the cross-sectional average

2.4 Marginal Cost Estimation

The rigidity of premiums over time may not appear puzzling unless we have an under-

standing of the dynamics of the underlying marginal cost of life insurance. In this section we

show how this cost can be constructed using publicly available data, specifically the interest

and mortality rates. We approximate marginal cost by calculating the actuarially fair value

of a renewable level-term policy. A precise description of the method we use is provided in
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Appendix C. Intuitively, actuarially fair value can be thought of as a price that satisfies a

zero-profit condition faced by the insurance company. Figure 4 presents a stylized illustra-

tion of an insurer’s cash flow structure. A k-year renewable level-term insurance policy is

effective from the moment the first premium is paid, period t, and stays in force for as long

as the customer keeps renewing it. Premiums are increasing with age every k years and the

benefit is paid out by the company at the moment of death of the insured, denoted t+n. In

order to break-even, the firm must charge a stream of premiums {Pt} such that the present

expected value of cash flows between the company and the policyholder are equalized, i.e.∑N
s=0

Et[Pt+s]
Rst

=
∑N

s=0
Et[Bt+s]

Rst
.

t

Pt

t+ 1

Et[Pt+1]

t+ 2

Et[Pt+2]

t+ 3

Et[Pt+3]

t+ n

Et[Bt+n]

Death BenefitFlow of premiums

Figure 4: Stylized illustration of a life insurer’s expected cash flows

Figure 5 plots the evolution of the actuarially fair value for an ART policy, from May

1990 until October 2013.11 It ranges from as low as $196 (in November 1994) up to $291

(in December 2008), with mean of $216 and a standard deviation of $13.6. Notice the

considerable fluctuations over time that result from high frequency movements in the interest

rate and low frequency movements in mortality rates. A slight upward trend can be observed

throughout the sample, which is a consequence of two opposing long-term empirical patterns

- a decline in interest rates, and a decline in mortality of the insured. In particular, the

actuarially fair value exhibits a sharp spike in December 2008 when interest rates plunged

to record low, and a similarly high level in the post-2011 period of the zero lower bound.

2.5 From Data to Model

We have documented that life insurance premiums tend to be rigid over time and exhibit

infrequent large adjustments, while the marginal cost of issuing policies is volatile. Two

important aspects of the data need to be emphasized in order to motivate the construction

of our model in the next section.

First, while our data tracks the premiums over time for a fixed-age consumer, its rigidity

also implies that firms tend to maintain their entire age profiles of premiums stable over

11We assume here that the customer does not voluntarily lapse before turning 60 years of age.
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Figure 5: Actuarially fair value for an Annual Renewable Term policy over time

time. This is because life insurance companies generally tend to adjust entire premium

profiles, rather than individual premiums for different ages (in Appendix A we discuss the

potential scope for measurement error involved in this assumption). For example, denote

the life insurance premium as function P (t, a, x), where t is time, a is age, and x is the initial

characteristics of a customer which we take as given. If premium P (t, 31, x) is constant for

all t, then a customer renewing at age 31 in 2011 pays the same premium as he anticipated

at age 30 in 2010. In other words, the company keeps its non-binding promises towards the

renewing customers. Our model, which follows a generation of aging policyholders who face

renewal decisions in the future, will offer an explanation to why an insurance company has

incentive to honor its non-binding commitment towards them.

A natural concern may be if the renewing customers always pay the same premium as the

incoming ones. Following the terminology of Hendel and Lizzeri (2003) we can distinguish

Aggregate ARTs, where premiums indeed vary in age but not across cohorts, as well as Select

and Ultimate ARTs where customers of the same age may pay different premiums depending

on when they had their last medical exam. In the latter policy type, older customers who do

not get a new medical checkup will pay a higher premium than newcomers of the same age.

While we do not have an easy way to extract the S&U renewal premiums from our dataset, it

can be argued that the holders of such policies assign positive probability to getting a medical

exam in the future and qualifying for the lowest rate (by revealed preference). Hence, the

renewing customers at least have an option to pay the same premiums as the newcomers,

and the company must take this into account in the design of its pricing strategies.
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A second remark concerns the potential effects of inflation on our price dynamics. The

premium amounts we present here are nominal, while our model in the following section is

formulated in real terms. As we explain in Appendix B, this is without loss of generality as

long as inflation is constant (which is approximately true for the analyzed period of time in

the United States). This is because while inflation erodes the value of premiums over time,

it does so to the expected death benefit as well. Thus, nominally rigid premiums for a policy

with fixed nominal face value translate into rigid real premiums per dollar of real face value.

3 The Model

In this section, we present a dynamic pricing model of renewable life insurance. After set-

ting up the model, we characterize consumer demand, define incentive compatible premiums

and the firm’s optimization problem.

3.1 The Setup

3.1.1 Consumers and Preferences

We consider an economy consisting of overlapping generations of three-period-lived con-

sumers.12 The economy operates in discrete time, t = 0, 1, 2, . . . . At each date t, there is a

continuum of consumers with demand for insurance, where a unit of them are young and

the rest are old. We refer to the young born in t as consumers of generation t. For each

generation t, the young decide whether to purchase insurance at t and whether to renew,

lapse or search for a new policy when old at t+ 1. The life insurance market does not exist

for generation t consumers at t+ 2, because they are dead in t+ 3 and beyond.

We assume that all young consumers are of the same health category, and face a

population-average mortality risk my ∈ (0, 1). We denote the population-average mortal-

ity risk of the old as mo ∈ (0, 1).

Consumers are heterogeneous in their private reservation price for owning a policy when

old, which is denoted as ro. The reservation price is assumed to be the same for all consumers

when young: ry = r.13 Private valuation ro is drawn from a continuous and differentiable

distribution h (ro) and c.d.f. H (ro) with support [R,R]. We assume R > R ≥ 0 and R is

sufficiently large so there is positive demand for insurance coverage when old even if the firm

is facing large cost shocks. We also assume that the hazard rate is non-decreasing for H.

12The overlapping generations structure helps us endogenize the cost of deviating from the optimal pre-
mium function, which is explored in Appendix F.

13The main results of the paper are unchanged if ry is heterogeneous.
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Only the distribution of valuations is common knowledge, so life insurance companies are

unable to write individual-specific contracts. Consumers also have discount factor δ ∈ (0, 1) .

We normalize the value of not owning life insurance to 0.14

3.1.2 Life Insurance Company and Contract

We model the pricing decision of a single life insurance company that faces exogenous

competition in the form of stochastic outside options available to consumers. The mar-

ket structure can be interpreted as monopolistic competition where the company faces

downward-sloping demand due to the imperfect substitutability of insurance policies.15

The company faces a stochastic marginal cost shock co for insuring the old, which is

randomly drawn from a continuous and differentiable c.d.f. G and p.d.f. g with support

[c, c] .16 The marginal cost for each date cj,t, where j ∈ {y, o} depends on the aggregate

mortality rate and the interest rate. Formally, this relationship can be expressed as

cj,t =
mj,t

1 + it
,

where it is the one-period risk-free interest rate. We do not take a stand on the distributions

of mj,t and it, and instead we only model explicitly the univariate distribution of cj,t. Also,

since my,t is small, we assume that cy,t = cy and my,t = my for all t.17

A key assumption this paper makes is that the cost is privately observed by the insurance

company. We find this to be a natural assumption due to the complicated nature of the

mapping from interest and mortality rates to the marginal cost of renewable life insurance

contracts. This is evidenced by the complex formula for estimating the marginal cost of

renewable policies detailed in Appendix C.

We express the set of possible renewal premiums for generation t old consumers as

{Po,t+1(co,t+1)} and the realization of the premium at cost co,t+1 as Po,t+1(co,t+1). This departs

from the assumption in Hendel and Lizzeri (2003) and many papers that followed, where

policyholders know the renewal premiums as a function of future health upon signing. In

this paper, the renewal premium is a function of cost: Po,t+1 : [c, c]→ R+. However, we refer

to it as a set, because cost is not observed by the policyholders and from their perspective

the insurers are choosing a premium from a set of admissible renewal premiums (the range

14It is important to note that since consumers have a positive valuation for having coverage, they are not
risk neutral.

15This is due to the search and information frictions, as described by Hortacsu and Syverson (2004) and
confirmed by the premium dispersion in our dataset. Section 3.1.3 introduces this assumption in more detail.

16The insured pool is large, so G does not vary with the size of the insured pool on the margin.
17The cost to insure the young is relatively stable in the data, for details see Figure 8 in Section 4.1.
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of function Po,t+1). The renewable life insurance contract is defined as the premium schedule

{Py,t, {Po,t+1(co,t+1)}}∞t=0 , where Py,t is the premium when young.

3.1.3 Renewability, Transaction Cost and Search Frictions

There are two types of policies offered in the market: renewable and non-renewable, each

with the same face value which we take as given. The young may purchase one of these

products, or neither of them. If they choose a renewable policy, then they have an option

to renew when old regardless of the possible changes in their health status. On the other

hand, a non-renewable policy expires after one period and consumers may purchase another

non-renewable insurance bearing the risk of being reclassified to a different health group. In

both cases, consumers can lapse after the first period (i.e. drop coverage altogether).18

Prior to acquiring a new policy, consumers need to invest a transaction cost µ > 0. It cap-

tures the cost of researching the market for available products, attending medical checkups,

meeting with sales agents and answering detailed questionnaires, as well as being exposed to

the contestability period.19 If young consumers decide to purchase a non-renewable policy,

then they must pay the transaction cost again to receive new coverage when old. On the

other hand, this cost is avoided if consumers decide to extend their renewable policy.

In addition to paying µ again, when old consumers choose to search for a new non-

renewable policy, there are two additional sources of risk associated with this action. First,

consumers face a possibility of health deterioration which can result in much higher premium

when purchasing non-renewable insurance.20 The second source of risk comes from the search

and information imperfections, resulting from ample dispersion of the premiums offered in

the market. This means that a consumer who decides to search may end up finding a worse

alternative, even if the health status is unchanged. To model these risks, the price of non-

renewable insurance for the generation t old consumers is PNR
o,t+1 = εco,t+1, where ε is the

uncertainty added to the marginal cost and it follows a right-skewed distribution with c.d.f.

Z and p.d.f. z and support (0,∞). As a result, the decision of an old consumers depends on

the relative size of the transaction cost, their private valuation of insurance, as well as the

risk of searching for a new policy. Since cy is constant, we assume that the non-renewable

premiums for the generation t young consumers is constant across time, PNR
y,t = PNR

y .

18We do not consider the effects of the secondary market, because our quantitative exercise will focus on
30 and 40 year olds and the secondary market usually targets policyholders who have less than 15 years in
life expectancy. See Daily et al. (2008); Gottlieb and Smetters (2016); Fang and Kung (2018); Fang and Wu
(2019) for in-depth analysis on long-term contract design with secondary markets.

19We refer the reader to the quantitative part in Section 4.1.1 for more details on the transaction cost.
20We will abstract from selection issues and assume that the non-renewable premium is independent of

the policyholder’s valuation.
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Most of the literature has focused on the optimal design of long-term contracts with risk-

averse agents who face reclassification risk (Hendel and Lizzeri, 2003; Daily et al., 2008; Fang

and Kung, 2018). We abstract from this and assume that old consumers are risk neutral

with respect to the risk of searching for a new policy ε. This is because if consumers are

risk averse to reclassification risk, then our theory is strengthened since consumers would be

more deterred from searching for new policies and the hold-up problem worsens.

3.1.4 Timing

At each t, the company announces Py,t. Young consumers proceed to make their invest-

ment and purchasing decision. Prior to t + 1, the company announces {Po,t+1 (co,t+1)} . At

t + 1, co,t+1 is realized and the company sets Po,t+1, which all surviving consumers observe.

Then, the existing policyholders decide whether to renew, lapse or search for a new offer.21

Figure 6 summarizes the timing for generation t.

Py,t
announced

Invest µ

{Po,t+1 (co,t+1)}
announced

Death
shock

co,t+1

realized
Po,t+1

finalized

Renew,
lapse

or search

Generation t Young Generation t Old

Figure 6: Timing of events

Even though {Po,t+1 (co,t+1)} is not announced at the beginning of t, it is common knowl-

edge that it is selected optimally to balance commitment and discretion. In other words,

consumers correctly anticipate {Po,t+1 (co,t+1)} upon signing. More details will be provided

in the following sections.

3.2 Characterizing the Demand

For the analysis in this section, we focus on consumers of generation t. Let Bren (ro; t)

denote the expected utility of a generation t renewable policyholder with private valuation

ro, and Bnon (ro; t) denote the expected utility of individuals with the same profile who did

21We do not model new consumers signing with the firm when they are old. There are two reasons for
this. First, if newcomers invest µ before the realization of co, then the hold-up problem persists, which is a
likely concern since co is volatile as seen in Figure 8. Second, our quantitative exercise will focus on 30-year
olds renewing at 40. It is reasonable for the demand of renewing 40-year old policyholders to be larger
than the demand of 40-year old new consumers. Therefore, the incentive to exploit held-up policyholders
dominates the incentive to lower premiums and attract new consumers.

17



not purchase a renewable policy. For any {Po,t+1 (co,t+1)} , a generation t consumer with

valuation ro purchases renewable life insurance in t if

(r − Py,t − µ) + (1−my) δB
ren (ro; t) ≥

max
{

0, r − PNR
y − µ

}
+ (1−my) δB

non (ro; t) , (1)

where Bren (ro; t) is∫ c

c

max

{
0, ro − Po,t+1 (co,t+1) ,

∫
ε

max
{

0, ro − Po,t+1 (co,t+1) , ro − PNR
o,t+1

}
dZ (ε)− µ

}
dG (co,t+1)

and

Bnon (ro; t) =

∫ c

c

max

{
0,

∫
ε

max
{

0, ro − PNR
o,t+1

}
dZ (ε)− µ

}
dG (co,t+1) .

There are three benefits to purchasing a renewable policy, all reflected in the left-hand side

of (1). First, renewable policyholders do not need to incur a transaction cost of µ if they

renew. Second, renewable life insurance contracts are similar to options. Due to one-sided

commitment, policyholders are not obligated to renew if premiums are high. They could

instead lapse or search for a new policy. Finally, policyholders can always renew if they are

unable to find better deals after searching. The right-hand side of (1) captures the expected

utility of not purchasing a renewable. In this case, individuals can choose to either not have

coverage or be covered by a non-renewable when young. When they are old, they have the

same options as renewable policyholders except for the option of renewing. We will make

the following assumption, so all consumers would have coverage when young.22

Assumption 1 r ≥ PNR
y + µ.

By Assumption 1, a generation t young consumer purchases renewable if and only if

Bren (ro; t)−Bnon (ro; t) ≥
Py,t − PNR

y

(1−my) δ
. (2)

Inequality (2) states that consumers purchase renewable insurance if and only if the addi-

tional expected benefit in owning a renewable when old is greater than the premium difference

of the two types of insurance when young. The next lemma helps characterize the demand.

22This simplifies but does not change our analysis, because as long as µ is sufficiently large the hold-up
problem persists.
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Lemma 1 For any t, Bren (ro; t) and Bnon (ro; t) have the following properties: (i.)

Bren (ro; t) ≥ Bnon (ro; t) ≥ 0 for all ro, (ii.) Bren (ro; t) and Bnon (ro; t) are weakly increasing

in ro, (iii.) there exists sufficiently large r̃o such that Bren (ro; t) and Bnon (ro; t) are strictly

increasing in ro for any ro ≥ r̃o. Also, if there exists r̂o such that Bren (r̂o; t) > Bnon (r̂o; t) ,

then Bren (ro; t)−Bnon (ro; t) is strictly increasing in ro ≥ r̂o.

Lemma 1 states that if there are consumers who prefer renewables, then all consumers

with higher ro would also prefer renewables. If Py,t ≤ PNR
y , then (2) is automatically satisfied.

In particular, the demand for renewables is independent of ro, because consumers purchase

renewables as long as r ≥ Py,t+µ regardless of ro. As a result, not all renewable policyholders

expect to renew next period. Hence, there is no hold-up problem if Py,t ≤ PNR
y , because the

renewal demand is elastic with respect to premium changes.

The more interesting case is when Py,t > PNR
y , because all renewable policyholders expect

to renew. This means only consumers with sufficiently large ro would purchase renewables

(by Lemma 1) and there is a lower bound in ro for its pool of policyholders (by (2)). The firm

would then be tempted to increase Po,t+1 to this lower bound. This is because the renewal

demand in t + 1 is inelastic with respect to premium changes below this lower bound. The

firm encounters a hold-up problem when Py,t > PNR
y . We will show numerically that despite

this, the firm will set Py,t > PNR
y at the optimum.

More formally, let r̄o (Py,t, {Po,t+1 (co,t+1)}) be defined as the threshold valuation such

that (2) holds with equality. Notice that this threshold is increasing with respect to both

premiums. To streamline notation, we write r̄o,t with the implicit understanding that it

depends on the premium schedule. Lemma 1 shows that all consumers with ro ≥ r̄o,t purchase

the renewable insurance. The demand function of generation t young consumers is

Dy,t (Py,t, {Po,t+1 (co,t+1)}) = 1−H (r̄o,t) . (3)

The demand for renewing is

Do,t+1 (Py,t, Po,t+1 (co,t+1)) = (1−my) [1−H (max {r̄o,t, Po,t+1 (co,t+1)})] . (4)

The demand is weakly decreasing in premiums. Most importantly, renewal demand becomes

perfectly inelastic for any Po,t+1 (co,t+1) ≤ r̄o,t.

3.3 Incentive Compatibility

Before a young consumer buys a renewable policy, the renewal demand is downward

sloping for all premiums. We refer to this pre-investment demand as the ex-ante demand
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and the demand following the signing of the contract as the ex-post demand. The ex-ante and

ex-post demands are different which creates a time inconsistency problem for the insurance

company. In particular, policyholders reveal their valuation is at least as large as r̄o,t by

purchasing. After consumers sign, the insurance company has an incentive to increase next

period premiums up to r̄o,t, because the renewal demand is inelastic for prices below it.

The disparity between the ex-ante and the ex-post demand is the reason why the insurance

company needs commitment. However, volatile cost shocks create an incentive to adjust

premiums accordingly. To resolve this tension, the insurance company disciplines its pricing

behavior by making sure {Po,t+1 (co,t+1)} is incentive compatible for all generations.

For generation t old policyholders, we can define the following cost regions for co,t+1 :

Co,t+1 = {co,t+1 | Po,t+1 (co,t+1) ≥ r̄o,t} ,

Co,t+1 = {co,t+1 | Po,t+1 (co,t+1) < r̄o,t} .

It is worth pointing out that the dissonance between ex-ante and ex-post demands occurs

for co,t+1 ∈ Co,t+1, while both demands are in agreement for co,t+1 ∈ Co,t+1.
23

We require {Po,t+1 (co,t+1)} to be incentive compatible: for all t and all co,t+1, c
′
o,t+1 ∈ [c, c] ,

[Po,t+1 (co,t+1)− co,t+1]Do,t+1 (Py,t, Po,t+1 (co,t+1)) ≥[
Po,t+1

(
c′o,t+1

)
− co,t+1

]
Do,t+1

(
Py,t, Po,t+1

(
c′o,t+1

))
. (5)

Constraint (5) serves to reduce the possible set of renewal premiums {Po,t+1 (co,t+1)} the

company can choose from after realizing the cost. This is the same concept as delegation

sets in Holmstrom (1984). The set is announced prior to t+1. Though the set of premiums is

not legally binding, the firm has reputational concerns stemming from the fact that deviating

from this set would instigate retaliation from future generations which lowers its expected

discounted profit. The reputation mechanism is explored in detail in Appendix F. For the

remainder of the paper, we analyze the environment where a sufficiently large exogenous

cost is imposed on the insurer for deviating from {Po,t+1 (co,t+1)} for any t+ 1.

In addition to incentive compatibility, the company needs to refrain from exploiting the

consumers. The additional disciplinary measure requires the life insurance company to take

r̄o,t as given and choose {Po,t+1 (co,t+1)} such that (2) is satisfied for all ro ≥ r̄o,t. In essence,

the company needs to deliver a minimal expected utility to the policyholders that corresponds

to what the consumers expected when they were young.

23The analysis does not change if Co,t+1 = {co,t+1 | Po,t+1 (co,t+1) > r̄o,t} and Co,t+1 =
{co,t+1 | Po,t+1 (co,t+1) ≤ r̄o,t} .
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3.4 The Optimization Problem

From our model’s setup, we can see that the insurance company maximizes the expected

present value of profits by optimizing the profit for each generation, and that the optimal

premium schedule is stationary. Hence, the company can maximize total expected present-

valued profit by choosing the same premium schedule (Py, {Po (co,t+1)}) for each generation

t. This is because the environment is the same across generations, so the firm’s problem does

not change for each generation. The analysis will thus focus on the company maximizing its

profit from a single generation. To simplify notation, we drop the date subscripts.

We consider a sequentially optimal pricing rule. The company chooses a premium function

in each period that maximizes the present value of discounted profits taking into account

that it will do the same in the future. Moreover, consumers purchase insurance taking the

future behavior of the company into consideration. The endogeneity of consumer behavior

differs from the concept of sequential optimality in Halac and Yared (2014).

Definition 1 The sequentially optimal pricing rule is a contract {Py, {Po (co)}} such that

{Po (co)} solves the static optimization problem:

Πo(Py) ≡ max
{Po(co)}

∫ c

c

(Po (co)− co)Do (Py, Po (co)) dG(co), (6)

subject to (2) and (5) for any given Py and r̄o. The premium Py solves the optimization

problem for a given cy by taking the optimal response {Po (co)} as given:

Π = max
Py

(Py − cy)Dy (Py, {Po (co)}) +
1

1 + i
Πo (Py) . (7)

Given Py and the optimal response {Po (co)} , consumers sign-up for renewable life insurance

if (2) is satisfied.

We choose to focus on the sequentially optimal pricing rule instead of the ex-ante optimal

pricing rule, where the company chooses the current and all future premium schedules at

the beginning of the generation, because companies may choose to renegotiate or announce

possible changes to the premiums before the following period. For example, the premium

schedule in Table 1 demonstrates how, in practice, life insurance companies do not tie them-

selves down to a fixed pricing rule.

The objective (6) is similar to finding a balance between discretion versus rules in delega-

tion problems. The main difference is in how this trade-off is being created. The literature

on optimal delegation and self-control has focused on situations where the disagreement be-

tween principal and agent or present and future-selves is exogenous. In (7), the insurance
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company can completely eliminate its time inconsistency by setting Py ≤ PNR
y . However, we

will show numerically that the trade-off in life insurance contracts is endogenously generated

by the company optimally setting Py > PNR
y . 24

4 The Optimal Premium Schedule

In this section, we characterize the incentive compatible set of premiums {Po (co)} and

obtain its general properties. Note that all of the results here are for Py > PNR
y . Later in

this section, we will calibrate the model and solve for Py. The following lemma shows that

the incentive compatible {Po (co)} is rigid for low cost shocks.

Lemma 2 An incentive compatible {Po (co)} satisfies the following:

i. For co ∈ Co, Po (co) does not vary with co and Co has strictly positive measure.

ii. Po (co) is weakly increasing, and there exists cT such that Co =
[
c, cT

)
and Co =

[
cT , c

]
.

Lemma 2 shows that incentive compatible renewal premiums do not respond to small

cost shocks: co ∈ Co =
[
c, cT

)
. The rigidity is caused by the inelastic renewal demand prices

below r̄o. However, the firm knows the minimum valuation r̄o of the insured pool from (2)

and is tempted to increase premiums up to it. As a result, any variation in premiums below

r̄o would not be credible, because the firm would always announce the highest premium

below r̄o.

Denote P̄o = Po (co) and the demand D̄o = Do (Py, Po (co)) for all co ∈ Co. Lemma 2 allows

us to rewrite the downward deviating incentive compatibility constraints into the following

single constraint: ∀co ∈ Co,∀c′o ∈ Co, [Po (co)− co]Do (Py, Po (co)) ≥
(
P̄o − c′o

)
D̄o. Similarly,

we can also rewrite the upward deviating incentive compatibility constraints. In particular,

we have the following binding incentive compatibility constraint at cT :

(
P̄o − cT

)
D̄o =

(
Po
(
cT
)
− cT

) [
1−H

(
Po
(
cT
))]

. (8)

If (8) is non-binding, then it is not incentive compatible for co within a neighborhood of cT .

The next lemma characterizes the incentive compatible premium for Co, which shows

that premiums are also rigid for intermediate cost shocks. Let P ∗o (co) denote the optimal

24An additional reason for Py > PNR
y not modeled in this paper is the fact that firms may attempt to

screen consumers with demand in the next period from those without. To see this, suppose some consumers
have ro = 0 while some have ro > 0. The firm separates the two types by issuing renewable and non-renewable
contracts. Consumers with ro = 0 prefer the non-renewables r−PNR

y − µ ≥ r−Py − µ+ δη, where η > 0 is

the expected benefit from selling the insurance in the secondary market. This implies Py − PNR
y ≥ δη.
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frictionless premium at co. We refer to it as the frictionless premium because the incentive

compatibility constraints are not binding.

Lemma 3 An incentive compatible {Po (co)} satisfies the following:

i. For co ∈ Co, if Po (co) is strictly increasing and continuous on an open interval (c′o, c
′′
o) ,

then Po (co) = P ∗o (co) on (c′o, c
′′
o) .

ii. There is a discrete jump in premiums at cT : Po
(
cT
)
> r̄o > P̄o. Furthermore, there

exists cM > cT such that Po (co) does not vary with co ∈
[
cT ,min

{
cM , c

})
.

Lemma 3 shows that the company charges the optimal frictionless price if it has full

flexibility, but it is not incentive compatible for the firm to have full flexibility for all costs

in Co. Most importantly, Lemma 3 shows that {Po (co)} has a jump discontinuity at cT . In

essence, the incentive compatible premium has to have a discrete jump if the company has

flexibility to adjust premiums. What is interesting is the size of this jump. The jump at cT

is such that Po
(
cT
)
> r̄o, because the company has to induce enough lapsation to convince

the consumers that an upward adjustment in premiums is due to adverse cost shocks and not

an attempt to take advantage of the hold-up problem. The company can credibly respond

to cost shocks only when it causes a simultaneous decrease in the demand for insurance.

The existence of a discontinuous jump is in contrast to the optimal delegation literature,

where general conditions can be found to rule it out (Amador and Bagwell, 2013). The

difference is the endogeneity of r̄o. To see why, suppose the admissible premium is within the

range of [A,B] , then only consumers with ro > B would purchase renewables.25 Therefore,

r̄o > B and the company would always charge a price of B. This implies that incentive

compatible adjustments to premiums have to be significant and contain jumps.

Lemma 3 also states that incentive compatible premiums are rigid for co ∈[
cT ,min

{
cM , c

})
. This is because if the firm chooses P ∗o (co) for all co ∈

[
cT , c

]
, then the

firm would deviate to the frictionless premium for cost shocks slightly below cT . As a result,

the firm chooses a rigid premium, which is the only other incentive compatible option for

costs within
[
cT ,min

{
cM , c

})
.26 This implies the firm is able to charge frictionless premi-

ums only for sufficiently large shocks, because the corresponding frictionless premiums are

large enough to cause a significant decrease in demand through lapsation to retain incentive

compatibility. Let ¯̄Po denote the rigid premium when co ∈
[
cT ,min

{
cM , c

})
.

25Consumers with ro = A would purchase non-renewables, because expected utility for buying renewables
would be zero. Also, consumers with ro ∈ (A,B] would also not purchase, because the company would set
Po = r̄o if they are part of the insured pool making [A,B] not incentive compatible.

26This result is similar to the characterization of incentive compatible delegation rules with discontinuities
in Melumad and Shibano (1991) and Alonso and Matouschek (2008).
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Theorem 1 The incentive compatible premium has the following feature:

Po (co) =


P̄o c ≤ co < cT

¯̄Po cT ≤ co < min
{
cM , c

}
P ∗o (co) min

{
cM , c

}
≤ co ≤ c

with P̄o < r̄o <
¯̄Po = P ∗o

(
cM
)

and

(
P̄o − cT

)
[1−H (r̄o)] =

(
¯̄Po − cT

) [
1−H

(
¯̄Po

)]
. (9)

Theorem 1 shows that the incentive compatible set of renewal premiums {Po (co)} is{
P̄o,
[

¯̄Po, P
∗
o (c̄)

]}
, so the insurer does not announce premiums within

(
P̄o,

¯̄Po

)
. Figure 7

illustrates an optimal incentive compatible pricing rule. By Theorem 1, the life insurance

company solves for the premiums
{
P̄o,

¯̄Po, Py

}
and the cost thresholds

{
cT , cM

}
subject to

(2) and (9). Since the premiums affect r̄o and vice versa, the optimization problem is complex

and it is difficult to obtain tractable analytical solutions. In the next subsection, we solve

the model numerically.

Po

co

r̄o

P̄o

¯̄Po

cT cM

P ∗o (co)

Figure 7: Incentive compatible premium profile
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4.1 Numerical Analysis

4.1.1 Calibration

The model does not have an explicit closed-form solution.27 We proceed by using the data

and outside knowledge to assume reasonable parameter values and functional forms, and solve

for an equilibrium numerically. Table 3 presents a summary of our calibration. Because we

only focus on two periods, we assume that each period is equivalent to ten years and calibrate

the remaining parameters to the features of ten-year level-term renewable insurance. While

most of the model variables do not have a direct counterpart in the data, we attempt to

make the calibration realistic while also keeping the numerical solution feasible. In what

follows we describe our assumptions on the functional forms and parameter values.

Table 3: Parameter values in the model

Symbol Meaning Value

µ Transaction cost 970
cy Cost shock for insuring young 1090
PNR
y Price of non-renewable insurance 1040
my Mortality rate 0.007
i Annual interest rate 0.04
δ Discount factor 0.68

Cost shock distribution: uniform

c Lower bound 2700
c Upper bound 3500

Valuation distribution: Generalized Pareto

γ Scale parameter 700
κ Shape parameter 0
θ Threshold parameter 3595

Search and health shock distribution: lognormal

ε̄ Mean -0.0104
σε Standard deviation 0.14425

The marginal cost to insure a consumer is computed directly from the data. Cost of

covering the young cy corresponds to the average expected death benefit payout for a 30-

27This is mainly because r̄o affects the degree of rigidity and the size of the discrete jump, but it is also
endogenously determined by the premiums.
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year old male over the period of ten years.28 This cost ranges from $914 to $1244 in the

data, with a mean of $1090. Because of the relatively small volatility of this variable evident

in Figure 8 below, we simplify the model by taking cy as given and setting it equal to the

average. The cost of covering the old co is associated with the expected death benefit payout

for a 40-year old male who is renewing a policy purchased at age 30. This involves using

different (higher) mortality rates than for new 40-year-old customers who have just passed a

medical exam. This cost ranges from $2717 to $3430 in the data, with an average of $3064.

The distribution of this shock is unlikely to be normal due to the presence of fat tails. This

is confirmed by the Jarque-Bera test which returns a p-value of 0.075, providing grounds to

reject the null hypothesis of normality. In order to make computation of some parts of the

equilibrium analytically feasible, we assume that the distribution is uniform with bounds

[2700, 3500]. Figure 8 illustrates our measure of the cost shocks over time.29

Figure 8: Cost shocks in the data

The distribution of consumers’ private valuations does not have a clear counterpart in

the data. To simplify the algorithm, we assume it to be a Generalized Pareto distribution,

with the shape parameter of 0. This assumption makes it essentially a “shifted” exponential

distribution, which features a constant inverse hazard rate 1−H(·)
h(·) = γ, enabling us to obtain

closed-form solutions for prices P̄o and ¯̄Po (details of the solution method are provided in

28As discussed in Appendix C, we abstract here from the issue of voluntary lapsation and assume that
the consumer will continue to pay the premium for the entire period.

29In reference to the series presented in Figure 5, here we consider a fixed 10-year insurance term only
and do not convert the cost shocks to annual values.
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Appendix E). The scale parameter γ is selected to match the existing evidence on elasticity

of demand for term life insurance. Specifically, Pauly et al. (2003) use the Compulife data

from January 1997 and find the price elasticity of demand to be 0.475 for a median company.

Given our distributional assumption, and the median yearly premium for an ART in January

1997 of $335, we set the value of the scale parameter γ to be 700. The threshold parameter

θ is then calibrated to match the fraction of non-renewable policies among all term policies

underwritten, equal to 11% as reported by LIMRA (1994).

The distribution of the health and search shock ε is assumed to be lognormal, which con-

veniently allows us to calculate the integrals inside of Bren(·) and Bnon(·) of (1) analytically,

rather than numerically. The right skewness of the distribution captures the idea that a con-

sumer who decides to search for a new policy when old may find a better deal in the market,

but is also at a risk of prohibitive premium increases should his health have deteriorated

or lifestyle habits changed.30 We do not have compelling evidence on the probabilities of

getting a table rating. For this reason, we set the parameters of the lognormal distribution

to match two moments: i.) E(ε) = 1, and ii.) V ar(ε) = 0.1452 where 0.145 is the average

coefficient of variation across time for all the prices of 10-year renewable term policies in our

sample. In other words, we calibrate the variance of search shocks to match the observed

dispersion of premiums in the data, and allow the right-skewness of the lognormal distri-

bution to determine the likelihood of adverse health shocks. Notice that by calibrating the

distribution of ε to the empirical price dispersion, we introduce to the model a reduced-form

effect of market competition (Section 5.5.3 provides more evidence on this).

The transaction (or switching) cost µ is the key parameter in our model, and at the same

time probably the most controversial one. It comprises the opportunity cost of researching

the products on the market (and not working or using leisure), the opportunity and mon-

etary cost of attending the medical examination, the opportunity cost of meeting with an

insurance agent and filling out the paperwork (in particular given that our sample starts in

1990s). Additional factors contributing to the dollar value of µ consist of the cognitive cost

of shopping for an insurance policy and undertaking a long-term commitment (for example,

overcoming cognitive dissonance), as well as getting exposure to the contestability period, i.e.

a possibility that the insurance company may reject a benefit claim if death occurs in a short

period after signing the contract. Direct estimation of switching costs in the life insurance

market is beyond the scope of this paper. Instead, we survey the literature for similar recent

estimates across other markets which also feature long-term contracts. Table 4 summarizes

30In practice, below the regular health category life insurance companies use the so-called table ratings to
determine a premium hike. The consumer’s health and lifestyle is evaluated with respect to several categories
and each one may raise the standard rate by 25%.
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our investigation. The switching cost estimates vary significantly for different studies and

markets, ranging between $40 and $700 for markets such as auto insurance, wireless or cable

TV, as well as between $1200 and $5000 for health and retirement plans. In order not to

rely on possibly irrelevant outliers, we adopt a median value between these two groups of

$970, and we analyze the importance of this parameter by performing comparative statics

exercises in the following section.

Table 4: Switching cost estimates in the related literature

Reference Market Dollar value

Honka (2014) Auto insurance 45-190
Cullen and Shcherbakov (2010) Wireless 255
Shcherbakov (2016) Television and satellite 227-395
Weiergräber (2014) Wireless 337-672
Illanes (2016) Pension plans 1285
Miller and Yeo (2018) Medicare 1700-1930
Handel (2013) Health insurance 2250
Nosal (2012) Medicare 4990

Note: Relative to the amounts quoted in original papers, we convert them to 2012 US dollars.

The remaining parameters of the model are calculated directly from the data. The

mortality rate my is the cumulative ten-year probability of dying for the insured 30-year old

male; we find it to be 0.7% using the 2001 Select and Ultimate mortality tables. The annual

interest rate i is assumed to be 4%, which yields the ten-year discount factor δ of 0.68.

Finally, we assume that the non-renewable insurance premium PNR
y is $1040, which implies

that such policies are priced competitively and sold at a slight discount relative to the cost

of renewables cy. This assumption is useful in the model due to the fact that the firm may

choose Py = PNR
y to eliminate its time inconsistency problem. However, with cy > PNR

y ,

this will cause a loss in covering the young encouraging the firm to seek an interior solution

instead. Empirically, the assumption that non-renewable insurance is sold at a discount

relative to the ten-year marginal cost is plausible for at least two reasons. First, consumers

who purchase such policies are likely to actually need it for a shorter time, resulting in higher

lapsation rates. Second, the average health status of renewable policyholders at any given

time tends to be worse than non-renewable policyholders. This is because all non-renewable

policyholders recently had health exams, while some renewable policyholders have renewed

without undergoing a health exam and have likely deteriorated in health. For example, in

the data the cost to insure a pool of 30-year-olds who have held their policies for 10 years

increases the marginal cost by 55%. While in reality such vintage policyholders are likely a
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minority in the pool of 30-year-old customers, their existence naturally elevates the average

cost cy relative to PNR
y , a price only available to the newcomers.

4.1.2 The Equilibrium

Table 5 presents the equilibrium of our model under the discussed calibration. The upper

cost threshold cM is optimally set equal to the upper bound of the cost distribution, c. This

means that the premiums can only be one of two values: P̄o and ¯̄Po. The lower cost threshold

cT is equal to 3054.47, roughly in the middle of the cost domain. This frequency of price

adjustments is reasonable given that we calibrate the model to 10-year renewable level-term

insurance. The predicted rigid premiums, P̄o and ¯̄Po, are equal to 3626.22 and 4074.47,

respectively. As the lower panel of Table 5 shows, this is well in the ballpark of what the

renewing 40-year-olds can expect to pay in the data (expressed in cumulative ten-year terms).

Also, the size of the jump predicted by our model,
( ¯̄Po/P̄o − 1

)
× 100, matches closely the

average size of the premium adjustment observed in the data, around 12%.

Table 5: Equilibrium of the model

Symbol Variable name Value

Π Total profit 310.93
Πo Profit from old 511.21
cT Lower cost threshold 3054.47
cM Upper cost threshold 3500.00
Py Price for young 1050.89
P̄o Lower price for old 3626.22
r̄o Threshold for renewables 3669.27
¯̄Po Upper price for old 4074.47( ¯̄Po/P̄o − 1

)
× 100 Jump between premiums (in %) 12.36

Premiums in the data:
40-year-old average 3549.14
40-year-old median 3489.35
40-year-old standard deviation 817.93
Average change (in %) 11.47

Note: the data section summarizes the premiums for 40-year-old males in

regular health category, for 10-year renewable insurance. Annual premiums

are expressed here as present expected value of the entire ten-year period,

until renewal. Similarly as in section 2.4, we ignore the issue of lapsation.
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4.1.3 Comparative Statics

We now analyze the mechanics of the model by performing several comparative statics

exercises with respect to the key parameters. Figure 9 illustrates how the optimal pricing rule

changes with transaction cost µ. Renewable life insurance contracts become more attractive

compared to non-renewables as µ increases. The firm responds by increasing premiums (Py,

P̄o and ¯̄Po) and restricting quantity, i.e. the pool of covered policyholders (r̄o increases). As a

result, the total profit of the firm rises. Crucially though, an increase in the transaction cost

also worsens the hold-up problem. In order to attract consumers ex ante, the firm responds

by increasing cT so that it is more committed to the low premium P̄o, and by raising the size

of the jump up to the high premium ¯̄Po. Notice that beyond a certain level of µ, the terms

of the optimal contract become invariant. This is due to the fact that search becomes too

expensive for a vast majority of consumers and only the ones with high enough demand for

coverage when old decide to buy.

Figure 10 shows a similar exercise when we vary the mode of the lognormal health and

search shock distribution, while holding the mean equal to 1. Higher mode means that

consumers face more adverse health shocks and become more locked-in to the contract, but

it also makes renewables more desirable than non-renewables. Once again, the decrease in

competition from non-renewables leads the firm to raise equilibrium premiums and restrict

the quantity supplied. By the same logic as with the transaction cost, to attract more

consumers ex ante the equilibrium cost threshold cT goes up, promising a wider interval of

rigid low-price insurance, and the jump between ¯̄Po and P̄o widens.

Finally, in Figure 11 we vary the inverse hazard rate of the distribution of consumers’

valuations. As γ goes up, the price elasticity of demand decreases and the company enjoys

more monopoly power resulting in a higher P̄o. Importantly though, lower demand elasticity

does not alter the strength of the consumers’ hold-up problem and as a result the equilibrium

cost threshold falls, imposing high premiums over a wider range of cost shocks, while the jump

between ¯̄Po and P̄o becomes smaller. The increase in profit from higher renewal premiums

would be bigger with a larger pool of policyholders, which is why Py falls as γ rises to attract

more customers in the spirit of the switching cost literature (Klemperer, 1987). However,

it is important to note that ¯̄Po can be inversely related to γ. This is because the profit for

smaller cost shocks (co ∈ Co) has increased with higher γ, so for (9) to hold, the profit for

larger cost shocks (co ∈ Co) must also go up. Since ¯̄Po is too high compared to the frictionless

premium near cT , the firm lowers ¯̄Po to increase profits for cost shocks near and above cT .
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Figure 9: Varying the transaction cost µ in the model
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Figure 10: Varying the mode of the health shock distribution in the model
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Figure 11: Varying the inverse hazard rate γ in the model

5 Testing the Model’s Predictions

Now we turn directly to our dataset of insurance premiums to test the main predictions

of the model. In particular, as the consumer’s hold-up problem becomes weaker (through a

lower transaction cost µ or less adverse distribution of health shocks), the equilibrium cost

thresholds cT and cM in the model fall, leading to more frequent price adjustments. At the

same time, a weaker hold-up problem leads to a reduced magnitude of premium changes due

to both a smaller jump between P̄o and ¯̄Po, and a higher likelihood of adjustments within

the frictionless pricing region. We test these predictions by looking at average probability

and size of premium adjustments across time and across renewal terms. Then, we show that

the marginal cost presented in Figure 5 is positively correlated with the hazard of premium

adjustment, rather than size, indicating that life insurance firms tend to respond to cost

shocks on the extensive margin. Finally, we contrast the price dynamics of life insurance

with that of annuities, a related product but without the hold-up problem. We show that

the latter change prices very frequently and by small margins. In the concluding part of

this section, we use the data to address common alternative theories of price rigidity in the

context of life insurance.
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5.1 Premium Changes Across Time

In the first test, we divide our sample into two sub-periods: 1990-1999 and 2000-2009. It

can be argued that between these two time intervals, the consumer hold-up problem became

weaker mainly for two reasons. First, the emergence of on-line pricing tools led to a reduced

transaction cost needed to search for a life insurance policy and compare premiums across

different companies and products. The internet also enabled customers to purchase policies

directly from the insurance firms, avoiding the need to meet an agent physically.31 Second,

mortality rates among the insured dropped significantly in the 2000s as documented by the

two vintages of Select and Ultimate mortality tables issued in 2001 and 2008. For example,

a cumulative 20-year probability of death for a 30-year-old male policyholder decreased from

2.36% to less than 1.96%, while for a 40-year-old male policyholder the cumulative 20-year

death rate fell from 5.19% to 4.39%. Analogous to a reduction in the transaction cost, a

leftward shift in the distribution of health shocks in the model leads to more frequent and

less sizable premium adjustments.

Table 6 presents the average fraction of premium changes and the average size of ad-

justments for the two sub-periods. Between the 1990s and the 2000s, the average fraction

of life insurance policies adjusting premiums in any month increased from 2.31% to 2.76%,

while the average size of the adjustment fell from 12.02% to 10.22%. Both differences are

statistically significant at the 5% confidence level.

Table 6: Testing the difference in frequency and size of premium adjustments over time

Period Months % adjusting St. err. p-value

1990-1999 116 2.31 0.19
2000-2009 120 2.76 0.20
Difference −0.45 0.27 0.05

Period Months size (in %) St. err. p-value

1990-1999 106 12.02 0.60
2000-2009 111 10.22 0.59
Difference 1.80 0.84 0.02

Note: One sided t-test for equality of means, with alternative hypotheses

Ha : diff(% adjusting) < 0 and Ha : diff(size) > 0, respectively.

Average premium changes are computed only for the months where at

least one is observed, hence the difference in the number of observations.

31A similar assertion is made by Brown and Goolsbee (2002) to argue that the popularization of internet
pricing tools over that period of time led to an overall decrease in the level of life insurance premiums.
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5.2 Premium Changes Across Renewal Terms

In the second test, we investigate whether the frequency and size of price adjustments

vary with the length of renewability term. As the term extends, the level of marginal cost,

premiums, and consumers’ valuations increase, while the one-time transaction cost remains

unchanged (it takes the same amount nominally to invest in purchasing ART or 10-year

level-term). In other words, the transaction cost falls relative to the size of the consumer’s

surplus as we move from one-year term to 10- and 20-year term. Suppose we calibrate our

model to three different term lengths, and normalize the lower rigid price P̄o to be equal to

100 across all calibrations. The normalized value of the transaction cost parameter µ would

then decrease as the term extends. Figure 9 shows that in the model this leads to a drop

in both cost thresholds, more flexibility in adjusting premiums, and a smaller jump between

P̄o and ¯̄Po.

Table 7 presents the frequency of premium changes, along with the average magnitude

of adjustments, for the four standard lengths of level-term renewable insurance. Two stark

observations arise from this test. First, as the term extends, we indeed observe a larger

frequency of price changes, climbing monotonically from 1.07% for ART policies up to 3.57%

for 20-year level-term. The analysis of variance between and within the groups confirms that

these differences are statistically significant. Second, ART policies exhibit a significantly

higher average size of the premium adjustment at 15%, compared to roughly 10% for all

the remaining term lengths. Interestingly, the term length above one year is not informative

about the expected size of a premium change and the mean of squares within these three

groups exceeds the means of squares between them (with p-value of the F test equal to 0.56).

Table 7: Testing the difference in frequency and size of premium adjustments across terms

Term length N obs. % adjusting St. err. Variance analysis

1 year 13, 644 1.07 0.08 MSB 1.69
5 years 6, 537 2.07 0.18 MSW 0.02
10 years 20, 959 2.99 0.12 F-stat 68.01
20 years 14, 689 3.57 0.15 p-value 0.00

Term length N obs. size (in %) St. err. Variance analysis

1 year 146 15.01 1.00 MSB 1017.36
5 years 135 10.85 0.75 MSW 84.04
10 years 626 10.02 0.34 F-stat 21.11
20 years 525 10.38 0.40 p-value 00.00
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5.3 Relationship Between Premium Changes and Cost Shocks

We now focus on the dynamics of life insurance premiums over time using the entire

available sample. Figure 12 plots the 12-month moving averages of the fraction of products

that adjust their premium and the average size of the adjustment. Recall from Figure 5 that

the largest shocks to marginal cost in our sample roughly occur in the late 1990s, around

2005, late 2008, and 2012. Figure 12(a) shows that each of those episodes was accompanied

by an increase of at least one percentage point in the fraction of companies that adjusted

their premiums, and the increase is statistically significant. On the other hand, Figure 12(b)

reveals no such apparent correlation between the cost shock and the average magnitude of

changes (except for late 2008, in the presence of a record-high cost). The most apparent

observation from that time series is probably the gradual decline in the average size of

premium jumps discussed in the previous section.

Table 8 formalizes these findings by computing correlations between the cost shock and

the frequency and average size of premium changes. This relationship is generally positive for

the fraction of firms that adjust and was the strongest during the 1990s, when the consumer’s

hold-up problem was likely to be more severe, as discussed in Section 5.1. On the other hand,

the average adjustment size turns out to be negatively related to the marginal cost shock.

In light of our theory, this evidence suggests therefore that life insurers respond to industry-

wide shocks predominantly with an increased hazard of adjusting the premiums, rather than

altering the magnitude of such an adjustment.

(a) Fraction of products that adjust premium (b) Average size of premium adjustment

Note: 6-month moving averages applied. Gray areas depict the 95% confidence intervals.

Figure 12: Fraction and average size of premium changes
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Table 8: Correlation between the cost shock and frequency/size of premium changes

Correlation with cost: % adjusting adjustment size

1990-1999 0.67 0.24
2000-2009 0.20 −0.03
Full sample 0.28 −0.18

5.4 Comparison with Annuities

So far we have demonstrated that renewable life insurance premiums are rigid, adjust by

large margins and these properties tend to diminish as the hold-up problem gets weaker. It

is then instructive to contrast these findings against the price dynamics of a related product

that is free of the hold-up altogether. A good example of such a product is annuity, typically

offered by the same life insurance companies, where consumers pay a single lump-sump

amount up front in exchange for a schedule of fixed benefits until death. Depending on

policy, these benefits may carry a 10- or 20-year guarantee in case the insured dies earlier.

Table 9: Price changes in life annuities vs. life insurance: Jan 2007 - Jul 2009

Life annuities Life insurance

Number of observations 8140 4266
Number of firms 19 76
Number of products 304 147

Probability of price change (in %):
Average (weighted) 71.5 2.6
Average (unweighted) across firms 68.9 2.6
Median (unweighted) across firms 74.2 0

Distribution of change sizes (in %):
Average 1.85 9.34
Median 1.50 6.67
Standard deviation 1.55 9.18

Note: the data is acquired from Koijen and Yogo (2015) and originally comes from the

WebAnnuities Insurance Agency.

We use the annuity prices collected and made available by Koijen and Yogo (2015). This

data was originally provided by the WebAnnuities Insurance Agency and comes at monthly

frequency from January 2007 to August 2009.32 The quotes are available for males and

females at all ages from 50 to 85 (in five year intervals). Table 9 presents the price rigidity in

life annuities. Intriguingly, prices change in any given month with around 70% probability,

32The full dataset is semi-annual and covers the years from 1989 until 2011. However, the panel is highly
unbalanced, making it difficult to make a compelling case on price rigidity.
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and the magnitude of those adjustments is small, around 1.5%. A natural concern then may

be that this price dynamics is a result of the financial crisis in years 2007-2009. For this

reason, in the right-hand side column we also provide information about premium rigidity

from our own sample, adapted to the time period of interest. The premiums during the

financial crisis were as rigid as in the entire sample described in Table 2, while the adjustment

sizes are slightly smaller, consistent with the evidence presented in Section 5.1.

5.5 Alternative theories

We now investigate whether the rigidity of life insurance premiums could potentially be

explained by existing models of price stickiness. Following Klenow and Kryvtsov (2008), we

consider two broad classes of models: time-dependent and state-dependent pricing models.

Then, we investigate if a model of competition can generate realistic premium rigidity.

5.5.1 Time-Dependent Models of Sticky Prices

In time-dependent pricing frameworks, for example Taylor (1980) or Calvo (1983), firms

adjust prices with exogenous frequency. The spell duration is subject to a random shock

and every period a fixed number of firms reoptimize their price. The longer an individual

price remains staggered, the more shocks accumulate in the meantime, resulting in larger

average size of the adjustment. In a time-dependent pricing setup, we would expect to

observe variation on the intensive margin, and much less so on the extensive margin which

is determined exogenously. Figure 12 shows that the opposite appears to be the case in the

life insurance market, where the firms tend to respond to cost shock predominantly on the

extensive margin. In addition, Figure 13 shows a plot of all premium changes in our data

(expressed in absolute value) as function of premium duration. As can be noticed, the points

are scattered with no clear pattern and the correlation of the two variables is about 0.13.

Table 10 confirms this in a regression analysis. The relationship between premium duration

and size of the adjustment is rather weak (albeit positive), with the slope of 0.07% and

R-squared of less than 0.02. We conclude that the standard time-dependent models are not

a promising alternative to explain premium rigidities observed in the life insurance market.

Table 10: Regression results (dependent variable: abs change)

coefficient s.e. P > |z|
constant 9.372 0.372 0.000 No. of obs. 1432
duration 0.066 0.014 0.000 Adj. R-sq. 0.016
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Figure 13: Premium duration and adjustment size in the life insurance market

5.5.2 State-Dependent Models of Sticky Prices

By contrast, in state-dependent pricing models, for example Dotsey et al. (1999) or

Golosov and Lucas (2007), individual firms are subject to heterogeneous “menu costs” and

can choose when to adjust their prices. Changes then occur predominantly on the extensive

margin, and the hazard of price change is an increasing function of duration because incoming

shocks move the optimal price away from the one currently posted. Figure 14 plots the hazard

of premium adjustment in our dataset at all durations for which we observe multiple changes.

Notice that the relationship is generally negative, with the correlation of −0.44. Table 11

summarizes the regression results of change hazard on duration. An additional month of

premium duration tends to reduce the hazard by 0.01%, but only 18% of the variation in

hazard can be explained through this channel. Interestingly, it appears that the increasing

hazard may be a local feature of the premiums that have remained staggered for more than

50 months. We do not have enough observations to make this assertion robust though. We

conclude that state-dependent pricing theories are not readily capable of explaining premium

rigidity in the life insurance market.

Table 11: Regression results (dependent variable: hazard)

coefficient s.e. P > |z|
constant 0.0309 0.00176 0.000 No. of obs. 88
duration −0.0001 0.00003 0.000 Adj. R-sq. 0.184

38



.0
1

.0
2

.0
3

.0
4

.0
5

H
az

ar
d

0 50 100 150
Premium duration (in months)

Figure 14: Premium duration and adjustment hazard in the life insurance market

On a more general level, menu costs do not appear to be an appealing explanation for

price rigidity in markets, such as life insurance, where prices are posted electronically and

setting them is a core business activity. For example, in Section 5.4 we show that annuities

prices tend to adjust very frequently and by small margin, contradicting a hypothesis that

menu costs play an important role in such products.

5.5.3 Competition

Our model accounts for market competition in a reduced form, allowing consumers to

search for an outside option in the renewable insurance market. It has been shown in the

literature though that explicit modeling of competition can also generate price rigidity. In

a monopolistically competitive market, Nishimura (1986) shows that prices become rigid as

the price elasticity of demand approaches infinity if a firm cannot infer whether a transient

cost shock is market-wide or firm-specific. Firms set prices based on the expectation of other

firms’ prices. If a firm responds to the cost shock by increasing its price then, with elastic

demand, it will attract few consumers when the shock is firm-specific. On the other hand, if

a firm responds to the cost shock by lowering its price, then it would attract many consumers

when the shock is firm-specific, but the lower price is not profitable. As a result, equilibrium

prices become less sensitive to transient shocks as markets become more competitive.

Even though competition can generate price rigidity in an incomplete information envi-

ronment, it also entails price concentration. Indeed, if prices were dispersed, then firms with

high prices would not be competitive. However, the dispersion in life insurance premiums

(measured by the coefficient of variation) is generally high suggesting that life insurance
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markets are not competitive. Table 12 summarizes the premium dispersion for our four

standard term lengths. The dispersion decreases with term length, with an exception for the

20-year level-term which also has a much higher standard deviation so its premiums may not

be statistically more dispersed than shorter-term contracts. From Table 7, premiums adjust

more frequently as the term length increases. This suggests that the relationship between

price dispersion and rigidity runs counter to the prediction of Nishimura (1986).

Table 12: Coefficient of variation of premiums across terms

Term length Mean St. dev. Min. Max.

1 year 0.18 0.02 0.15 0.23
5 years 0.17 0.03 0.11 0.28
10 years 0.15 0.03 0.11 0.21
20 years 0.17 0.05 0.06 0.28

Note: For each term length, this table shows the distribution of cross-sectional co-

efficients of variation over time. The total number of observations is 282 months.

6 Conclusion

We show that the market for life insurance has exhibited a remarkable degree of price

rigidity since 1990. Firms that changed premiums in the analyzed sample did so on average

every 39 months, preferring one-time jumps of large magnitude to more frequent and gradual

price adjustments. We build a theoretical model to explain this phenomenon, based on the

assumption that consumers are locked-in due to a relationship-specific investment. In line

with what we find in the data, the model predicts that premiums remain constant for a wide

range of cost shock realizations, while potential changes take the form of discrete jumps.

Our hypothesis is obviously not the only explanation for the observed rigidity of life

insurance premiums. As Table 7 shows, even the 20-year level-term premiums are quite

rigid which leaves room for complementary theories. At the same time however, we provide

guidelines for future research by showing that life insurance data does not support the

standard price stickiness models.

The broader implications of our work include providing microfoundations for price sticki-

ness observed in the markets characterized by long-term commitment. In particular, we show

that the price rigidity arises endogenously as a solution to a time inconsistency problem that

could otherwise deter consumers from buying the good. Future research should investigate

the pricing behavior of other financial or contractual services, and find out if similar products

also exhibit pricing anomalies such as the ones found in life insurance contracts.
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Appendices (for online publication)

A Measurement Error

As we discuss in Section 2.2, we approximate the life insurance companies’ adherence to non-

binding “current” premiums by measuring the premium rigidity for a fixed set of customer

characteristics. This is a reasonable assumption as long as firms tend to adjust the entire

age schedules at the same time and with the same frequency. In this section, we test whether

this is the case by comparing premiums for two separate age groups.

In addition to the baseline profile of 30-year-old male, we also extracted premiums for

10-year level-term policies for a fixed profile of 40-year-old male of the same health category.

The main goal of obtaining this data was to validate the predictions of our quantitative

model about renewal premiums in Section 4.1.2. Here, we can use the same dataset to check

whether companies in fact tend to adjust premiums for 30- and 40-year-olds with the same

frequency and at the same time.

Table 13 presents the number of premium changes observed for the two age groups.

Altogether, there are 16 extra instances of premium adjustments for 40-year-olds relative

to 30-year-olds, a difference smaller than 3%. This confirms our measurement assumption

in Section 2.1 that premium rigidity for a fixed set of customer characteristics implies the

companies’ adherence to the “Non-guaranteed current” premiums in Table 1.

Table 13: Number of premium changes in 10-year level-term policies: 30- vs. 40-year-olds

Customer age N obs. N changes

30 20, 815 623
40 20, 815 639

Note: We analyze matched product-month observations from the two datasets. Because of occa-

sional inconsistencies in Compulife, there are fewer resulting observations here than if we were to

consider premiums in isolation for 30-year-olds (as in Table 7) or for 40-year-olds (as in Table 5).

The final question to ask is whether the changes in 30-year-old and 40-year-old premiums

in fact coincide in time. The first row of Table 14 shows that this is the case exactly in 566

cases, while there are 57 and 73 incidences where a premium change occurs only for a 30-

year-old and a 40-year-old customer, respectively. In such cases though, we often observe

that changes to premiums for different ages are separated from each other by up to three

months, indicating a possible reporting error in Compulife, or a gradual implementation of

an adjustment to the whole age schedule. Subsequent rows of Table 14 reveal that close to
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half of the premium changes that do not coincide in time are in fact only separated from

each other by up to three months.

Table 14: Coincidence of premium changes in 10-year level-term policies: 30- vs. 40-year-olds

Tolerance Only 30 Both Only 40

same month 57 566 73
± one month 49 584 57
± two months 28 592 52
± three months 25 599 50

Note: Same remarks apply as in Table 13. A change in premium is here assumed to

coincide with the tolerance of zero, one, two and three months, correspondingly.

B Nominal and Real Rigidity

This section analyzes the effect of inflation on life insurance premiums. We first show that

nominal rigidity implies real rigidity per dollar of real face value, and vice versa. Next, we

discuss how inflation affects the pricing behavior of life insurers and how it relates to the

results of our paper.

Consider a simple framework where perfectly competitive life insurance companies face

a constant mortality rate m and a constant interest rate r, The (nominal) face value of a

generic policy is Ft, and its real counterpart is FR
t , where t = 0 is the base year. Let PN

t

denote the nominal premium for a one-period (non-renewable) insurance and PR
t be the

real premium. Let π be a (constant) inflation rate. Then, Lemma 4 shows that nominal

premiums are rigid if and only if real premiums per dollar of real face value are rigid.

Lemma 4 For any t, PN
t = PN if and only if for all t,

PRt
FRt

= P̄R.

Proof To show sufficiency, suppose that in a competitive market for non-renewable insur-

ance, nominal premiums are rigid (i.e. the mortality rate, interest rate and nominal face

value are fixed): for all t,

PN
t =

m

1 + r
Ft =

m

1 + r
F.
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The real premium is given by

PR
t =

PN

(1 + π)t

=
m

1 + r

F

(1 + π)t

=
m

1 + r
FR
t .

The real premium per dollar of real face value is

PR
t

FR
t

F0 =
m

1 + r
F0 ≡ P̄R,

where F0 is the face value in the base year. This shows that nominal rigidity of premiums

implies that premiums are also rigid for a policy with fixed real face value.

The proof for necessity follows exactly the steps shown above in the reverse order.

From the proof of Lemma 4, notice that as the nominal premium is rigid by assumption,

the real premium decreases over time at the constant rate of inflation π. However, this is

not the insurance product that we consider in our model, because its real face value also

decreases over time. Our model assumes a constant real face value, so the focus of Lemma

4 is on the real premium per dollar of real face value.

Now, consider a two-period renewable insurance policy. Let PN
t,a denote the nominal

premium in period t dollars for age a individual, and let PR
t,a be the real premium. The

nominal payment over time is
(
PN
t,a, P

N
t+1,a+1

)
. The next lemma uses Lemma 4 to establish the

equivalence relation between nominal and real rigidity in a competitive market for renewable

insurance. The result can be generalized to any n-period renewable insurance.

Lemma 5 For any t and age a, PN
t,a = PN

a if and only if for any t and any age a,
PRt,a
FRt

= P̄R
a .

Proof To prove sufficiency, we define the actuarially fair premiums for renewable insurance

according to the backward induction approach of Huntington (1958) (for details, see Ap-

pendix C). In t+1, a policy bought in t at age a, becomes non-renewable and the actuarially

fair premium satisfies PN
t+1,a+1 = m

1+r
F. In t, nominal premiums satisfy a zero-profit condition

PN
t,a +

1−m
1 + r

PN
t+1,a+1 = F

[
m

1 + r
+
m (1−m)

(1 + r)2

]
. (10)
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Converting nominal premiums to real ones yields

PR
t,a(1 + π)t +

1−m
1 + r

PR
t+1,a+1(1 + π)t+1 = F

[
m

1 + r
+
m (1−m)

(1 + r)2

]
⇐⇒

PR
t,a

FR
t

F +
1−m
1 + r

PR
t+1,a+1

FR
t+1

F = F

[
m

1 + r
+
m (1−m)

(1 + r)2

]
.

The second lines follows from the fact that FR
t = F0

(1+π)t
and F0 = F, since t = 0 is the base

year. By Lemma 4, PN
t+1,a+1 = PN

a+1 if and only if
PRt+1,a+1

FRt
= P̄R

a+1 for any t and a. As a result,

if for all t and a, PN
t,a = PN

a and PN
t+1,a+1 = PN

a , it immediately follows that
PRt,a
FRt

= P̄R
a .

The proof for necessity follows exactly the steps above in the reverse order.

Lemmas 4 and 5 show that the nominal rigidity observed in the data is equivalent to real

rigidity per dollar of real face value in the simplest case of actuarially fair premiums. As

inflation erodes the value of premiums paid by consumers over time, it does so with the value

of death benefits as well. From this point of view, a theory of real price rigidity (such as the

one presented in this paper) is informative for explaining the nominal rigidity observed in

the data.

Naturally, the presence of inflation may affect the pricing strategy of insurers by inducing

them to change the age profile of premiums. As pointed out by Hendel and Lizzeri (2003),

life insurance premiums are typically front-loaded which implies that the majority of the

profit comes from initial premiums. For example, an increase in expected inflation may lead

to more front-loading and higher profit because the nominal value of death benefits will be

eroded more than the value of premiums. This suggests that a model in real terms may

not capture the full dynamics of front-loaded nominal premiums. In other words, in a world

without inflation we would expect premiums to be even more rigid than what we already

observe in the data and document in Section 2. Therefore, a theory of real premium rigidity

is needed to explain these facts.
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C Estimating the Marginal Cost of Life Insurance

In what follows, let mt,n,n̄ denote the period t mortality rate of age n individuals who

bought life insurance at age n̄,33 and let N be the maximum attainable age according to the

corresponding mortality tables. Let Rt(i) be the (annualized) interest rate on zero-coupon

risk-free securities with maturity i at time t. The schedule of actuarially fair values for an

ART policy acquired at age n for ages up to N per dollar of death benefit is defined as

{Pt(i)}i=n,n+1,...,N and obtained by solving the following equation

N−s∑
i=1

∏i−2
j=0(1−mt,s+j,n)mt,s+i−1,n

Ri
t(i)

= Pt(s) +
N−s−1∑
i=1

∏i−1
j=0(1−mt,s+j,n)Pt(s+ i)

Ri
t(i)

(11)

recursively for every age s = N − 1, N − 2, ..., n. Following the method presented by Hunt-

ington (1958), we calculate the full schedule of actuarially fair values backwards, starting

from the highest admissible age. Formula (11) can further be augmented to account for two

additional features of renewable term policies. First, at certain age Nc < N the consumer

may choose to convert to a universal life insurance and pay a fixed premium for all the

remaining periods up to N . Second, the premium may be renewed at frequencies lower than

one year, in particular in 5-, 10- or 20-year intervals.34

Notice that formula (11) does not take into account potential lapsation of policies, that is

the possibility that a consumer may choose not to renew it. This is because there is currently

no industry-wide standard for insurance pricing with lapsation, and data lapsation is scarce

and varies widely across different policies and time. Similarly as in Koijen and Yogo (2015),

for simplicity we ignore lapsation in our analysis.

In our calculation of the actuarially fair value we use the mortality tables issued by

the American Society of Actuaries. We apply the 1980 Commissioners Standard Ordinary

(CSO) table for all years prior to January 2001, the 2001 Valuation Basic Table (VBT) prior

to January 2008 and the 2008 VBT for the time period following January 2008. We use

geometric averaging on the monthly basis to smooth the transition between any two vintages

of the mortality tables. It is important to emphasize that these tables are created based on

the actual mortality rates among the insured rather than the general population. For this

reason, they account for a potential adverse selection in the market for life insurance.35 For

the risk-free interest rate we use the U.S. Treasury zero-coupon yield curve.36

33It is important to keep track of different cohorts of the insured due to adverse selection, i.e. individuals
who have already held a policy tend to have significantly higher mortality rates than the same-age newcomers.

34To estimate the cost in Figure 5 we use a one-year level term policy with N = 60 and no convertibility.
35Cawley and Philipson (1999) found no strong evidence of adverse selection in the term life insurance.
36Taken from Gurkaynak et al. (2007) and averaged for each month.
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D Proofs

Proof of Lemma 1: First note that Bren (ro; t) ≥ Bnon (ro; t) and Bren (ro; t) , B
non (ro; t) ≥

0 for all ro and for all t. This is because there are more options available for renewable

policyholders and consumers can always choose to forgo coverage.

Next, we show that Bnon (ro; t) and Bren (ro; t) are weakly increasing in ro for any t. Note

that there exists r̃o such that for all ro < r̃o, B
non (ro; t) = 0 and for ro ≥ r̃o, we have

Bnon (ro; t) =

∫ c

c

[∫
ε

max {0, ro − εco,t+1} dZ (ε)− µ
]
dG (co,t+1)

=

∫ c

c

∫ ro
co,t+1

0

(ro − εco,t+1) g (co,t+1) z (ε) dεdco,t+1 − µ.

Differentiating Bnon (ro; t) with respect to ro yields
∫ c
c
Z
(

ro
co,t+1

)
dG (co,t+1) , so Bnon (ro; t)

is strictly increasing for ro ≥ r̃o. Since Bren (ro; t) ≥ Bnon (ro; t) , B
ren (ro; t) is also strictly

increasing for ro ≥ r̃o.

Suppose there exists valuation r̂o such that Bren (r̂o; t) > Bnon (r̂o; t) . We will show that

Bren (ro; t) − Bnon (ro; t) is increasing in ro ≥ r̂o. If Bren (r̂o; t) > Bnon (r̂o; t) , then there

exists a set Ĉ with strictly positive measure defined as Ĉ = {co,t+1|r̂o > Po,t+1 (co,t+1)} . Since

if Ĉ is empty or measure zero, then it cannot be the case that Bren (r̂o; t) > Bnon (r̂o; t) . For

ro ≥ r̂o, we have

Bren (ro; t)−Bnon (ro; t) ≥∫
Ĉ

max

{
ro − Po,t+1 (co,t+1) ,

∫
ε

max {ro − Po,t+1 (co,t+1) , ro − εco,t+1} dZ (ε)− µ
}
dG (co,t+1)

−
∫
Ĉ

[∫
ε

max {0, ro − εco,t+1} dZ (ε)− µ
]
dG (co,t+1) . (12)

The inequality comes from the fact that for higher valuations the set of costs such that

ro > Po,t+1 (co,t+1) should be weakly larger. Let Ĉr denote the set of cost realizations where

the policyholder would renew immediately and Ĉs denote the set where the policyholders

search. Define the two sets such that they are mutually exclusive (if policyholders are
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indifferent, they renew), then the right-hand side of (12) can be rewritten as∫
Ĉr

[ro − Po,t+1 (co,t+1)] dG (co,t+1)︸ ︷︷ ︸
renew immediately

+

∫
Ĉs

roZ (Po,t+1 (co,t+1)

co,t+1

)
− co,t+1

∫ Po,t+1(co,t+1)
co,t+1

0

εdZ (ε)

 dG (co,t+1)

︸ ︷︷ ︸
search and sign non-renewable

+

∫
Ĉs

[ro − Po,t+1 (co,t+1)]

[
1− Z

(
Po,t+1 (co,t+1)

co,t+1

)]
dG (co,t+1)︸ ︷︷ ︸

search and then renew

−
∫
Ĉ

∫ ro
co,t+1

0

(ro − εco,t+1) dZ (ε) dG (co,t+1)︸ ︷︷ ︸
sign non-renewable

.

Differentiating the above expression with respect to ro yields
∫
Ĉ

[
1− Z

(
ro

co,t+1

)]
dG (co,t+1) ,

which is strictly positive so Bren (ro; t)−Bnon (ro; t) is strictly increasing in ro ≥ r̂o.

Finally, since Bren (ro; t) − Bnon (ro; t) , B
ren (ro; t) and Bnon (ro; t) are increasing for

sufficiently large ro, consumers of any generation would purchase renewables if their

valuation is sufficiently large.

Proof of Lemma 2: For part (i.), by (4) we have the following demand for co ∈ Co,

Do(Py, Po(co)) = (1−my) [1−H (r̄o)] .

The insurance company takes r̄o as given, so for costs in Co, the demand is independent of

the variations in Po (co) .

Suppose co ∈ Co is the actual cost and the insurance company reports c′o ∈ Co, then the

incentive compatible {Po (co)} requires Po(co) ≥ Po(c
′
o). Now suppose c′o is the actual cost and

the insurance company reports co, then the incentive compatibility requires Po(co) ≤ Po(c
′
o).

Therefore, we have Po(co) = Po(c
′
o) for any co, c

′
o ∈ Co.

Finally, to show that Co = {co | Po(co) < r̄o} has strictly positive measure, first assume

that Co is measure zero. This implies that for almost all co ∈ [c, c] , Po (co) ≥ r̄o. By (2),

0 =
Py−PNRy

1−my , which is a contradiction when Py > PNR
y .

For part (ii.), if {Po (co)} is incentive compatible, then for any co ∈ [c, c] and ε > 0 such
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that co + ε ∈ [c, c] we have

[Po (co)− co]Do (Py, Po (co)) ≥ [Po (co + ε)− co]Do (Py, Po (co + ε)) ,

[Po (co + ε)− (co + ε)]Do (Py, Po (co + ε)) ≥ [Po (co)− (co + ε)]Do (Py, Po (co)) .

Summing the incentive constraints yields Do (Py, Po (co)) ≥ Do (Py, Po (co + ε)) . Since Do

is weakly decreasing in Po, incentive compatible premiums have to be weakly increasing in

cost.

Finally, the existence of a cutoff follows immediately from the fact that Po is weakly

increasing in cost and Po(co) ≥ Po (c′o) for any co ∈ Co and c′o ∈ Co.

Proof of Lemma 3: For part (i.), suppose Po (co) < P ∗o (co) for some co ∈ (c′o, c
′′
o) . Since

Po (co) is strictly increasing and continuous, then there exists ε > 0 such that Po (co) <

Po (co + ε) < P ∗o (co) . The hazard rate is non-decreasing, so (Po − co) (1−H (Po)) is single

peaked. This implies

[Po (co + ε)− co] [1−H (Po (co + ε))] > [Po (co)− co] [1−H (Po (co))] ,

which violates incentive compatibility at co. The argument also applies for Po (co) > P ∗o (co) .

For part (ii.), it is trivial to show that r̄o > P̄o from (2) when Py > PNR
y . To show that

Po
(
cT
)
> r̄o, we only need to rule out r̄o = Po

(
cT
)
. If r̄o = Po

(
cT
)
, then by (8), we have

P̄o = r̄o. By (2), it implies that 0 =
Py−PNRy

1−my , which is a contradiction when Py > PNR
y .

Next, we will establish the fact that the frictionless premium is not incentive compatible

for Co. By (2), r̄o > P̄o. Suppose Po (co) = P ∗o (co) for all co ∈ Co, then (8) implies

LHS ≡
(
P̄o − cT

)
[1−H (r̄o)] = RHS ≡

(
P ∗o
(
cT
)
− cT

) [
1−H

(
P ∗o
(
cT
))]

.

Notice the following: LHS <
(
P̄o − cT

) [
1−H

(
P̄o
)]
. Since RHS is the optimal frictionless

profit, it follows that RHS > LHS, and is only equal when Py ≤ PNR
y and with strict

inequality when Py > PNR
y . Hence, it cannot be the case that Po (co) = P ∗o (co) for all

co ∈ Co.
Finally, we will show there is rigidity in Co. Define P+

o

(
cT
)
≡ limco→cT Po (co) and

cM = P ∗−1
o

(
P+
o

(
cT
))
. Consider co ∈

(
cT ,min

{
cM , c

})
, then P+

o

(
cT
)
> P ∗o (co) . By Lemma

2, Po is weakly increasing, so Po (co) ≥ P+
o

(
cT
)

for any co ∈
(
cT ,min

{
cM , c

})
. Suppose

there exists ĉo ∈
(
cT ,min

{
cM , c

})
such that Po (ĉo) > P+

o

(
cT
)
. This implies the follow-

ing ordering: Po (ĉo) > P+
o

(
cT
)
> P ∗o (ĉo) . However, (P − ĉo) (1−H (P )) is single peaked
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around P ∗o (ĉo) , so

(
P+
o

(
cT
)
− ĉo

) (
1−H

(
P+
o

(
cT
)))

> (Po (ĉo)− ĉo) (1−H (Po (ĉo))) .

This violates incentive compatibility, so Po (co) is rigid for co ∈
(
cT ,min

{
cM , c

})
.

Proof of Theorem 1: From Proposition 1 of Melumad and Shibano (1991), the proposed

incentive compatible premium is globally incentive compatible. From Lemma 1 and Lemma

3, the optimal incentive compatible premium has to take this form.

E Solving the Model

To solve the model, we use the theory presented in section 4 and formulate the profit maxi-

mization problem for insuring old consumers as follows:

Π∗o = max
P̄o,

¯̄Po,cT ,cM

∫ cT

c

(
P̄o − co

)
[1−H (r̄o)] g (co) dco

+

∫ cM

cT

(
¯̄Po − co

) [
1−H

(
¯̄Po

)]
g (co) dco

+

∫ c

cM
(P ∗o (co)− co) [1−H (P ∗o (co))] g (co) dco

subject to (9) and ¯̄Po = P ∗o (cM). Let λ denote the Lagrange multiplier on (9). Given

the distributional assumptions: h (ro) = 1
γ

exp−
(ro−θ)
γ and g (co) = 1

c−c , from the first-order

conditions, we can derive the following premiums:

P̄o =
γ
∂r̄o
∂P̄o

+ cT − 0.5(cT − c)2

λ(c− c) + cT − c
, (13)

¯̄Po = γ + cT − 0.5(cM − cT )2

λ(c− c)− cM + cT
. (14)

The monopoly premium is P ∗o (co) = γ + co. Since ¯̄Po = P ∗o (cM), we have

cM = cT + 2λ (c− c) . (15)

To solve for λ and cT , we need (9) and the first-order condition on cT :

cT − c
c− c

[
P̄o − 0.5

(
cT + c

)] ∂r̄o
∂cT

= λ

[
γ

(
e−

¯̄Po−r̄o
γ − 1

)
− ∂r̄o
∂cT

(
P̄o − cT

)]
. (16)
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To solve for the model equilibrium, we apply the following numerical algorithm:

1. Choose Py to maximize the firm’s total profit (7).

2. Given the choice of Py, select cT such that the FOC (16) holds under two cases:

(a) the upper cost threshold hits a corner, i.e. cM = c.

(b) the upper cost threshold is interior and calculated according to (15).

Compare the resulting profit from the old (6) for each case and select the lower cost

threshold cT for which it is maximized.

3. Given {Py, cT , cM}, find the value of λ for which the IC constraint (9) holds.

4. Given {Py, cT , cM , λ}, compute the upper rigid price ¯̄Po using (14), and select the value

of lower rigid price P̄o for which the FOC (13) holds.

5. Given {Py, cT , cM , λ, P̄o, ¯̄Po}, find the value of r̄o that makes condition (2) hold with

equality. Approximate partial derivatives { ∂r̄o
∂P̄o

, ∂r̄o
∂cT
} necessary to compute the FOCs.

The algorithm is executed backwards, effectively nesting a sequence of five optimization or

root-finding problems.

F Reputation Mechanism

The analysis so far has implicitly assumed that cost is imposed on the insurers if they

chose a premium that is not included in the promised set of renewal premia, say Po ∈(
P̄o,

¯̄Po

)
. Here, we formally model this cost through a reputation mechanism that disciplines

the insurers. This self-enforcing mechanism is related to Alonso and Matouschek (2007) and

Halac and Yared (2019), and its micro-foundations for price rigidity are similar to Nakamura

and Steinsson (2011).

First, we find the equilibrium profit of an insurer without commitment power in a setting

with a single generation. In this setting, the optimal premium set {Po (co)} of Theorem 1 is

no longer an equilibrium, because after observing cost co the insurer sets the premium to

Po (co) = max {r̄o, P ∗o (co)} .

In fact, the insurer is unable to commit to any premium. This implies that the set of incentive

compatible premium is an empty set. Therefore, the unique subgame perfect equilibrium
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of this game is characterized by none of the consumers signing and an equilibrium profit of

Π = 0. We refer to this equilibrium as the discretionary equilibrium.

Next, we characterize the off-equilibrium path play of the insurer in our overlapping

generations setting. For each generation t, the insurer proposes a renewal set or renewal

premium {Po (co)} when the policyholders are young. We denote the insurer at this stage

as Iy,t. Then, the insurer finalizes the renewal premium when the policyholders are old. We

denote the insurer at this stage as Io,t+1. To sustain the promised renewal premium set on

path, we consider a trigger strategy: if Io,t+1 deviates from the schedule set by Iy,t, then

Iy,t+1 reverts to the discretionary equilibrium for all future generations. Formally, for any

generation t − 1 and realized cost c̃o,t, the renewal premium set {Po,t (co,t)} satisfies the

reneging constraint
δ

1− δ
(Π− Π) ≥ Π̂o (c̃o,t)− Πo (c̃o,t) , (17)

where Π is given by (7),

Π̂o (c̃o,t) = max
Po

(Po − c̃o,t) (1−my) [1−H (max {r̄o,t−1, Po})] ,

Πo (c̃o,t) = (Po (c̃o,t)− c̃o,t) (1−my) [1−H (max {r̄o,t−1, Po,t (c̃o,t)})] ,

and r̄o,t−1 is determined by (2) for some Py,t−1. Inequality (17) states that the one-time gain

from taking advantage of the held-up policyholders Π̂o − Πo is less than the loss of future

profits δ
1−δ (Π− Π) .

In essence, after observing a deviation, the consumers believe the insurer will set the

renewal premiums at its discretion for all future generations. As a result, consumers do not

sign with the insurer and it earns Π. Similar to Nakamura and Steinsson (2011), the shift

in consumer beliefs prevents the insurer from deviating and taking advantage of the held-up

consumers.37 This gives us the following proposition.

Proposition 1 Let {Py, {Po (co)}} be the sequential optimal pricing rule that solves (6) and

(7). Then, there exists a δ′ such that for any δ ≥ δ′, {Py, {Po (co)}} is sustained as a

stationary equilibrium.

Proposition 1 follows immediately from the fact that for any given sequential optimal

pricing rule, there exists a δ′ such that (17) holds with equality and any δ larger than δ′ only

relaxes the reneging constraint. This implies that as long as the interest rate it is sufficiently

small for all periods, then the reputation mechanism enforces the adherence of the optimal

premium schedule in equilibrium.

37Alternatively, the off-path play can also be interpreted as a punishment the insurer imposes on itself
for deviating in the past.
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