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Abstract

We propose a new finite sample corrected variance estimator for the linear generalized method

of moments (GMM) including the one-step, two-step, and iterated estimators. Our formula ad-

ditionally corrects for the over-identification bias in variance estimation on top of the commonly

used finite sample correction of Windmeijer (2005) which corrects for the bias from estimating

the efficient weight matrix, so is doubly corrected. Formal stochastic expansions are derived to

show the proposed double correction estimates the variance of some higher-order terms in the

expansion. In addition, the proposed double correction provides robustness to misspecification

of the moment condition. In contrast, the conventional variance estimator and the Windmei-

jer correction are inconsistent under misspecification. That is, the proposed double correction

formula provides a convenient way to obtain improved inference under correct specification and

robustness against misspecification at the same time.

1 Introduction

The generalized method of moments (GMM) estimators (Hansen, 1982) are widely used in

economics. Among the class of GMM estimators, the efficient GMM has the smallest asymptotic

variance which can be obtained via a two-step procedure. However, researchers have found that

the standard error of the two-step efficient GMM is often severely downward biased. To solve this

problem, Windmeijer (2005) proposed a finite sample bias corrected standard error formula for the
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two-step linear GMM. Specifically, his formula corrects for the bias arising from using the efficient

weight matrix being evaluated at an estimate, rather than the true value. The correction formula

(the Windmeijer correction, hereinafter) has been routinely used in practice.1

However, the Windmeijer correction does not take into account for the over-identification bias,

which is another important source of bias in the GMM standard error. The over-identification bias

arises from the fact that the over-identified sample moment condition is nonzero while it converges

in probability to zero under correct specification.

We propose a new finite sample correction which takes into account for the over-identification

bias for the variance of the linear one-step, two-step, and iterated GMM estimators. For one-step

GMM such as the two-stage least squares (2SLS) estimators, the proposed finite sample correction

is new as the Windmeijer correction does not cover the one-step GMM. For two-step and iterated

GMM, the proposed correction improves upon the Windmeijer correction by additionally correcting

for the over-identification bias. Thus, we doubly correct the finite sample bias of the linear GMM

variance estimator.

We provide an additional formal justification of the proposed double correction by deriving

the stochastic expansions of the GMM estimators under local misspecification where the moment

condition is modeled as a local drifting sequence around zero. The result shows that the double

correction estimates the (co)variance of some higher-order terms which increase with the over-

identification bias. Rothenberg (1984) provides a general treatment of the stochastic expansion and

Newey and Smith (2004) derive the stochastic expansion of GMM and the generalized empirical

likelihood (GEL) estimators under correct specification.

The order of our double correction equals the order of the sample moment condition. Under cor-

rect specification or local misspecification, these terms are Op(n
−1/2) so that the double correction

is a finite-sample correction for the variance. However, the double correction terms become Op(1)

when the moment condition is (globally) misspecified because the sample moment condition is

Op(1). The conventional variance estimator and the Windmeijer correction omit these Op(1) terms

under misspecification. This implies that the conventional variance estimator and the Windmeijer

correction are inconsistent, while our doubly corrected variance estimator is consistent regardless

of whether the moment condition model is (locally or globally) misspecified or not.

Since the doubly corrected variance estimators are robust to misspecification, it is not surprising

that the formulas coincides with the misspecification-robust variance estimator in Lee (2014) for

the one-step and two-step GMM and B. Hansen and Lee (2019) for the iterated GMM. Indeed the

simulation results reported in those papers show that the misspecification-robust variance estimator

often performs better than the conventional variance estimator under correct specification. This

paper provides an answer to this seemingly puzzling result by taking an alternative path to obtain

the identical variance estimator formula.

From a practical point of view, the equivalence between the misspecification-robust formula

and the doubly corrected formula implies that accurate inference under correct specification and

1More than 4,700 citations according to Google Scholar on Aug 5, 2019.
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robust inference under misspecification can be achieved simultaneously, without knowing whether

the moment condition is correctly specified or not. Moreover, it can be easily implemented to

obtain more accurate t tests and confidence intervals (smaller errors in the size and the coverage)

by bootstrapping the t statistic studentized by the doubly corrected variance estimator. Lee (2014)

shows that this bootstrap procedure is robust to misspecification and does not require an ad hoc

correction in the bootstrap sample called recentering.

The finite sample correction of the proposed formula and the Windmeijer formula works for

linear models. For nonlinear models, the order of the remainder term is the same as the correction

terms, so that the corrections do not necessarily provide improvements under correct specification.

Even for nonlinear models, however, the doubly corrected variance estimator is still consistent for

the asymptotic variance of the GMM estimator under misspecification. So the robustness property

holds for both linear and nonlinear models.

Robust inference with possibly misspecified moment condition models has gained considerable

attention in the literature. Maasoumi and Phillips (1982) investigate the limiting distribution

of inconsistent instrumental variable (IV) estimators. Guggenberger (2012) studies the behav-

ior of the weak instrument robust tests under local misspecification. Lee (2018) shows that the

moment condition is misspecified under treatment effect heterogeneity and proposes a robust vari-

ance estimator for 2SLS. Hall and Inoue (2003) derive the asymptotic distribution of GMM under

misspecification. Schennach (2007) proposes an alternative GEL-type estimator robust to global

misspecification. Otsu (2011) analyses moderate deviation behaviors of GMM. Kitamura, Otsu,

and Evdokimov (2013) propose an estimator that achieves optimal minimax robust properties un-

der local misspecification. Lee (2014, 2016) propose a robust nonparametric bootstrap procedure

for GMM and GEL estimators. Hansen and Lee (2019) provide robust inference theory for the

iterated GMM. Rotemberg (1983) and Andrews (2019) characterize the estimands of the linear

GMM under misspecification. Andrews, Gentzkow, and Shapiro (2017) propose to measure the

effect of model misspecification on the sensitivity of parameter estimates for the minimum distance

estimators. Bonhomme and Weidner (2018) and Armstrong and Kolesár (2019) consider minimax

and GMM inference under possible misspecification, respectively.

Finite sample properties of GMM estimators, including the iterated and the continuously up-

dating (CU) GMM are investigated by Hansen, Heaton, and Yaron (1996). Bond and Windmeijer

(2005) provide simulation evidence on the finite sample performance of the asymptotic and boot-

strap tests based on GMM estimators. Hwang and Sun (2018) develop alternative asymptotics and

compare the finite sample properties of the one-step and two-step GMM estimators for dependent

observations.

Our doubly corrected robust variance estimators are generally different than the many instru-

ment and many weak instrument robust variance estimators for IV, GMM, and GEL estimators

proposed by Bekker (1994), Han and Phillips (2006), Newey and Windmeijer (2009), and Ev-

dokimov and Kolesár (2018). Since our double correction formula does not use the many (weak)

instruments asymptotics, it is not robust under such sequences.
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The remainder of the paper is organized as follows. Section 2 reviews the Windmeijer correc-

tion. Section 3 proposes the doubly corrected variance estimator. Section 4 derives the stochastic

expansion of the one-step and two-step GMM estimators under local misspecification and shows

that the double correction estimates the variance of some higher-order terms in the expansion.

Section 5 shows that the doubly corrected variance estimator is misspecification-robust. Section 6

discusses the iterated GMM and the CU GMM. Section 7 derives the double correction formula for

cross-sectional IV and the difference GMM. Finally Section 8 provides extensive simulation results

comparing the double correction and other variance estimators. All the proofs are collected in the

Appendix.

2 Finite Sample Correction of Windmeijer (2005)

Suppose that we observe a sequence of i.i.d. random vectors Xi ∈ Rdx for i = 1, ..., n. Let

g(Xi, θ) be a q× 1 moment function where θ is a k× 1 parameter vector. We assume q > k so that

the model is over-identified and g(Xi, θ) is linear in parameter. When the model is just-identified

(q = k) the correction terms are zero and the analysis becomes trivial. The moment condition

model is correctly specified if

E[g(Xi, θ0)] = 0 (1)

for a unique θ0. Assume E[|g(Xi, θ0)|2] <∞. Then by the Lindeberg-Lévy central limit theorem

1

n

n∑
i=1

g(Xi, θ0) ≡ gn(θ0) = Op(n
−1/2). (2)

Thus, the sample moment condition converges in probability to zero at the rate of n−1/2 under

correct specification (1). This will be used in determining the order of higher-order terms in

Sections 2 and 3. We also assume standard regularity conditions for consistency and asymptotic

normality of the GMM estimators, e.g., the conditions of Theorems 2.6 and 3.4 of Newey and

McFadden (1994).

The one-step GMM estimator is defined as

θ̂1 = arg min
θ∈Θ

gn(θ)′W−1
n gn(θ), (3)

where Wn is a q × q positive definite weight matrix which takes the form of n−1
∑n

i=1W (Xi) and

W (Xi) does not depend on any unknown parameter. Common choices of W (Xi) are the identity

matrix and ZiZ
′
i where Zi is the instrument vector in IV regressions. Let W = EWn, a positive

definite matrix of constants.

Taking θ̂1 as a preliminary (initial) estimator, the two-step efficient GMM estimator is obtained

by minimizing

θ̂2 = arg min
θ∈Θ

gn(θ)′[Ωn(θ̂1)]−1gn(θ), (4)
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where

Ωn(θ) =
1

n

n∑
i=1

g(Xi, θ)g(Xi, θ)
′.

Define Ω = Ω(θ0) where Ω(θ) = EΩn(θ). Since Ωn(θ̂1) is consistent for the asymptotic variance of

the moment function the two-step GMM is efficient.

We also define an infeasible two-step GMM estimator θ̃2 using [Ωn(θ0)]−1 as the weight matrix:

θ̃2 = arg min
θ∈Θ

gn(θ)′[Ωn(θ0)]−1gn(θ). (5)

Investigating the limiting behavior of
√
n(θ̃2−θ0) will help us understand the higher-order behavior

of the feasible two-step estimator
√
n(θ̂2 − θ0).

Let G(Xi) = ∂g(Xi, θ)/∂θ
′. Note that it does not depend on θ due to linearity. Define Gn =

n−1
∑n

i=1G(Xi) and G = EGn. By the first-order Taylor expansion, the first-order condition (FOC)

of the (feasible) two-step GMM can be written as

0 = G′n[Ωn(θ̂1)]−1gn(θ̂2)

= G′n[Ωn(θ̂1)]−1
[
gn(θ0) +Gn(θ̂2 − θ0)

]
,

and so we have

√
n(θ̂2 − θ0) = −

{
G′n[Ωn(θ̂1)]−1Gn

}−1
G′n[Ωn(θ̂1)]−1√ngn(θ0). (6)

Using a similar expansion, we can get

√
n(θ̃2 − θ0) = −

{
G′n[Ωn(θ0)]−1Gn

}−1
G′n[Ωn(θ0)]−1√ngn(θ0), (7)

for the infeasible two-step GMM and

√
n(θ̂1 − θ0) = −(G′nW

−1
n Gn)−1G′nW

−1
n

√
ngn(θ0) (8)

for the one-step GMM.

Asymptotically (6) and (7) have the same limiting distribution so that using Ωn(θ̂1) instead of

Ωn(θ0) does not affect the first-order asymptotic analysis. However, by expanding Ωn(θ̂1) around

θ0 and using (8), Windmeijer (2005) shows that the extra finite sample variations caused by higher-

order terms can be estimated and the accuracy of the variance estimate can be improved for linear

moment condition models.

To see this, we use the first-order Taylor expansion of Ωn(θ̂1) in the right-hand side (RHS) of
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(6) around θ0:

√
n(θ̂2 − θ0) = −

{
G′n[Ωn(θ0)]−1Gn

}−1
G′n[Ωn(θ0)]−1√ngn(θ0) +Dn

√
n(θ̂1 − θ0) +Op(n

−1)

=
√
n(θ̃2 − θ0) +Dn

√
n(θ̂1 − θ0)︸ ︷︷ ︸

=Op(n−1/2)

+Op(n
−1), (9)

where

Dn = F1n + F2n,

F1n = −
∂
{
G′n[Ωn(θ)]−1Gn

}−1

∂θ′

∣∣∣∣∣
θ=θ0

G′n[Ωn(θ0)]−1gn(θ0),

F2n = −
{
G′n[Ωn(θ0)]−1Gn

}−1 ∂G′n[Ωn(θ)]−1gn(θ0)

∂θ′

∣∣∣∣
θ=θ0

are k × k matrices. Since gn(θ0) = Op(n
−1/2) both F1n and F2n are Op(n

−1/2). Combining these

with the assumption that
√
n(θ̂1 − θ0) = Op(1), the second term in the above expansion (9) has

the order of Op(n
−1/2), which is of a lower order than the last term. Thus, by taking into account

for the variation caused by the Op(n
−1/2) term, the finite sample variance of

√
n(θ̂2 − θ0) can be

more accurately approximated. Note that the expansion (9) only holds for linear moment condition

models.

The Windmeijer correction of the variance of
√
n(θ̂2 − θ0) is obtained by

V̂w(θ̂2) = Ṽ (θ̂2) + D̂nṼ (θ̂2) + Ṽ (θ̂2)D̂′n + D̂nṼ (θ̂1)D̂′n, (10)

where D[., j] denotes the jth column of D, θ[j] denotes the jth element of θ, and

Ṽ (θ̂1) =
(
G′nW

−1
n Gn

)−1
(
G′nW

−1
n Ωn(θ̂1)W−1

n Gn

) (
G′nW

−1
n Gn

)−1
,

Ṽ (θ̂2) =
{
G′n[Ωn(θ̂1)]−1Gn

}−1
,

D̂n[., j] =
{
G′n[Ωn(θ̂1)]−1Gn

}−1
G′n

{
[Ωn(θ̂1)]−1 ∂Ωn(θ)

∂θ[j]

∣∣∣∣
θ=θ̂1

[Ωn(θ̂1)]−1

}
gn(θ̂2),

∂Ωn(θ)

∂θ[j]
= Υj(θ) + Υ′j(θ),

Υj(θ) =
1

n

n∑
i=1

gi(Xi, θ)
∂gi(Xi, θ)

∂θ[j]

′
.

Since the estimate of F1n equals to zero because of 0 = G′n[Ωn(θ̂1)]−1gn(θ̂2) by the FOC, it does not

appear in the variance estimator formula. The standard error is obtained by taking the diagonal

elements of

√
V̂w(θ̂2)/n.
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3 Double Correction

The Windmeijer correction takes into account for the extra variability due to using an estimated

parameter in the weight matrix. This correction is effective because D̂n 6= 0, which is due to

gn(θ̂2) 6= 0 in finite sample. In fact, gn(θ) 6= 0 for all θ, which (trivially) implies gn(θ0) 6= 0. We call

this the over-identification bias, which is non-zero for any n in general for over-identified models.

We show that the over-identification bias causes additional finite sample variability in (9). These

additional terms are not considered in the Windmeijer correction (10). We propose alternative vari-

ance estimators that fully incorporate the additional variations induced by the over-identification

bias. These variance estimators will replace Ṽ (θ̂2) and Ṽ (θ̂1) in (10) without affecting the order of

finite sample corrections, leading to our doubly corrected variance estimator.

Assume that

Gn −G =Op(n
−1/2), (11)

vec(Wn −W ) =Op(n
−1/2), (12)

vec(Ωn(θ0)− Ω) =Op(n
−1/2), (13)

which hold under appropriate regularity conditions. Since G′Ω−1g = 0 by the population FOC and

[Ωn(θ0)]−1 − Ω−1 = −Ω−1 (Ωn(θ0)− Ω) [Ωn(θ0)]−1, (14)

we can write

G′n[Ωn(θ0)]−1gn(θ0)

= G′Ω−1gn(θ0)︸ ︷︷ ︸
=Op(n−1/2)

+ (Gn −G)′Ω−1gn(θ0)−G′Ω−1 (Ωn(θ0)− Ω) Ω−1gn(θ0)︸ ︷︷ ︸
=Op(n−1)

+Op(n
−3/2). (15)

Using (15), the expansion of the infeasible two-step GMM (7) can be written as

√
n(θ̃2 − θ0) =−

{
G′n[Ωn(θ0)]−1Gn

}−1 [
G′Ω−1√ngn(θ0) (16)

+
√
n(Gn −G)′Ω−1gn(θ0)−G′Ω−1√n (Ωn(θ0)− Ω) Ω−1gn(θ0)

]
(17)

+Op(n
−1). (18)

Similarly,

√
n(θ̂1 − θ0) =−

{
G′nW

−1
n Gn

}−1 [
G′W−1√ngn(θ0) (19)

+
√
n(Gn −G)′W−1gn(θ0)−G′W−1√n (Wn −W )W−1gn(θ0)

]
(20)

+Op(n
−1), (21)
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which simplifies to

√
n(θ̂1 − θ0) = −

{
G′nGn

}−1 [
G′
√
ngn(θ0) +

√
n(Gn −G)′gn(θ0)

]
(22)

when Wn = I. From the above expansions it is clear that (i) to take into account for the over-

identification bias we need to consider the extra variations from
√
n(Gn −G) and

√
n(Ωn(θ)− Ω)

(or
√
n(Wn −W ) for the one-step GMM), and (ii) the order of the remainder term of the original

expansion (9) is not changed.

Using the expansions (16)-(18) an (19)-(21), the expansion of the two-step GMM can be written

as

√
n(θ̂2 − θ0) =−

{
G′n[Ωn(θ0)]−1Gn

}−1 [
G′Ω−1√ngn(θ0) (23)

+
√
n(Gn −G)′Ω−1gn(θ0)−G′Ω−1√n (Ωn(θ0)− Ω) Ω−1gn(θ0)

]
(24)

−Dn

{
G′nW

−1
n Gn

}−1 [
G′W−1√ngn(θ0) (25)

+
√
n(Gn −G)′W−1gn(θ0)−G′W−1√n (Wn −W )W−1gn(θ0)

]
(26)

+Op(n
−1). (27)

In finite sample, gn(θ0) 6= 0 because gn(θ) 6= 0 for all θ, and this causes extra variations through

the terms in (24) and (26). Similar to the Windmeijer correction, by taking into account for these

(asymptotically negligible) terms in estimating the variance we can make more accurate inference.

Since Dn = Op(n
−1/2), the terms in (26) are Op(n

−1) multiplied by Dn, which is the same order

with the remainder term. Thus, considering those terms in (26) does not necessarily provide finite

sample corrections. However, including these terms are critical to get robustness to misspecification,

which is shown in Section 5.

The expansion for the one-step GMM is (19)-(21) and those terms in (20) are Op(n
−1/2). Thus,

by considering the finite sample variation caused by these terms provide more accurate inference.

This correction for the one-step GMM is not considered in Windmeijer (2005) and is new.

The relationship between the expansions in (19)-(21) and (23)-(27), and their respective higher-

order stochastic expansions will be explained in the next Section.

The doubly corrected variance estimator of
√
n(θ̂2 − θ0) is

V̂dc(θ̂2) = V̂ (θ̂2) + D̂nĈ(θ̂1, θ̂2) + Ĉ(θ̂1, θ̂2)′D̂′n + D̂nV̂dc(θ̂1)D̂′n, (28)

where

V̂ (θ̂2) =
(
G′n[Ωn(θ̂1)]−1Gn

)−1
Σn(θ̂2,Ωn(θ̂1))

(
G′n[Ωn(θ̂1)]−1Gn

)−1
, (29)

V̂dc(θ̂1) =
(
G′nW

−1
n Gn

)−1
Σn(θ̂1,Wn)

(
G′nW

−1
n Gn

)−1
, (30)

Ĉ(θ̂1, θ̂2) =
(
G′nW

−1
n Gn

)−1 1

n

n∑
i=1

mi(θ̂1,Wn)mi(θ̂2,Ωn(θ̂1))′
(
G′n[Ωn(θ̂1)]−1Gn

)−1
, (31)
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and

Σn(θ,Ξn(φ)) =
1

n

n∑
i=1

mi(θ,Ξn(φ))mi(θ,Ξn(φ))′, (32)

mi(θ,Ξn(φ)) =G′n[Ξn(φ)]−1g(Xi, θ) +G(Xi)
′[Ξn(φ)]−1gn(θ)

−G′n[Ξn(φ)]−1Ξ(Xi, φ)[Ξn(φ)]−1gn(θ),

Ξn(φ) =
1

n

n∑
i=1

Ξ(Xi, φ).

When Ξn(φ) = Ξ(Xi, φ) = I, the last term of m(θ,Ξn(φ)) drops. Note that mi(θ,Ξn(φ)) does not

have to include the centered processes for G(Xi) and Ξ(Xi, φ) because the FOCs hold evaluated at

(θ̂2,Ωn(θ̂1)) and (θ̂1,Wn), respectively.

The doubly corrected variance estimator for the two-step GMM, V̂dc(θ̂2), provides the same

order of finite sample correction as the Windmeijer correction, V̂w(θ̂2). The standard error is

obtained by taking the diagonal elements of

√
V̂dc(θ̂2)/n.

The doubly corrected variance estimator for the one-step GMM, V̂dc(θ̂1), takes into account

for the variations up to the order of Op(n
−1/2) in the expansion (19)-(21). This correction is not

considered in Windmeijer (2005). The standard error is obtained by taking the diagonal elements

of

√
V̂dc(θ̂1)/n.

4 Stochastic Expansion of GMM Estimators

In this section, we provide formal stochastic expansions of GMM estimators assuming that the

moment condition evaluated at the true value is a local drifting sequence around zero:

E[g(Xin, θ0)] =
δ√
n

(33)

for some nonzero δ ∈ Rq that depends on θ0. Note that the observations now form a triangular

array {Xin : i = 1, ..., n, n ∈ N} because (33) changes with n. Under (33) and regularity conditions,

θ̂1 and θ̂2 are both consistent for θ0 and by the central limit theorem

√
n(gn(θ0)− E[g(Xin, θ0)]) = Op(1). (34)

This setup is referred to as local misspecification in the literature, e.g., Newey (1985), Otsu (2011),

Guggenberger (2012), Conley, Hansen, and Rossi (2012), Andrews, Gentzkow, and Shapiro (2017),

Bonhomme and Weidner (2018), and Armstrong and Kolesár (2019). Since gn(θ0) is still Op(n
−1/2),

local misspecification and over-identification bias are essentially equivalent. This setup is useful in

distinguishing the effect of the over-identification bias (local misspecification) on the point estimate

and on the variance. That is, the local-to-zero device provides a better approximation of the finite

sample distribution of the estimator but it should not be taken as the true data-generating process.
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Under correct specification (1), Newey and Smith (2004) provide a thorough analysis on the

higher-order bias and variance of the stochastic expansions of GMM and GEL estimators up to the

order of Op(n
−1) in the form of

√
n(θ̂ − θ0) = ψ0 + ψ1/

√
n+ ψ2/n+Rn (35)

where ψ0, ψ1, ψ2 are all Op(1) and Rn = Op(n
−3/2). Our analysis reveals additional higher-order

terms of the order Op(n
−1/2) in the RHS of (35) as well as the first order asymptotic bias in

the point estimate. Specifically, we derive the exact expressions of ψ0 and ψ1 for the one-step

and the two-step GMM to show that our double correction approximates the (co)variance of some

higher-order terms. Deriving the full expression of ψ2 is not attempted because the derivation is

quite tedious and is not required to show the relationship between the double correction and the

higher-order expansion.

Let g(θ) = E[g(Xin, θ)] and write g = g(θ0). Define

g̃(θ) =
n∑
i=1

(g(Xin, θ)− g(θ)) /
√
n,

G̃ =
n∑
i=1

(G(Xin)−G)/
√
n,

W̃ =
n∑
i=1

(W (Xin)−W )/
√
n,

Ω̃(θ) =
n∑
i=1

(g(Xin, θ)g(Xin, θ)
′ − Ω(θ))/

√
n,

and write g̃ = g̃(θ0) and Ω̃ = Ω̃(θ0). First we consider the one-step GMM estimator.

Theorem 1. Suppose that (33) holds, g̃ = Op(1), G̃ = Op(1), W̃ = Op(1), the FOC of the one-step

GMM holds with probability approaching one (w.p.a. 1), G is full column rank, and W > 0. In

addition, suppose that the second moment of g(Xin, θ0), G(Xin), and W (Xin) exist and are finite.

Then, the one-step GMM estimator has the following expansion w.p.a.1.

√
n(θ̂1 − θ0) = ηW + ψ̃W,0 +

1√
n

(
ψ̃W,1 + q̃W + B̃W

(
ηW + ψ̃W,0

))
+Op

(
1

n

)
(36)
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where

ηW = −(G′W−1G)−1G′W−1δ, (37)

ψ̃W,0 = −(G′W−1G)−1G′W−1g̃, (38)

ψ̃W,1 = −(G′W−1G)−1
(
G̃′W−1δ −G′W−1W̃W−1δ

)
, (39)

q̃W = −(G′W−1G)−1
(
G̃W−1g̃ −G′W−1W̃W−1g̃

)
(40)

B̃W = −(G′W−1G)−1
(
G̃′W−1G−G′W−1W̃W−1G+G′W−1G̃

)
. (41)

The first term in the expansion of Theorem 1, ηW , is the constant bias due to local misspecifi-

cation. It shifts the mean of the distribution but does not alter the variance. This bias cannot be

consistently estimated from the data in general. Conley, Hansen, and Rossi (2012) impose a prior

distribution on δ and Armstrong and Kolesár (2019) set a pre-specified bound on δ to construct

bias-corrected confidence intervals.

The conventional variance estimator estimates the variance of ψ̃W,0. The doubly corrected

variance estimator (30) estimates the variance of ψ̃W,0 + ψ̃W,1/
√
n. Since the variance of ψ̃W,1

increases with δ, the double correction would be more effective with a larger δ. This does not

necessarily imply potentially larger bias in the point estimate, however. The magnitude of change

in ηW and in the variance due to δ depends on the data matrices. For example, Andrews, Gentzkow,

and Shapiro (2017) use ηW with a given δ to check how sensitive the estimator is. So if the

estimator is not sensitive (to local violation of the moment condition), then ηW does not change

much while the variance may be significantly affected. Table 1 shows an example that the bias in

the point estimate does not increase with δ while the standard deviation of the estimator increases

substantially (n = 50).

On the other hand, the double correction omits some terms of the same order, (q̃W + B̃W (ηW +

ψ̃W,0))/
√
n. We discuss these terms one by one. First, the variance of (q̃W + B̃W ψ̃W,0)/

√
n does

not increase with δ because g̃ is a centered process. Second, Var(B̃W ηW /
√
n) increases with δ but

its sample analogue is zero because the sample analogue of ηW is zero (FOC). So the (co)variance

of this term cannot be estimated.

An estimator of the higher-order variance up to Op(n
−1) of Newey and Smith (2004) would

include the variance of (q̃W + B̃W (ηW + ψ̃W,0))/
√
n and the covariance between ψ̃W,0 and (q̃W +

B̃W (ηW + ψ̃W,0))/
√
n+ ψ̃W,2/n where ψ̃W,2 is the higher-order term corresponding ψ2 in (35). Since

these terms are not taken into account, the doubly corrected variance estimator is not an estimator

of the higher-order variance of Newey and Smith (2004). Although the higher-order variance up

to Op(n
−1) could be estimated by further expanding (36) up to the remainder term of the order

Op(n
−3/2) the resulting estimator would include many terms to be estimated which would not be

practical. Thus, the doubly corrected variance estimator can be viewed as a convenient alternative

to the higher-order variance estimator.

Next we consider the two-step GMM estimator.

11



Theorem 2. Suppose that the assumptions of Theorem 1 hold. In addition, Ω̃ = Op(1), the FOC

of the two-step GMM holds w.p.a.1, Ω > 0, and the fourth moment of g(Xin, θ0) exists and is finite.

Then the two-step GMM estimator has the following expansion w.p.a.1.

√
n(θ̂2 − θ0)

=

[
ηΩ +

1√
n

((D +HηΩ) ηW )

]
+ ψ̃Ω,0 +

1√
n

(
ψ̃Ω,1 +

(
D + C̃ +HηΩ +H

ψ̃Ω,0

)
ψ̃W,0 + q̃Ω + B̃Ω

(
ηΩ + ψ̃Ω,0

)
+
(
C̃ +H

ψ̃Ω,0

)
ηW

)
+

1

n
Dψ̃W,1 +Op

(
1

n

)
where

ηΩ = −(G′Ω−1G)−1G′Ω−1δ, (42)

ψ̃Ω,0 = −(G′Ω−1G)−1G′Ω−1g̃, (43)

ψ̃Ω,1 = −(G′Ω−1G)−1
(
G̃′Ω−1δ −G′Ω−1Ω̃Ω−1δ

)
, (44)

q̃Ω = −(G′Ω−1G)−1
(
G̃′Ω−1g̃ −G′Ω−1Ω̃Ω−1g̃

)
, (45)

B̃Ω = −(G′Ω−1G)−1
(
G̃′Ω−1G−G′Ω−1Ω̃Ω−1G+G′Ω−1G̃

)
, (46)

D[., j] = (G′Ω−1G)−1G′Ω−1 ∂Ω(θ)

∂θ[j]

∣∣∣∣
θ=θ0

Ω−1δ, (47)

C̃[., j] = (G′Ω−1G)−1G′Ω−1 ∂Ω(θ)

∂θ[j]

∣∣∣∣
θ=θ0

Ω−1g̃, (48)

Hv[., j] = (G′Ω−1G)−1G′Ω−1 ∂Ω(θ)

∂θ[j]

∣∣∣∣
θ=θ0

Ω−1Gv. (49)

The terms in the square brackets in the expansion, ηΩ + (D+HηΩ)ηW /
√
n is the constant bias

due to local misspecification which cannot be consistently estimated in general. It only shifts the

mean of the distribution but does not affect the variance.

The conventional, the Windmeijer correction, and the doubly corrected variance estimators

estimate the variance of

conventional: ψ̃Ω,0,

Windmeijer: ψ̃Ω,0 +
Dψ̃W,0√

n
,

double correction: ψ̃Ω,0 +
ψ̃Ω,1 +Dψ̃W,0√

n
+
Dψ̃W,1
n

,

respectively. Similar to the one-step GMM expansion, the double correction estimates the variance

of the higher-order terms that increase with δ: D, ψ̃Ω,1, and ψ̃W,1. In contrast, some (or all) of

12



these terms are omitted in the Windmeijer correction (or the conventional variance estimator). This

implies that those variance estimators tend to differ more with a larger δ, which is also supported

by the simulation experiment in Section 8. Note that a larger δ does not necessarily imply larger

bias in the point estimate via ηΩ and ηW . For example, Table 1 shows that the bias in the two-step

GMM point estimate decreases with δ but the three variance estimators differ substantially for a

large δ.

Including (ψ̃Ω,1 +Dψ̃W,0)/
√
n+Dψ̃W,1/n in the double correction formula is also important to

get robustness to global (fixed) misspecification, where δ = O(
√
n), because these terms become

Op(1). In this case, the expansion should be centered around the pseudo-true value which is

defined as the unique minimizer of the GMM criterion and ηW and ηΩ become zero because of the

population FOC. We show that the doubly corrected variance estimator is misspecification-robust

in the next section.

By a similar argument with the one-step GMM, both the doubly corrected and the Windmeijer

corrected variance estimators are not the higher-order variance estimator of Newey and Smith

(2004) because some higher-order terms that constitute the higher-order variance up to Op(n
−1)

are omitted in both corrections.

Remark (Edgeworth expansion) The improved approximation to the finite sample variance of

the GMM estimators by the double correction is different from the higher-order refinement via the

Edgeworth expansion which expands the finite sample distribution function of the (standardized)

test statistic. Using analytical expansions (Rothenberg, 1984; Hansen, 2006; Kundhi and Rilstone,

2013) or the bootstrap (Hall, 1992; Hall and Horowitz, 1996; Andrews, 2002; Lee, 2014, 2016), a

critical value can be obtained which gives a smaller error in the size of the test or in the coverage

probability of the confidence interval.

5 Robustness to Misspecification

Both the Windmeijer corrected and the conventional variance estimators, V̂w(θ̂2) and Ṽ (θ̂2), are

consistent for the asymptotic variance of
√
n(θ̂2−θ0) under correct specification, E[g(Xi, θ0)] = 0. In

words, correct specification means that an over-identified model exactly holds at a unique parameter

value θ0, but this may be too restrictive in reality. Indeed, the sample moment condition model does

not hold for any finite sample size n almost surely if the model is over-identified, i.e., gn(θ̂) 6= 0.

Thus, it is reasonable to view the assumed moment condition model as the best approximating

model and to allow for possible misspecification.

Under (global) misspecification, which is defined as

E[g(Xi, θ)] = δ(θ) 6= 0, ∀θ ∈ Θ, (50)

where δ(θ) is a vector of constants and Θ is a compact parameter space, the GMM estimator is

consistent for the pseudo-true value, which is defined as the unique minimizer of the population

13



GMM criterion given the weight matrix (Hall and Inoue, 2003). Thus, the pseudo-true values of

the one-step and two-step GMM may differ from each other. In addition, the asymptotic variance

has more terms that are assumed away under correct specification. Thus, the conventional variance

estimators are no longer consistent under misspecification. Lee (2014) proposes variance estimators

for the one-step and two-step GMM under misspecification. Hansen and Lee (2019) propose a

similar robust variance estimator for the iterated GMM. These variance estimators are shown to

be consistent regardless of misspecification and they are referred to as the misspecification-robust

variance estimator, hereinafter.

Since the misspecification-robust variance estimators contain additional terms which are not

present in the conventional variance estimator, it has been generally conjectured less accurate than

the conventional variance estimator under correct specification. We show that this conjecture is not

true by showing that the doubly corrected variance estimator V̂dc(θ̂2) is the misspecification-robust

variance estimator.

The equivalence holds for the following reasons. First, the Windmeijer correction that accounts

for the effect of θ̂1 in the weight matrix corrects for the pseudo-true value of the one-step GMM

being different from that of the two-step GMM. Our double correction corrects for this bias too.

Second, the double correction corrects for the over-identification bias which becomes asymptotically

non-negligible misspecification bias. Overall, the double correction makes the expansions (23)-(27)

robust to misspecification.

To formally show that V̂dc(θ̂2) is consistent for the asymptotic variance under misspecification,

we first make some definitions. Define the one-step and two-step GMM (pseudo-)true values as

θ1 = arg min
θ

E[g(Xi, θ)]
′W−1E[g(Xi, θ)], (51)

θ2 = arg min
θ

E[g(Xi, θ)]
′[Ω(θ1)]−1E[g(Xi, θ)]. (52)

In general θ1 6= θ2 but θ1 = θ2 = θ0 under correct specification. Write gj = E[g(Xi, θj)] and

Ωj = Ω(θj) for j = 1, 2. (Global) misspecification implies that gn(θj) = Op(1) for j = 1, 2.

Sufficient conditions for consistency and asymptotic normality under misspecification for the one-

step and two-step GMM is given in Hall and Inoue (2003) for stationary data and for the one-step

and iterated GMM is given in B. Hansen and Lee (2019) for clustered data.

Take the FOC of the two-step GMM. We can use the expansions (6)-(8) by letting θ1 6= θ2.

Then (9) can be written as

√
n(θ̂2 − θ2) =−

{
G′n[Ωn(θ1)]−1Gn

}−1
G′n[Ωn(θ1)]−1√ngn(θ2)

+D∗n
√
n(θ̂1 − θ1) +Op(n

−1/2‖gn(θ2)‖)

=
√
n(θ̃∗2 − θ2) +D∗n

√
n(θ̂1 − θ1) +Op(n

−1/2‖gn(θ2)‖), (53)

where θ̃∗2 is defined as

θ̃∗2 = arg min
θ∈Θ

gn(θ)′[Ωn(θ1)]−1gn(θ), (54)
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and

D∗n = F ∗1n + F ∗2n,

F ∗1n = −
∂
{
G′n[Ωn(θ)]−1Gn

}−1

∂θ′

∣∣∣∣∣
θ=θ1

G′n[Ωn(θ1)]−1gn(θ2),

F ∗2n = −
{
G′n[Ωn(θ1)]−1Gn

}−1 ∂G′n[Ωn(θ)]−1gn(θ2)

∂θ′

∣∣∣∣
θ=θ1

.

Since D∗n = Op(‖gn(θ2)‖), the order of finite sample correction depends on the degree of misspeci-

fication, from being Op(n
−1/2) under correct specification to Op(1) under (global) misspecification.

Note that both
√
n(θ̃∗2 − θ2) and D∗n

√
n(θ̂1 − θ1) in (53) are Op(1) under misspecification and this

will alter the first-order asymptotic variance.

Using the fact that G′Ω−1
j gj = 0 for j = 1, 2, the FOC of the infeasible two-step GMM (54) can

be expanded as

√
n(θ̃∗2 − θ2) =−

{
G′n[Ωn(θ1)]−1Gn

}−1 {
G′n[Ωn(θ1)]−1√n (gn(θ2)− g2)

+
√
n (Gn −G)′ [Ωn(θ1)]−1g2 −G′Ω−1

1

√
n (Ωn(θ1)− Ω1) [Ωn(θ1)]−1g2

}
. (55)

The FOC of the one-step GMM can be expanded similarly:

√
n(θ̂1 − θ1) =−

{
G′nW

−1
n Gn

}−1 [
G′nW

−1
n

√
n (gn(θ1)− g1)

+
√
n(Gn −G)′W−1

n g1 −G′W−1√n (Wn −W )W−1
n g1

]
. (56)

The expansions (55) and (56) are misspecification-robust versions of (7) and (8), allowing for

different probability limits of the one-step and two-step GMM estimators and taking into account

for the misspecification (over-identification) bias.

The following theorem shows that the doubly corrected variance estimators of the one-step and

two-step linear GMM are consistent for the asymptotic variance matrices under misspecification.

The proof is given in the appendix.

Theorem 3. Suppose that (50) holds, Gn−G = Op(n
−1/2), Wn−W = Op(n

−1/2), Ωn(θj)−Ωj =

Op(n
−1/2), θ̂j− θj = Op(n

−1/2) for j = 1, 2, W and Ω1 are nonsingular, and G is full column rank.

Then, as n→∞, for j = 1, 2,

V̂dc(θ̂j)
−1/2√n(θ̂j − θj)

d−→ N(0, Ik). (57)

Theorem 3 also implies that the bootstrap t test and confidence intervals (CIs) based on the

GMM t statistic studentized with the doubly corrected standard error automatically achieve higher-

order refinements over the asymptotic t test and CIs regardless of misspecification (Lee, 2014). In

contrast, the bootstrap t test and CIs based on the GMM t statistic studentized with the conven-
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tional or the Windmeijer standard error requires an additional recentering procedure in resampling

to correct for the over-identification bias to achieve higher-order refinements. Furthermore, the

conventional bootstrap procedure with recentering is not valid under misspecification. Thus, our

doubly corrected variance estimator formula provides a very convenient way to get more accurate

but also robust bootstrap tests and CIs.

Remark (Weight matrix) All the results so far hold if we replace Ωn(θ) with the centered weight

matrix

Ωc
n(θ) =

1

n

n∑
i=1

(g(Xi, θ)− gn(θ)) (g(Xi, θ)− gn(θ))′ . (58)

The matrices Dn and D̂n would need to be modified accordingly. The centered weight matrix is

consistent for the asymptotic variance matrix of the moment equation under misspecification. B.

Hansen (2019) recommends using the centered weight matrix for this reason. Hall (2000) shows that

the GMM over-identification test statistic with a centered heteroskedasticity-and-autocorrelation-

consistent (HAC) weight matrix leads to more powerful tests in the time series setting.

6 Iterated GMM and Continuously Updating GMM

Both the Windmeijer and our double correction correct for the extra variation due to the weight

matrix being evaluated at an estimate rather than the true value. A natural question is whether

similar finite sample corrections can be obtained for other GMM estimators, namely the iterated

GMM of B. Hansen and Lee (2019) and the continuously-updating (CU) GMM of L. Hansen,

Heaton, and Yaron (1996). We show that the answer is yes for the iterated GMM and also show

that the double correction formula is the same as the misspecification-robust formula. For the CU

GMM, the answer is negative.

Assume correct specification. The iterated GMM estimator is obtained by iterating the two-step

efficient GMM estimator until convergence. By iteration the dependence of the final estimator on

the previous step estimators disappears. The FOC is given by

0 = G′n[Ωn(θ̂)]−1gn(θ̂) (59)

where θ̂ is the iterated GMM. Assume that gn(θ0) = Op(n
−1/2) and θ̂ − θ0 = Op(n

−1/2) whose

sufficient conditions are provided in Hansen and Lee (2019). By applying the first-order Taylor

expansion around θ0 to gn(θ̂) and Ωn(θ̂) sequentially

√
n(θ̂ − θ0) =−

{
G′n[Ωn(θ0)]−1Gn

}−1
G′n[Ωn(θ0)]−1√ngn(θ0) +Dn

√
n(θ̂ − θ0) +Op(n

−1)

and thus

√
n(θ̂ − θ0) =−

{
G′n[Ωn(θ0)]−1Gn(Ik −Dn)

}−1
G′n[Ωn(θ0)]−1√ngn(θ0) +Op(n

−1). (60)
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Windmeijer (2000) proposes a finite sample corrected variance estimator based on the expansion

(60). We proceed one additional step. By further expanding to take into account for the over-

identification bias, we have

√
n(θ̂ − θ0) = −

{
G′n[Ωn(θ0)]−1Gn(Ik −Dn)

}−1 [
G′Ω−1√ngn(θ0) (61)

+
√
n(Gn −G)′Ω−1gn(θ0)−G′Ω−1√n (Ωn(θ0)− Ω) Ω−1gn(θ0)

]
+Op(n

−1). (62)

Since the remainder term is Op(n
−1), by estimating the variance of the terms in (61)-(62) up to

Op(n
−1/2) we can get the same order of finite sample correction with the doubly corrected two-step

GMM variance estimator.

The doubly corrected variance estimator for the iterated GMM is

V̂dc(θ̂) = {G′n[Ωn(θ̂)]−1Gn(Ik − D̂n)}−1Σn(θ̂,Ωn(θ̂)){G′n[Ωn(θ̂)]−1Gn(Ik − D̂n)}−1′, (63)

where Σn(θ̂,Ωn(θ̂)) is defined in (32) and D̂n is evaluated at θ̂. Not surprisingly, this formula is

identical to the misspecification-robust variance estimator for the iterated GMM of Hansen and

Lee (2019). The finite sample corrected formula suggested by Windmeijer (2000) is

V̂w(θ̂) = (Ik − D̂n)−1
(
G′n[Ωn(θ̂)]−1Gn

)−1
(Ik − D̂n)−1′ . (64)

On the other hand, a similar finite sample correction may not be obtained for the CU GMM.

Windmeijer (2005) showed that if the derivative of the moment function is a function of the pa-

rameter, then the proposed formula would not necessarily give finite sample corrections. The same

argument applied to CU GMM. Let θ̂ be the CU GMM estimator. For simplicity, let k = 1 so that

θ is scalar. The FOC is

0 =

(
Gn −

1

2
gn(θ̂)′[Ωn(θ̂)]−1 ∂Ωn(θ)

∂θ

∣∣∣∣
θ=θ̂

)′
[Ωn(θ̂)]−1gn(θ̂). (65)

This shows that even when the moment function is linear, the effective derivative that forms the

FOC still depends on the parameter. Thus, the misspecification-robust variance formula for CU

GMM does not necessarily provide a finite sample correction under correct specification. Since

GEL estimators have similar non-linear FOC even with linear moment functions, we expect similar

conclusions.
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7 Examples

7.1 Cross-sectional IV

Consider the linear IV model yi = X ′iθ + ei with the moment conditions E[Ziei] = 0. The

two-stage least squares (2SLS) estimator is given by

θ̂1 = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′Y. (66)

where Y = [y1, · · · , yn]′, X = [X1, · · · , Xn]′, and Z = [Z1, · · · , Zn]′ are n× 1, n× k, and n× q data

matrices. Using the 2SLS as the preliminary estimator, the two-step efficient GMM estimator is

given by

θ̂2 = (X ′ZΩ̂−1
1 Z ′X)−1X ′ZΩ̂−1

1 Z ′Y (67)

where

Ω̂1 =
1

n

n∑
i=1

ZiZ
′
iê

2
1i,

ê1i = yi −X ′i θ̂1.

Also define ê2i = yi −X ′i θ̂2 and the n× 1 residual vector êj = Y −Xθ̂j for j = 1, 2.

The doubly corrected variance estimators of the 2SLS and two-step GMM are

V̂dc(θ̂1) =

(
1

n
X ′Z(Z ′Z)−1Z ′X

)−1 1

n

n∑
i=1

m̂1im̂
′
1i

(
1

n
X ′Z(Z ′Z)−1Z ′X

)−1

, (68)

V̂dc(θ̂2) =V̂ (θ̂2) + D̂nĈ(θ̂1, θ̂2) + Ĉ(θ̂1, θ̂2)′D̂′n + D̂nV̂dc(θ̂1)D̂′n, (69)

where

V̂ (θ̂2) =

(
1

n2
X ′ZΩ̂−1

1 Z ′X

)−1
(

1

n

n∑
i=1

m̂2im̂
′
2i

)(
1

n2
X ′ZΩ̂−1

1 Z ′X

)−1

,

Ĉ(θ̂1, θ̂2) =

(
1

n
X ′Z(Z ′Z)−1Z ′X

)−1
(

1

n

n∑
i=1

m̂1im̂
′
2i

)(
1

n2
X ′ZΩ̂−1

1 Z ′X

)−1

,

D̂n =
2

n

(
X ′ZΩ̂−1

1 Z ′X
)−1

X ′ZΩ̂−1
1

n∑
i=1

Zi

(
ê1iZ

′
iΩ̂
−1
1 Z ′ê2

)
X ′i,

m̂1i =X ′Z(Z ′Z)−1Ziê1i +XiZ
′
i(Z
′Z)−1Z ′ê1 −X ′Z(Z ′Z)−1ZiZ

′
i(Z
′Z)−1Z ′ê1,

m̂2i =
1

n
X ′ZΩ̂−1

1 Ziê2i +
1

n
XiZ

′
iΩ̂
−1
1 Z ′ê2 −

1

n2
X ′ZΩ̂−1

1 ZiZ
′
iê

2
1iΩ̂
−1
1 Z ′ê2.

It is worth observing that the doubly corrected variance estimator V̂dc(θ̂2) reduces to the Wind-

meijer corrected one V̂w(θ̂2) if (i) the last two terms in m̂2i and m̂1i are ignored and (ii) ê1i replaces

ê2i in m̂2i. By (i) and (ii), the variance estimators V̂ (θ̂2) and V̂dc(θ̂1) reduce to conventional ones
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Ṽ (θ̂2) and Ṽ (θ̂1), and Ĉ(θ̂1, θ̂2) becomes Ṽ (θ̂2). In general, however, V̂dc(θ̂2) 6= V̂w(θ̂2) because

Z ′êj 6= 0 for j = 1, 2, so the last two terms of m̂ji are non-zero. Furthermore, it is critical (and

reasonable) to use ê2i in m̂2i to get robustness under misspecification.

The iterated GMM estimator is obtained as follows. Let θ̂0 be any initial value. The s-step

GMM estimator for s ≥ 1 is given by

θ̂s = (X ′ZΩ̂−1
s−1Z

′X)−1X ′ZΩ̂−1
s−1Z

′Y, (70)

where

Ω̂s−1 =
1

n

n∑
i=1

ZiZ
′
i(yi −X ′i θ̂s−1)2.

We iterate the s-step GMM estimator until convergence given a preset tolerance, e.g. ‖θ̂s− θ̂s−1‖ <
10−5 to obtain the iterated GMM estimator θ̂. The residuals are êi = yi−X ′i θ̂. Also let ê = Y −Xθ̂
be the n× 1 residual vector.

The doubly corrected variance estimator is

V̂dc(θ̂) = Ĥ−1

(
1

n

n∑
i=1

m̂im̂
′
i

)
Ĥ−1′, (71)

Ĥ =
1

n2
X ′ZΩ̂−1Z ′X − 2

n3
X ′ZΩ̂−1

n∑
i=1

Zi

(
êiZ
′
iΩ̂
−1Z ′ê

)
X ′i,

m̂i =
1

n
X ′ZΩ̂−1Ziêi +

1

n
XiZ

′
iΩ̂
−1Z ′ê− 1

n2
X ′ZΩ̂−1ZiZ

′
iê

2
i Ω̂
−1Z ′ê.

In comparison, the Windmeijer corrected and the conventional variance estimators are

V̂w(θ̂) = Ĥ−1

(
1

n2
X ′ZΩ̂−1Z ′X

)
Ĥ−1′ , (72)

Ṽ (θ̂) =

(
1

n2
X ′ZΩ̂−1Z ′X

)−1

. (73)

7.2 A Panel Data Model

Consider a panel data model with a scalar regressor

yit = xitβ + ηi + vit, (74)

for i = 1, ..., N and t = 1, ..., T where ηi is the unobserved individual effects, the unknown parameter

of interest is β, and the single regressor xit is predetermined with respect to vit (possibly including

lags of the dependent variable), i.e., E(xitvis) = 0 for all s ≥ t. After first-differencing,

∆yit = ∆xitβ + ∆vit, t = 2, ..., T,
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the standard approach to estimate β is the first differenced GMM (Arellano and Bond (1991)

estimator) with the moment conditions E(Z ′i∆vi) = 0 where Zi is the (T − 1) × T (T − 1)/2

instrument matrix

Zi = diag(z′i2, · · · , z′iT )

with all possible lagged instruments zit = (xi1, · · · , xit−1)′ for 2 ≤ t ≤ T and ∆vi = (∆vi2, · · · ,∆viT )′.

The total number of observations is n = N(T − 1).

Our doubly corrected variance estimator can be used for the model (74) with additional strictly

exogenous, predetermined, or endogenous variables as well as the system GMM estimator (Arellano

and Bover (1995) and Blundell and Bond (1998)) by stacking and modifying additional moment

conditions into the instrument sets Zi. If the panel is unbalanced the instrument matrix can be

constructed as described in Arellano and Bond (1991).

Using the initial weight matrix Ŵ = n−1
∑N

i=1 Z
′
iHZi, where H is a matrix with 2’s on the

main diagonal, −1’s on the first off-diagonals and zero elsewhere, the one-step GMM estimator is

given by

β̂1 = (∆X ′ZŴ−1Z ′∆X)−1∆X ′ZŴ−1Z ′∆Y

where Z = (Z ′1, ..., Z
′
N )′ is the instrument matrix, ∆Y = (∆y′1, ...,∆y

′
N )′, ∆X = (∆x′1, ...,∆x

′
N )′,

∆yi = (∆yi2, ...,∆yiT )′, and ∆xi = (∆xi2, ...,∆xiT )′. Note that scaling the weight matrix does not

affect the estimator. The doubly corrected variance estimator of β̂1 is given by

V̂dc(β̂1) = n2
(

∆X ′ZŴ−1Z ′∆X
)−1

(
1

n

N∑
i=1

m̂1im̂
′
1i

)(
∆X ′ZŴ−1Z ′∆X

)−1
,

m̂1i = ∆X ′ZŴ−1Z ′i∆v̂1i + ∆x′iZiŴ
−1Z ′∆v̂1 −

1

n
∆X ′ZŴ−1Z ′iHZiŴ

−1Z ′∆v̂1,

where ∆v̂1i = ∆yi −∆xiβ̂1 and ∆v̂1 = (∆v̂′11, ...,∆v̂
′
1N )′. The doubly corrected standard error is

obtained by taking the diagonal elements of

√
V̂dc(β̂1)/n. In comparison, the conventional variance

estimator is given by

Ṽ (β̂1) = n2
(

∆X ′ZŴ−1Z ′∆X
)−1

∆X ′ZŴ−1Ω̂1Ŵ
−1Z ′∆X

(
∆X ′ZŴ−1Z ′∆X

)−1

where

Ω̂1 =
1

n

N∑
i=1

Z ′i∆v̂1i∆v̂
′
1iZi. (75)

Next, consider the two-step efficient GMM estimator

β̂2 = (∆X ′ZΩ̂−1
1 Z ′∆X)−1∆X ′ZΩ̂−1

1 Z ′∆Y.

Let ∆v̂2i = ∆yi −∆xiβ̂2 and ∆v̂2 = (∆v̂′21, ...,∆v̂
′
2N )′. The doubly corrected variance estimator of
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β̂2 is given by

V̂dc(β̂2) = V̂ (β̂2) + D̂nĈ(β̂1, β̂2) + Ĉ(β̂1, β̂2)′D̂′n + D̂nV̂dc(β̂1)D̂′n,

where

V̂ (β̂2) = n2
(

∆X ′ZΩ̂−1
1 Z ′∆X

)−1
(

1

n

N∑
i=1

m̂2im̂
′
2i

)(
∆X ′ZΩ̂−1

1 Z ′∆X
)−1

,

Ĉ(β̂1, β̂2) = n2
(

∆X ′ZŴ−1Z ′∆X
)−1

(
1

n

N∑
i=1

m̂1im̂
′
2i

)(
∆X ′ZΩ̂−1

1 Z ′∆X
)−1

,

m̂2i = ∆X ′ZΩ̂−1
1 Z ′i∆v̂2i + ∆x′iZiΩ̂

−1
1 Z ′∆v̂2 −

1

n
∆X ′ZΩ̂−1

1 Z ′i∆v̂1i∆v̂
′
1iZiΩ̂

−1
1 Z ′∆v̂2,

D̂n =
(

∆X ′ZΩ̂−1
1 Z ′∆X

)−1
∆X ′ZΩ̂−1

1

× 1

n

N∑
i=1

(
Z ′i∆xi

(
∆v̂′2ZΩ̂−1

1 Z ′i∆v̂1i

)
+
(
Z ′i∆v̂1i

) (
∆v̂′2ZΩ̂−1

1 Z ′i∆xi

))
.

The doubly corrected standard error is obtained by taking the diagonal elements of

√
V̂dc(β̂2)/n.

Note that the Windmeijer corrected variance estimator is

V̂w(β̂2) = Ṽ (β̂2) + D̂nṼ (β̂2) + Ṽ (β̂2)D̂′n + D̂nṼ (β̂1)D̂′n,

where

Ṽ (β̂2) = n2
(

∆X ′ZΩ̂−1
1 Z ′∆X

)−1
. (76)

Finally, the iterated GMM estimator is given as follows. Let β̂0 be any initial value. The s-step

GMM estimator for s ≥ 1 is given by

β̂s = (∆X ′ZΩ̂−1
s−1Z

′∆X)−1∆X ′ZΩ̂−1
s−1Z

′∆Y, (77)

where

Ω̂s−1 =
1

n

N∑
i=1

Z ′i(∆yi −∆xiβ̂s−1)(∆yi −∆xiβ̂s−1)′Zi.

We iterate the s-step GMM estimator until convergence given a preset tolerance, e.g. ‖β̂s− β̂s−1‖ <
10−5 to obtain the iterated GMM estimator β̂. The residuals are ∆v̂i = ∆yi − ∆xiβ̂. Also let

∆v̂ = (∆v̂′1, ...,∆v̂
′
N )′ be the n× 1 residual vector.
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The doubly corrected variance estimator for the iterated GMM is given by

V̂dc(β̂) =Ĥ−1

(
1

n

N∑
i=1

m̂im̂
′
i

)
Ĥ−1′ ,

Ĥ =
1

n2
∆X ′ZΩ̂−1Z ′∆X

− 1

n3
∆X ′ZΩ̂−1

(
N∑
i=1

(
Z ′i∆v̂i

) (
∆v̂′ZΩ̂−1Z ′i∆xi

)
+ Z ′i∆xi

(
∆v̂′ZΩ̂−1Z ′i∆v̂i

))
,

m̂i =
1

n
∆X ′ZΩ̂−1Z ′i∆v̂i +

1

n
∆X ′iZiΩ̂

−1Z ′∆v̂ − 1

n2
∆X ′ZΩ̂−1Z ′i∆v̂i∆v̂

′
iZiΩ̂

−1Z ′∆v̂

and the doubly corrected standard error is obtained by taking the diagonal elements of

√
V̂dc(β̂)/n.

In comparison, the Windmeijer corrected and the conventional variance estimators are

V̂w(β̂) = Ĥ−1

(
1

n2
∆X ′ZΩ̂−1Z ′∆X

)
Ĥ−1′ , (78)

Ṽ (β̂) =

(
1

n2
∆X ′ZΩ̂−1Z ′∆X

)−1

. (79)

8 Simulation

We investigate the finite sample performance of the doubly corrected standard errors proposed in

this paper and provide a thorough comparison with the conventional and the Windmeijer corrected

ones under correct specification and misspecification. We consider three different setups: (i) a

cross-sectional linear IV model with potentially invalid instruments; (ii) a linear dynamic panel

model with a random coefficient; (iii) a linear dynamic panel model with possibly misspecified lag

specifications. The number of Monte Carlo simulation is 100,000.

In an unreported simulation, we also investigate the performance of the estimators with the

centered weight matrix (58). Since the results are similar and there is no obvious pattern of better

performance of the point and variance estimators based on the centered weight matrix compared

with those based on the uncentered one (reported) they are not reported.

8.1 Cross-sectional IV

We use the following simulation design which is a simple linear instrumental variable regression

with a single endogenous regressor. The model to be estimated is

yi = xiβ0 + ei

E (ziei) = 0 (80)

where xi and β0 are scalar and zi = (z1i, z2i, z3i, z4i)
′ is a vector of instrumental variables. We

estimate β0 by 2SLS (one-step), two-step, and iterated GMM, and calculate the conventional, the

22



Windmeijer corrected, and the doubly corrected standard errors. Our data-generating process

(DGP) is

yi = xiβ0 +
α0√
n

(z1i − z2i + z3i − z4i) + ei, (81)

xi = π0 (z1i + z2i + z3i + z4i) + ui,

ei = 0.5ui +
√

1− 0.52vi,

zi ∼ N (0, I4) ,

(
ui

vi

)
∼ N

((
0

0

)
,

[
1 0

0 z2
1i

])
.

We set β0 = 1, vary α0 from 0 to 1 in steps of 0.2, and set the first-stage coefficient π0 so that

the first-stage R2 = 0.2. We set the number of observations as n = 50, 100, 500.

The parameter α0 is the extent that the exclusion condition is locally violated. At α0 = 0, the

model is correctly specified. For α0 6= 0, we find E(ziei) = (α0,−α0, α0,−α0)′/
√
n 6= 0, so the

moment condition (80) fails to hold in finite samples, but it holds asymptotically.

Means and standard deviations of one-step (2SLS), two-step, and iterated GMM estimators

are computed in Table 1. For all GMM estimators, we report means of the conventional standard

errors (se β̂), the Windmeijer corrected standard errors (sew β̂), and the doubly corrected standard

errors (sedc β̂).

Table 1 shows that our doubly corrected standard errors remains accurate regardless of misspec-

ification, including the correct specification case (α0 = 0); the means of corrected standard errors

are very close to the standard deviations for all values of α0, especially for the two-step and the

iterated GMM. Simulation evidence reassures our theory that the doubly corrected standard errors

not only take into account variation in the estimation of the weight matrix, but also extra varia-

tion due to the non-zero sample moments in over-identified model even under correct specification.

Furthermore, our doubly corrected standard errors are the only valid one under misspecification.

The conventional standard error for the one-step GMM (2SLS) estimator is downward biased

under correct specification (α0 = 0), and this bias increases with α0. As is well known, the

conventional standard error for the two-step is severely downward biased when α0 = 0, and this

bias also increases with α0. The Windmeijer corrected standard error works well under correct

specification, but does not fully account for additional variations due to non-zero α0. The result is

similar for the iterated GMM.

8.2 Linear Dynamic Panel Model

8.2.1 Random Coefficient

We next explore the finite sample performance of the doubly corrected standard error in the

presence of heterogeneous effects (random coefficient) in dynamic panel model. We consider the
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AR(1) dynamic panel model of Blundell and Bond (1998). For i = 1, ..., N and t = 1, ..., T ,

yit = ρ0yi,t−1 + ηi + νit, (82)

where ηi is an unobserved individual-specific effect and νit is an error term. The parameter of

interest ρ0 is estimated by the difference GMM based on a set of moment conditions:

E[yi,t−s(∆yit − ρ0∆yi,t−1)] = 0, t = 3, ...T, and s ≥ 2, (83)

The moment conditions are derived from taking differences of (82), and uses the lagged values of

yit as instruments. The number of moment conditions is (T − 1)(T − 2)/2.

The moment conditions are correctly specified if there is a unique parameter that satisfies (83).

A sufficient condition for this to hold is that the model (82) coincides with the true DGP, but this

is unlikely to be true. A reasonable deviation from the assumed model (82) is heterogeneity in ρ0

across i. We assume the following DGP. For i = 1, ..., N and t = 1, ...T ,

yit = ρiyi,t−1 + ηi + νit,

ηi ∼ N(0, 1); ρi ∼ Φ(α0ηi); νit ∼ N(0, 0.52),

yi1 =
ηi

1− ρi
+ ui1; ui1 ∼ N

(
0,

1

1− ρ2
i

)
,

where Φ(z) is the standard normal cdf. At α0 = 0, the model is correctly specified and ρi = ρ0 = 0.5.

For α0 6= 0, the effective moment condition model can be written as

E[yi,t−s(∆yit − ρ∆yi,t−1)] = E[yi,t−s(∆νit + (ρi − ρ)∆yi,t−1)]

= E[ρiyi,t−s∆yi,t−1]− ρ(γs−1 − γs−2)

where γj is the jth autocovariance. The last equation becomes zero at ρ = E[ρi] if ρi is independent

of the {yit} process. If this is the case, then the moment condition model is correctly specified and

the estimand is E[ρi]. Otherwise in general, the moment condition model fails to hold at a single

unique parameter value because each of the moment condition imposes a restriction

ρ =
E[ρiyi,t−s∆yi,t−1]

γs−1 − γs−2

but there is no reason that this should hold at a unique ρ for s = 2, 3, ..., t− 1. In the DGP, ηi and

ρi are dependent through α0 and a larger α0 leads to larger heterogeneity. We vary α0 from 0 to

0.3 in steps of 0.05. The pseudo-true value would depend on the instrument set and the value of α0

under global misspecification. However, by varying α0 by a small amount we try to capture local

behavior of the standard errors when the pseudo-true value is close to the true value. The sample

sizes are N = 100, 500 and T = 4, 6.

We report the simulation results in Tables 2 and 3, which are qualitatively similar to the IV
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setup. Tables 2 and 3 show that the doubly corrected standard errors approximate the standard

deviation of the GMM estimators well regardless of misspecification. For the two-step and iterated

GMM estimators, the doubly corrected standard errors are as accurate as the Windmeijer correction

for small values of α0 (including correct specification α0 = 0) but dominate the other in accuracy

for larger values of α0. The doubly corrected standard error for the one-step GMM is slightly

upward biased for small values of α0, but this bias decreases with a larger sample size N = 500.

8.2.2 Misspecified Lag Length

We use the baseline linear panel model of Windmeijer (2005) allowing for possible lag length

misspecification. The model is

yit = β0xit + ηi + vit, (84)

for i = 1, ..., N and t = 1, ..., T . The unknown parameter of interest is β0, and the regressor xit

is predetermined with respect to vit, i.e., E(xitvit+s) = 0 for s = 0, ..., T − t. We use the first

differenced GMM estimator and the number of moment conditions is T (T − 1)/2 as in Section 7.2.

The DGP is

yit = β0xit + α0xit−1 + ηi + vit, (85)

xit = 0.5xit−1 + ηi + 0.5vit−1 + εit,

η ∼ N(0, 1) and εit ∼ N(0, 1),

vit = δiτtωit and ωit ∼ χ2
1 − 1.

We generate initial 50 time periods with τt = 0.5 for t = −49, . . . , 0 and xi ∼ N(ηi/0.5, 1/0.75)

same as Windmeijer (2005). The parameter α0 in (85) governs the degree of misspecification. When

α0 = 0, the model (84) is correctly specified which reduces to that of Windmeijer (2005).

Tables 4 and 5 report estimation results for β0 = 1, N = 100, 500 and T = 4, 6. The degree

of misspecification α0 is varied across {0, 0.025, 0.05, 0.1}. The first column (α0 = 0) in Table 4

replicates Monte Carlo studies in Windmeijer (2005, Table 1).

The implication of the results in Tables 4 and 5 are largely unchanged as in two previous

simulation experiments; doubly corrected standard errors approximate the standard deviations

well regardless of model misspecification. In this simulation experiments, the Windmeijer correction

works best under correct specification, but becomes downward biased as α0 increases. Note that

deviation from the correct specification makes the bias of the conventional standard error and the

Windmeijer corrected standard error larger, and this bias does not disappear with a larger sample

size of N = 500.
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Appendix: Proofs

In the proof of Theorems 1 and 2, we use following lemma on geometric expansion of a matrix.

Lemma 1 builds on Corollary 1 of Magdalinos (1992).

Lemma 1. Let Xn and Yn be square random matrices. If X−1
n and (Xn + Yn/

√
n)−1 exist and

X−1
n and Yn are of order Op(1), then following holds for any nonnegative integer q,

(
Xn +

1√
n
Yn

)−1

=

q∑
j=0

(
− 1√

n
X−1
n Yn

)j
X−1
n +Op(n

−(q+1)/2).

Proof of Lemma 1: Let Sn = X−1
n Yn and consider the following identity,

q∑
j=0

(
− 1√

n

)j
Sjn

(
I +

1√
n
Sn

)
= I −

(
− 1√

n

)q+1

Sq+1
n .

Using I + n−1/2Sn = X−1
n (Xn + n−1/2Yn), Sn = X−1

n Yn and rearranging terms, we have

(
Xn +

1√
n
Yn

)−1

=

q∑
j=0

(
− 1√

n

)j
SjnX

−1
n +

(
− 1√

n

)q+1

Sq+1
n

(
Xn +

1√
n
Yn

)−1

=

q∑
j=0

(
− 1√

n

)j (
X−1
n Yn

)j
X−1
n +

(
− 1√

n

)q+1

Op(1)

by the assumptions of the lemma.

Proof of Theorem 1: In what following the statements hold with probability approaching one.

First note that

G′nW
−1
n Gn = G′W−1G+ (Gn −G)′W−1G+G′W−1(Gn −G) +G′(W−1

n −W−1)G+Op(n
−1)

= G′W−1G+Op(n
−1/2).

By Lemma 1 with q = 1,

(G′nW
−1
n Gn)−1 =

(
G′W−1G+

1√
n

√
n(G′nW

−1
n Gn −G′W−1G)

)−1

=(G′W−1G)−1 − 1√
n

(G′W−1G)−1√n(G′nW
−1
n Gn −G′W−1G)(G′W−1G)−1

+Op(n
−1)

=(G′W−1G)−1 +
1√
n
B̃W (G′W−1G)−1 +Op(n

−1).
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In addition,

G′nW
−1
n

√
ngn(θ0) =G′nW

−1
n

√
n(gn(θ0)− g) +

√
n(Gn −G)′W−1

n g +G′
√
n(W−1

n −W−1)g +G′W−1δ

=G′W−1g̃ + G̃′W−1g −G′W−1W̃W−1g + G̃′W−1g̃/
√
n−G′W−1W̃W−1g̃/

√
n

+G′W−1δ +Op(n
−1).

Since the FOC of the one-step GMM holds regardless of misspecification of the moment condi-

tion, we use the above expansions to obtain

√
n(θ̂1 − θ0)

=(GnW
−1
n Gn)−1GnW

−1
n

√
ngn(θ0)

=−
[
(G′W−1G)−1 + B̃W (G′W−1G)−1/

√
n
]
×
[
G′W−1g̃ + G̃′W−1g −G′W−1W̃W−1g

+G̃′W−1g̃/
√
n−G′W−1W̃W−1g̃/

√
n+G′W−1δ

]
+Op(n

−1)

=ηW + B̃W ηW /
√
n− (G′W−1G)−1G′W−1g̃ − (G′W−1G)−1

(
G̃′W−1g −G′W−1W̃W−1g

)
− (G′W−1G)−1

(
G̃W−1g̃ −G′W−1W̃W−1g̃

)
/
√
n− B̃W (G′W−1G)−1G′W−1g̃/

√
n+Op(n

−1)

=ηW + ψ̃W,0 + (ψ̃W,1 + q̃W + B̃W (ψ̃W,0 + ηW ))/
√
n+Op(n

−1).

Proof of Theorem 2: In what following the statements hold with probability approaching one.

We first prove some useful expansions. Note that from Theorem 1,
√
n(θ̂1 − θ0) = Op(1). By the

first-order Taylor expansion and (13),

Ωn(θ̂1) =Ωn(θ0) +
1√
n

∑
j

∂Ω(θ)

∂θ[j]

√
n(θ̂1[j] − θ0[j]) (86)

=Ωn(θ0)− Ω + Ω +
1√
n

∑
j

∂Ω(θ)

∂θ[j]

√
n(θ̂1[j] − θ0[j])

=Ω +Op(n
−1/2).

By Lemma 1 with q = 0,

[Ωn(θ̂1)]−1 = Ω−1 +Op(n
−1/2), (87)

[Ωn(θ0)]−1 = Ω−1 +Op(n
−1/2). (88)
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Using (88) and applying Lemma 1 with q = 1 to (86),

[Ωn(θ̂1)]−1 = [Ωn(θ0)]−1 − 1√
n

[Ωn(θ0)]−1
∑
j

∂Ω(θ)

∂θ[j]

√
n(θ̂1[j] − θ0[j])[Ωn(θ0)]−1 +Op(n

−1) (89)

= [Ωn(θ0)]−1 − 1√
n

Ω−1
∑
j

∂Ω(θ)

∂θ[j]

√
n(θ̂1[j] − θ0[j])Ω

−1 +Op(n
−1) (90)

Using a similar argument with the proof of Theorem 1 and Lemma 1 with q = 1, we obtain

(G′n[Ωn(θ0)]−1Gn)−1 =(G′Ω−1G)−1 +
1√
n
BΩ(G′Ω−1G)−1 +Op(n

−1), (91)

G′n[Ωn(θ0)]−1√ngn(θ0) =G′Ω−1δ +G′Ω−1g̃ + G̃′Ω−1g −G′Ω−1Ω̃Ω−1g (92)

+ G̃Ω−1g̃/
√
n−G′Ω−1Ω̃Ω−1g̃/

√
n+Op(n

−1). (93)

Note that the assumption of the theorem implies that θ̂2 − θ0 = Op(n
−1/2). Using (90), the

first-order Taylor expansion of the FOC of θ̂2 around θ0 can be written as

0 =G′n[Ωn(θ̂1)]−1gn(θ0) +G′n[Ωn(θ̂1)]−1Gn(θ̂2 − θ0) (94)

=G′n[Ωn(θ0)]−1gn(θ0) +G′n[Ωn(θ0)]−1Gn(θ̂2 − θ0) (95)

+G′n

(
[Ωn(θ̂1)]−1 − [Ωn(θ̂0)]−1

)(
gn(θ0) +Gn(θ̂2 − θ0)

)
(96)

=G′n[Ωn(θ0)]−1gn(θ0) +G′n[Ωn(θ0)]−1Gn(θ̂2 − θ0) (97)

− 1√
n
G′Ω−1

∑
j

∂Ω(θ)

∂θ[j]

√
n(θ̂1[j] − θ0[j])Ω

−1
(
gn(θ0) +G(θ̂2 − θ0)

)
+Op(n

−3/2). (98)

By arranging terms, multiplying
√
n, using (91)-(92),

√
n(θ̂2 − θ0) =−

(
G′n[Ωn(θ0)]−1Gn

)−1
G′n[Ωn(θ0)]−1√ngn(θ0)

+
(
G′n[Ωn(θ0)]−1Gn

)−1

× 1√
n
G′Ω−1

∑
j

∂Ω(θ)

∂θ[j]

√
n(θ̂1[j] − θ0[j])Ω

−1
(√

ngn(θ0) +G
√
n(θ̂2 − θ0)

)
+Op(n

−1).

Note that the second term in the RHS is Op(n
−1/2). First,

−
(
G′n[Ωn(θ0)]−1Gn

)−1
G′n[Ωn(θ0)]−1√ngn(θ0) (99)

=−
(

(G′Ω−1G)−1 +
1√
n
B̃Ω(G′Ω−1G)−1

)
(100)

×
(
G′Ω−1δ +G′Ω−1g̃ + G̃′Ω−1g −G′Ω−1Ω̃Ω−1g + G̃Ω−1g̃/

√
n−G′Ω−1Ω̃Ω−1g̃/

√
n
)

(101)

+Op(n
−1) (102)

=ηΩ +
1√
n
B̃ΩηΩ + ψ̃Ω,0 +

1√
n

(
ψ̃Ω,1 + q̃Ω + B̃Ωψ̃Ω,0

)
+Op(n

−1). (103)
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Thus, we have
√
n(θ̂2−θ0) = ηΩ+ψ̃Ω,0+Op(n

−1/2). Next, using
√
n(θ̂1−θ0) = ηW+ψ̃W,0+Op(n

−1/2),

(
G′n[Ωn(θ0)]−1Gn

)−1 1√
n
G′Ω−1

∑
j

∂Ω(θ)

∂θ[j]

√
n(θ̂1[j] − θ0[j])Ω

−1
(√

ngn(θ0) +G
√
n(θ̂2 − θ0)

)
(104)

=
(
G′Ω−1G

)−1 1√
n
G′Ω−1

∑
j

∂Ω(θ)

∂θ[j]
(ηW [j] + ψ̃W,0[j])Ω

−1
(
g̃ + δ +G(ηΩ + ψ̃Ω,0)

)
+Op(n

−1)

(105)

=
(
G′Ω−1G

)−1 1√
n
G′Ω−1

∑
j

∂Ω(θ)

∂θ[j]
ηW [j]Ω

−1
(
g̃ + δ +G(ηΩ + ψ̃Ω,0)

)
(106)

+
(
G′Ω−1G

)−1 1√
n
G′Ω−1

∑
j

∂Ω(θ)

∂θ[j]
ψ̃W,0[j]Ω

−1
(
g̃ + δ +G(ηΩ + ψ̃Ω,0)

)
+Op(n

−1) (107)

=
1√
n

{
(D +HηΩ) ηW +

(
C̃ +H

ψ̃Ω,0

)(
ηW + ψ̃W,0

)
+ (D +HηΩ) ψ̃W,0

}
+Op(n

−1). (108)

Combining this with (103),

√
n(θ̂2 − θ0) (109)

=ηΩ +
1√
n

((D +HηΩ) ηW ) + ψ̃Ω,0 (110)

+
1√
n

(
ψ̃Ω,1 +

(
D + C̃ +HηΩ +H

ψ̃Ω,0

)
ψ̃W,0 + q̃Ω + B̃Ω

(
ηΩ + ψ̃Ω,0

)
+
(
C̃ +H

ψ̃Ω,0

)
ηW

)
(111)

+Op(n
−1). (112)

Notice that Dψ̃W,1/n in the Op(n
−1) remainder term can be obtained if we plug

√
n(θ̂1 − θ0) =

ηW + ψ̃W,0 + ψ̃W,1/
√
n+Op(n

−1/2) into (104). This proves the theorem.

Proof of Theorem 3: We first derive the asymptotic variance matrices of the GMM estimators

under misspecification and then show that the doubly corrected variance estimators are consistent.

Expanding the FOC of the one-step GMM around the pseudo-true value θ1 we can write

√
n(θ̂1 − θ1) =− (G′W−1G)−1

(
GW−1√n(gn(θ1)− g1) +

√
n(Gn −G)′W−1g1

−G′W−1√n(Wn −W )W−1g1

)
+Op(n

−1/2)

=− (G′W−1G)−1
(
GW−1√ngn(θ1) +

√
nG′nW

−1g1 −G′W−1√nWnW
−1g1

)
+Op(n

−1/2).

The second equality holds by the population FOC G′W−1g1 = 0. Similarly we expand the FOC of
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the two-step GMM as

√
n(θ̂2 − θ2) =− (G′n[Ωn(θ̂1)]−1Gn)−1Gn[Ωn(θ̂1)]−1√ngn(θ2)

=− (G′n[Ωn(θ1)]−1Gn)−1Gn[Ωn(θ1)]−1√ngn(θ2) +D∗n
√
n(θ̂1 − θ1) +Op(n

−1)

where

D∗n = F ∗1n + F ∗2n,

F ∗1n = −
∂
{
G′n[Ωn(θ)]−1Gn

}−1

∂θ′

∣∣∣∣∣
θ=θ1

G′n[Ωn(θ1)]−1gn(θ2),

F ∗2n = −
{
G′n[Ωn(θ1)]−1Gn

}−1 ∂G′n[Ωn(θ)]−1gn(θ2)

∂θ′

∣∣∣∣
θ=θ1

.

Note that F ∗1n = Op(n
−1/2) because G′n[Ωn(θ1)]−1gn(θ2) = Op(n

−1/2) but F ∗2 = Op(‖gn(θ2)‖) =

Op(1) under misspecification. To further expand the FOC of the two-step GMM we observe that

D∗n = D∗ +Op(n
−1/2) where

D∗[., j] =
(
G′Ω1G

)−1
G′Ω−1

1

∂Ω(θ)

∂θ[j]

∣∣∣∣
θ=θ1

Ω−1
1 g2,

∂Ω(θ)

∂θ[j]
= E

[
g(Xi, θ)

∂g(Xi, θ)
′

∂θ[j]

]
+ E

[
∂g(Xi, θ)

∂θ[j]
g(Xi, θ)

′
]
.

Thus,

√
n(θ̂2 − θ2) =− (G′Ω−1

1 G)−1
(
G′Ω−1

1

√
ngn(θ2) +

√
nG′nΩ−1

1 g2 −G′Ω−1
1

√
nΩn(θ1)Ω−1

1 g2

)
+D∗

√
n(θ̂1 − θ1) +Op(n

−1/2)

=− (G′Ω−1
1 G)−1

(
G′Ω−1

1

√
ngn(θ2) +

√
nG′nΩ−1

1 g2 −G′Ω−1
1

√
nΩn(θ1)Ω−1

1 g2

)
−D∗(G′W−1G)−1

(
G′W−1√ngn(θ1) +

√
nG′nW

−1g1 −G′W−1√nWnW
−1g1

)
+Op(n

−1/2).

Let

m1i =G′W−1g(Xi, θ1) +G(Xi)
′W−1g1 −G′W−1WiW

−1g1, (113)

m2i =G′Ω−1
1 g(Xi, θ2) +G(Xi)

′Ω−1
1 g2 −G′Ω−1

1 Ωi(θ1)Ω−1
1 g2 (114)

where Wn = n−1
∑n

i=1Wi and Ωi(θ) = g(Xi, θ)g(Xi, θ)
′. Since E[m1i] = E[m2i] = 0, by the

multivariate Lindeberg-Lévy CLT,

√
n(θ̂2 − θ2)

d−→ N(0, V2) (115)
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where

V2 =(G′Ω−1
1 G)−1E[m2im

′
2i](G

′Ω−1
1 G)−1 +D∗(G′W−1G)−1E[m1im

′
2i](G

′Ω−1
1 G)−1

+ (G′Ω−1
1 G)−1E[m2im

′
1i](G

′W−1G)−1D∗
′
+D∗(G′W−1G)−1E[m1im

′
1i](G

′W−1G)−1D∗
′
.

By replacing the population quantities (expectations) of V with the sample means, we directly

obtain V̂dc(θ̂2). By the LLN, V̂dc(θ̂2)
p−→ V2.

Similarly we have
√
n(θ̂1 − θ1)

d−→ N(0, V1) (116)

where

V1 = (G′W−1G)−1E[m1im
′
1i](G

′W−1G)−1. (117)

By the LLN, V̂dc(θ̂1)
p−→ V1. This completes the proof.
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α0 0 0.2 0.4 0.6 0.8 1

n = 50 β̂1 1.0833 1.0859 1.0823 1.0833 1.0840 1.0811

sd β̂1 0.3229 0.3226 0.3295 0.3417 0.3503 0.3746

se β̂1 0.2962 0.2963 0.2985 0.3022 0.3047 0.3113

sedc β̂1 0.3346 0.3363 0.3417 0.3516 0.3619 0.3794

β̂2 1.0736 1.0656 1.0517 1.0421 1.0344 1.0243

sd β̂2 0.3029 0.3035 0.3142 0.3293 0.3470 0.3753

se β̂2 0.2544 0.2549 0.2575 0.2616 0.2646 0.2720

sew β̂2 0.2889 0.2900 0.2945 0.3039 0.3133 0.3281

sedc β̂2 0.3101 0.3144 0.3231 0.3398 0.3570 0.3813

β̂iter 1.0778 1.0672 1.0519 1.0390 1.0290 1.0154

sd β̂iter 0.3026 0.3028 0.3147 0.3312 0.3517 0.3827

se β̂iter 0.2513 0.2531 0.2573 0.2631 0.2680 0.2766

sew β̂iter 0.2850 0.2859 0.2919 0.3028 0.3140 0.3316

sedc β̂iter 0.3069 0.3086 0.3176 0.3340 0.3500 0.3742

n = 100 β̂1 1.0411 1.0408 1.0413 1.0411 1.0402 1.0412

sd β̂1 0.2326 0.2315 0.2337 0.2373 0.2420 0.2477

se β̂1 0.2212 0.2212 0.2218 0.2229 0.2240 0.2259

sedc β̂1 0.2354 0.2359 0.2380 0.2414 0.2458 0.2519

β̂2 1.0353 1.0238 1.0133 1.0041 0.9940 0.9860

sd β̂2 0.2153 0.2138 0.2187 0.2239 0.2316 0.2400

se β̂2 0.1956 0.1957 0.1964 0.1977 0.1991 0.2010

sew β̂2 0.2089 0.2087 0.2099 0.2130 0.2169 0.2221

sedc β̂2 0.2135 0.2143 0.2179 0.2239 0.2315 0.2408

β̂iter 1.0386 1.0260 1.0145 1.0044 0.9931 0.9836

sd β̂iter 0.2143 0.2126 0.2175 0.2228 0.2311 0.2398

se β̂iter 0.1946 0.1958 0.1978 0.2000 0.2024 0.2053

sew β̂iter 0.2073 0.2079 0.2101 0.2140 0.2187 0.2248

sedc β̂iter 0.2123 0.2129 0.2164 0.2226 0.2298 0.2392

n = 500 β̂1 1.0081 1.0080 1.0085 1.0080 1.0082 1.0085

sd β̂1 0.1044 0.1048 0.1047 0.1050 0.1056 0.1061

se β̂1 0.1035 0.1036 0.1036 0.1038 0.1037 0.1038

sedc β̂1 0.1048 0.1049 0.1050 0.1055 0.1057 0.1062

β̂2 1.0066 1.0005 0.9949 0.9885 0.9828 0.9778

sd β̂2 0.0962 0.0966 0.0969 0.0970 0.0981 0.0989

se β̂2 0.0946 0.0946 0.0946 0.0948 0.0948 0.0949

sew β̂2 0.0958 0.0957 0.0956 0.0958 0.0958 0.0962

sedc β̂2 0.0955 0.0956 0.0958 0.0964 0.0970 0.0979

β̂iter 1.0074 1.0012 0.9955 0.9891 0.9833 0.9782

sd β̂iter 0.0960 0.0964 0.0966 0.0968 0.0977 0.0985

se β̂iter 0.0945 0.0949 0.0951 0.0956 0.0959 0.0962

sew β̂iter 0.0957 0.0958 0.0959 0.0964 0.0966 0.0972

sedc β̂iter 0.0954 0.0954 0.0956 0.0962 0.0967 0.0975

Table 1: Monte Carlo Results for Linear IV: n = 50, 100, 500
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α0 0 0.05 0.1 0.15 0.2 0.25 0.3

N = 100 ρ̂1 0.4256 0.4356 0.4571 0.4925 0.5397 0.5926 0.6473
T = 4 sd ρ̂1 0.3324 0.3376 0.3268 0.3173 0.3107 0.3154 0.2763

se ρ̂1 0.3211 0.3215 0.3130 0.3023 0.2899 0.2775 0.2544
sedc ρ̂1 0.3515 0.3520 0.3431 0.3327 0.3196 0.3081 0.2815

ρ̂2 0.4256 0.4350 0.4554 0.4894 0.5351 0.5876 0.6420
sd ρ̂2 0.3502 0.3552 0.3443 0.3362 0.3327 0.3259 0.2966
se ρ̂2 0.3113 0.3115 0.3032 0.2929 0.2806 0.2680 0.2466
sew ρ̂2 0.3376 0.3377 0.3300 0.3208 0.3087 0.2961 0.2734
sedc ρ̂2 0.3684 0.3673 0.3594 0.3521 0.3375 0.3258 0.3027

ρ̂ 0.4182 0.4276 0.4467 0.4790 0.5234 0.5736 0.6267
sd ρ̂ 0.3656 0.3702 0.3619 0.3574 0.3568 0.3551 0.3324
se ρ̂ 0.3123 0.3122 0.3038 0.2938 0.2819 0.2688 0.2482
sew ρ̂ 0.3483 0.3489 0.3427 0.3350 0.3243 0.3133 0.2909
sedc ρ̂ 0.3756 0.3773 0.3695 0.3619 0.3495 0.3398 0.3122

N = 100 ρ̂1 0.4234 0.4272 0.4398 0.4626 0.4992 0.5460 0.6008
T = 6 sd ρ̂1 0.1469 0.1471 0.1468 0.1480 0.1493 0.1503 0.1477

se ρ̂1 0.1458 0.1455 0.1441 0.1418 0.1377 0.1308 0.1221
sedc ρ̂1 0.1537 0.1540 0.1542 0.1546 0.1545 0.1509 0.1441

ρ̂2 0.4217 0.4249 0.4363 0.4570 0.4909 0.5351 0.5891
sd ρ̂2 0.1630 0.1640 0.1650 0.1667 0.1704 0.1727 0.1708
se ρ̂2 0.1327 0.1324 0.1310 0.1284 0.1242 0.1175 0.1094
sew ρ̂2 0.1635 0.1634 0.1631 0.1626 0.1611 0.1567 0.1493
sedc ρ̂2 0.1628 0.1634 0.1646 0.1668 0.1693 0.1687 0.1643

ρ̂ 0.4167 0.4194 0.4294 0.4476 0.4762 0.5137 0.5606
sd ρ̂ 0.1782 0.1799 0.1831 0.1872 0.1972 0.2065 0.2127
se ρ̂ 0.1328 0.1325 0.1312 0.1289 0.1250 0.1191 0.1119
sew ρ̂ 0.1778 0.1783 0.1794 0.1822 0.1858 0.1887 0.1887
sedc ρ̂ 0.1773 0.1784 0.1806 0.1855 0.1916 0.1965 0.1975

Table 2: Monte Carlo Results for Linear Dynamic Panel: N = 100 and T = 4, 6
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α0 0 0.05 0.1 0.15 0.2 0.25 0.3

N = 500 ρ̂1 0.4879 0.4938 0.5170 0.5531 0.5990 0.6502 0.7016
T = 4 sd ρ̂1 0.1379 0.1363 0.1330 0.1284 0.1220 0.1131 0.1044

se ρ̂1 0.1369 0.1356 0.1322 0.1265 0.1192 0.1107 0.1020
sedc ρ̂1 0.1389 0.1377 0.1347 0.1292 0.1222 0.1136 0.1047

ρ̂2 0.4893 0.4950 0.5180 0.5539 0.6001 0.6517 0.7034
sd ρ̂2 0.1400 0.1385 0.1357 0.1314 0.1254 0.1164 0.1075
se ρ̂2 0.1361 0.1348 0.1315 0.1258 0.1186 0.1101 0.1014
sew ρ̂2 0.1389 0.1377 0.1349 0.1295 0.1225 0.1138 0.1046
sedc ρ̂2 0.1404 0.1393 0.1368 0.1318 0.1251 0.1165 0.1072

ρ̂ 0.4891 0.4948 0.5178 0.5537 0.5999 0.6515 0.7032
sd ρ̂ 0.1403 0.1389 0.1362 0.1319 0.1260 0.1170 0.1080
se ρ̂ 0.1362 0.1349 0.1315 0.1259 0.1187 0.1102 0.1016
sew ρ̂ 0.1393 0.1382 0.1354 0.1301 0.1232 0.1145 0.1052
sedc ρ̂ 0.1408 0.1397 0.1373 0.1323 0.1256 0.1170 0.1077

N = 500 ρ̂1 0.4835 0.4869 0.4997 0.5237 0.5621 0.6130 0.6687
T = 6 sd ρ̂1 0.0691 0.0691 0.0689 0.0681 0.0676 0.0654 0.0615

se ρ̂1 0.0690 0.0688 0.0680 0.0664 0.0637 0.0595 0.0544
sedc ρ̂1 0.0698 0.0697 0.0695 0.0691 0.0681 0.0656 0.0611

ρ̂2 0.4842 0.4875 0.4998 0.5227 0.5595 0.6089 0.6639
sd ρ̂2 0.0712 0.0714 0.0718 0.0723 0.0735 0.0726 0.0689
se ρ̂2 0.0677 0.0675 0.0667 0.0651 0.0623 0.0581 0.0530
sew ρ̂2 0.0711 0.0711 0.0710 0.0708 0.0701 0.0678 0.0634
sedc ρ̂2 0.0708 0.0709 0.0713 0.0722 0.0730 0.0720 0.0682

ρ̂ 0.4841 0.4874 0.4996 0.5223 0.5585 0.6066 0.6603
sd ρ̂ 0.0715 0.0718 0.0723 0.0732 0.0752 0.0757 0.0737
se ρ̂ 0.0677 0.0675 0.0667 0.0651 0.0624 0.0583 0.0534
sew ρ̂ 0.0715 0.0715 0.0715 0.0717 0.0720 0.0713 0.0685
sedc ρ̂ 0.0712 0.0713 0.0718 0.0730 0.0746 0.0749 0.0725

Table 3: Monte Carlo Results for Linear Dynamic Panel: N = 500 and T = 4, 6
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γ0 0 0.025 0.05 0.1

N = 100 β̂1 0.9793 0.9534 0.9268 0.8744

T = 4 sd β̂1 0.1521 0.1529 0.1538 0.1588

se β̂1 0.1469 0.1468 0.1465 0.1472

sedc β̂1 0.1546 0.1555 0.1563 0.1604

β̂2 0.9849 0.9588 0.9322 0.8773

sd β̂2 0.1404 0.1422 0.1451 0.1552

se β̂2 0.1243 0.1244 0.1242 0.1253

sew β̂2 0.1390 0.1402 0.1415 0.1473

sedc β̂2 0.1343 0.1366 0.1390 0.1482

β̂ 0.9858 0.9599 0.9334 0.8781

sd β̂ 0.1417 0.1439 0.1474 0.1600

se β̂ 0.1243 0.1244 0.1242 0.1253

sew β̂ 0.1393 0.1408 0.1426 0.1507

sedc β̂ 0.1352 0.1378 0.1406 0.1517

N = 100 β̂1 0.9755 0.9577 0.9411 0.9060

T = 6 sd β̂1 0.1027 0.1043 0.1051 0.1083

se β̂1 0.1002 0.1003 0.1004 0.1013

sedc β̂1 0.1056 0.1064 0.1075 0.1107

β̂2 0.9833 0.9649 0.9466 0.9080

sd β̂2 0.0906 0.0929 0.0948 0.1017

se β̂2 0.0716 0.0718 0.0720 0.0731

sew β̂2 0.0905 0.0914 0.0930 0.0978

sedc β̂2 0.0836 0.0853 0.0876 0.0944

β̂ 0.9857 0.9671 0.9484 0.9083

sd β̂ 0.0946 0.0970 0.0998 0.1099

se β̂ 0.0716 0.0718 0.0720 0.0731

sew β̂ 0.0937 0.0952 0.0976 0.1054

sedc β̂ 0.0866 0.0885 0.0916 0.1006

Table 4: Monte Carlo Results for Linear Panel Model: N = 100 and T = 4, 6
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γ0 0 0.025 0.05 0.1

N = 500 β̂1 0.9958 0.9683 0.9406 0.8853

T = 4 sd β̂1 0.0685 0.0686 0.0695 0.0716

se β̂1 0.0679 0.0678 0.0677 0.0679

sedc β̂1 0.0686 0.0690 0.0696 0.0716

β̂2 0.9970 0.9710 0.9443 0.8892

sd β̂2 0.0652 0.0657 0.0676 0.0730

se β̂2 0.0632 0.0631 0.0630 0.0634

sew β̂2 0.0648 0.0653 0.0662 0.0694

sedc β̂2 0.0634 0.0643 0.0658 0.0708

β̂ 0.9970 0.9712 0.9446 0.8897

sd β̂ 0.0652 0.0658 0.0678 0.0738

se β̂ 0.0632 0.0631 0.0630 0.0634

sew β̂ 0.0648 0.0652 0.0662 0.0698

sedc β̂ 0.0634 0.0643 0.0659 0.0715

N = 500 β̂1 0.9947 0.9758 0.9564 0.9181

T = 6 sd β̂1 0.0473 0.0476 0.0482 0.0498

se β̂1 0.0469 0.0470 0.0470 0.0473

sedc β̂1 0.0475 0.0479 0.0484 0.0499

β̂2 0.9968 0.9778 0.9582 0.9175

sd β̂2 0.0432 0.0440 0.0454 0.0494

se β̂2 0.0408 0.0408 0.0410 0.0414

sew β̂2 0.0431 0.0436 0.0445 0.0471

sedc β̂2 0.0413 0.0421 0.0434 0.0470

β̂ 0.9969 0.9779 0.9584 0.9174

sd β̂ 0.0433 0.0441 0.0457 0.0504

se β̂ 0.0408 0.0408 0.0410 0.0414

sew β̂ 0.0431 0.0437 0.0447 0.0479

sedc β̂ 0.0414 0.0423 0.0437 0.0479

Table 5: Monte Carlo Results for Linear Panel Model: N = 500 and T = 4, 6

39




