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Summary Predicting the impact of climate change on crop yield is difficult, in
part because the production function mapping weather to yield is high dimensional
and nonlinear. We compare three approaches to predicting yields: (i) deep neural net-
works (DNNs), (ii) traditional panel-data models, and (iii) a new panel-data model that
allows for unit and time fixed-effects in both intercepts and slopes in the agricultural
production function - made feasible by a new estimator developed by Keane and Neal
(2020) called MO-OLS. Using U.S. county-level corn yield data from 1950-2015, we
show that both DNNs and MO-OLS models outperform traditional panel data models
for predicting yield, both in-sample and in a Monte Carlo cross-validation exercise.
However, the MO-OLS model substantially outperforms both DNNs and traditional
panel-data models in forecasting yield in a 2006-15 holdout sample. We compare pre-
dictions of all these models for climate change impacts on yields from 2016 to 2100.
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1. INTRODUCTION

It is difficult to name a more important public policy issue than the impact of climate
change on agricultural yields. But the existing econometric literature that attempts to
predict the impact of climate change on yields has produced mixed results. This is not
surprising given the inherent difficulty of the exercise. Unfortunately, this means an
important component of the cost of future climate change is highly uncertain.

In the conventional econometric approach to modelling yield, weather conditions over
a growing season are summarized by a small set of variables. For instance, daily or hourly
temperatures are often aggregated into “growing degree days” (GDD) and “killing de-
gree days” (KDD), which summarize the beneficial or harmful temperatures a crop is
exposed to over a whole growing season. Standard panel data methods are then used to
fit agricultural production functions where yield depends on KDD, GDD and precipi-
tation, along with county and time fixed effects to capture differences in soil quality and
technology across counties and time. Finally, climate model predictions of future weather
are plugged into the yield model to predict future yield.1

One goal of this paper is to assess the potential of deep neural networks (DNNs) to
provide better models of crop yield, and hence more reliable predictions of climate change
impacts. In contrast to the conventional econometric approach, DNNs can input a huge
array of daily weather measures for the entire growing season, along with county and year

1 Papers that pursue this approach include Lobell et al. (2011), Butler and Huybers (2013) and Burke
and Emerick (2016). Schlenker and Roberts (2009) use more refined temperature bands.
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indicators, and use these to nonparametrically estimate very high-dimensional nonlinear
mappings from daily weather to final yields. We compare the performance of DNNs and
conventional panel data methods for predicting U.S. county-level corn yield using detailed
daily weather data from 1950 to 2015. In a Monte Carlo cross-validation exercise, we find
DNNs give more accurate predictions than conventional econometric models. However,
we find DNNs perform quite poorly in forecasting for a 2006-15 holdout sample.

The second main goal of the paper is to report results from a new panel data estimator
developed by Keane and Neal (2020), called Mean Observation OLS (MO-OLS). This
makes it feasible to estimate panel-data models with unit and time fixed-effects in both
intercepts and slopes in large panels. This enables us to nest and extend all conventional
econometric models in the literature. We find the MO-OLS model achieves a substantial
improvement in forecasting performance over standard panel data approaches, both in a
Monte Carlo cross-validation exercise and in forecasting for the 2006-15 holdout sample.

A key result is that, in the MO-OLS model, the KDD coefficient is significantly posi-
tively correlated with KDD, implying the negative effect of KDD on yield diminishes as
KDD increases. We interpret this as due to adaption by farmers to high temperatures.

Finally, we compare predictions of standard panel data models, DNNs and MO-OLS
for the impact of climate change on corn yield from the present until 2100. This requires
using a climate model to predict future weather conditions in all relevant US counties.
We use the Geophysical Fluid Dynamics Laboratory (GFDL) model developed for the
US National Oceanic and Atmospheric Administration (NOAA) under the RCP85 CO2

emissions scenario (which can loosely be described as the ‘business as usual’ scenario).2

We incorporate the estimated relationship between the KDD coefficient and KDD (i.e.,
adaptation) in all forecasts of future yields using the MO-OLS model.

For the conventional and MO-OLS econometric models we forecast future yields both
under a “no technical progress” scenario, holding time-fixed effects at their 2015 values,
and a “with technical progress” scenario, using VARs to forecast future time-effects. An
interesting feature of the DNN is it automatically forms a prediction of technical progress,
simply because calendar time is an input variable. We obtain forecasts with and without
technical progress by holding the year input fixed at 2015 or letting it evolve.3

Historically, U.S. corn yields more than doubled between the 1950s and the present.
The conventional panel data models that we consider predict catastrophic drops in yield
by 2100 of roughly 60% with technical change and 75% without. The MO-OLS model
predicts a stagnation of yields with technical progress, and drop in yield of roughly 40%
without. The DNN predictions of future yield trends are similar to MO-OLS.

We view the MO-OLS model predictions as more credible, as the MO-OLS model
predicts annual yields in 2006-15 holdout sample far more accurately than either the
DNN or conventional panel-data models. Of course, given rapid population growth, even

2In Keane and Neal (2020) we compare predictions from many climate models and emissions scenarios,
to assess the uncertainty across these models/scenarios. That is not our goal in this article. Instead, we
want to focus on differences between the econometric and DNN models by comparing their predictions,
holding the climate model fixed.
3It is in some sense an advantage of the DNN that it implicitly generates its own technical progress

forecast, as we don’t have to predict technical change ourselves. But it is also a disadvantage, as the
nature of the DNN technology prediction is not transparent to an analyst, and we can’t control it in
order to do scenario evaluations. For example, in an econometrically estimated production function, a
positive time trend in the intercept captures neutral technical progress. The DNN offers no such simple
interpretation. In this sense the DNN is a “black box.”
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Comparing Approaches to Predicting the Impact of Climate Change on Yield 3

the stagnation of crop yields predicted by the MO-OLS model (with technical progress)
in the U.S. will have serious adverse consequences for world food supply.

In summary, from an econometric perspective, it is impressive that the MO-OLS es-
timator, which allows for fixed-effects in intercepts and slopes, generates out-of-sample
forecasts that are superior to both conventional panel-data models and the far more heav-
ily parameterized DNNs, while maintaining ease of interpretability of the parameters.
Clearly it is an important new econometric tool, particularly for large panel datasets.

2. MODELLING AGRICULTURAL YIELD

Crop yield, or agricultural production per acre, is determined annually after the harvest.
It is the culmination of many inputs the plants experience over the growing season,
including temperature and precipitation, soil quality, technology and farming practices
(e.g., seed choice, sowing density, the timing of planting, the use of fertilizers/pesticides,
irrigation), and traditional factors of production like capital and labor. We write that:

yit = g(Tit,Pit, Qit, Ait, εit) (2.1)

where yit is the log of crop yield for county i in year t, Tit = (Ti,d=1, Ti,d=2, ..., Ti,d=D) is
the history of maximum and minimum temperature on each day d in county i during year
t, Pit = (Pi,d=1, Pi,d=2, ..., Pi,d=D) is the history of precipitation, Qit is soil quality, Ait is
technology, and εit captures other inputs. Modelling g() is not straightforward, as it is a
high-dimensional nonlinear function. The effect of weather on plant development depends
on timing and context, meaning the marginal effect of each element of g() depends not
only on its own value but also the values of all the other inputs.

Several recent studies summarize daily temperature data by “degree days” (DDs),
i.e., the total time temperature was in certain intervals over a growing season. They
then use DDs to predict yield. Most recent studies also include county and year fixed-
effects (or time trends) to control for other unmeasured factors that affect yield, such as
soil quality, technology, and trends in farming practices.4,5 For instance, Schlenker and
Roberts (2009) estimate regressions of the form:

yit = ci+ηst+γst
2+

39∑
j=0,3,6,..

βj(DDj,it−DDj+3,it)+β40PRECit+β41PREC
2
it+εit (2.2)

where DDj,it is the total time the crop experiences temperatures above the j◦C threshold,
s is the State in which county i resides, and PRECit is total precipitation during the
growing season. ci represents county fixed effects, while εit captures idiosyncratic shocks.

Other authors simplify the model by splitting degree days into two intervals, those
above and below 290C, which is a critical threshold for corn.6 Thus we have beneficial

4As is well known, input decisions in year t affect soil quality (e.g., nitrogen content, organic content,
pathogens) at year t + 1, so farmers face a dynamic problem in choosing optimal inputs. This leads to
crop rotation (including decisions to leave some land fallow each year). However, the production function
in 2.1 is static, because the state variable of current soil quality Qit summarizes the effects of all lagged
inputs. Thus, we could ignore dynamics (i.e., effects of lagged inputs) in estimating 2.1 if we observed
Qit. Unfortunately we do not observe soil quality at the county/time level, so, as in prior work in this
area, we use county and year fixed-effects in an attempt to capture Qit.
5Neither we nor the prior literature emphasizes fertilizer as a separate current input. It is generally

accepted that fertilizer has a cumulative effect on soil quality over time (see Thompson (1963)), so we
treat the history of fertilizer use as being captured by Qit.
6While moderate temperatures are beneficial, excessively high temperatures can damage corn. For
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temperatures (growing degree days) given by GDDit = DD0,it − DD29,it and harmful
temperatures (killing degree days) given by KDDit = DD29,it. Lobell et al. (2011) and
Burke and Emerick (2016) estimate equations similar to the following:7

yit = ci + ct + β1GDDit + β2KDDit + β3PRECit + β4PREC
2
it + εit (2.3)

(2.2) and (2.3) can be estimated via one and two-way fixed effects OLS, respectively.
A key shortcoming of (2.2) and (2.3) is they throw away much information about the

timing and context of temperature and precipitation shocks. They do capture one aspect
of timing/context by allowing higher temperatures to be a good thing in the cool part
of the growing season or in cooler counties, as this increases GDD, while a bad thing in
the hot part of the season or in hotter counties, as this increases KDD. But they fail to
capture other aspects, for instance that a hot day in June may be less consequential than
a hot day at the end of July, even though both may raise KDD by the same amount.8

A limitation of (2.3) is that it does not allow for slope heterogeneity across counties.
We would expect heterogeneity if farming practices adapt to local climate conditions.
E.g., KDD may have a smaller adverse effect on yield in counties with relatively hot
climates, if farmers in such counties adopt techniques that make crops less heat sensitive.
To accommodate adaptation, Butler and Huybers (2013) use the mean group regression
estimator (MG-OLS) due to Pesaran and Smith (1995), as in:

yit = ci + β1,iGDDit + β2,iKDDit + β3,iPRECit + β4,iPREC
2
it + β5,it+ εit (2.4)

This can be implemented by running county-specific OLS regressions. Note that this
approach includes county-specific time trends, β5,it, which is simultaneously more and
less restrictive than time fixed effects.9 A limitation of (2.4), however, is that it ignores
the possibility that heat and precipitation sensitivity of the crop may change over time
due to changes in technology and soil quality, or due to over-time adaptation of farming
techniques (that is common across counties).

To address this limitation, we allow for county and time fixed-effects in both intercepts
and slopes in an attempt to capture as much variation as possible in the response of yield
to temperature and precipitation. Then, we obtain a model of the form:

yit = β0,it + β1,itGDDit + β2,itKDDit + β3,itPRECit + β4,itPREC
2
it + β5,it+ εit (2.5)

where:

βkit = βk + γki + λkt, k = 0, ..., 4 (2.6)

Leaving the βkit unrestricted gives more parameters than data points, but the structure
we place on the fixed-effects in (2.6) enables us to identify the model. The model in
(2.5)-(2.6) nests (2.4) if we shut down the time effects λkt ∀k, and also (2.3) as it allows
for time effects via the λkt and the county-specific trends β5,it.

One could, in theory, estimate a model with county and time fixed effects in both

example, heat increases the rate of transpiration, which drains the plant’s water supply, and excessive
heat can hamper pollination (see e.g. Lobell et al. (2013) and Tardieu et al. (2018) for details).
7Burke and Emerick (2016) compare estimates of (2.3) with those from a “long-difference” specification

to assess adaptation. They specify precipitation differently.
8Kawasaki and Uchida (2016) allow effects of DDs to differ across three phases of the growing season

for rice in Japan.
9While equation (2.4) allows for county-specific heterogeneity in time trends, it assumes that all trends

are linear. In contrast, (2.3) allows for flexible non-linear time effects (but common to all counties).
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intercepts and slopes by applying OLS to the fully interacted specification:

yit = β′xit +

N∑
j=2

(z′itdij)
′γj +

T∑
l=2

(x′itdtl)
′λl + uit (2.7)

where xit = (1, GDDit,KDDit, PRECit, PREC
2
it) and zit = (xit, t) are vectors of

covariates, and we also have county dummies dij = 1 if i = j and 0 otherwise, time
dummies dtl = 1 if t = l and 0 otherwise, and γj and λl are vectors of coefficients

to be estimated. Then β̂it = β̂ + γ̂i + λ̂t. Unfortunately, this ‘brute force’ approach is
computationally impractical for large panel datasets such as ours.10

However, it is feasible to estimate the model in (2.5)-(2.6) using the “mean observation
OLS” (MO-OLS) procedure developed in Keane and Neal (2020). The MO-OLS estimator
of βit approximates the OLS estimator to arbitrary accuracy. It is constructed by first
running pooled OLS to obtain β̂, then running regressions by county to collect β̂i, then a
set of regressions by year to collect β̂t. It then constructs the biased preliminary estimator
β̂it = β̂i + β̂t − β̂. But Keane and Neal (2020) show how the bias can be calculated to
arbitrary accuracy and removed. The expression for the bias is a Cauchy sequence, and as
the number of terms grows the OLS estimator is approximated to any desired accuracy.11

Note that (2.5) contains 6N+5T parameters and (2.4) contains 6N , while (2.3) contains
only N + T + 4. Despite the large number of parameters, estimates from (2.4) and (2.5)
are easily interpretable, as the conditional distributions of the slope coefficients can be
analyzed to learn about the relationships between weather/climate and yield. Crucially,
the MO-OLS estimator allows slope heterogeneity to be correlated with the regressors,
so it can flexibly capture nonlinearities in the mapping from weather to yield.

Next, we consider using a deep neural network (DNN) as an alternative to conventional
econometric approaches to predicting yield. A DNN is a nonparametric nonlinear model
that can predict yield using the vector of all available data Xit = (i, t,Tit,Pit), i.e., daily
values for max/min temperature, daily precipitation, and year and county dummies. This
preserves the information on the timing of weather shocks. Leshno et al. (1993) show
that a DNN can approximate any continuous function to arbitrary accuracy. But, while
it possesses many attractive features, the DNN is akin to a “black box,” where the sheer
number of parameters and their nonlinear relation to predicted yield severely limits a
researcher’s ability to interpret the estimation results.12

Figure 1 illustrates the architecture of the DNN. The input layer consists of the set of K
inputs Xit = (x1,it, x2,it, ..., xK,it) specific to county i and year t. The first ‘hidden’ layer
is composed of N1 neurons. Each neuron takes as input a (different) weighted sum of the
outputs from the input layer. Let M1,u = w1,u0 +w1,u1x1,it + ...+w1,uKxK,it denote the

10In our data we have N = 2209 counties and T = 65 years of data. Thus the “brute force” approach
requires R = (N +T −1)∗ (K+ 1) regressors for NT observations. In our case, this would result in there
being (2209 + 65 − 1) ∗ (4 + 1) = 11, 365 regressors for ≈ 126k observations. The size of the regressor
matrix renders this “brute force” approach quite impractical. For example, it exceeds the maximum
number of regressors allowed in Stata/SE and other software packages.
11The MO-OLS estimator can be viewed as an extension of the Frisch-Waugh-Lovell theorem (Frisch
and Waugh 1933) to multi-dimensional fixed effects. F-W-L showed the fixed effects estimator can be
obtained by demeaning the data for each unit, rather than running OLS using dummies for every unit in
the panel. This made fixed effects feasible in practice with very large N . No simple linear transformation
of the data yields the MO-OLS estimator, but it can be constructed easily by using the iterative algorithm
in Keane and Neal (2020). MO-OLS can also be interpreted as a highly efficient algorithm for solving
the linear system (X′X)β = X′Y for β while exploiting the structure in (2.5)-(2.6).
12Indeed, a DNN is not an “econometric model,” as no economic assumptions are involved.
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linear index that is input into neuron u in hidden layer 1, where the w1,u0, w1,u1, ..., w1,uK

are parameters to be estimated. They are unique to each neuron in each layer.

Figure 1. The Architecture of a Deep Feedforward Neural Network
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Each neuron u in the first hidden layer plugs the the linear index M1,u it receives into a
nonlinear activation function and constructs a scalar output n1,u. We use the Exponential
Linear Unit (ELU) activation function introduced in Clevert et al. (2015):13

n1,u =

{
eM1,u − 1 if M1,u < 0

M1,u if M1,u ≥ 0
(2.8)

The vector of outputs from the N1 neurons in the first hidden layer is n1,1, n1,2, ..., n1,N1 .
Neurons in the second hidden layer calculate M2,u = w2,u0+w2,u1n1,1+...+w2,uN1

n1,N1

and then pass it through the same activation function as in (2.8) to calculate the outputs
n2,u for u = 1, ..., N2. The same process is repeated for each hidden layer up to layer L.

Finally, the output layer simply calculates a weighted sum of all the outputs from the
neurons of the final hidden layer in order to form the estimate of log yield, ŷit:

ŷit = wL,0 + wL,1nL,1 + w2nL,2 + ...+ wL,NL
nL,NL

. (2.9)

The number of free parameters (i.e., weights) wl,u,Nl
for u = 1, ..., Nl; l = 1, ...L in the

DNN model is (K + 1)N1 + (N1 + 1)N2 + (N2 + 1)N3 + ...+ (NL−1 + 1)NL + (NL + 1).
With such a proliferation of parameters, computing the full set of optimal weights for
each neuron poses a significant computational challenge.

LeCun et al. (2012) and Ruder (2016) survey methods for training neural nets, and we
adopt many of their suggestions here. We search for weights to minimize the in-sample
sum of squared errors

∑T
t=1

∑N
i=1(ŷit−yit)2 using a version of stochastic gradient descent

13The ELU is a smoothed version of the popular rectified linear unit (RELU) activation function.
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called “adaptive moment estimation” (Adam), proposed by Kingma and Ba (2014). It
has become very popular in recent DNN applications.

We choose starting values for the weights using the approach of He et al. (2015).
Specifically, we draw starting values from a truncated normal distribution with mean 0
and standard deviation σ =

√
2/I, where I is the number of inputs to the layer, and

any draws more than two standard deviations from the mean are discarded and redrawn.
This has the effect of keeping the scale of the input variance to each neuron constant.
This helps correct a very common computational problem in DNNs: that the computed
gradients for the weights, particularly in the lower layers of the network, can either vanish
or explode and significantly slow learning speed.

We use “batch normalization,” a popular technique introduced in Ioffe and Szegedy
(2015) to to improve training performance. The inputs to neurons inside hidden layers
change with the weights of all previous layers, which can lead to computational problems
as small changes to weights early in the network may be magnified later in the network.
Batch normalization is an operation added prior to the activation function of each neuron.
It zero-centers and normalizes each of the neuron’s inputs. It then scales and shifts these
normalized inputs, where the scaling and shifting parameters are themselves trained as
part of the optimization algorithm.

As DNNs have so many parameters, they are very prone to overfit the training data.
To reduce this problem, we adopt a technique during training called “dropout.” This is
due to Hinton et al. (2012) and Srivastava et al. (2014). Each neuron in a specific layer
is given a certain probability (here 0.5) that it will not be used at a given iteration. This
prevents the weights inside neurons from “cohabitating” with neighboring neurons, which
helps prevent over-fitting, thus improving out-of-sample performance. As suggested by
Li et al. (2018) we only add dropout to the last hidden layer, as this is considered best
practice when applying dropout and batch normalization simultaneously.

As we noted earlier, we use the Adam search algorithm to find the optimal weights.
In practice, DNNs never arrive at a single solution, so we stop the algorithm when it
fails to find an improvement in a set number of iterations. We implement the model
using Google’s Tensorflow package, which relies on Nvidia’s cuDNN library for GPU-
acceleration and interacts with the programming language Python. It handles the gradi-
ent vectors for each neuron, which are calculated using backpropagation, and then feeds
those gradients to the Adam optimization algorithm.

3. MODEL COMPARISON RESULTS

3.1. Data Sources and Methodology

We fit the models of Section 2 using county-level panel data on corn yield and weather.
Historical weather data are taken from Schlenker and Roberts (2009). These data contain
daily observations on max/min temperature, along with precipitation, for U.S. counties
from 1950 to 2015.14 The daily max/min temperature variables are used to approximate
degree day bands DDC,it for C = 0, ..., 42 (see Schlenker and Roberts 2009 or Keane and
Neal 2020 for details on degree day calculations). These, in turn, are used to construct
GDDit, and KDDit for each county i and year t.

We obtain annual corn yield data from the United States Dept. of Agriculture (USDA)

14Schlenker and Roberts (2009) extended the dataset to 2015 after the publication of their paper, and
provided code to map the observations across a grid to each county.
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National Agricultural Statistics Service. The data is at the county-level and covers the
same 1950-2015 period, although not all counties have crop yield data for all years. Thus
we have an (unbalanced) panel with N = 2, 209 and T = 65.15

The complete set of models we consider is summarized in Table 1. We classify them as
either “Degree day models,” which summarize the daily temperature and precipitation
data by the GDD, KDD and PREC variables as outlined above, or “Full information
models” that include the raw daily temperature and precipitation data. The full infor-
mation models also include the GDD and KDD variables, so as to ensure that they
incorporate all available information.16

Table 1. Description of Models

Title Description

Degree Day Models

County and Time Dummies FE-OLS without weather data.

FE-OLS Equation (2.3): FE-OLS with weather data.

Schlenker and Roberts Equation (2.2): Same as ‘FE-OLS’ but uses DD intervals of 3
degrees and state-specific quadratic time trends.

Butler and Huybers Equation (2.4): Mean Group OLS which allows for intercept
and slope heterogeneity across counties.

Deep Neural Net The DNN outlined in Section 2. It has 10 hidden layers, with
3000 neurons in the first layer and 2000 neurons in the others.

MO-OLS
Equation (2.5): Mean Observation OLS as proposed in Keane
and Neal (2020). Allows for intercept and slope heterogeneity
across counties and over time.

Full Information Models

LASSO LASSO with the regularization parameter selected through
cross-validation.

Deep Neural Net The DNN outlined in Section 2. Same structure as above but
uses daily weather data as inputs.

We compare the fit of the alternative models using the average mean squared prediction
error (AMSE)

∑T
t=1

∑N
i=1(ŷit − yit)2 where yit is log corn yield (in bushels per acre). In

Section 3.2 we compare AMSEs in randomly generated holdout samples in a Monte Carlo
cross-validation exercise. Then in Section 3.4 we compare AMSEs in a 2006-15 holdout.

15Following the literature, we exclude counties west of the 100th Meridian that rely heavily on irrigation.
16The GDD and KDD variables are complex functions of the daily max/min temperature data. They
are good summary statistics because the scientific literature shows that roughly 29 degrees is a critical
temperature threshold for corn. In theory the DNN could figure this out and construct GDD and KDD
itself. But in practice it might give the econometric models an unfair advantage to incorporate this a
priori information. By letting the DNN use the GDD and KDD variables, we insure a fair comparison.
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3.2. Monte Carlo Cross-Validation Results

Here we compare out-of-sample fit of the competing models in a Monte Carlo cross-
validation exercise. We randomly partition the data, with 80% of the (i, t) observations
chosen for use in estimation (the training or in-sample data), and the remaining 20%
held-out and predicted using the trained model (the testing or out-of-sample data). To
avoid accidentally selecting a particularly hard/easy to fit testing sample, we repeat this
procedure using multiple random partitions, and report the average results.17

Table 2 presents both in-sample and out-of-sample fit results for all models described
in Section 2, presented in the same order as in Table 1. The first column shows results
for the full sample, while the remaining columns report results for subsamples. The first
row presents a simple baseline with only county and time effects. This model gives an R2

of 0.79 in-sample (0.78 out-of-sample), showing the importance of county/time effects.
The next three rows present results for three traditional econometric models that are

well-known in the current literature: FE-OLS based on the GDD/KDD variables, FE-
OLS based on 3oC DD intervals, and MG-OLS based on the GDD/KDD variables.
These correspond to equations (2.3), (2.2) and (2.4), respectively, and to the models of
(i) Burke and Emerick (2016) and Lobell et al. (2011), (ii) Schlenker and Roberts (2009),
and (iii) Butler and Huybers (2013), respectively.

The FE-OLS and Schlenker-Roberts models, which rely on GDD/KDD and 3oC DD
intervals, respectively, give nearly identical fits (as measured by AMSE) both in-sample
and out-of-sample. Thus, the use of GDD/KDD vs. more refined temperature intervals
seems to make little difference. Both models give out-of-sample AMSEs of 0.059 compared
to 0.071 for the baseline error components model.

The Butler-Huybers (MG-OLS) model, which allows for county fixed-effects in inter-
cepts and slopes, as well as county-specific time trends, gives a substantial improvement
in in-sample AMSE (i.e, 0.040 compared to 0.056 for FE-OLS and 0.068 for county/time
effects). However, the out-of-sample AMSE is 0.058, which is scarcely an improvement
over FE-OLS. Thus, there is evidence of over-fitting for the MG-OLS model.

The fifth row of Table 2 reports results for a simplified DNN based only on the
GDD/KDD and PREC data (i.e., not using daily weather data). The in-sample AMSE
is 0.026, which is a substantial improvement over the traditional econometric models.
We use 10 hidden layers because this was needed for the DNN based on DD variables to
give a better in-sample AMSE than the MO-OLS model (see below).

As expected, the DNN’s out-of-sample fit is worse than its in-sample fit. Its out-of-
sample ASME is twice as large, at 0.053, giving evidence of over-fitting. Nevertheless, this
is a clear improvement over the 0.058 to 0.059 values given by the conventional econo-
metric models. As this version of the DNN is not using additional data, this improvement
in fit arises solely because it better captures the nonlinear functional form that maps the
i, t, GDDit,KDDit, PRECit variables to annual corn yield.

The sixth panel of Table 2 reports results using MO-OLS. Its in-sample AMSE of
0.030 is 25% lower than the MG-OLS model it nests, suggesting the time fixed effects
that MO-OLS adds are very important for fitting the data. These time effects capture
changes in technology over time that are not captured by simple linear trends.

17All sub-samples used in estimation contain some observations for each county i and year t. This enables
us to estimate a complete set of county and year fixed effects. As all models include county/year effects,
they are being compared on how well they predict idiosyncratic fluctuations in yield at the (i, t) level.
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10 Keane & Neal

Table 2. Monte Carlo Cross-Validation Results

Estimator
Average Mean Squared Error

Total
Low
KDD

High
KDD

Corn
Belt

Northern Southern

Degree Day Models
County and Time Dummies

in sample 0.068 0.039 0.100 0.044 0.071 0.079
out of sample 0.071 0.041 0.105 0.046 0.074 0.083

FE-OLS
in sample 0.056 0.031 0.085 0.033 0.059 0.068
out of sample 0.059 0.033 0.089 0.035 0.061 0.072

Schlenker and Roberts
in sample 0.057 0.040 0.076 0.034 0.060 0.067
out of sample 0.059 0.041 0.080 0.035 0.063 0.071

Butler and Huybers
in sample 0.040 0.025 0.057 0.027 0.044 0.044
out of sample 0.058 0.035 0.083 0.040 0.062 0.065

Deep Neural Net
in sample 0.026 0.016 0.036 0.016 0.018 0.036
out of sample 0.053 0.029 0.077 0.033 0.043 0.071

MO-OLS
in sample 0.030 0.018 0.044 0.017 0.031 0.037
out of sample 0.045 0.026 0.066 0.026 0.044 0.055

Full Information Models
LASSO

in sample 0.044 0.025 0.063 0.025 0.045 0.054
out of sample 0.047 0.027 0.067 0.026 0.048 0.058

Deep Neural Net
in sample 0.002 0.002 0.004 0.001 0.002 0.003
out of sample 0.028 0.014 0.041 0.010 0.021 0.037

Note: This table contains Monte Carlo cross-validation results for the models and data outlined in Section
3.1 and Table 1. In each iteration, a random 20% of the data is held out. All results are averages across 100
Monte Carlo iterations, except the Deep Neural Net results which are averages of 10 Monte Carlo iterations.

A more striking finding is that the out-of-sample fit of the MO-OLS model is clearly
superior to all competing models. Its AMSE of 0.045 is 15% lower than the DNN, and 25%
lower than MG-OLS. Thus, the rich pattern of fixed-effects in both intercepts and slopes
allowed by MO-OLS enables it to more accurately capture the nonlinear mapping from
weather to crop yield. For instance, as we discussed in Section 2, allowing for county/time
fixed-effects in the KDD coefficient enables the model to capture the pattern that the
negative effect of high temperatures is less in both hotter counties and time periods. We
interpret this as due to adaptation (see Keane and Neal (2020) for discussion).

Next we turn to the bottom of Table 2, which reports results for the full information
models that use 3307 covariates.18 The seventh row of Table 2 reports LASSO results.
Interestingly, the LASSO model provides a substantially better fit than the two FE-OLS

18365 values for daily max/min temperature and rainfall, 2209 county dummies, GDD, KDD, and year.
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Comparing Approaches to Predicting the Impact of Climate Change on Yield 11

models. It does not fit quite as well in-sample as the Bulter-Huybers (MG-OLS) model,
but it fits much better out-of-sample - i.e., there is no evidence of over-fitting for LASSO.
The out-of-sample AMSE of the LASSO model (0.047) is slightly worse than the MO-OLS
model (0.045), but it beats all other DD-based models. The fact that LASSO does this
well suggests the timing of weather variables through the growing season is important.

The last row of Table 2 reports results from the DNN that uses the full complement
of daily max/min temperature and rainfall data. It generates a near perfect in-sample fit
(AMSE = 0.002). More importantly, the out-of-sample AMSE is only 0.028, which is 45%
smaller than the DNN that only uses the annual degree day data, and 38% smaller than
the MO-OLS model. Furthermore, it is more than twice as accurate as the conventional
econometric models (FE-OLS and MG-OLS). Thus, the DNN seems able to learn a great
deal about how the exact timing of temperature and rainfall during the year affects yields,
and it exploits this to produce far more accurate predictions than models that rely on
aggregate summary statistics.

To summarize our results so far, the ranking of models in terms of out-of-sample
AMSE is (1) the DNN using the daily weather data, (2) the MO-OLS degree day model,
(3) LASSO using daily data, and (4) the DNN degree day model. These all perform
substantially better than the conventional econometric models (FE-OLS and MG-OLS).
Note that we do not implement MO-OLS on the daily weather data, as a model with
fixed-effects in slopes for so many covariates would exhaust the degrees of freedom in
the data. However, it may be possible to estimate MO-OLS models that add a few
additional covariates in an attempt to capture some of the information on timing of
weather variables. We leave this for future research.

An important way to assess model specification is to consider fit in non-random sub-
samples. If a model fits poorly in certain subsamples, it may reveal dimensions in which
it is misspecified. Thus, the right five columns of Table 2 compare model fit: (i) in cases
where KDD was above/below average (i.e., hot vs. cold counties/years), and (ii) in
different regions of the country - the Corn Belt, Northern States and Southern States.

Every model has an out-of-sample AMSE for high KDD cases that is much worse
than for low KDD cases. Thus, all models have greater difficult in accurately predicting
yields in hot counties/years. The greatest divergence is for the FE-OLS model; it has a
relatively good AMSE of 0.033 in low KDD cases, but the worst AMSE of all models in
high KDD cases (0.089). The DNN model based on daily data gives the lowest AMSE in
both low and high KDD cases, while the MO-OLS model is second best in both cases.

Turning to the geographic breakdown, all models find it easiest to predict yield in
the Corn Belt, followed by the Northern States and lastly the Southern States. This is
presumably because the Corn Belt has the most consistently favorable growing conditions,
making it easier to predict yields. The DNN using daily data has the best out-of-sample
AMSE in all three regions. The MO-OLS model is tied for second with LASSO in the
Corn Belt, in third place slightly behind the DNN based on degree day data in the North,
and clear second in the South. In summary, the superior performance of the DNN, MO-
OLS and LASSO models over the conventional econometric models is a consistent pattern
across both hot/cold counties and time periods, and across geographic regions.

3.3. Interpreting the Neural Network Results

In the previous section we found that the DNN using the daily weather data predicted
yields much more accurately than the DNN using only annual degree data data. This
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12 Keane & Neal

implies that the exact timing of weather shocks over the year is important for predicting
yield. Yet, given the extremely large number of parameters in the DNNs, how do we learn
about the impact of specifically timed weather shocks on yield?

After estimating a MO-OLS model, it is possible to analyze the distribution of the
fixed-effects associated with each covariate to gain insight into the structure of the non-
linear relationship between weather and yield. In a DNN, however, one can only compute
marginal effects of covariates numerically. These marginal effects depend not only on the
county, year, and day of the shock, but also the values of all other covariates in that
county/year. Accordingly, in this section we compute marginal effects using perturbed
historical temperature paths that increase maximum or minimum temperature by 1 de-
gree in a particular county/year/day, while holding all other covariates fixed.

Figure 2 reports the average marginal effects of ceteris paribus changes in daily max/min
temperature across all counties and years. The horizontal axis shows the day of the year
when the temperature shock occurs, and the vertical axis shows the effect on annual
log corn yield. The solid (dashed) line shows the effects of a unit increase in the daily
maximum (minimum) temperature. Note that in the U.S. corn is planted in April-May,
pollination (‘silking’) and ‘grain filling’ occurs in July-August, and the harvest is in
September-October. The pace of physical growth of the plant, and the rate of uptake of
nutrients, increases rapidly during July, and is greatest in August.

Figure 2. Marginal Effect of Temperature shocks on Yield by day of year
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Note: This figure plots the average marginal effects across counties and time of an increase by
one degree of maximum or minimum temperature by day of the year.

Consistent with intuition, Figure 2 shows that increases in daily maximum temperature
have much larger negative effects on annual yield if they happen during July/August,
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which is the hottest part of the growing season and coincides with pollination and grain
filling (when the plant grows most rapidly). During that period, a 1 degree Celsius in-
crease in maximum temperature on just one day reduces annual yield by an average of
0.17%.19 The effects are much smaller earlier and later in the growing season.20 Thus,
the DNN generates results that appear consistent with scientific evidence on the effect
of temperature on the corn plant over the life-cycle.21

3.4. 2006-15 Holdout Sample Results

Here we compare out-of-sample fit of the competing models using the last ten years
of data as a holdout sample. We fit (or train) the models using 1950-2005 data, and
then forecast county level yields for 2006-15. To predict holdout sample yields using the
econometric models we need to forecast future values of the time varying parameters
that capture technical progress.

For the FE-OLS model we must forecast the future values of the year effects ct in
the intercept of equation (2.3). We make these forecasts using AR(1) models fit to the
historical year-effect estimates.22 These models include only the lagged time effect, along
with time trends. As the dependent variable is log yield, in specifying the time trends we
rule out using t and t2, as that would permit exponential yield growth in levels. Instead,
we capture trends using the two variables log(t) and (log(t))1/2.

The MO-OLS model in equations (2.5)-(2.6) contains a vector of five time effects. We
forecast these using a VAR(1) system that includes the vector of lagged time effects along
with the log(t) and (log(t))1/2 variables in each equation. The estimates of all the AR(1)
and VAR(1) models are presented in the online Appendix.

The Schlenker-Roberts and Butler-Huybers (MG-OLS) models in (2.2) and (2.4) cap-
ture technical progress using time trends, so forecasting time effects is trivial. The same is
true of the LASSO model. And the DNN generates its own forecast of future time effects
simply by letting the year input evolve over time. This is an advantage of the DNN, but
also a weakness, as it is hard to interpret what the implicit time trend captures.

Table 3 reports the fit of the competing models to the 2016-15 holdout sample. The
results are strikingly different from those in Table 2. Here, the DNN that uses daily
weather data generates the least accurate forecasts of all competing models - even worse
than the simple benchmark that includes only county and time effects. The LASSO
model generates the next worst forecasts, followed by the DNN using the DD variables.
The MO-OLS model generates the most accurate forecasts of all competing models. Its
AMSE of 0.065 is 22% lower than the closest competitor, which is the FE-OLS model.

The holdout sample contains the severe drought of 2012, and the right two columns
of Table 3 focus on that year. The MO-OLS model again generates the lowest AMSE of
all competing models, 30% smaller than the nearest competitor. And if we look at the

19Note that this is only the average across counties and time, and the actual predicted marginal effect
will vary with the values of the other covariates.
20Increases in minimum temperature have much smaller effects and lack any clear pattern.
21Notably, in the literature on heat effects on yield, one strand emphasizes differential effects by phase of
the growth cycle (e.g., classic papers by Wallace (1920) and Thompson (1988) and more recently Tannura
et al. (2008)), and notes the importance of July/August temperature, while another uses cumulative
degree days over the growing season, and emphasizes non-linearity in the effect of heat (e.g., Schlenker
and Roberts (2009)). The DNN can handle both features simultaneously.
22We use the same procedure to forecast future time effects in the benchmark county/time effect model.
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14 Keane & Neal

Table 3. Out-of-sample forecasting performance with 2006-15 Hold Out

Estimator
Mean Squared Error

2006-15
2012

Drought
Mean
Bias

Degree Day Models

County and Time Dummies 0.101 0.251 19%

FE-OLS 0.083 0.167 5%

Schlenker and Roberts 0.090 0.151 -4%

Butler and Huybers (MG-OLS) 0.086 0.162 21%

Deep Neural Net 0.103 0.149 -2%

MO-OLS 0.065 0.104 -1%

Full Information Models

LASSO 0.119 0.172 5%

Deep Neural Net 0.125 0.201 10%

Note: This table contains results of the models and data outlined in Section 3.1 and
Table 1. All models use 2006-15 observations as its holdout sample.

prediction of average national yield during the drought year, the MO-OLS model is off
by only 1%, making it the most accurate of all models.

Figure 3. Averaged Predicted Corn Yield 2006-15 by Model
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Note: This graph presents out-of-sample predictions of average corn yield from 2006 to 2015.
The results are presented as a weighted average across U.S. counties.
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Figure 3 reports actual and forecast values of annual average corn yield (over all
counties) in bushels per acre over the 2006-15 period. Note that the MO-OLS model
tracks average yield quite accurately over the whole period. In contrast, the DNN using
all weather data generates a national forecast that is far too smooth - it overpredicts yield
by 10% in 2012, while underestimating yield substantially in good years (2009, 2013-5).
The FE-OLS model’s annual yield predictions fall roughly in between.

To avoid clutter in Figure 3, the results for other models, which generally do worse, are
reported in the online Appendix. It is worth noting that the DNN based on DD variables
misses yield in 2012 by only 2%. However, it understates yield by 25% to 30% in the
last three years of the holdout (2013-5), making it appear quite unreliable for forecasting
yield further into the future. A smaller DNN with three hidden layers does no better.

In summary, the MO-OLS model clearly fits the 2006-15 holdout data much better
than the DNNs, and also better than the conventional panel-data models. It is the only
model that performed well in both the MC cross-validation exercise and in the 2006-15
holdout. Based on this we conclude it is the most reliable of the competing models for
forecasting future yields.

4. PREDICTING YIELD UNDER CLIMATE CHANGE

4.1. Methodology

Here, we compare predictions of the models of Sections 2 and 3 for annual corn yield from
2016 to 2100. To predict future yields, the models require forecasts of temperature and
precipitation in each corn growing county in the U.S. through to 2100. A global climate
model (GCM) can provide these predictions if given a CO2 emissions scenario. We use
the NOAA’s GFDL-CM3 model.23 For emissions, we use ‘representative concentration
pathway’ RCP85, which leads to a radiative forcing value (i.e. the balance between in-
coming and outgoing solar radiation) in 2100 that is 8.5 times pre-industrial levels. This
reflects strong emissions growth, and can be loosely described as the “business as usual”
scenario. Given this scenario, the GCM provides forecasts of daily max/min temperature
and precipitation for each corn growing county from now to 2100. We construct GDD
and KDD from these data in the same way as in the historical data.

In Keane and Neal (2020) we analyze the variability of forecasts over several different
CO2 scenarios and many climate models. But our focus here is on comparing the behavior
of the different econometric and machine learning models, so we consider only the RCP85
CO2 scenario and the NOAA’s GFDL-CM3 climate model. In particular, given that our
MO-OLS model with county/time fixed effects in intercepts and slopes dominates both
the DNNs and the traditional panel-data models in our out-of-sample fit tests, it is
interesting to see if it generates much different forecasts of future yield.

As we noted in Section 3, the MO-OLS model contains five time varying parameters
that must be forecast to predict future yields. However, in Keane and Neal (2020) we
find that the coefficients on precipitation exhibit no significant variation over time in the
historical data, so we decided to hold them fixed at 2015 values when forecasting future
yields. In Keane and Neal (2020) we also find that the KDD coefficient is very well

approximated by the nonlinear function β̂2,it = 0.0025(log(KDDit)) − 0.0183, obtained

23This GCM was developed for the IPCC’s Coupled Model Intercomparison Project version 5 (CMIP
v5). The GCM predictions were converted from a grid to average county values (i.e. downscaled) using
the BCCA procedure (bias corrected constructed analogs) by Reclamation (2013).
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by regressing estimates of β̂2,it from equation (2.5) on log(KDDit) in our sample period.
We interpret this relationship as arising from adaptation of farming practices to rising
temperature, such that sensitivity of yield to KDD falls as KDD increases.

Keane and Neal (2020) also find significant variation in the intercept and GDD co-
efficient over time. But, in contrast to the KDD coefficient, they find no systematic
pattern that can be used to forecast future intercept and GDD coefficient values. Thus,
we forecast λ̂0t and λ̂1t in equation (2.6) using a VAR estimated on the historical values
obtained from estimates of equations (2.5)-(2.6). Specifically, we use a VAR(1) system of

two equations, which include first lags of λ̂0t and λ̂1t along with log(t) and (log(t))1/2 to
capture time trends. The VAR results are reported in the online Appendix.24

To summarize, we forecast yields with technical progress in the MO-OLS model using:

ŷit,MO = β̂0it + β̂1itGDDit + β̂2itKDDit + β̂3i,t=2015PRECit + β̂4i,t=2015PREC
2
it + β̂5it

for t = 2016, ..., 2100 where β̂kit for k = 0, .., 2 are forecast as described above. We already
discussed in Section 3.3 how we forecast the time effects in the other models.

It is also interesting to predict the effects of climate change alone, holding technology
fixed. To do this using the econometric models, we simply hold all time fixed-effects at
their 2015 estimated values (or, in the case of the Schlenker-Roberts and Butler-Huybers
models, we fix the time trend at 2015). Using the MO-OLS estimates, we can forecast a
scenario where adaptation occurs, but other forms of technical progress are shut down.
To do this we simply set β̂0it = β̂0i,t=2015 and β̂1it = β̂1i,t=2015 for t > 2015, while letting

β̂2it vary with KDD as discussed above.
As we discussed earlier, the DNN automatically predicts technical progress, simply

because time is one of the input variables. The difficulty with the DNN is that, in con-
trast to the econometric models, it is not clear how to shut down technical change to
predict the effects of climate change alone. One idea would be to hold the time input
variable fixed at, say, 2015. The problem with this idea is that the DNN may use the
time variable to capture temporal changes other than technical progress (e.g., adapta-
tion, changes in unmeasured inputs, changing aspects of climate not captured by other
variables, and many other factors that may be unknown to us).25 This contrasts sharply
with the econometric models, where the time variation in intercepts and slopes has a
clear technological interpretation.26

Nevertheless, for comparison with the econometric models, we also present forecasts
from the DNN both with the time variable allowed to update and with the time variable
held fixed, but recognizing that the latter is likely to shut down not only technical
progress, but also other factors that have affected yield over time.

We present results as the actual yield value, not the logarithm, by simply applying
the eŷit transformation to the projected values. Results are presented as a weighted

24Recall we forecast the 2006-15 holdout by letting the vector of all five time effects in the MO-OLS
model follow a VAR. Here we forecast only two of the time effects using a VAR. We felt it was advisable
to incorporate more structure when forecasting all the way to 2100. Hence, given that time effects in
the precipitation coefficients appear insignificant, we hold them fixed at 2015 values. And given that the
KDD coefficient has a strong relationship with KDD itself, we impose that relationship in forecasting.
25Conversely, the DNN may even use trends in the other inputs (like the weather variables) to help
capture technical change. The fundamental problem is that the DNN is a ‘black box’ and while it
forecasts very well we do not fully understand the underlying mechanisms at work.
26Although, as we noted earlier, we would also expect the time effects to capture changes over time in
soil quality, which may in part be induced by lagged land and fertilizer usage.
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average across counties, where the counties are weighted by their historical average corn
production (in order to better estimate the national average corn yield).

4.2. Future Yield Forecast Results

Figure 4 presents predictions of corn yield from 2016 to 2100 from: (i) the conventional
FE-OLS model, (ii) the MO-OLS model, and (iii) the DNN based on daily weather
data.27 These forecasts hold technology fixed at 2015 levels in the econometric models,
and hold time fixed at 2015 in the DNN, in an attempt to gauge the impact of climate
change alone in the absence of technical progress.

The dashed line in Figure 4 is the average KDD path (across all counties) predicted by
NOAA’s GFDL-CM3 model under the RCP85 emissions scenario. Note that the model
forecast is deterministic - it can be viewed as a single representative path, containing
future good years and drought years. The model predicts that KDD will trend upward
over time, and also become much more volatile (particularly after 2060).

Figure 4. Prediction of Corn Yield under Climate Change with No Technological Progress
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Note: This graph presents predicted average corn yield using the RCP85 emissions scenario and
the GFDL climate model. The results are presented as a weighted average across U.S. counties,
and time is held fixed at 2015 in each model.

The FE-OLS model predicts catastrophic consequences of climate change. It predicts
corn yields will drop by about 70% by 2100, bringing them back to 1940s levels. The
MO-OLS and DNN models predict very similar - and somewhat less catastrophic - drops
in yields. They both predict drops of about 40% by 2100, which would bring yields back

27 As the three traditional economic models generate very similar results, we report only the FE-OLS
model to avoid cluttering the graph.
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to levels last seen in the 1970s and 80s. The key difference is that the MO-OLS model
predicts that yields will become much more volatile as KDD becomes more volatile, while
the DNN predicts much smoother yields over time. Recall that the DNN forecasts for the
2006-15 holdout exhibited “excessive smoothness,” while the MO-OLS model predicted
annual yield fluctuations quite accurately. This same pattern is clearly reflected here.

Figure 5 reports results that account for technical progress. The FE-OLS model implies
technical progress will do very little to mitigate catastrophic drops in yields. Even with
technical progress, it predicts yields will fall to about 50 bushels per acre by 2100 (i.e.,
1950s levels). The Schlenker-Roberts and MG-OLS results (not shown) are similar.

In contrast, the MO-OLS and DNN models both predict that technical progress will
largely counteract the downward trend in yields induced by climate change, and that
corn yield will grow (very) slightly over the next two decades and then flatten out. It
is worth noting, however, that such a stagnation in the historical rapid growth in US
corn yields is likely to create very serious problems for world food supply with a growing
population. Thus, even a ‘stagnation’ scenario is, in effect, disastrous.

Figure 5. Projection of Corn Yield under Climate Change with Technological Progress
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Note: This graph presents projected average corn yield using the RCP85 emissions scenario and
the GFDL climate model. The results incorporate predicted technological progress in each model.

The fundamental difference between the MO-OLS model and the DNN is that the
former predicts corn yields will become much more volatile due to the increased year-to-
year volatility of KDD. The DNN smooths out yield fluctuations due to weather (just as
it did in the 2006-15 holdout). Again, we view the MO-OLS predictions as more plausible,
as it predicts yield fluctuations much more accurately in the 2006-15 holdout.

Finally, it is worth commenting on the plausibility of these predictions of the impact of
technology. The corn plant is not especially sensitive to high temperature in the vegeta-

c© 2018



Comparing Approaches to Predicting the Impact of Climate Change on Yield 19

tive period (April-June) when most growth is under ground (see e.g. Tardieu et al. 2018).
It is very sensitive to high temperature in the post-pollination ‘corn filling’ period, when
high temperatures greatly increase the plant’s water needs. In principle this might be
addressed by increased irrigation, where there is room for progress as the large majority
of US corn is not currently irrigated. But Marshall et al. (2015) find the scope for in-
creased irrigation is limited because climate change will deplete water supplies. Another
possibility is the continued development of more heat resistant hybrids, where there is
history of success going back to the 1930s.28 The greatest technical hurdle for corn may
be that the pollination process that typically occurs in early July requires mild tem-
peratures. Irrigation cannot solve the problem of pollen death or infertility due to high
temperatures, and the genetic basis of pollen resilience to heat is still little understood.29

5. CONCLUSION

In his classic article that introduced multiple regression analysis into agricultural eco-
nomics, Wallace (1920) analyzed effects of temperature and precipitation in June, July
and August on corn yields. He stressed the importance of county-level heterogeneity in
the production function. In particular, he showed how state-wide results for Iowa made
little sense, as they aggregated very different processes at work in the cooler northern
vs. warmer southern counties. He argued one must interpret regression results in the
context of the biology of the corn life-cycle, which imply the mapping of weather to yield
is nonlinear and crucially dependent on the timing of inputs. He noted that the simple
regression methods available to him at the time could not accommodate this complexity.

Facing this conundrum, Wallace combined his scientific judgment with the regression
results to produce tables of how he predicted different combinations of inputs at different
times would affect yields in Polk county (obtaining a correlation of .92 with actual yields
from 1891-1919). He concluded by arguing “For practical purposes, it is probably just
as well first to get a general idea of the importance of the various factors at work by
using the theory of multiple correlation, and then by applying common sense ... work out
tables ... [like those] worked out in predicting the yield of corn in Polk County Iowa.” To
this the editor (C.F. Brooks) commented “To make a [national] study in accordance with
these suggestions would probably require an impossible amount of labor for one person.”

In this article we have shown how new methods (MO-OLS and neural networks) com-
bined with the speed of modern computers, allow us to analyze US corn yields accounting
for: (i) rich patterns of cross county heterogeneity, (ii) complex nonlinearities in the pro-
duction process, and (iii) interactions across inputs over time. Thus, it is now feasible to
implement Wallace’s original vision. It is humbling to note we have not advanced beyond
the clear understanding of the key econometric issues that he elucidated 100 years ago.

Our results show that the MO-OLS estimator, which allows for time and county fixed
effects in both intercepts and slopes, provides a much better fit to corn yields than the
traditional panel data methods that have been used in this literature. These are the
two-way fixed effects estimator (FE-OLS) that allows for county and time fixed effects

28The corn plant can reduce its transpiration rate via stomatal closure during heat stress (loosely
analogous to an animal going into hibernation), and there is genetic variance in this ability, which can
be exploited to design heat resistant hybrids (see Tardieu et al. 2018).
29There is evidence that a shorter pollination time (‘anthesis-silking interval’) is associated with greater
heat tolerance, and genetic variation in this trait has been used to breed more heat resistant strains.
However, it has proven difficult to find other characteristics to exploit. One problem noted in the literature
is that corn bred to be more heat tolerant tends to generate lower yields under good conditions.
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in intercepts, and the mean group OLS (MG-OLS) estimator that allows for county-level
heterogeneity in all parameters. The MO-OLS model fits better than these competitors
both in random holdout samples generated in a Monte-Carlo cross-validation exercise,
and in a holdout sample consisting of the last ten years of data (2006-15). Importantly,
the MO-OLS estimates imply that the negative effect of “killer degree days” (KDD) on
corn yield is less in hotter counties and time periods, implying adaptation of farming
practices to high temperatures. This shows that in modeling corn yield it is important
to account for both county-level heterogeneity and time effects.

We find that a deep neural net (DNN) that takes as input daily weather information can
predict corn yields much more accurately than either the MO-OLS or conventional panel
data models, both in-sample and in a Monte Carlo cross-validation exercise. However, the
DNN performs quite poorly when we use it to predict yields in the 2006-15 holdout period.
In particular, while the MO-OLS model predicts average annual yields quite accurately
in the holdout sample, the DNN predicts a relatively smooth path, thus understating the
sensitivity of yields to annual weather fluctuations.

Finally, we used the full set of models to generate forecasts of corn yield through 2100
based on the NOAAs GFDL-CM3 climate model under the RCP85 (“business as usual”)
emissions scenario. The traditional econometric models predict catastrophic drops in
yield of about 60%, to levels last seen in the 1950s. In contrast, the DNN and MO-
OLS models predict that corn yields will stagnate, but not actually decline. The MO-
OLS model predicts less severe consequences of climate change because: (i) it predicts
significant adaptation of farming practices to hot conditions, and (ii) it predicts technical
progress will have a larger positive effect on yields.

A key difference bewteen the DNN and MO-OLS is that the DNN generates its own
forecast of future technical change, while we must input a forecast into the MO-OLS
model. This is not necessarily an advantage for the DNN, as its forecast is a “black box.”
Thus, we can’t use the DNN to do scenario evaluations for different degrees of adaptation
or technical progress. And, in contrast to the MO-OLS model, we can’t really decompose
why the DNN expects less impact of climate change than traditional econometric models
into parts due to adaptation or other types of technical change.

The GFDL-CM3 climate model under the RCP85 emissions scenario predicts not only
that the average annual level of KDDs will increase substantially in the second half of the
21st century, but also that the year-to-year volatility of KDD will increase substantially.
Our MO-OLS model predicts that this will lead to a dramatic increase in year-to-year
volatility in yields. In contrast, the DNN predicts much less sensitivity of annual corn
yield to KDD, and hence it predicts a much smoother yield path. We view the MO-OLS
model prediction as more credible, as it accurately predicts year-to-year yield fluctuations
in the 2006-15 holdout sample, while the DNN predicts a yield path that is far too smooth.

Substantively, it is important to note even stagnation of US corn yields is likely to
create very serious or even catastrophic problems for future world food supply. While
here we exclusively look at the RCP85 scenario, Keane and Neal (2020) also examine the
RCP45 and RCP26 scenarios and find that emissions reductions akin to those proposed
in the Paris agreement could greatly mitigate the damages to yield found here.

Finally, a key takeaway from our analysis is the impressive performance of the MO-
OLS estimator. It is significant that MO-OLS generates both (i) more accurate forecasts
of yield than the traditional panel data models (both in-sample and out-of-sample), and
(ii) forecasts for the 2016-15 holdout that are much more accurate than the DNN, while
using many fewer parameters and maintaining the interpretability of the estimates.
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