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Abstract

We present an economy where aggregate risk aversion is stochastic and

state-dependent in response to information about the wider economy. A

factor model is used to link aggregate risk aversion to the business cycle

and to handle high-dimensionality of the information about the economy.

Our estimated aggregate risk aversion is counter-cyclical and varies with

news about economic booms and busts. We find new evidence of volatility

clustering of risk aversion around recessions. In addition to the price of

consumption risk associated with consumption risk, time variation in risk

aversion introduces risk preferences as a new component of the risk pre-

mium.

Key words and phrases: Consumption-based capital asset pricing model;

time-varying risk aversion; GMM estimation; Euler equations; mispricing;

Counter-cyclicality.

∗∗Corresponding author. School of Economics, The University of New South Wales, Sydney,
2052 Australia. Email: rouysse@unsw.edu.au.

1

UNSW Economics Working Paper 2020-04



1 Introduction

In financial economics, consumption-based asset pricing models have been among the

leading multiperiod general equilibrium asset pricing models for the past three decades.

See Breeden et al. (2014) for a review of the origins and development of the consumption-

based capital asset pricing (CCAPM) theory. The CCAPM links asset pricing with

macroeconomic risk and states that the expected excess return on any risky asset

should be proportional to the asset’s “consumption beta.” Securities with a higher sen-

sitivity of returns to movements in real consumption spending have more systematic

risk and should have proportionately higher excess returns.

The first two decades of CCAPM tests rejected the model’s implied first order

conditions in its representative agent formulation with time-separable power utility

and constant relative risk aversion (Hansen and Singleton (1982a), Mehra and Prescott

(1985a)); and the model proved dissapointing in explaining the cross-section of average

excess returns (Mankiw and Shapiro (1986), Breeden et al. (1989), Campbell (1996),

Cochrane (1996)).

The weak early empirical support for the CCAPM is contrasted with a very strong

theory in support of the consumption-based model. ‘As a measure of systematic risk,

an asset’s covariance with the marginal utility of consumption achieves a degree of

theoretical purity that is unmatched by other asset pricing models,’ Lettau and Lud-

vigson (2001), page 1239. This disconnect between the theory and empirical evidence

motivated researchers to improve the theoretical modeling of CCAPM and its empirical

implementation.

In this paper, we formulate and empirically test a consumption-based capital asset

pricing model in which aggregate risk aversion is time-varying. We model the rela-

tionship between risk aversion and the business cycle through a dynamic multinomial

model.

In the literature, attempts to resolve the equity premium and the risk-free rate
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puzzles have taken many directions, some of which emphasize stochastic prices of con-

sumption risk or distorted beliefs. The view of time-varying aggregate preferences was

made popular in the literature with the inception of habit formation models (Abel

(1990), Constantinides (1990), Heaton (1995)). In Campbell and Cochrane’s (1999b)

habit formation model, the representative agent’s risk aversion varies with differences

between consumption and the agent’s habit formed through past consumption. In

habit formation model, the local curvature of the utility function is inversely related to

the surplus consumption ratio; therefore, fluctuating risk aversion is counter-cyclical.

The investors’ risk tolerance is expected to be low during recessions and in times of

a sustained decline of prices, and high during exapansions. The relative risk aver-

sion is therefore related with ‘recession risk’state variables that are correlated with the

business cycle (Maio (2013)).

Time-varying risk aversion also arises in the intertemporal capital asset pricing

model (ICAPM) (Merton (1973)), where investors participate in the financial market

over a long period of time, thus resulting in situations in which they may wish to

hedge against not only shortfalls in consumption but also future changes in investment

opportunities.

Brandt and Wang (2003) directly model the time-varying risk aversion by specifying

an autoregressive law of motion for the log of relative risk aversion. The innovations

in the risk aversion are explicitly related to innovations in consumption growth and

inflation. Brunnermeier and Nagel (2008) link time-varying risk aversion to individuals’

responses to changes in household wealth.

We formulate and empirically evaluate the implications of a consumption-based

capital asset pricing model where risk aversion is time-varying, not only as a response

to news about aggregate consumption as in the habit formation model, but also to news

about a wide range of key economic indicators. This paper preserves the simple frame-

work of the time-separable risk aversion utility function without using habit formation.

Our framework replaces the traditional fixed risk aversion (FRA) with a time-varying
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state-dependent risk aversion (SDRA). We address state-dependencies from a some-

what more general perspective. Our model is a reduced form for an economy in which

the representative agent reacts to news about the state of the economy. Instead of

specifying which leading economic indicators the agents are responding to, we use the

principle of maximum random utility to relate the business cycle indicators to a multi-

nomial state variable. The model can be seen as an approximate reduced form for a

more elaborate model with nominal frictions or, money preferences, or as simply cap-

turing cyclical time-variations in aggregate preferences. In contrast to habit formation

models, which only allow aggregate preferences to change in response to news about

aggregate consumption growth, this model can explicitly specify how aggregate pref-

erences vary through time and in response to the business cycle. In addition to news

about aggregate consumption, the model can evaluate such effects as the anxiety about

excessive inflation documented in Shiller (1997) by measuring the effect of news about

inflation on aggregate preferences.

Instead of specifying a law of motion for the aggregate risk aversion parameter

(e.g. autoregressive structure as in Brandt and Wang (2003)), this model links the

fluctuations in the aggregate preferences to fluctuations in the business cycle. The latter

is modeled as a response to news about the aggregate economy. Our approach is more

robust as it avoids issues of mispecification in modeling the time-varying preferenaces.

In particular, this paper addresses some of the mitigated empirical performances of

the representative agent, A power utility of the constant relative risk aversion. First,

models with time and state separable utility functions predict that risk premium (the

excess return on risky asset over the riskless asset) is affine in the covariance between

consumption growth and returns, with consumption risk priced at a constant rate

equal to the coefficient of risk aversion. The observed historical correlation between

consumption and returns is low, tand the high risk premia found in the data can only

be reconciled with implausibly high risk aversion. Second, in these models the elasticity

of intertemporal substitution is the reciprocal of risk aversion, thus predicting a large
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risk-free rate of interest to induce high risk aversion. In this paper, we explore the

pricing implications of the time-varying aggregate preferences on the cyclical dynamics

of term structure of (nominal) interest rates.

In this paper, we follow the line of research that emphasizes stochastic prices of con-

sumption risks, and we relax the constant relative risk aversion assumption of constant

curvature, and consider a business cycle-dependent risk aversion. The model implies

two sets of conditional moments: one from the Euler equation and the second from the

multinomial logit. The estimation is based on generalized method of moments (GMM)

of the joint set of implied unconditional moments. This “joint” estimation provides

us with a consistent estimator of the subjective discount rate, the average risk aver-

sion, and the risk aversion sensitivities to changes in the business cycle. Brandt and

Wang (2003) use a setup that resembles the habit formation model, which models the

dynamics of aggregate risk aversion instead of specifying the agent’s habit formation.

Many studies1 have indicated that GMM estimators may be badly biased and that

the associated tests have substantial size distortions. These shortcomings of the asymp-

totic approximation might be the result of many possible reasons, inter alia, (1) choice

of instruments and the number of lags, (2) choice of the weighting matrix, and (3)

choice of alternative GMM estimators.

We use the following notation throughout the paper: E (.|It) is the expectation

of the argument conditional on some suitable information set It available at time t,

E (Zt) is the unconditional expectation of Zt, E F (.) is the (unconditional) expectation

under the probability distribution F , the indicator function Ind(A) takes the value

1 if the statement “A” is correct and 0 otherwise, A−1 is the inverse of A, ιm is a

m-vector of ones, Im is an m ×m identity matrix, diag(A) is the vector consisting of

the diagonal elements of A, tr(A) is the sum of the diagonal elements of A, the norm

of A is ‖A‖ = (tr(A′A))1/2, A ⊗ B is the Kronecker product of A and B defined as

A⊗B = [aijB] where A = [aij ], and ‘vector’ means a column vector.

1Several of which have been published in the July 1996 special issue of the Journal of
Business & Economic Statistics.
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2 Intertemporally separable consumption-based

capital asset pricing models

Consumption-based capital asset pricing models use marginal rates of substitution to

determine the relative prices of a composite consumption good which is date and event-

contingent. This model class is characterized by a stochastic discount factor process

that puts restrictions on the joint process of asset returns and per capita consumption.

In these models, household trading of financial assets is motivated by a desire

to smooth consumption both over time and across states at a point in time. The

desirability of an asset reflects its ability to smooth consumption. Assets that pay off

in future states when the marginal utility of consumption is low are less desirable than

those that pay an equivalent amount in future states when consumption levels are low

and additional consumption is more valued.

Consider a single-good general equilibrium model with infinite horizon and identical

agents. A representative consumer in this economy chooses stochastic consumption and

investment so as to maximize the present value of his lifetime utility:

max
Ct

E 0

[ ∞∑
t=0

βtU(Ct),

]
(1)

where β is a discount factor in the interval [0,1] and U(.) is a strictly concave function.

Suppose that the consumer can trade freely in some N assets with maturity nj , j =

1, .., N.

The feasible set of consumption and investment plans must satisfy the sequence of

budget constraints:

Ct +

N∑
j=1

Pj,tQj,t 6 RjtQj,t−Mj +Wt (2)

where Qjt is the quantity of asset j held at the end of period t. Pjt is the price of asset

j at period t. Rjt is the payoff from holding asset j. The investor’s first-order condition
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is

U ′(Ct) = βE t

[
rj,t+1U

′(Ct+1)
]
, (3)

where Rj,t+1 is the one period simple gross return from holding one unit of stock j and

is defined as:

Rj,t+1 =
Pj,t+1 +Dj,t+1

Pj,t

where Dj,t+1 is the dividend yield on stock j from period t to t+ 1.

The left-hand side of Equation (3) is the marginal utility cost of consuming one less

real dollar at time t. The right-hand side is the expected marginal utility benefit from

investing that dollar in asset i at time t and selling out at time t + 1, and consuming

the proceeds. Equation (3) describes the optimum allocation as the investor equates

marginal cost and marginal benefit. The equation can be rewritten as,

1 = βE t

[
Rj,t+1

U ′(Ct+1)

U ′(Ct)

]
= E t [Rj,t+1Mt+1] , (4)

where Mt+1 is the stochastic discount factor which characterises the intertemporal

marginal rate of substitution of the investor. The stochastic discount factor is unique

in complete markets where idiosyncratic variations in investors’ marginal utilities are

eliminated. Equation (4) must hold for every asset incuding the riskless asset. Applying

the properties of expectations, the equation can be expressed as

E t [Rj,t+1] =
1− Covt [Rj,t+1,Mt+1]

E t [Mt+1]
. (5)

An asset with a high expected return must have a low covariance with the stochastic

discount factor. This asset is risky in that it fails to deliver wealth when it is most

valuable to investors because it tends to have low returns when investors have high

marginal utility. Investors demand a large risk premium to hold this type of asset.

Equation (5) must hold equally for the riskless asset whose gross return is Rf,t+1
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with the exception that the covariance with the risk-free asset and the stochastic dis-

count factor is zero:

E t [Rf,t+1] =
1

E t [Mt+1]
. (6)

Combining Equations (5-6),

E t [Rj,t+1] = Rf,t+1 (1− Cov [Rj,t+1,Mt+1]) . (7)

To understand the implications of Equation (7), assume, as Hansen and Singleton

(1983), that the joint conditional distribution of asset returns and the stochastic dis-

count factor is lognormal and homoskedastic. Taking the logarithm of Equation (6)

gives,

log(Rf,t+1) = −E t(log(Mt+1))− σ2
m

2
, (8)

where σ2
m denotes the unconditional variance of innovations to the stochastic discount

factor. Combining the logarithm of Equation (4) and Equation (8), the excess return

on a risky asset over the riskless rate obeys

E t [log(Rj,t+1)− log(Rf,t+1)] +
σ2
j

2
= −σjm, (9)

where σ2
j denotes the unconditional variance of log return innovations and σjm de-

notes the unconditional covariance of the innovations in the returns and the stochastic

discount factor,

Cov (log(Rj,t+1)− E tlog(Rj,t+1), log(Mt+1)− E tlog(Mt+1)) .

The right-hand side of Equation (9) is the log counterpart of Equation (7) and says

that the risk premium is determined by the negative covariance of the asset with the
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stochastic discount factor.

Power utility with constant risk aversion

Assuming that the preferences are of the constant relative risk aversion (CRRA) type

defined over aggregate consumption Ct

U(Ct) =
C1−γ
t

1− γ
,

where γ is the coefficient of relative risk aversion. This power utility is scale invariant

and risk premia (given constant return distributions) do not change over time. It also

allows aggregation of investors with different wealth levels into one representative agent

as long as they all have the same power utility. The marginal utility is U ′(Ct) = C−γt ,

the stochastic discount factorMt+1 = β (Ct+1/Ct)
−γ , and the elasticity of intertemporal

substitution is the reciprocal of the coefficient of relative risk aversion.

For the CRRA power utility function, Equation (6) becomes

log(Rf,t+1) = −logβ + γEt∆log(Ct+1)− γ2δ2
c

2
. (10)

In Equation (10), the riskless real rate is linear in expected consumption growth, with

slope coefficient equal to the coefficient of relative risk aversion. The risk premium

Equation (7) becomes

E t [log(Rj,t+1)− log(Rf,t+1)] = γσic −
σ2
j

2
. (11)

Equation (11) defines one of the pricing implications of the consumption-based capital

asset pricing model with power utility of the constant relative risk aversion family. An

asset with a high consumption covariance tends to have low returns when consumption

is low and when marginal utility of consumption is high. Such an asset is risky and

commands a large risk premium.
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Mehra and Prescott (1985a) documented what has since been known as the equity

premium puzzle. The puzzle arizes from the fact that the quantitative predictions of

the theory (i.e., Equation (11)) are an order of magnitude different from what has

been historically documented in these type of preferences. Campbell (2003) presents

empirical implications of the pricing equation in (11). His analysis shows that the

implied risk aversion coefficients show that the equity premium puzzle is a robust

phenomenon in international data. The implied relative risk aversion coefficents are

many times larger than the maximum level 10, considered plausible by Mehra and

Prescott (1985a), and are negative in cases where the estimated covariance of stock

returns with consumption growth is negative. In addition, the paper indicates that

the puzzle arises from the smoothness of consumption rather than the low correlation

between consumption and returns.

The high premia found in the data can only be replicated by setting risk aversion to

implausibly high levels because of the observed low correlation between consumption

and equity. However a high coefficient of relative risk aversion creates another puzzle,

the risk-free rate puzzle. Equation (10) implies that the unconditional mean risk-free

interest rate is

E logRf,t+1 = −logβ + γE
[
log

(
Ct+1

Ct

)]
− γ2σ2

c

2
. (12)

In historical data, the mean average growth rate of consumption E log (Ct+1/Ct) is posi-

tive. If the coefficint of relative risk aversion is high (which is needed for Equation (11)

in the data), then the term −γ2σ2
c

2 dominates and pushes the riskless rate down. A

low riskless rate is possible in equilibrium only if investors have a low or negative rate

of time preference. To reconcile the equity premium puzzle with a high relative risk

aversion coefficent implies implausible time preference rates (Campbell, 2003).
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3 State-dependent aggregate risk aversion

This paper considers a framework with state-dependent relative risk aversion SDRA, a

variation of the CRRA which allows for time-varying attitudes towards risk. The risk

aversion parameter γt is time/state-dependent,

U(Ct, γt, t) = β
1

1− γt
(Ct)

1−γt , γt > t,∀t, (13)

This utility function can be seen as a special case of more general alternatives to the

CRRA in the literature. Gordon and St-Amour (2004) considers preferences where

the curvature index γ is time-varying. They characterize the representative agent’s

preferences with within-period conditionally iso-elastic utility,

U(Ct, γt, t) = β
Θ

1− γt

(
Ct
Θ

)1−γt
, γt > t,∀t, (14)

where Θ > 0 is a constant subjective scaling factor. Gordon and St-Amour (2004)

refer to this model as state-dependent risk aversion preferences. The utility function

is an implicit function of the state of the world with the key assumption that the

process underlying γt is exogenous and unaffected by the agent’s decisions. The state

variables have an impact on equilibrium returns (through production), but the model

rules out cases where “· · · the state could be related to individual decisions, such as

past consumption, or accumulated wealth”(Gordon and St-Amour (2004) p. 243).

The utility function (13) is also a special case of Melino and Yang’s (2003) general

state-dependent preferences defined by random consumption sequences constructed as,

Ut =

(
(1− β(St))Cρ(St)

t + β(St)
[
E t

(
U
α(St)
t+1

)]ρ(St)/α(St)
)1/ρ(St)

, (15)

where β(St), α(St), and ρ(St) are preference parameters that depend on an exogenous

state variable St. Our setting is a special case of (15), in which the CRRA for ‘timeless
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gambles’ varies with the state γt = 1 − α(St), but the measure of time preference

parameter β(St) = β is constant. In addition, our preferences assume ρ(St) = ρ

which means that the elasticity of temporal substitution (EIS) is constant and equal

to 1/(1− ρ).

Ut =

(
(1− β)Cρt + β

[
E t

(
U1−γt
t+1

)]ρ/(1−γt))1/ρ

(16)

Gordon and St-Amour (2000, 2004) describe how the instantaneous utility function

in (14) captures the effects of pro-cyclical and counter-cyclical risk aversion on marginal

utility risk. The level of consumption with respect to the pivot level Θ determines

how changes in the curvature index γt —and hence in risk aversion— marginal utility

schedule. When consumption is above the pivot level (Ct > Θ) —resulting from a

favorable state— pro-cyclical risk aversion implies a decrease in risk aversion, causing

a counter-clockwise rotation in the marginal utility schedule. The converse is true for

Ct < Θ. When Ct ≈ Θ, fluctuations in the curvature of utility functions have only

limited effects on the marginal utility. Our specification is then a special case in which

Θ = 1. Gordon and St-Amour (2004) estimated a time-varying risk aversion model in

which [Rt,∆log (CtΘ ), γt] admits a Multivariate Arithmitic Brownian Motion. In their

Bayesian estimation of the model parameters, they find that different values of the

scaling metric Θ do not appear to affect their estimates for risk aversion.

Our approach to risk aversion not being an observed series is to assume that the

risk aversion parameter γ is dependent on the economic conditions through a state

variable St in the form of a business cycle dummy which depends on a set of variables

w t that defines the state of the economy. The dependence of St and the state variables

w t is modeled using a discrete choice model. The resulting model would be expressed

in terms of observed data. For example, St can be defined as

St = 1 when the observation corresponds to a contraction;
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St = 2 when the observation corresponds to a contraction and is an actual trough

date;

St = 3 when the observation corresponds to an expansion;

St = 4 when the observation corresponds to an expansion and is an actual peak

date.

Alternatively, the state variable can also be simplified to having two states j = 0, 1,

where j = 0 when an observation corresponds to a recession and j = 1 when an

obsevation corresponds to an expansion.

Based on the principle of maximum random utility, assume that there exists an

unobserved measure of utility in the economy Uj associated with state j of the business

cycle. Let us assume that the response variable St takes value j if Uj = max{Ul, l ∈

{1, · · · , κS}}. Further assume that Ujt = w ′tβj + εt where εt has a CDF Fε(.) and w t

is a vector of K variables characterizing the state of the economy at time t.

In general, St charaterizes the business cycle with κS + 1 distinct states. We use

a baseline category logit model (Agresti (2012)) in which each time period t may be

classified into one of κS categories (states), denoted by St = (St1, St2, · · · , StκS ) the

multinomial trial for t, where Stj = 1 when the time period is in category j and Stj = 0

otherwise, t = 1, · · · , T, j = 1, · · · , κS . Thus,
∑κS

j=1 Stj = 1. We assume that (St,w t)

are independently and identically distributed. Let πj(w t) = P t(St = j|w t) = P t(Stj =

1|w t) denote the probability that the observation of S belongs to business cycle state

j, given covariates w t. We assume the relationship between the probability πjt and w t

can be modeled as:

log

{
πj(w t)

πκS (w t)

}
= w ′tαj , αj = (αj0, αj1, · · · , αjK)′

πj(w t) = P (Ujt = max{Ult, 1 ≤ l ≤ κS |w t})

= πjt,
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where κS is set as a reference state for St.

For the case of a multinomial logit, we have

πjt =
1∑κS−1

l=1 exp(w ′t(αl − αj))
j = 1, ..., κS and α0 = 0κ.

The dependence of the risk aversion on the state of the economy is modeled through

the polytomous response variable St:

γt = E t−1 (StΓ + εt) , (17)

where Γ = (Γ1, · · · ,ΓκS )′, and εt are innovations that drive time-variations in risk

aversion. If we set state 1 as a reference category, we can redefine the parameter γ and

write

γt = E t−1

Γ1 +

κS∑
j=2

StjΓj + εt

 . (18)

This model postulates that aggregate risk aversion varies not only in response to news

about consumption growth (as in the CRRA) but also to news about the state of

the economy. The state variable St has information about the business cycle and

transmits information about macroeconomic activity to the dynamics of the relative

risk aversion. The state-dependent risk aversion dynamics in Equation (17) imply that

the state-dependent risk aversion γt is determined by the conditional expectation of the

state variables St,

γt = Γ1 +

κS∑
j=2

ΓjE (Stj |w t). (19)

From the specification of the risk aversion (17), one can relate the first moment of γt
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to the economic variables w t

γt = Γ1 +

κS∑
j=2

ΓjP (Stj = 1|w t) (20)

P (Stj = 1|w t) =
exp(w ′tαj)

1 +
∑κS

k=1 exp(w ′tαk)
. (21)

This framework therefore implies two systems of equations defined by the uncondi-

tional moments of the model. The first system is impled by the pricing equations in

the Euler equation (4) of the CAPM moment conditions, and the second —and new

— system corresponds to the unconditional moments of the multinomial model (17).

The multinomial system has κ unknown parameters. Assuming exogeneity of the ex-

planatory state variables and that w t includes a column of ones, the following moment

conditions

E [Stj − P (Stj = 1|w t)] = 0 ∀j = 1, · · · , κS , (22)

E [(Stj − P (Stj = 1|w t))⊗w t] = 0κ ∀j = 1, · · · , κS (23)

are valid to estimate the parameters αj , j = 1, · · · , κS . This multinomial logit spec-

ification of the dynamics of the time-varying relative risk aversion γt completes the

description of the aggregate preferences in our setup.

4 Econometric model and GMM estimation

Models that are defined in terms of conditional moment restrictions establish that cer-

tain parametric functions have zero conditional mean when evaluated at the parameter

values. Let {yt}Tt=1 be an ergodic and stationary time series vector of endogenous and

exogenous random variables. The coordinates of yt are related by an econometric model

which establishes that the true distribution of data satisfies the conditional moment
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restrictions

E [ζ(yt+1,Θ0)|It] = 0, t = 1, ..., T − 1, (24)

for a unique value of the φ-vector Θ0 ∈ Θ, where Θ ⊂ Rφ and ζ(xt+1,Θ0) are an

`−dimensional parametric function. The function ζ can be understood as the errors

measuring the deviation from an equilibrium condition. Suppose that we can form

an T × ϕ matrix Z with typical row Zt such that all its elements belong to It. The

ϕ variables given by the columns of Z are called instrumental variables, or simply

instruments. These instruments are required to be ‘predetermined’ and are not neces-

sarily ‘econometrically’ exogenous. That is, current and lagged values of y are valid

instruments.

The generalized methods of moments estimation (GMM) of Hansen and Singleton

(1982b) permits direct estimation and inference of the nonlinear rational expectation

model defined by the population orthogonality conditions in (27) of the equilibrium

stochastic Euler equations. The GMM circumvents the need of a complete, explicit

characterization of the environment and does not require strong assumptions about the

forcing variables of the equilibrium path. Given the conditional moment restriction

(27) and the additional assumption that the constituents of ζ(yt+1,Θ0) and the vari-

ables in Zt have finite second moments (Hansen and Singleton (1982a)), a family of

unconditional population orthogonality conditions

E [g(Xt,Θ0)] = 0, (25)

can be constructed where Xt ≡ (yt+1,Zt), gt(Xt,Θ0) = ζ(yt+1,Θ0)⊗Zt. The moment

restrictions in (25) are also known as the estimating equations.

Let ct+1 be the ratio of consumption at time t+1 to the consumption at time t, and

assume for simplicity that assets are held for one period nj = 1, then for j = 1, ...,m,

the Euler equation (4) for the consumer optimization problem can be rewritten as a
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residual form

Et

[
β
C
−γt+1

t+1

C−γtt

Rj,t+1 − 1

]
= 0, (26)

where γt, γt+1 are given in Equation (17). The stochastic Euler equation (26) implies

a family of population orthogonality conditions. The GMM estimation method uses

these moment conditions to construct an objective function whose optimizers are the

estimates of the parameters of the asset pricing model, i.e., β and Γ = (Γ1, · · · ,ΓκS )′.

The Euler equation in (26) can be written as an m dimensional error term,

h(xt+1,Γ, β) = βC
∆γt+1

t (ct+1)−γt+1R•t+1 − ιm,

where R•t+1 = (R1,t+1, · · · , Rm,t+1)′, which measures the deviation from the equilib-

rium condition. Let xt+1 = (ct+1,R
′
•t+1)′, then the first order condition becomes

Et[h(xt+1,Γ, β)] = 0.

Given a set zt of ϕ instruments available at time t, a family of population orthogonality

conditions can be constructed based on the following moments functions:2

E[h(xt+1,Γ0, β0)⊗ zt] = 0. (27)

Given the conditional moment restrictions (23) and (27), and assuming that the con-

stituents of h(xt+1,Γ0, β), f(w t, α), and the variables in z t and w t have finite second

moments (Hansen and Singleton (1982a)), we construct a system of unconditional mean

equations by combining the unconditional moment equations in system (23) with sys-

2h(xt+1,Γ0, β0) ⊗ zt stands for the Kronecker product of the m × 1 vector h(xt+1,Γ0, β0)
and the q×1 vector of instruments z t (including the constant term). The product is an mq×1
vector.
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tem (27). Let fj(w t, α), j = 1, · · · , κS ,

fj(w t, α) =

 Stj − P t(Stj = 1)

(Stj − P t(Stj = 1))⊗w t

 , (28)

and f(w t, α) = (f1(w t, α)′, · · · , fκS (w t, α)′)′; here w t is redefined to include a constant

term. The system of moment conditions that combines the multinomial logit for the

unobserved state variable St and the CCAPM Euler equation is

gt(Θ,w t,xt+1, zt) =

 f(w t, α)

h(xt+1,Θ)⊗ zt

 (29)

where Θ = (Γ1, · · · ,ΓκS , β, α′1, · · · , α′κS )′. The unconditional moments generated by

the instruments w t and zt satisfy

E [gt(Xt,Θ0)] = 0, (30)

where Xt = (xt+1,Zt), Zt = (zt,w t), and the moment function

gt(Xt,Θ0) = ζ(yt+1,Θ0)⊗Zt,

with ζ(xt+1,Θ0) =
[
{Stj − P (Stj = 1)}κSj=1, h(xt+1,Θ)

]′
.

The number of moment conditions, denoted $, in system (30) is $ = κS(1 +

K) + m × ϕ. The number of unknown parameters in the model φ is κSK + κS + 1,

representing the K parameters in each αj , j = 1, · · · , κS , the κS parameters in the

expected risk aversion γt, and the parameter β. For the model to be identified, the

number of orthogonality conditions $ must be at least equal to the number of unknown

parameters φ in the model, implying in this case a counting condition for identification

that m · ϕ ≥ 1.

The GMM estimation uses the sample versions of the population orthogonality
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conditions (30) to construct an estimator for Θ0. The GMM estimator Θ̂ solves

min
Θ∈Θ

gT (X ,Θ)′WT gT (X ,Θ), , (31)

where gT (X ,Θ) = 1
T

∑T
t=1 g(Xt,Θ), WT is a sequence of symmetric positive-definite

weighting matrices which converge to a positive definite matrix W when T goes to

infinity, Θ is a compact parameter space, Θ ⊂ Rφ, and X = {X1, · · · ,XT }. Regularity

conditions for the consistency of the GMM estimator Θ̂ in (31) include: (a) gT (X ,Θ)

converges to E (g(Xt,Θ)) uniformly in Θ ∈ Θ, (b) E (g(Xt,Θ)) 6= 0 for all Θ 6= Θ0,

(c) E (g(Xt,Θ)) and gT (X ,Θ) are continuously differentiable and, ∂gT (X ,Θ)
∂Θ converges

to ∂E (g(Xt,Θ))
∂Θ . If in addition, (d)

√
TgT (X ,Θ0) converges in distribution to a normal

distribution with mean zero and variance Vg > 0, and (e) the $ × φ matrix G0 =

∂E (g(Xt,Θ))
∂Θ′ |Θ=Θ0 has full rank φ, then

√
T (Θ̂−Θ0) converges in distribution to a normal

distribution with mean zero and asymptotic variance

AsyV (Θ̂) =
(
G′0WG0

)−1
G′0WΩ0WG0

(
G′0WG0

)−1
, (32)

Ω0 = E
[
g(Xt,Θ0)gt(Xt,Θ0)′

]
. (33)

See Davidson and MacKinnon (2004) and Greene (2008) for a discussion of the asymp-

totic properties of minimum distance estimators.

Assumption (b) is the global identification which requires that the population mo-

ment condition only holds at one parameter value in the entire parameter space Θ. In

nonlinear models, it is rarely possible to derive testable conditions for global identifi-

cation. This assumption is replaced by assumption (e), which is a local identification

condition defined in the neighborhood of Θ0. It is also known as the first order identi-

fication condition of (Dovonon and Renault, 2008).

The first order conditions for GMM estimation in the SDRA model are a set of φ
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equations

∂gT (X ,Θ)′

∂Θ
WT gT (X ,Θ) = 0.

The first derivatives of the moment function with respect to the parameters

∂gT (X ,Θ)

∂Θ
=

[
∂f(w t, α)

∂Θ
,
∂h(xt+1, β,Γ1, · · · ,ΓκS )

∂Θ

]′
,

where

∂f(w t, α)

∂Θ
=



0 0 · · · 0 −∂π1t
∂α1

· · · − ∂π1t
∂ακS

· · · · · · · · · · · · · · · · · · · · ·

0 0 · · · 0 −∂πκS t
∂α1

· · · −∂πκS t
∂ακS

0K 0K · · · 0K −w t
∂π1t
∂α1

· · · −w t
∂π1t
∂ακS

· · · · · · · · · · · · · · · · · · · · ·

0K 0K · · · 0K −w t
∂πκS t
∂α1

· · · −w t
∂πκS t
∂ακS



,

and

∂h(xt+1, β, γ1, · · · , γκS )

∂Θ′
=



−βc−γt+1

t+1 C
−∆γt+1

t log(ct+1)R•t+1 ⊗ zt

−βc−γt+1

t+1 C
−∆γt+1

t [πj,t+1log(ct+1) + ∆πj,t+1 log Ct] R•t+1 ⊗ zt

· · ·

−βc−γt+1

t+1 C
−∆γt+1

t [πκS ,t+1log(ct+1) + ∆πκS ,t+1 log Ct] R•t+1 ⊗ zt

c
−γt+1

t+1 C
−∆γt+1

t R•t+1 ⊗ zt

0m·ϕ

0m·ϕ

0m·ϕ



.

In the case of the multinomial logit, the first derivative of the conditional mean of St
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with respect to the parameters of interest is

∂πjt
∂αj

= πjt(1− πjt) ·w ′t for j = 1, · · · , κS ;

∂πjt
∂αk

= −πjtπkt ·w ′t for k 6= j = 1, · · · , κS .

There are $ − φ remaining linearly independent moment conditions that are not set

to zero in the estimation and must be close to zero if the model is correct. The GMM

enables joint estimation and testing of the parameters in the over-identified system

of unconditional moments equations when $ > φ. The GMM test for validity of

the moment conditions is conditional on the ancillary hypotheses about the model

specification of St and w t. The tests are joint tests of the time-varying specification

(including the law of motion of St) and the pricing implications of the CCAPM.

In an over-identified model, there may not be a parameter value Θ that satisfies

(30). The standard test statistic for over-identifying restrictions (also called a J test)

is based on the minimized GMM criterion function,

JT (Θ̂) = TgT (X , Θ̂)′WT gT (X , Θ̂). (34)

When the moment conditions are valid, the J test has an asymptotic χ2
df with degrees

of freedom df = $ − φ. It is worth noting that the J test statistic is a Wald test for

the hypothesis, E (g(Xt,Θ0)) = 0. The latter is a joint hypothesis with $ individual

moment restrictions.

Choosing the Weight matrix

The optimal weight matrix W0 which minimizes (32) is W0 = Ω−1
0 . The covariance

matrix of the efficient GMM estimator is AsyV (Θ̂) =
(
G′0Ω−1

0 G0

)−1
and is optimal

in the class of GMM estimators with this set of moment conditions. In practice,

the efficient GMM estimator is unfeasible since Ω−1
0 is not known. Hansen (1982)
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shows that a consistent estimator of Ω0 is sufficient for asymptotic efficiency. If Θ̃ is a

consistent estimator for Θ0, then

ΩT (Θ̃) =
1

T

T∑
t=1

gt(Xt, Θ̃)g(Xt, Θ̃)′, (35)

is a consistent estimator for Ω0. The sample covariance matrix of gt(Xt,Θ0) has the

form in (35) because the moment functions {ζ(xt+1,Θ)⊗Zt}∞t=1 are martingale first

differences. This is a direct implication of the conditional moment restriction (30).

With the asset pricing application in mind, this moment condition is consistent with

an economy where investors hold assets for one period. The moment condition can be

made more general by considering an economy where assets are held to maturity s > 1

E [ζ(xt+s,Θ0)|It] = 0, t = 1, ..., T. (36)

The assumption of s > 1 does not affect the asymptotic properties of the GMM

estimators. However, in finite samples, the difficulty in accurately estimating the spec-

tral density matrix (long run variance) of the moment functions is an additional source

of poor finite sample performance of the asymptotic approximation. See, for example,

Burnside and Eichenbaum (1996). In a general case with nj ≥ 1, the long run sample

variance will be a function of autocovariances up to lag nj − 1. Notice that the second

moments in (33) accounts for a heteroskedastic Euler error term with constant uncon-

ditional variance. Hansen (1982) shows that a consistent estimator of Ω0 is sufficient

for asymptotic efficiency.

If Θ̃ is a consistent estimator for Θ0, then

ΩT (Θ̃) =
1

T

n∑
t=1

gt(Xt, Θ̃)gt(Xt, Θ̃)′ (37)

is a consistent estimator for Ω0. Therefore Hansen’s (1982) (feasible) efficient two-step
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GMM estimator Θ̂ solves:

Θ̂ = arg min
Θ
gT (Θ)′ΩT (Θ̃)−1gT (Θ). (38)

An efficient two-step GMM estimator, denoted Θ̂[2], is based on a weight matrix

WT (Θ̂[1]) = ΩT

(
Θ̂[1]

)−1
,

where Θ̂[1] is a consistent one-step estimator for Θ0 based on a weighting matrix equal

to the identity matrix.

The iterative GMM estimator IT-GMM, denoted Θ̂it, continues from the two-step

estimator by re-estimating the weighting matrix. For each subsequent step l = 3, .., L,

the weighting matrix is updated using WT (Θ̂[l−1]) = ΩT (Θ̂[l−1])−1, where Θ̂[l−1] is the

consistent estimator when WT = WT (Θ̂(l−2)). This is repeated until l attains some large

value L (we choose L = 15) or until convergence, defined as ‖WT (Θ̂[l+1])−WT (Θ̂[l])‖ <

1E − 4.

Instead of taking the weighting matrix as given in each iteration, Hansen et al.

(1996) propose an estimator in which the weighting matrix is continuously updated.

Formally, the CU-GMM estimator, denoted Θ̂cu, is

Θ̂cu = arg min
Θ
gT (X ,Θ)′ΩT (Θ)−1gT (X ,Θ), (39)

where ΩT (Θ) = 1
T

∑T
t=1 g(Xt,Θ)g(Xt,Θ)′. From the point of view of pricing consid-

erations, a weight matrix equal to identity leads to interesting results. The case of

WT = Idf corresponds to the so-called first stage GMM. This weight matrix, although

not optimal in the econometric sense, does preserve the structure of assets and their

economically interesting characteristics. It implies equal weighting of the pricing errors

and ignores cross products of pricing errors as well as cross products of the assets’

returns. It is equivalent to the traditional least squares approach. Technically, this
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weight matrix allows comparison of pricing errors across models knowing that ΩT (Θ̃)

did not blow up. This is a computational challenge for the efficient GMM estimation.

The squares of small pricing errors are typically also small resulting in large inverse

quantities.

Lettau and Ludvigson (2009) studied the properties of the Euler equation errors

with the identity weight matrix to preserve the structure of the test assets due to their

economical importance. A weight matrix that differs from an identity matrix destroys

the model’s structure and amounts to minimizing the pricing errors of re-weighted

portfolios of the original assets.

In Hansen’s (1982) GMM, the weighting matrix W ∗T = ΩT (Θ̃)−1 is optimal in the

sense that the estimated parameters have the smallest asymptotic standard errors. In

general, the optimal weighting matrix assigns big weights to assets with small variances

in their pricing errors, and it assigns small weights to assets with large variances of their

pricing errors. The optimal weighting matrix is model dependent and is not suitable

for making comparisons among competing models. Hansen and Jagannathan (1997)

propose using the sample estimate of WHJ = E(R•tR
′
•t)
−1 as an alternative weighting

matrix that is invariant across competing asset pricing models. WHJ assigns small

weights to assets with big variances and big weights to assets with small variances.

The HJ-distance can only be used for the unconditional pricing moments. Once

other available information is added to the conditionning set in the form of instruments

Zt, the HJ-distance does not apply.

5 Asset Market Equilibrium implications

Pricing errors

In the standard consumption-based model with CRRA, empirical evidence (Lettau and

Ludvigson (2009)) shows that there are no values of the risk aversion parameter γ and

the discount factor β for which deviations of the Model’s Euler equations from the
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equilibrium conditions are not economically large. The pricing error of an asset is the

part of the average returns that is not explained by the asset’s beta risk.

Let ξj be the Euler equation errors for the jth asset return defined as:

ξjR = E [Mt+1Rj,t+1]− 1 (40)

ξjX = E [Mt+1 (Rjt+1 −Rf,t+1)] , (41)

where errors (41) are expressed in terms of excess returns and errors (40) are deviations

from the fundamental equilibrium equation (26) (Lettau and Ludvigson, 2009). These

equation errors can be interpreted economically as pricing errors defined as the differ-

ence between the historical mean excess return and the risk premium implied by the

pricing kernel Mt+1. The risk premium may be written as the product of the asset’s

beta (exposure) for systematic risk times the price of systematic risk. The pricing error

(or the asset’s alpha), denoted αj , for set j is therefore αj = ξjX/E (Mt+1) (Lettau and

Ludvigson (2009)). Given that the scale factor E (Mt+1)−1 ≈ 1 (equal to the mean of

the risk-free rate), the pricing errors are proportional to Euler equation errors. One

testable implication under the null hypothesis that the standard model is true is that

both errors should be zero for any traded asset.

Implied risk Premium

The cyclical properties of the pricing kernel are of interest because they determine the

cyclical properties of risk premia. Following Chen et al. (2013), the risk premium RPt

RPt =
−Cov

(
Mt+1, RM,t+1 −RF,t+1

)
E (Mt+1)

, (42)

where RM,t+1 denotes the return on the market portfolio, for example the CRSP value-

weighted stock market index, and RF,t+1 denotes the risk-free rate, like the 3-month

Treasury-bill rate.
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In the framework of this paper where the risk aversion varies endogenously in the

economy but exogenously with respect to the consumers, the pricing kernel in the basic

SDRA model we consider is given by:

Mt+1 = β

(
U ′(Ct+1)

U ′(Ct)

)
.

The assumption that γt is exogenous to the intertemporal choice of the representative

consumer is very important. This implies that the consumer does not make intertem-

poral decisions about γt. The risk aversion parameter is endogenous to the economy

and is endogenously determined by economy-wide factors that are exogenous to the

agents and their preferences.

The marginal utility is dependent on the time-varying state dependent preference

parameter:

U ′(Ct) = C−γtt

Mt+1 = β
C
−γt+1

t+1

C−γtt

.

Proposition 5.1. Under the basic SDRA model, the primary testable restriction,

E t [Mt+1Rt+1] = 0, can be linearized and written as:

RPt =

 κS∑
j=1

γjπj,t+1

Covt (Rt+1 −RF,t+1,∆ct+1) ,

+ log Ct Covt (Rt+1 −RF,t+1,∆γt+1) . (43)

Equation (43) identifies two sources of risk. The first is the well-understood con-

sumption risk due to covariation between asset returns and changes in nondurables

(logarithm) consumption. The novelty in our framework is that this risk varies with

the prediction about the state of the economy. The second source of risk is due to

changes in the representative agent’s level of risk aversion. This is due to the covari-

ance term between the returns and the ∆γt+1. Under SDRA, changes in marginal
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utility are ascribed to changes in risk aversion as well as changes in consumption. The

risk premium captures the two sources of risk since both can covary with returns.

The price of consumption risk Cov (Rt+1,∆ct+1) is given by the conditional expecta-

tion of the state variable E t (γt+1), and the price of the preferences risk, Cov (Rt+1,∆γt+1),

is given by the log of consumption. If returns and risk aversion are positively correlated,

then the second risk contributes positively to the risk premium, unless Ct < 1.

Holding the risky asset entails a larger risk to marginal utility due to the coincidence

of high returns and to lower marginal utility obtained through high consumption and

low risk aversion. This second risk can explain some of the equity risk premium puzzle

without excessive inflating of the preference parameters.

Gordon and St-Amour (2004) provide a framework that results in similar decompo-

sition of risk along consumption risk and preferences risk. In their Proposition 1, the

equity premium is given by

RPt = γtV (Rt) (Cov(c̃t, Rt+1)/c̃t) + log(c̃t)V (Rt)Cov(γt+1, Rt+1), (44)

where c̃t is a scaled consumption level. In addition to the standard source of risk in the

constant-γ CCAPM ascribed to the covariance of returns with changes in consumption,

Equation (44) establishes that changes in the risk aversion γt also contribute to changes

in the marginal utility.

Corollary 5.2. The basic SDRA model for the risk premium for any traded asset i has

the following decomposition

RPi,t =

[
E t(γt+1) σcct
E t (Mt+1)

]
︸ ︷︷ ︸

λct

(
σRct
σcct

)
︸ ︷︷ ︸

βci,t

+

[
logCt σ

γγ
t

E t (Mt+1)

]
︸ ︷︷ ︸

λγt

(
σRγt
σγγt

)
︸ ︷︷ ︸

βγi,t

.

The parameter λct measures the price of consumption risk as in the classic CCAPM

with constant risk aversion. This risk is the same for all assets. The novel priced risk
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in this SDRA model is λγt , which measures the price for aversion risk. This is also the

same across all assets. The parameter βci,t (respectively, βγi,t) measures the quantity

of consumption (respectively, risk aversion) risk of asset i. Given this decomposition,

λctβ
c
i,t is the premium for consumption risk, and the new term λγt β

γ
i,t is the premium

for curvature risk. This paper will investigate whether this additional component of

the premium due to curvature can provide some resolution for the risk premium puzzle

(Mehra and Prescott, 1985b; Weil, 1989).

6 Data description

The empirical analysis is based on the (unconditional) Euler equation errors for the

cross-sections of asset returns. These unconditional Euler equations are constructed

from the conditional equilibrium conditions using the conditioning information and the

instruments Zt.

The cross-section of asset returns includes a broad stock market index return prox-

ied by the Center for Research in Security Prices (CRSP) value-weighted price index

return and denoted RM,t, a short term Treasury-bill rate measured as the 3 month

Treasury Bill rate and denoted RF,t, a six size and book-to-market sorted portfolio

returns available from Kenneth French’s Darthmouth web site, and returns on the 25

size and book-to-market sorted stock portfolios studied by Fama and French (1993).

The equity returns on size and book-to-market sorted portfolios are ideal for empiri-

cal tests of asset returns because they exhibit a representative cross-sectional dispersion

in expected returns and provide a simple and powerful characterization of the cross-

section of average returns.

The sample period is January 1960 through December 2016. Data are collected on

three popular predictors of stock returns and are used in the literature as instruments

in the GMM estimation (Brandt and Wang, 2003): (1) the default spread (measured

as the yield difference between Moody’s Baa- and Aaa- rated corporate bonds), and
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the term spread (measured as the yield difference between the 10- and 1-year Treasury

bonds).

Consumption in a given month is measured as the end-of-period and the growth of

consumption from period t to t−1. The measure of real aggregate personal consumption

used in this paper is the personal consumption expenditures (in constant 1987 dollars)

on nondurables and services (NDS) taken from the United States National Income and

Product Accounts. Monthly per capita consumption is obtained by dividing the real

aggregate consumption by the total population, including armed forces overseas.

The nominal monthly risk-free rate of interest is the one-month Treasury Bill return

from the Center for Research in Security Prices (CRSP) at the University of Chicago.

The real risk-free rate is calculated as the nominal risk-free rate, divided by the one-

month inflation rate, based on the deflator defined for nondurables and services (NDS)

consumption. As a proxy for the nominal, monthly market return, we take the value-

weighted aggregate nominal monthly return (capital gain plus dividends) on all stocks

listed on the NYSE and AMEX, obtained from CRSP.

The real monthly market return is calculated as the nominal market return, divided

by the one-month inflation rate. The size portfolios are also obtained from CRSP and

are formed with all stocks listed on the NYSE and AMEX.

Recession forecasts are complicated by the fact that the state of the economy is an

unobserved variable. To that end, this paper takes the recession dates of the business

cycle dating committee of the National Bureau of Economic Research (NBER) as a

gold-standard chronology of the unobserved state of the economy. The business cycle

variable is constructed using the standard NBER dating of the U.S. business cycle. The

variables in w t characterize the state of the economy and include both macroeconomic

and financial variables.

Data are collected on variables that have been used in the literature to predict and

characterize the business cycle. Estrella and Mishkin (1998) studied and compared

the out-of-sample performance of series such as interest rates, spreads, stock prices,
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and monetary aggregates in predicting the U.S. recessions, and find that stock prices

as well as some macroeconomic indicators are useful. Nyberg (2008) uses a dynamic

probit model to forecast recessions in Germany with variables that include domestic

and foreign term spreads, stock market returns, and interest rate differentials between

the U.S. and Germany.

In this paper, the potential determinants of changes in risk aversion are variables

that pertain to information about the macroeconomic activity in the U.S. These vari-

ables consist of 134 time series variables used in Stock and Watson (2002a,b, 2006) to

forecast inflation and industrial production. This strategy enables use of all information

available about the state of the economy. It overcomes the statistical issue of selecting

a small subset of variables to represent the information about the economy, especially

since the macroeconomic and financial variables tend to be highly correlated. The high

dimensional aspect of w t is addressed using factor models to condense the information

in w t to a small number of factors, also known as diffusion indexes (Stock and Watson,

2002a).

The diffusion index model assumes that w t admits the following factor model rep-

resentation with r common latent factors Ft:

w t = ΛFt + ξt (45)

where Ft = (f1t, · · · , frt)′ are r−dimensional stationary processes, ξt is a K−vector of

idiosyncratic disturbances, and Λ is a K×r matrix of factor loadings. See De Mol et al.

(2008) for details on regularity conditions, estimation, and inference about the factors.

The factors Ft are unobserved and the number of common factors r is also unknown.

There are several methods for determining the number of factors r. We follow Bai and

Ng (2002) and use information criteria to penalize the sum of squared residuals in

model (45) to construct a consistent estimator for r.

Principal components regression is one popular method for computing the common

factors. For τ = T0, · · · , T1, let F̂ denote the T × r matrix of the first r principal
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components of the predictors w . Let Ifτ = span{f̂it, i = 1, · · · r, t = τ − T, · · · , τ} with

r � K denoting a parsimonious representation of the information set Iτ . Consider the

spectral decomposition of the sample covariance matrix of w , Sw = w ′w /(T −h− p):

Sw V = V D,

where D = diag(d1, · · · , dK) is a diagonal matrix, with di corresponding to the ith

highest eigenvalue of Sw , and V = (v1, · · · , vK) is the matrix whose columns correspond

to the normalized eigenvectors of Sw . The normalized principal components are defined

as :

f̂i,t =
1√
di
v′iw t, for i = 1, · · · ,K∗

where K∗ ≤ K is the number of non-zero eigenvalues (De Mol et al., 2008). For the re-

mainder of the empirical analysis, we use the common factors of the 134 macroeconomic

variables as indicators of the state of the economy in the modle for St. Therefore, the

w t is redefined to refer to the estimated common factors F̂t and the number of vari-

ables in w t K is equivalent to the estimated number of fators r. We follow Bai and Ng

(2002), who propose two information criteria that deliver consistent estimators of the

number of factors, and we choose the criteria they denote, ICp2. We find an estimated

number of factors r̂ = 7 for the cross-section of THE economic and financial time series

represented in the 134 variables. As menTioned earlier, this number also represenTS

K, the size of w t.

Table 1 summariZes the returns and instruments used in the GMM estimation.

Combination E1-Z1 refers to the unconditional Euler equations with two assets RM,t

and RF,t. This specification is of interest because all asset pricing models seek to match

the empirical properties of these two assets. The model is required to price the Treasury

Bill and the market portfolio. In this case, the model is exactly identified.

The other specifications require the model to price the returns on the 6 (E2-) and

25 (E3-) portfolios constructed by Fama and French (1993) in which firms are sorted by
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Table 1: Euler equations estimated, E t (Mt+1R•t+1) = 1m·ϕ, asset returns, in-
struments Zt for the GMM estimation

Instruments Zt = (zt,w t)

1T F̂t 1 ∆Ct 1 Rm,t DPremt

R•t F̂t TermPrt TBt F̂t m
Rf,t+1 Rm,t+1 E1-Z1 E1-Z2 E1-Z3 2

R•t+1 Rf,t+1 Rm,t+1 6 FF E2-Z1 E2-Z2 E2-Z3 8
Rf,t+1 Rm,t+1 25 FF E3-Z1 E3-Z2 E3-Z3 27
(ϕ,K),K ≡ r̂ (1, 7) (2 +m, 7) (5, 7) -
φ 8κS + 1 8κS + 1 8κS + 1 -
$ 8κS +m 8κS +m · (2 +m) 8κS + 5m -
df = $ − φ m− 1 m · (2 +m)− 1 5m− 1 -

Note: Each model represents a combination of returns and instruments which provides a different set of popula-
tion equations and over-identification conditions. ϕ is the number of instruments, K is the number of economic
indicators which is equal to the number of estimated common factors in F̂t, φ is the number of parametErs
to be estimated in Θ, $ is the total number of estimating equations, and df is the number of over-identifying
equations which is equal to the degrees of freedom of the asymptotic χ2 distribution of the J-test.

the market value of their equity (size) and the book-to-market ratio. The information

set available to the investors include Z2 and Z3. Note that model specifications (E3-)

are highly over-identified. We know that in these cases, tests for over-identification

may be less reliable and oversized.

While our task is to estimate equity risk premia in the future, much of the data we

use to make these estimates is in the past. Most investors and managers, when asked

to estimate risk premia, look at historical data. In fact, the most widely used approach

to estimating equity risk premia is the historical premium approach, where the actual

returns earned on stocks over a long time period is estimated and compared to the

actual returns earned on a default risk-free rate (usually government security). The

difference, on an annual basis, between the two returns is computed and represents the

historical risk premium.

While users of risk and return models may have developed a consensus that histor-

ical premium is, in fact, the best estimate of the risk premium looking forward, there

are surprisingly large differences in the actual premia we observe being used in practice,

with the numbers ranging from 3% at the lower end to 12% at the upper end on an

annual basis. In our analysis, we will estimate the implied annualized risk premia for

our models and compare it with the range of values that is observed in the literature.
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7 Empirical Results

7.1 Probabilities of recession is a data rich environment

Our model for the state-dependent risk aversion estimates the state of the economy

using infomation in w t. We choose not to restrict our list of variables in w t and use

factor models and principal component analysis to condense all the available informa-

tion about the economy. We use these high-dimensional dense methods to capture the

state of the economy and, in particular the likelihood of periods of recession and ex-

pansion. This in itself is a novelty in the literature of characterizing the buisiness cycle

and turning points. Most of the existing literature has focussed on key economic indi-

cators such as gross domestic product. For example, Nalewaik (2012) estimates Markov

switching models and shows that the growth rate of gross domestic income, deflated

by the gross domestic product deflator, has done a better job recognizing the start

of recessions than has the growth rate of real GDP. See also, Chauvet and Hamilton

(2006), Hamilton (2011), Hamilton (1989), Hamilton (1989).

Estimating states of recession is important because the NBER dating is only avail-

able ex-post and not in real-time. To predict future states, it is important to have a

model that can accurately indicate recession periods in the future. In this paper, we

use real-time information about the economy and perform a pseudo-out-of-sample eval-

uation of the accuracy of estimated recession probabilities. As mentioned earlier, the

information available to the researcher is data on the 134 economic variables pertaining

to information about the macroeconomy and financial markets. At each time period,

t, we extract and estimate the common factors from this cross-section of time series.

These r̂ = 7 estimated factors F̂t are then used to estimate the probability of the state

variable St = j or equally that Stj = 1, for j = 1, · · · , κS . We consider the case of two

states, κS = 2, with St1 = 1 a state of recession and 0 otherwise, St2 = 1 a state of

expansion. We also consider κS = 4, with Stj = 1 when observation corresponds to a
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contraction, St2 = 1 when the observation corresponds to a contraction and is an actual

trough date, and similarly St3 = 1 when observation is a state of expansion and St4 = 1

in a state of expansion and is an actual peak. In any case, we have
∑κS

j=1 St=j = 1.

Figure (1) represents the estimated probabilities for the state S1,t = 1, equivalent

to St = 1, for two cases of state dependent definitions of S, one with two states κS = 2,

in which case recession is represented by one and only one state j = 1, and these are

shown in panels (a) to (c), and the case of 4 states κS = 4, in which case one can

differentiate between a state of recession j = 1 and a state of recession and a trough

j = 2, and these results are depicted in panels (d) to (f). For the sake of brevity, the

figure shows a representative selection of model specifications in Table (1). Detailed

probability estimates for the full set of specifications are available upon request. In

general, we observe that during periods that the NBER classifies as a recession, the

probability of a recession is high and close to one. These probabilities rise substantially

when the NBER recession starts, remaining high until the end of the recession period.

One important observation is that the 4 states model for S is better at identifying

the trough periods. The values of π̂t,2 are practically equal to zero outside of the trough

periods, which are identified within the NBER recession periods. The probabilities of

an obeservation being a recession but not a trough are small, mostly less than 30%

outside of the NBER recession periods.

The proposed big data model for dating the business cycle has the advantage of

being readily available to be estimated in real time, whereas the NBER dating is only

available ex-post, and generally with long delays. Since one of our goals is to forecast

business cycle episodes of recession in real time, we use the information available to the

researcher or policy maker in a pseudo-out-of-sample forecasting exercise and use the ex-

post NBER dating as benchmarks for evaluating the real-time forecasting performances

of the model. The results suggest that placing focusing on economy-wide information

may be useful in assessing the current state of the economy in real time.
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Figure 1: Estimated (monthly) probabilities for the recession state, π̂1,t =

Ê t[S1,t = 1] in the case of κS = 2, and the recession and through states π̂1,t, π̂2,t,
in the case of κS = 4, for the state-dependent preferences model.

(a) κS = 2,, E1-Z1 (b) κS = 2, E2-Z1 (c) κS = 2, E3-Z1

(d) κS = 4, E1-Z1 (e) κS = 4, E3− Z1 (f) κS = 4, E2-Z1

7.2 Evidence for counter-cyclical risk aversion

In this section, we discuss the empirical estimates of the risk aversion parametr γ in

the (constant) CCAPM model, the parameter Γ and the state-dependent preference

parameter γt in the SDRA model. The results for the standard CCAPM are presented

in Table 2. The parameters γ and β solve the GMM problem based on the equilibrium

Euler equations in (26) and using instruments and returns defined in Table (1). The es-

timated values of β are consistent across the model specifications and are somewhere in

the vicinity of one. This is consistent with what is generally observed in this literature.

There are no real surprises for the parameter γ. For the model to fit the equilibrium

conditions, the model implies extremly high values of risk aversion. It is well docu-

mented in the literature that to be able to fit the CCAPM model, unrealistically high

values of γ are required. See for example, Tauchen (1986) and Kocherlakota (1990).
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Table 2: Euler equation errors and GMM estimates of the preference parameters

E1-Z1 E2-Z1 E3-Z1 E1-Z2 E2-Z2 E3-Z2 E1-Z3 E2-Z3 E3-Z3
Panel A1: CRRA-I

γ 99.51 21.99 19.09 17.76 15.13 10.14 14.03 5.17 13.47
β 0.9489 1.014 1.011 1.080 0.997 1.105 0.991 0.992 1.035
Rmse 0.098 0.037 0.044 0.091 0.016 0.012 0.058 0.082 0.035

Panel A2: CRRA-HJ
γ 99.54 100.30 70.94 30.56 90.5 72.18 10.45 8.00 5.81
β 0.9488 0.947 1.006 1.141 1.365 1.308 0.993 0.998 1.00
Rmse 0.066 0.051 0.069 0.093 0.054 0.0297 0.055 0.013 0.030

Notes: The table reports estimated values of the preference parameters β̂ and γ̂ chosen to minimize the mean
square pricing error in Equation (26) for different sets of returns and instruments.

Table 3: Euler equation errors and GMM estimates of the preference parameters

E1-Z1 E1-Z2 E1-Z3 E2-Z1 E2-Z2 E2-Z3 E3-Z1 E3-Z2 E3-Z3
Panel A1-I: κS = 2

Rmse 0.012 0.014 0.007 0.0147 0.010 0.0146 0.089 0.058 0.025
β 0.990 0.974 0.939 0.974 0.970 0.931 0.990 0.990 0.982
γt
Mean 0.152 0.195 1.355 0.195 0.373 0.310 0.299 0.309 0.339
Std.dev 0.005 0.815 1.162 0.815 0.100 0.574 0.0009 0.0017 0.0019
Γ1 0.499 0.476 0.309 0.476 0.489 0.331 0.439 0.399 0.339
Γ2 0.343 0.348 0.309 0.348 0.410 0.290 0.339 0.309 0.239

Panel A1-HJ: κS = 2
Rmse 0.091 0.021 0.023 0.096 0.010 0.010 0.078 0.015 0.025
β 0.991 0.991 1.012 0.991 0.995 0.999 0.998 0.991 0.982
γt
Mean 0.499 0.311 0.499 0.311 0.324 0.300 0.342 0.309 0.361
Std.dev 0.0004 0.591 0.551 0.591 0.013 0.002 0.0003 0.0017 0.0002
Γ1 0.503 0.584 0.499 0.504 0.455 0.296 0.341 0.308 0.354
Γ2 0.419 0.398 0.500 0.418 0.205 0.304 0.342 0.308 0.367

Notes: The table reports estimated values of the preference parameters β̂ and Γ̂ chosen to minimize the mean
square pricing error in Equation (26) for different sets of returns and instrument. The root-mean-squared-error
%Rmse is the pricing error computed as a proportion of the average squared returns of assets. We show results
for weighting matrices equal to identity, W = I, and equal to Hansen-Jaganathan, W = E (R′R)−1.

The estimated model fits the data well in terms of %Rmse, the errors in sample pricing

equations relative to the size of average returns. These conclusions are invariant to the

choice of the weighting matrix.

Table (3) reports our estimation results for the structural parameters (β,Γ) in the

the state-dependent preferences model defined by a two state variable St with κS = 2,

the unconditional moments equations in (30), and by the specifications of returns and

instruments as in Table (1). Panel A1-I corresponds to a weighting matrix WT in

(34) equal to the identity matrix, and Panel A1-HJ corresponds to the special case

where the weight matrix is equal to Hansen-Jaganathan’s WT = E (R•tR
′
•t)
−1. The

estimated values for the discount factor β are as expected and within the values found
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Table 4: Correlation between γt and a leading indicator of the U.S. business cycle

E1-Z1 E1-Z2 E1-Z3 E2-Z1 E2-Z2 E2-Z3 E3-Z1 E3-Z2 E3-Z3
corr -0.594 -0.613 -0.671 -0.609 -0.665 -0.630 -0.672 -0.639 -0.624

Notes: The table reports sample correlation coefficient corr values between the estimated time series of risk
aversion parameter γt and the leading indicator of U.S. business cycle. The results correspond to an identity
weight matrix, WT = I, and κS = 2

Figure 2: The leading indicator of the United States economic activity and busi-
ness cycle.

in the literature and in the constant CCAPM model estimated earlier. The mean values

of the estimated state-dependent γt seem reasonable especially with the low reported

sample standard errors. The ranges of the estimated γt appear to agree with results

in the literature on fixed risk aversion. Mehra and Prescott (1985a) argue that a risk

aversion in the range of 10 and below seems reasonable. Epstein and Zin (1991), in

their recursive utility model, estimate a risk aversion between 0.14 and 1.14. Kim

(2014) uses a non-parametric framework where γt is a smooth function of time and

finds average values of risk aversion in the range [0.276, 2.015] for a model calibrated

with an elasticity of intertemporal substitution equal to 1.5. The SDRA model points

to a representative agent with a level of risk aversion that is neither excessive nor highly

volatile.

The estimates of the Γ parameter show that there is asymmetry in the risk prefer-

ences of the representative agent depending on the state of the economy. For example,

the estimated values of Γ1, which is the component of risk aversion associated with St

which is a state of recession, are generally higher than the estimated values of Γ2. This
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is true for both choices of weight matrix. There is an excess risk aversion, Γ1−Γ2, asso-

ciated with the economy being in a bust state. This counter-cyclical risk aversion may

suggest that market participants are susceptible to booms and busts. Furthermore, fear

may be an important factor that drives this counter-cyclicality. Agents experiencing

higher levels of fear in the bust state predict a significantly lower investment in the risky

asset. This has been recognized previously in the literature. In traditional CCAPM

literature, the habit formation model (Campbell and Cochrane, 1999a; Constantinides,

1990) provides one of the leading explanations for the cyclical behavior of risk aver-

sion. The level of habit and consumption together form the surplus-consumption ratio.

Fluctuations of risk aversion are linked to the business cycle by interpreting a boom

state to a state in which the level of consumption is well above habit. Cohn et al.

(2015) report experimental evidence, with financial professionals, that risk eversion is

counter-cyclical, and a causal relationship between fear and risk preferences. Generally,

empirical support from financial studies is at best inconclusive.

To the best of our knowledge, this is the first study which modifies a widely used

asset pricing model such that the risk aversion is explicitly allowed to vary with infor-

mation about the state of the economy. We do not pursue the same stategy as in Kim

(2014) who models the aversion parameter as a function of time. We use information

available from the wide macroeconomy and financial markets to model the risk pref-

erences of consumers. Table (4) reports sample estimates of the correlation coefficient

between the estimated time-varying risk aversion parameter γ̂t and a leading indicator

of the U.S. business cycle. The leading index predicts the six-month growth rate of the

Coincident Economic Activity Index3 of the United States (seasonally adjusted, index

July 1992=100). Figure (2) plots the coincident indicator and the NBER recession

dates. The sample correlations are within the range [−59%;−67%], showing positive

co-movement between the estimated risk aversion and the fluctuations in the coincident

indicator. The latter is a good indicator of the business cycle and is pro-cyclical. The

3Source: Federal Reserve Bank of St. Louis FRED
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Figure 3: SDRA estimates of risk aversion, γ̂t, for model specification E2-Z1

(a) κS = 2,WT = I (b) κS = 2,WT = E(R•tR
′
•t)
−1

(c) κS = 4,WT = I (d) κS = 4,WT = E(R•tR
′
•t)
−1

estimated risk aversion indicates that consumers become more risk averse with negative

growth rate in the coincident indicator, that is, when the economy is in a condition of

recession.

Figure (3) plots the estimated γ̂t for a selection of the models considered in Ta-

ble (1). In all panels, the fluctuations in γ̂t (shown in blue) are counter-cyclical. There

is an increase in risk aversion in the last recession that followed the 2008 financial crisis

compared to the previous recessions. Furthermore, the time variation is also apparent

in the spread of the estimated risk aversion. In Figure (4), we observe from the fluctu-

ations in the percentage change in the estimated risk aversion (log (γ̂t/γ̂t−1)× 100) an

increased volatility during times of economic hardship, especially during the early 1980

recession and the recent 2008 financial crisis. This is a new finding that shows a phe-

nomenon of “volatility boom” in risk aversion during recession times. This evidence
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Figure 4: Fluctuations of changes in estimated risk aversion, log(γt/γt−1) in per-
cent, case of the SDRA Model E2-Z1

(a) κS = 2,WT = Idf (b) κS = 2,WT = E(R•tR
′
•t)
−1

Table 5: Monthly estimated Implied Risk Premium

E1-Z1 E2-Z1 E3-Z1 E1-Z2 E2-Z2 E3-Z2 E1-Z3 E2-Z3 E3-Z3
Monthly RPt %

CCAPM 0.0800 0.0266 0.0211 0.0545 0.0046 0.0013 0.0043 0.0015 0.0414

SDRA κS = 2 0.1344 0.0908 0.0937 0.0959 0.0943 0.0953 0.1202 0.1025 0.1048
Ct Risk: λctβ

c
i,t 0.1150 0.0850 0.0920 0.0943 0.0940 0.0951 0.0909 0.0946 0.1042

γt Risk: λγt β
γ
i,t 0.0194 0.0058 0.0017 0.0016 0.0003 0.0001 0.0293 0.0079 0.0006

Notes. Implied risk premium is computed as in Equation (30). The premia are monthly and in percent. The per
annum premium can be obtained by compounding the monthly premia. The GMM estimation is with weighting
matrix equal to identity.

reinforces the notion that consumers’ preferences can be an important business cyle in-

dicator. This finding is also consistent with the evidence that stock volatility increases

during recessions and financial crises, which can be linked to many factors (Schwert

(1989)), some of which can be ascribed to fluctuations in the consumers’ changes in

their attitudes towards risk.

7.3 Implications for Asset Returns

Implied Risk Premium

Under Proposition (5.1), unless γt is constant and the model is a standard CCAPM

and/or the consumption level is equal to unity, changes in marginal utility are ascribed

to changes in γt as well as to changes in consumption growth. The risk premium
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Table 6: Euler equation pricing errors

Size Book-to-market Equity (BE/ME) Quintiles
Quintile Low BM2 BM3 BM4 High Low BM2 BM3 BM4 High

Panel A. Constant CCAPM Model E3-Z1
Pricing Errors (%) Standard Errors (%)

Small 1.7703 1.7774 1.7836 1.7946 1.7919 0.3219 0.2764 0.2392 0.2271 0.2418
ME2 1.7748 1.7806 1.7785 1.7799 1.7900 0.2880 0.2401 0.2153 0.2088 0.2420
ME3 1.7754 1.7823 1.7764 1.7848 1.7861 0.2662 0.2171 0.1981 0.1953 0.2245
ME4 1.7850 1.7866 1.7739 1.7810 1.7773 0.2378 0.2039 0.1975 0.1925 0.2284
Big 1.7899 1.7857 1.7945 1.7802 1.8018 0.1879 0.1787 0.1719 0.1873 0.2093

Panel B. Time Varying CCAPM E3-Z1 κS = 2,W = Idf
Pricing Errors (%) Standard Errors (%)

Small 0.3243 0.2784 0.2409 0.2288 0.2436 0.3219 0.2764 0.2392 0.2271 0.2418
ME2 0.2901 0.2419 0.2168 0.2104 0.2438 0.2880 0.2401 0.2153 0.2088 0.2420
ME3 0.2682 0.2187 0.1996 0.1967 0.2262 0.2662 0.2171 0.1981 0.1953 0.2245
ME4 0.2396 0.2054 0.1990 0.1939 0.2301 0.2378 0.2039 0.1975 0.1925 0.2284
Big 0.1893 0.1800 0.1732 0.1887 0.2109 0.1879 0.1787 0.1719 0.1873 0.2093

Note: The reported numbers are computed as the sample values of the pricing errors,
ξjR, the pricing errors in the Euler equations. See equation (40).

captures both sources of risk because the returns covary with both consumption growth

and changes in γt. In this section, we estimate the mean of the implied preference risk

λγt β
γ
i,t and of the implied consumption risk λctβ

c
i,t. This feature of the SDRA model can

potentially explain the observed risk premium with reasonable levels of risk aversion.

The equity market risk premium is the average return that investors require over

the risk-free rate for accepting the higher variability in returns that are common for

equity investments. As the name implies, this rate should not take into account any

risk factors. The risk-free rate is commonly approximated by reference to the yield on

long-term debt instruments issued by presumably financially healthy governments (e.g.

AAA-rated government bonds with a maturity of 30 years).

Table (5) presents the sample mean of the risk premium implied by the CCAPM as

well as the means of the components of the implied risk premium as predicted by the

SDRA model. Note that in our data, we compute a monthly historical risk premium

of 0.27% (equivalent to 3.4%4 per annum).

The historical equity premium is more than double the implied premium in the

SDRA model and three times that of the CCAPM. The implied price for curvature

4Historical long run average of spread between the S&P 500 and the 10 Year U.S. Treasury
Bond.
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Table 7: Euler equation pricing errors

Size Book-to-market Equity (BE/ME) Quintiles
Quintile Low BM2 BM3 BM4 High Low BM2 BM3 BM4 High

Panel A. Constant CCAPM Model E3-Z1
Pricing Errors (%) Standard Errors (%)

Small -0.4847 0.0260 0.0879 0.3437 0.4124 1.770 1.777 1.783 1.794 1.791
ME2 -0.3214 0.0501 0.1622 0.2360 0.3303 1.774 1.780 1.778 1.779 1.790
ME3 -0.2347 0.0893 0.0415 0.2007 0.3543 1.775 1.782 1.776 1.784 1.786
ME4 -0.0986 -0.0748 -0.0250 0.1686 0.0889 1.785 1.786 1.773 1.781 1.777
Big -0.1881 -0.1499 -0.0735 -0.2370 0.1057 1.789 1.785 1.794 1.780 1.801

Panel B. Time-varying CCAPM E3-Z1 κS = 4,W = Idf
Pricing Errors (%) Standard Errors (%)

Small -0.2880 0.1724 0.1981 0.4282 0.5379 0.322 0.276 0.239 0.227 0.242
ME2 -0.1680 0.1636 0.2880 0.3602 0.4478 0.288 0.240 0.215 0.209 0.242
ME3 -0.1024 0.2023 0.1470 0.3008 0.4605 0.266 0.217 0.198 0.195 0.224
ME4 -0.0076 0.0075 0.1307 0.2832 0.2283 0.238 0.204 0.197 0.192 0.228
Big -0.1409 -0.0713 -0.0242 -0.1039 0.0973 0.188 0.178 0.172 0.187 0.209

Note: The reported numbers are computed as the sample values of the pricing errors,
ξjR, the pricing errors in the Euler equations. See equation (40).

risk is not high enough to explain the gap between the price of consumption risk and

the historical equity premium. The findings may be indicative of a low beta for the

curvature risk for the market portfolio (S&P500). Although the SDRA model explains

only 55% of the equity premium puzzle, it does so without inflating the level of risk

aversion. It is worth noting that historical premium values can vary greatly depending

on the market portfolio and on the risk-free rate, as well as the method of calculation.

A survey of 2394 reported numbers for the risk premia for the U.S. indicates a range

between 2.5% and 15.8% with an average of 5.7% (Fernandez et al. (2013)).

Pricing Errors

In this section we focus on Euler equations which represent the theoretical restrictions

from which all asset pricing implications follow. There is large evidence in the literature

that tests for conditional Euler equations lead to rejections of the standard CCAPM

even with inflated values of the risk aversion parameter (Hansen, 1982; Hansen et al.,

2008). We study here the unconditional Euler equations, associated with the returns

in 1, and compare the CCAPM with the SDRA model. These empirical tests place

additional testable restrictions on asset pricing models: not only must these models
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Table 8: Euler equation pricing errors

Size Book-to-market Equity (BE/ME) Quintiles
Quintile Low BM2 BM3 BM4 High Low BM2 BM3 BM4 High

Panel A. Constant CCAPM Model E3-Z2
Pricing Errors (%) Standard Errors (%)

Small -0.1486 -0.7094 -4.8125 -0.6927 -0.4515 0.2174 0.0109 0.0816 0.0172 0.3220
ME2 -3.8943 -0.1963 0.0077 0.4032 0.2921 2.5858 0.3698 0.2765 2.2031 0.3198
ME3 0.0332 0.7686 0.3294 0.2628 2.3814 0.2392 1.9100 0.3007 0.2272 1.7921
ME4 0.4729 0.3726 3.0951 0.5931 -0.3321 0.2910 0.2419 1.8881 0.3210 0.2881
Big -2.4304 -0.0609 -0.0014 0.4121 0.2983 2.3680 0.3342 0.2402 1.9484 0.2944

Panel B. Time-varying CCAPM E3-Z2 κ = 2,W = Idf
Pricing Errors (%) Standard Errors (%)

Small -0.1391 -0.6899 -4.8304 -0.6792 -0.4336 0.2171 0.0109 0.0813 0.0180 0.3218
ME2 -3.9236 -0.1853 0.0262 0.3777 0.3037 2.5842 0.3693 0.2763 2.2012 0.3194
ME3 0.0519 0.7435 0.3411 0.2817 2.3572 0.2390 1.9081 0.3002 0.2270 1.7903
ME4 0.4847 0.3912 3.0690 0.6048 -0.3138 0.2906 0.2417 1.8863 0.3206 0.2878
Big -2.4553 -0.0492 0.0175 0.3890 0.3105 2.3663 0.3338 0.2400 1.9466 0.2939

Note: The reported numbers are computed as the sample values of the pricing errors,
ξjR, the pricing errors in the Euler equations. See Equation (40).

place zero pricing errors when the pricing kernel Mt+1 is correctly specified according

to the model, but they must also produce large pricing errors when the pricing kernel is

poorly specified, even when the parameters γ,Γ, β are chosen to minimize those errors.

For the results in this section we use the identity matrix, WT = I, to weight

the GMM criterion function. As mentioned earlier, this weight matrix preserves the

structure of the test assets and the Euler equation errors also represent the pricing

errors. We study the unconditional Euler equation errors (based on excess returns) for

the cross-section of returns defined in Table (1).

Tables (2-3) report the square root of the average squared Euler equation errors

(Rmse) as a measure of the magnitude of mispricing,

Rmse =
RMSE

RMSR

RMSE =

√
1

N
gT (X , Θ̂)′gT (X , Θ̂)

RMSR =

√√√√ 1

N

N∑
j=1

R′jRj ,

where Rj is a T− vector of observations of returns on asset j. For the CCAPM model,

the lowest Rmse is when the square root of the average pricing errors RMSE is 1.2%
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the square root of the average squared returns on the 25 size and book-to-market

portfolios. This result occurs at a value for risk aversion of γ = 10. For the SDRA

model, the smallest Rmse gives a mispricing of 1.0% the square-root of the average

squared returns. These results occur for a value of (monthly) state-dependent risk

aversion, γ̂t, with mean 0.373 and standard errors 0.100.

Tables (6-8) and Figure (5) present the sample values of the pricing errors, ξjR in

equation (40) and their standard errors, reported for the 25 size and book-to-market

sorted portfolio returns available from Kenneth French’s Dartmouth web site. These

returns are value weighted portfolio returns of common stock sorted into 5 size (market

equity) quintiles and five book value-market value quintiles. The results are reported

for the intersections of the five size quintiles and the five book-to-market quintiles.

The CCAPM pricing errors are generally much larger than those in the SDRA model.

In Table 6 for example, the mispricing in the SDRA model ranges from 9% of the

CCAPM mispricing for the quintile portfolio Big-BM3 to 18% for the quintile portfolio

Small-Low.

We also note that the fit of the model depends on the information set used in

consructing the unconditional Euler equation, i.e., the choice of the instrumets Z. In

Table (8), Euler equation errors with the instruments Z3 for both the CCAPM and the

SDRA model are increased compared to Z1. There is also a large variation between the

errors in the cross-section of the returns. For the CCAPM, the mispricing ranges from

−3.89% to 0.007%, while for the SDRA model, this range is (−3.92%, 0.017%). In the

E3-Z2 specification, the instruments set includes the cross-section of the 25 portfolio

returns R•t, the estimated common factors F̂t, and consumption growth. The model in

this case is extremly over-identified with degrees of freedom equal to m · (2 +m)− 1 =

782. In the case of GMM with many instruments (possibly increasing more than the

sample size), Han and Phillips (2006) report that the usual convergence behavior of the

GMM estimator depends on the relative strength of the signal variability compared

to the main signal. This quantity is determined by the sample size, the number of
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Figure 5: Euler pricing errors for the individual 25-Fama & French size and BM
portfolios in the SDRA Model E3-Z1

(a) κS = 4 (b) κS = 2

moment conditions, and the order of magnitude of the main signal. The quality of

information the instruments add to the system must compensate for the increased

degrees of freedom. Some of these aspects are also related to the problem of weak

instruments known in this literature.

In Figure (5), we plot the pricing errors for each of the 25 quintiles portfolio, in

addition to the mispricing associated with a CRSP stock market return. We note that

the pricing error for the market portfolio RM is negative for both weight specifications

WT = I and WT = E (R•tR
′
•t), with −0.072% and −0.62% respectively, implying a

negative alpha in the expected return-beta representation of the model for RM . This

says that unconditional risk premia are too low to be explained by the stock markets’

covariance with the systematic risk in the market. This is somehow in contrast with

what is found in the previous literature. but given that this model is severely over-

identified, inference in this model is problematic.

8 Conclusion

We formulate a consumption-based asset pricing model in which aggregate risk aversion

is time-varying in response not only to news about aggregate consumption as in the

habit formation model, but also to news about a wide range of key economic indicators.
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We model the dynamics of aggregate risk aversion in a more general farmework for mod-

eling fluctuations in aggregate preferences towards risk. We interpret the frameowrk as

a reduced form model for an economy where agents fear states of economic bust.

The estimated ranges of risk aversion are realistic, and the estimated time-variation

in the preferences is a good indicator of the business cycle. Our empirical results

show evidence of counter-cyclical aggregate risk aversion consistent with findings in

the literature of counter-cyclical risk premia. Our model describes an economy where

changes in the market behavior induced by boom and bust scenarios can be attributed

to changes in the consumers’ risk preferences. We find evidence that the volatility

clustering of the state-dependent risk aversion parameter is counter-cyclical, which may

produce feedback loops that amplify market trends. Factors that may reinforce this

amplification mechanism include social projection bias where people have a tendency

to project their own risk preferences onto others (Cohn et al., 2015). However, unlike

(Cohn et al., 2015), we provide an alternative source of risk preferences’ changes other

than consumers’ and/or investors’ fear, and a model that links the changes in the

aggregate risk preferences to information about the wider economy.

References

Abel, A. B. (1990). Asset prices under habit formation and catching up with the

joneses. The American Economic Review 80 (2), 38–42.

Agresti, A. (2012). Categorical data analysis. New Jersey: Wiley.

Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor

models. Econometrica 70, 191–221.

Brandt, M. W. and K. Q. Wang (2003). Time-varying Risk Aversion and Unexpected

Inflation. Journal of Monetary Economics 50, 1457–1498.

46



Breeden, D., M. Gibbons, and R. Litzenberger (1989). Empirical tets of the

consumption-Oriented CAPM. Journal of Finance 44, 231–262.

Breeden, D., R. Litzenberger, and T. Jia (2014). Consumption-based asset pricing:

Research and applications. Unpublished Manuscript .

Brunnermeier, M. K. and S. Nagel (2008). Do Wealth Fluctuations Generate Time-

varying Risk Aversion? Micro-Evidence on Individuals’s Asset Allocation. American

Economic Review 98, 713–736.

Burnside, C. and M. Eichenbaum (1996). Small sample properties of GMM-based Wald

tests. Journal of Business & Economic Statistics 14 (3), 294–308.

Campbell, J. (2003). Consumption-based asset pricing, Volume 1B, pp. 801––885. Else-

vier: Amsterdam. in George M. Constantinides, Milton Harris, and René M. Stulz,
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9 APPENDIX A

9.1 Proof of Proposition 1

In basic SDRA model, the stochastic discount factor is given by:

Mt+1 = β
C
−γt+1

t+1

C−γtt

= e[logβ−γt+1logCt+1+γtlogCt]

= elogβ−γt+1(logCt+1−logCt)−logCt∆γt+1

= elogβ−γt+1∆logCt+1−logCt ∆γt+1 .

Using the approximation ex ∼= 1 + x for small x, we can write:

Mt+1
∼= 1 + logβ − γt+1∆logCt+1 − logCt ∆γt+1.

Now taking the testable imlication of the model after de-meaning all variables,

E t [(Rt+1 −RF,t+1)Mt+1] = E t [Rt+1 −RF,t+1]− E t [(Rt+1 −RF,t+1)γt+1∆logCt+1]

− logCtE t [(Rt+1 −RF,t+1) ∆γt+1] = 0

E t [Rt+1]−RF,t+1 = E t [(Rt+1 −RF,t+1)γt+1∆logCt+1] + logCtE t [(Rt+1 −RF,t+1) ∆γt+1] .

The random variable γt+1 has a distribution that depends on the discrete random

variable St+1 which characterizes the state of the economomy. With κS states, this

variable has an expectation equal to Et[γt+1] =
∑κS

j=1 γjP [Sj,t+1|wt = 1] . Using the
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Law of Iterated Expectations, we can then write the expression in (46) as:

E t [Rt+1]−RF,t+1 =

κS∑
j=1

γjP [Sj,t+1|wt = 1]E t [(Rt+1 −RF,t+1)∆logCt+1]

+ logCt E t [(Rt+1 −RF,t+1) ∆γt+1]

=

κS∑
j=1

γjP [Sj,t+1|wt = 1] Covt [Rt+1 −RF,t+1,∆logCt+1]

+ logCt Covt [Rt+1 −RF,t+1, ∆γt+1] .

In addition, given the result that E (Mt+1) ≈ 1, this leads to the expression of the

proposition:

RPt =

 κS∑
j=1

γjπj,t+1

Covt [Rt+1 −RF,t+1,∆logCt+1]

+ logCt Covt [Rt+1 −RF,t+1, ∆γt+1]�

Let’s use the notation σRct to denote Covt [Rt+1 −RF,t+1,∆logCt+1], and σRγt to de-

note Covt [Rt+1 −RF,t+1, ∆γt+1]. Similarly, let us denote the conditional variance for

consumption Vart(∆Ct+1) as σcct . We can rewrite the decomposition of the risk premia,

given the approximation E t (Mt+1) ≈ 1, into:

RPt =

[
E t(γt+1) σcct
E t (Mt+1)

]
︸ ︷︷ ︸

λct

(
σRct
σcct

)
︸ ︷︷ ︸

βci,t

+

[
logCt σ

γγ
t

E t (Mt+1)

]
︸ ︷︷ ︸

λγt

(
σRγt
σγγt

)
︸ ︷︷ ︸

βγi,t
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