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ABSTRACT. We construct a Cournot model in which firms have uncertainty

about the total number of firms in the industry. We model such an uncertainty

as a Poisson game and we characterize the set of equilibria after deriving some

novel properties of the Poisson distribution. When the marginal cost is zero, the

number of equilibria increases with the expected number of firms (n) and for

n ≥ 3 every equilibrium exhibits overproduction relative to the model with de-

terministic population size. Overproduction is robust to sufficiently small mar-

ginal costs, however, for a fixed marginal cost, the set of equilibria approaches

the equilibrium quantity of the deterministic model as n goes to infinity.
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1. INTRODUCTION

The Cournot competition model (Cournot, 1838) has been widely used to study

imperfectly competitive industries. The classical complete information version

has been extended to account for more realistic scenarios in which competing
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firms face uncertainty about relevant industry characteristics such as the mar-

ket demand or production costs. This framework has been successfully used

to study the value of information and the associated incentives for R&D, infor-

mation sharing, information acquisition, formation of cartels, and antitrust and

regulatory policies. For a very incomplete list, see Clarke (1983); Vives (1984,

1988, 1990, 2002); Novshek and Sonnenschein (1982); Gal-Or (1985, 1986); Li

(1985); Li et al (1987); Palfrey (1985); Shapiro (1986); Cramton and Palfrey

(1990); Raith (1996).

A different and significant source of uncertainty in many industries is the

number of competitors. While in some established industries it can be reason-

able to assume that there is a fixed number of firms and that their identities

are well known, in emerging industries, online industries, unregulated indus-

tries, or industries facing some significant regulatory change, it may be more

natural to assume that firms have uncertainty about the number of competitors

they face at the time they make their strategic decisions. The same is true for

industries in which the number of competitors is large or in which competition

takes place at a global scale. While firms may have a good understanding about

the local competition, they may not know the number of competitors that they

face globally. Some specific examples are manufacturing industries such as the

steel, cement, glass, and coal industries. In all these cases, firms face population

uncertainty about their competitors.

Models with population uncertainty (Myerson, 1998, 2000; Milchtaich, 2004)

have already been extensively used to model elections in voting and political

economy models.1 In addition to seeming more realistic than assuming com-

mon knowledge about the population size, the quite convenient properties of the

Poisson distribution make Poisson games an especially useful framework. In

industrial organization, Ritzberger (2009) studies the consequences of assum-

ing population uncertainty (and of modelling it using the Poisson specification)

within the Bertrand model of price competition and shows that it can resolve

the Bertrand paradox.2

We introduce Poisson population uncertainty into a Cournot model with linear

demand function and non-negative prices.3 In the classical Cournot model with

1 See, e.g., Myerson, 2002; Bouton and Castanheira, 2012; Bouton and Gratton, 2015; Bouton,

2013; Hughes, 2016.
2 That is, that two firms are enough to obtain the perfectly competitive outcome.
3 Assuming linear demand in a Cournot model that incorporates uncertainty implies that

prices can be negative with strictly positive probability. In our case, even if a firm’s individual
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downward sloping demand function, firms’ optimal choices are strategic sub-

stitutes so that a firm’s best reply decreases as the total quantity produced by

its opponents increases. Introducing population uncertainty induces two forces

that operate in opposite directions. On one hand, if the expected number of

firms is n, a firm that is in the industry expects its number of competitors to

be larger than n−1, because having been recruited to compete in the industry

is evidence in favor of a larger number of competing firms (cf. Myerson, 1998,

p. 382). Under symmetry, this translates into an increased production level of

the competitors, therefore generating an incentive to underproduce relative to

the equilibrium quantity without population uncertainty when the number of

competitors is exactly n−1.

On the other hand, a firm also has the incentive to overproduce relative to the

equilibrium quantity without population uncertainty to “bet” on those events in

which the number of other firms is low, given that potential losses incurred in

the events in which such a number is high are bounded by the fact that prices

cannot be negative. Of course, the equilibrium choices that arise from these

two opposite forces depend on the shape of the demand function and on how

population uncertainty is introduced into the model.

Using Poisson uncertainty together with a linear and non-negative inverse

demand function yields a tractable model that provides an intuitive resolution

to the interaction between the two forces mentioned above. In particular, the en-

vironmental equivalence property of Poisson games (see Myerson, 1998) implies

that when the expected number of firms is n, the expected number of opponents

for any competing firm is also n, one more than the firm’s actual number of op-

ponents in the model with deterministic population size equal to n. When n is

small (namely, for n ≤ 2) so that the probability of n−1 or less firms is sufficiently

production might be small, there are large realizations of the population size under which the

total quantity supplied is to the right of the production level for which a price equal to zero

is needed to clear the market. Under different sources of informational asymmetries, Malueg

(1998); Lagerlöf (2007); Hurkens (2014) show that allowing for negative prices produces results

that critically depend on that assumption, even when restricting to equilibria in which prices

are positive. On the other hand, Einy et al (2010) show that an equilibrium may not even exist if

prices are always restricted to be positive. As Theorem 2 shows, this is not an issue in Poisson-

Cournot games as they always have an equilibrium.
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low, the former force is dominant and equilibrium quantities exhibit underpro-

duction relative to the unique equilibrium in the deterministic model.4 However,

as n increases and the probability of facing a too large number of competitors

also increases (i.e. the price is zero regardless of the firm’s action), the second

force becomes dominant and firms’ equilibrium quantities are higher than in

the deterministic model.5 In particular, for n large enough every equilibrium is

such that firms produce more than twice (and up to four times) as much as the

equilibrium quantity when firms know the population size. Interestingly, indus-

tries that exhibit uncertainty about the number of competitors mentioned above

(steel, cement, glass, and coal) often also exhibit overproduction.6

For most of the paper we assume for simplicity that the marginal cost is equal

to zero. When firms face positive production costs, results depend on their mag-

nitude relative to the expected number of competing firms. If we fix the expected

number of firms to n, outcomes remain quantitatively and qualitatively differ-

ent from those in the model without population uncertainty whenever marginal

costs are sufficiently small. In particular, the higher is n the smaller must be

the marginal cost to preserve overproduction. On the other hand, for a given

marginal cost, the set of equilibria of the Poisson-Cournot model converges to

the equilibrium quantity without population uncertainty as n increases.

After considering some examples that highlight the main incentive implica-

tions of adding population uncertainty to Cournot competition, we fully describe

the model in Section 2. Section 3 provides some new results on the Poisson dis-

tribution that are needed to prove existence of equilibrium and solve the model

in Section 4. Welfare comparisons with respect to the Cournot model without

4 As we show in Appendix D (see Table 2 for a summary), if we focus on integer values

of n to help the comparison with the Cournot model without population uncertainty, there is

underproduction for n equal to 1 and 2. More precisely, for n = 1 there is a unique equilibrium in

which each firm produces 2
5 , i.e. less than the monopolist’s optimal quantity 1

2 . For n = 2 there

are two equilibria, one in which each firm produces 5
16 , less than the duopolist’s equilibrium

quantity 1
3 , and one in which every firm produces more, 3

8 .
5 For n ≥ 3, every individual equilibrium quantity is greater than 1

n+1 .
6 For example, the State Information Center of China reports serious overcapacity and over-

production in many manufacturing industries in China, including those that we listed above

(see http://www.sic.gov.cn/News/455/8815.htm). China has been making an effort to re-

duce overcapacity and overproduction in these industries, including shutting down some small,

less productive firms. This entailed compensating workers who became unemployed during the

process. The cost is over 100 billion RMB (around 14.3 billion USD).

http://www.sic.gov.cn/News/455/8815.htm
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population uncertainty are in Section 5. In Section 6 we study the case in which

marginal costs are strictly positive.

1.1. Introductory examples

Before introducing the Poisson distribution to model population uncertainty

in the Cournot competition model, we consider a series of Cournot games with a

potential pool of firms each of which becomes active with some probability. The

inverse demand function is p(Q) = max{0,1−Q}, where Q is the total produced

quantity.
Suppose that there are three firms and that there is incomplete information

about firms’ marginal costs, which can be either 0 (in which case a firm operates
in the market) or k > 1 (so that a firm does not produce).7 The ex-ante probability
distribution over cost profiles is such that each firm has probability 1

6 of being
the only one with zero costs, hence a monopolist. With the remaining probability
1
2 all firms have zero costs. Therefore, the expected number of active firms is 2.
Note that for an active firm, the ex-post probability of being a monopolist is 1

4
while the probability of competing with the other two firms is 3

4 . We compute
the symmetric Nash equilibria in pure strategies of this game. The profit to firm
i when it produces qi and each one of its opponents produces q j is

1
4

max {0,1− qi} qi + 3
4

max
{
0,1−2q j − qi

}
qi.

Maximizing with respect to qi, we find the best response function of firm i when
q j < 1

2 ,

BRi(q j)=
2−3q j

4
,

and by symmetry we have q∗ = 2
7 . To see that quantity q∗ is an equilibrium note

first that 1−3q∗ > 0 and that 1
2 is the best candidate for a possible deviation.8

Producing q∗ yields a profit equal to 4
49 , while deviating to the higher quantity

1
2 yields the lower profit 1

16 . The expected total quantity given the equilibrium

q∗ is equal to 4
7 . It is easy to see that the game has also another symmetric

equilibrium in which every firm produces 1
2 and the expected total quantity is 1.

In the analogous complete information Cournot game with 2 firms and zero

marginal costs there is a unique Nash equilibrium. In such an equilibrium,
7 Janssen and Rasmusen (2002) briefly consider a Cournot model with population uncertainty

that is modelled in a similar way. However, they do not impose the non-negativity constraint on

prices and only consider equilibria in which prices are non-negative.
8 When the other firms produce q∗, quantity q∗ is the unique best response such that the

second term of the profit function is positive. Any profitable deviation must render that term

null, and the best possible one maximizes (1− qi)qi.
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every firm produces 1
3 and the total quantity is 2

3 . The introduction of the uncer-

tainty above generates two equilibria, one with overproduction and another with

underproduction relative to the complete information case. Underproduction is

due to strategic substitutability given that, for an active firm, the expected total

number of firms operating in the market is 2.5, which is larger than the ex-

pected number 2 of active firms.9 On the other hand, overproduction comes from

each firm ignoring the event in which it has two active opponents and makes

zero profits, and focusing on maximizing profits in the event it is a monopolist.

Note that, if we did not impose the non-negativity constraint on prices, the equi-

librium exhibiting underproduction would be the unique equilibrium. We also

note that both equilibria are strict, so they are robust to perturbations of the

parameters of the model, in particular, of the inverse demand function.
We analyze now an example in which firms’ cost types are independent. Con-

sider two firms whose marginal production cost is either 0 or k > 1 with equal
probability. The expected number of active firms is 1. In this case, firm i’s profit
when it produces qi and the other firm produces q j is

1
2

max {0,1− qi} qi + 1
2

max
{
0,1− q j − qi

}
qi.

Let us look for symmetric equilibria q∗ such that q∗ < 1
2 , so that both terms of

the profit function are positive. Maximizing it with respect to qi, we obtain firm
i’s best response function

BRi(q j)=
2− q j

4
.

By symmetry we have q∗ = 2
5 , which is an equilibrium since 1−2q∗ > 0 and there

is no profitable deviation to any other quantity.10 It can be easily seen that 1
2 is

not an equilibrium, so q∗ is the unique symmetric equilibrium of the game. It

induces an expected total quantity equal to 2
5 , therefore there is underproduc-

tion relative to the complete information case, where the monopolist’s optimal

quantity is 1
2 . Again, this follows from the expected number of opponents for an

active firm (0.5) being higher than under complete information.

9 Note that the equilibrium quantity q∗ = 2
7 computed above is given by 1

2.5+1 .
10 As before, note that any profitable deviation must be greater than 3

5 to make the second

term in the profit function null, and the best one is 1
2 . However, since 1

2 < 3
5 , there cannot be any

profitable deviation. In fact, for every q we have

1
2

(1− q)q < 1
2

(
1− 1

2

)
1
2
< 1

2

(
1− 1

2

)
1
2
+ 1

2

(
1− q∗− 1

2

)
1
2
< 1

2
(1− q∗)q∗+ 1

2
(1−2q∗)q∗.
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We now illustrate how, as the expected number of active firms increases, the

incentive to “bet” on the more profitable events in which there are few other ac-

tive firms appears and rapidly becomes dominant. In particular, there might be

multiple equilibria and, if the number of expected active firms is 3 or higher, ev-

ery equilibrium exhibits overproduction relative to the corresponding complete

information equilibrium.
Thus, let us modify the last example so that there are four firms and, there-

fore, the expected number of firms is 2. Firm i’s profit when it produces qi ≤ 1
and every other firm produces q j is

1
8

(1−qi)qi+ 3
8

max
{
0,1− q j − qi

}
qi+ 3

8
max

{
0,1−2q j − qi

}
qi+ 1

8
max

{
0,1−3q j − qi

}
qi.

As in the previous examples, to find symmetric equilibria we need to be aware

that given an equilibrium candidate some terms in the profit function may be

zero, that a deviation to a smaller quantity may render null terms strictly posi-

tive, and that a deviation to a larger quantity may render strictly positive terms

null. With that in mind and after some work, it is possible to see that the game

has exactly two symmetric equilibria in which, respectively, firms produce 7
23

and 4
11 . In the complete information case with two firms, the equilibrium quan-

tity is 1
3 . Thus, under incomplete information, there is one equilibrium in which

firms’ production is larger and one equilibrium in which firms’ production is

smaller than the complete information equilibrium quantity.

If we increase the number of firms to 6 so that the expected number of active

firms is 3, there exists a unique symmetric equilibrium in which firms produce
16
57 , which is larger than the complete information equilibrium quantity 1

4 . Over-

production relative to the complete information case persists when the number

of firms is 8, so that the expected number of active firms is 4, and multiplicity of

equilibria reappears. In this case, there are two symmetric equilibria, 32
141 and

29
107 , both larger than 1

5 . As the number of firms n increases, the incomplete in-

formation game in which firms can be active (zero costs) or not (costs k > 1) with

equal probability can be closely approximated by a Poisson game with expected

number of active firms equal to n
2 .

2. THE MODEL

In a Poisson-Cournot game the number of firms in an industry is distributed

according to a Poisson random variable with mean n. Therefore, there are k

firms with probability Pn
k := e−n nk

k! and m or a fewer number of firms with prob-

ability Cn
m :=∑m

k=0 Pn
k . All firms are identical and face the same inverse demand
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function p(Q) :=max{0,1−Q} where Q is the total quantity produced in the mar-

ket. For the time being, we assume that the marginal production cost φ equals

zero.11 The strategy space is the set of all positive production quantities [0,∞).

Environmental equivalence implies that Pn
k is also the probability that a firm

attaches to the event that there are k other firms in the market. Hence, if every

other firm produces q′, the profit to a firm that in turn produces q is

π(q, q′ | n) :=
∞∑

k=0
Pn

k max
{
0,1−kq′− q

}
q.

Definition 1. A Nash equilibrium of the Poisson-Cournot game is a quantity q∗

such that π(q∗, q∗ | n)≥π(q, q∗ | n) for every other q.12

To make the profit maximization problem tractable, instead of working di-

rectly with the profit function, for every integer m ≥ 1 we define the pseudo-profit

at m−1

π̃m−1(q, q′ | n) :=
m−1∑
k=0

Pn
k (1−kq′− q)q.

If q, q′ ∈ [ 1
m+1 , 1

m
)

and the realization of the number of competitors in the in-

dustry is larger than or equal to m, then the price equals zero and the real-

ized profit equals the pseudo-profit at m−1. Therefore, if q, q′ ∈ [ 1
m+1 , 1

m
)

then

π(q, q′ | n) = πm−1(q, q′ | n). If the quantity q maximizes the pseudo-profit when

every other firm produces q′ then we say that q is a pseudo-best response against

q′. Taking first order conditions to the pseudo-profit, we obtain that such a best

response equals

B̃Rn
m−1(q′) := 1

2
− 1

2

∑m−1
k=0

nk

k! k∑m−1
k=0

nk

k!

q′ = 1
2
− 1

2
nCn

m−2

Cn
m−1

q′.

Let Mn
m denote the mean of the Poisson distribution with parameter n truncated

at m, that is, conditional on its realization being smaller than or equal to m. We

call Mn
m the conditional mean at m. Then, the pseudo-best response can be

written as

B̃Rn
m−1(q′) := 1

2
− 1

2
Mn

m−1q′.13

11 See Section 6 for the analysis with positive marginal cost.
12 Throughout the paper we consider Nash equilibria in pure strategies. As Myerson (1998)

points out, population uncertainty implies that identical firms must be treated symmetrically.
13 Recall that, in the Cournot model without population uncertainty and n firms, we have

BR(q′)= 1
2 − 1

2 (n−1)q′. Note as well that the analogous expression with population uncertainty

but without the non-negativity constraint on prices is 1
2 − 1

2 nq′. In that case, there is a unique
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Suppose that q∗ is an equilibrium of the Poisson-Cournot model such that
1

m+1 ≤ q∗ < 1
m , then it must be equal to

q∗ = 1
Mn

m−1 +2
. (2.1)

However, a quantity q̃ may equal (2.1) and still not be an equilibrium. A neces-

sary (but, again, still not sufficient) condition is q̃ ∈ [ 1
m+1 , 1

m
)
. Since Mn

m−1 ≤ m−1

is obviously true, we always have q̃ ≥ 1
m+1 . However, q̃ < 1

m if and only if

Mn
m−1 > m−2. If Mn

m−1 ≤ m−2 then there exists no equilibrium in the inter-

val
[ 1

m+1 , 1
m

)
. If otherwise Mn

m−1 > m−2, we say that q̃ is a pseudo-equilibrium.

A pseudo-equilibrium may or may not be an equilibrium but every equilibrium

is a pseudo-equilibrium.

Thus, the non-negativity constraint on prices implies that, for any production

level of the competitors, there is an upper bound on how many competitors can

be active in the market and prices still be positive. A profit maximizing firm

ignores sufficiently high realizations of the Poisson distribution of competitors

and (given the linearity of profits and risk neutrality) optimizes with respect to

the expected number of competitors under such a truncation. Hence, the con-

ditional mean Mn
m arises in a natural way in a Cournot model with population

uncertainty and characterizing its set of equilibria reduces to understanding

how Mn
m behaves.

3. PSEUDO-EQUILIBRIA

In this section we present some results about the conditional mean Mn
m that

allow us to characterize the set of pseudo-equilibria and, later, the set of equilib-

ria of the model. To simplify notation, in this and in the following section, we fix

the mean of the Poisson distribution to n and drop the corresponding superscript

from every expression whenever it does not give rise to confusion.

Of course, Mm is increasing in m and converges to n as m grows. According

to the next result, whose proof is relegated to Appendix A, Mm is also concave.

Proposition 1. The difference Mm −Mm−1 is decreasing in m.

This result has some implications that we need. The first one follows directly

from M0 = 0 and M1 = n
n+1 .

Corollary 1. For any integer m ≥ 1 we have Mm −Mm−1 < 1.

symmetric equilibrium, q∗ = 1
n+2 , which exhibits underproduction for every n because of the sole

effect of environmental equivalence.
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0 1
m̄+1

1
m̄

1
m̄−1

1
5

1
4

1
3

1
2

1

FIGURE 1. Graphical representation of pseudo-equilibria.

This has the following crucial implication.

Corollary 2. For every integer m ≥ 1, if Mm > m−1 then Mm−1 > m−2.

Recall that, for a positive integer m, the interval
[ 1

m+1 , 1
m

)
contains a pseudo-

equilibrium if Mm−1 > m−2. Hence, Corollary 2 implies that the set of pseudo-

equilibria is characterized by the unique integer m̄ that satisfies Mm̄ ≤ m̄− 1

and Mm̄−1 > m̄−2. Moreover, there are exactly m̄ pseudo-equilibria: the mini-

mum pseudo-equilibrium quantity 1
Mm̄−1+2 belongs to the interval

[ 1
m̄+1 , 1

m̄
)

and,

for each strictly positive integer m < m̄, there is one pseudo-equilibrium in the

interval
[ 1

m+1 , 1
m

)
. Note that the largest pseudo-equilibrium quantity is given by

1
M0+2 = 1

2 .

Figure 1 shows how pseudo-equilibria (represented by dots in the figure) are

typically placed within their corresponding intervals. (Note that, if n is small,

we can have m̄ ≤ 5.) Table 1 displays, for each interval
[ 1

m+1 , 1
m

)
with m ≤ 9,

the values of n for which there is a pseudo-equilibrium in that interval so that

we have Mn
m−1 > m−2.14 Furthermore, in Appendix D, we compute and provide

analytical expressions for pseudo-equilibria and equilibria when n is small.

We are interested in finding m̄, i.e., the greatest integer m such that Mm−1 >
m−2. Using the rules of the conditional expectation, we know that the condi-

tional mean satisfies

Mm = Cm−1

Cm
Mm−1 + Pm

Cm
m. (3.1)

If Mm−1 > m−2, then

Mm > Cm−1

Cm
(m−2)+ Pm

Cm
m = m− 2

n
Mm.

Solving for Mm, we obtain that Mm−1 > m−2 implies

Mm > n
n+2

m. (3.2)

But m̄ is the greatest integer m with Mm−1 > m− 2, i.e. Mm̄ ≤ m̄− 1. This

inequality combined with (3.2) provides the lower bound n
2 +1< m̄. Proposition 7

in Appendix A implies m̄ < n
2 +3. Thus we have the following result.

14 Values of n are rounded to two decimal places.
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Interval Pseudo-equilibrium Pseudo-equilibrium for[1
2 ,1

) 1
2 n > 0[1

3 , 1
2

) 1
Mn

1+2 n > 0[1
4 , 1

3

) 1
Mn

2+2 n > 1.41[1
5 , 1

4

) 1
Mn

3+2 n > 3.14[1
6 , 1

5

) 1
Mn

4+2 n > 4.96[1
7 , 1

6

) 1
Mn

5+2 n > 6.84[1
8 , 1

7

) 1
Mn

6+2 n > 8.75[1
9 , 1

8

) 1
Mn

7+2 n > 10.68[ 1
10 , 1

9

) 1
Mn

8+2 n > 12.62

TABLE 1. Pseudo-equilibria for small values of n.

Theorem 1. The unique integer m̄ satisfying both Mm̄−1 > m̄−2 and Mm̄ ≤ m̄−1

obeys the double inequality n
2 +1< m̄ < n

2 +3.

Every strictly positive integer smaller than m̄ is associated with a pseudo-

equilibrium. Since every equilibrium must be a pseudo-equilibrium, it follows

from Theorem 1 that every equilibrium quantity will be strictly greater than
1

m̄+1 = 2
n+8 . This implies that every individual equilibrium quantity will be larger

than that of the model with deterministic population size, 1
n+1 , whenever n ≥ 6.

It also implies that, as n grows to infinity, the expected total production will con-

verge (in probability) to at least 2, while the total production in the deterministic

model converges to 1. Therefore, loosely speaking, population uncertainty in the

standard Cournot model induces a faster convergence to perfect competition. We

formally establish such a result in Section 5, but first we need to show that an

equilibrium always exists.

4. EQUILIBRIUM EXISTENCE AND CHARACTERIZATION

We show existence of Nash equilibrium through a constructive proof that ex-

ploits the specific structure of the problem.15 Of course, a pseudo-equilibrium is

an equilibrium if there is no profitable deviation to any other quantity. To show

that at least one pseudo-equilibrium is an equilibrium, we apply the following

steps. First, for a given pseudo-equilibrium, we characterize the best possible

15 Note that the profit function is not quasi-concave, so standard topological methods cannot

be used to prove existence.
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deviation to a lower quantity and the best possible deviation to a higher quan-

tity, and we show that they cannot be both profitable simultaneously. Second, we

consider two pseudo-equilibria living in contiguous intervals and show that, if

neither is an equilibrium, it is either because in both cases deviating to a higher

quantity is profitable, or because in both cases deviating to a lower quantity

is profitable. Finally, we show that from the smallest pseudo-equilibrium it is

never profitable to deviate to a lower quantity. Hence, if the smallest pseudo-

equilibrium quantity is not an equilibrium because deviating to a larger quan-

tity is profitable, then either the second smallest pseudo-equilibrium quantity

is an equilibrium or deviating to a higher quantity is also profitable. The same

is true for any subsequent pseudo-equilibrium. Thus, an equilibrium always

exists.

From the previous section, we know that there are m̄ pseudo-equilibria. Each

pseudo-equilibrium quantity q̃ ∈ [ 1
m+1 , 1

m
)

is the unique maximizer of the pseudo-

profit π̃m−1(·, q̃ | n) but is not an equilibrium unless it also maximizes the profit

function π(·, q̃ | n). Indeed, when q, q̃ ∈ [ 1
m+1 , 1

m
)
, then π̃m−1(q, q̃ | n) coincides

with π(q, q̃ | n). However, when q < 1−mq̃ or q > 1−(m−1)q̃ then the true profit

and the pseudo-profit differ. In the first case, a firm producing q can face up to

m competitors producing q̃ without prices vanishing, so that π(q, q̃ | n) has one

additional positive term (the one corresponding to k = m) that in the pseudo-

profit is zero.16 In the second case, one or more terms of the pseudo-profit are

negative, while in the real profit they are zero. In particular, there is a largest

integer i such that q > 1− (m− i)q̃. For that value of i, a firm producing q can

only face up to m− i−1 competitors producing q̃ and prices still be positive, so

that the last i terms of the pseudo-profit are negative, while in the real profit

they are zero.

Thus, consider a pseudo-equilibrium q̃ ∈ [ 1
m+1 , 1

m
)
. If there is a profitable devi-

ation from q̃ to some lower quantity q < 1−mq̃, then the best of such deviations

¯
q solves

max
q

π̃m(q, q̃ | n)=max
q

m∑
k=0

Pk(1−kq̃− q)q,

and equals

¯
q = 1

2
− 1

2
Mm q̃.

16 But if all competitors produce q̃, a firm cannot face k > m competitors without prices falling

to zero.
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Note that
¯
q is not necessarily in the interval

[ 1
m+2 , 1

m+1

)
because it may also be

smaller than 1
m+2 . On the other hand, if there is a profitable deviation from q̃ to

some higher quantity q > 1−(m−1)q̃ then the best of such possible deviations is

of the form

q̄ = 1
2
− 1

2
Mm−i q̃,

for some i ≥ 2. We show that the best one is, in fact, q̄ = 1
2 − 1

2 Mm−2 q̃.

Lemma 1. Let q̃ ∈ [ 1
m+1 , 1

m
)

be a pseudo-equilibrium and let m > 3. Then, the

best possible deviation to a higher quantity is q̄ = 1
2 − 1

2 Mm−2 q̃.

Proof. Since q̃ is a pseudo-equilibrium, Corollary 2 implies Mm−i > m− i−1 for

every i ≥ 1. Consider quantity q̂ = 1
2 − 1

2 Mm− j q̃ with j ≥ 3 and suppose it yields a

higher expected profit than q̄ = 1
2− 1

2 Mm− j+1 q̃. Since quantity q̄ is the maximizer

of the pseudo-profit π̃m− j+1(·, q̃ | n) and q̂ yields a higher expected profit, the

latter must be maximizing a different pseudo-profit, hence, q̂ > 1− (m− j+1)q̃.

Keeping in mind that Mm− j > m− j−1, we have

q̂ = 1
2
− 1

2
Mm− j q̃ > 1− (m− j+1)q̃

q̃ > 1
2(m− j+1)−Mm− j

> 1
m− j+3

≥ 1
m

,

but this contradicts q̃ < 1
m so that q̂ is a worse response than q̄ against q̃. �

It follows that a pseudo-equilibrium q̃ ∈ [ 1
m+1 , 1

m
)

is an equilibrium if neither

the higher quantity q̄ = 1
2 − 1

2 Mm−2 q̃ nor the lower quantity
¯
q = 1

2 − 1
2 Mm q̃ yield

strictly higher expected profits to the deviating firm than q̃. These two devia-

tions cannot be both profitable at the same time.

Lemma 2. Let q̃ ∈ [ 1
m+1 , 1

m
)

be a pseudo-equilibrium. If there is a profitable

deviation to the higher quantity q̄ then there cannot be a profitable deviation to

the lower quantity
¯
q and vice versa.

Proof. Recall that if q̄ is a profitable deviation we must have q̄ > 1− (m−1)q̃.

Similarly, if
¯
q is a profitable deviation then

¯
q < 1−mq̃. Using the expressions

for q̄ and
¯
q and rearranging we obtain the inequalities

q̃
(
m−1− 1

2
Mm−2

)
> 1

2
and q̃

(
m− 1

2
Mm

)
< 1

2
.

Corollary 1 implies 1
2 Mm < 1+ 1

2 Mm−2 so that, in turn, q̄ > 1− (m−1)q̃ implies

¯
q > 1−mq̃ and

¯
q < 1−mq̃ implies q̄ < 1− (m−1)q̃. �
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We now prove that, given two pseudo-equilibria in adjacent intervals that are

not equilibria, there are only two options. Either they both have a profitable

deviation to a lower quantity or they both have a profitable deviation to a larger

quantity.

Lemma 3. Let q̃ ∈ [ 1
m+1 , 1

m
)

and q̂ ∈ [ 1
m+2 , 1

m+1

)
be two pseudo-equilibria. If there

is a profitable deviation from q̂ to a higher quantity q̄ then there cannot be a

profitable deviation from q̃ to a lower quantity
¯
q, and vice versa.

Proof. Substituting q̄ and q̂ by their corresponding values in q̄ > 1−mq̂, multi-

plying across by Mm +2 and rearranging, we obtain

m−1− 1
2

Mm − 1
2

Mm−1 > 0.

Similarly, substituting
¯
q and q̃ by their corresponding values in

¯
q < 1− mq̃,

multiplying across by Mm−1 +2 and rearranging, we obtain

m−1− 1
2

Mm − 1
2

Mm−1 < 0.

Since the two inequalities contradict each other, the result follows. �

As we see in Appendix D, in the largest pseudo-equilibrium quantity 1
2 it is al-

ways profitable to deviate to a smaller quantity for every n. Moreover, given

a pseudo-equilibrium q̃, the necessary condition q̄ > 1− (m − 1)q̃ for the de-

viation to the higher quantity q̄ to be profitable can be rewritten as m− 2 >
1
2 (Mm−1 + Mm−2), which is never satisfied for m = 1, 2. We establish that an

equilibrium always exists showing that from the smallest pseudo-equilibrium

quantity deviating to a smaller quantity is never profitable.

Theorem 2 (Existence). There is at least one equilibrium.

Proof. We show that if q̃ ∈ [ 1
m̄+1 , 1

m̄
)

is the smallest pseudo-equilibrium quantity

then deviating to a smaller quantity is not profitable. To the contrary, suppose

¯
q = 1

2 − 1
2 Mm̄ q̃ is a profitable deviation. Remembering that Mm̄ ≤ m̄−1 then we

must have

1− m̄q̃ >
¯
q = 1

2
− 1

2
Mm̄ q̃ ≥ 1

2
− 1

2
(m̄−1)q̃

1−2m̄q̃ >−(m̄−1)q̃

q̃ < 1
m̄+1
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which is impossible.17 �

We now turn to describing the set of equilibria. To do that, we compute the

expected profit at a pseudo-equilibrium and if a firm deviates to a lower or a

higher quantity. The first expected profit is

π(q̃, q̃ | n)= q̃

[
(1− q̃)

m−1∑
k=0

Pk − q̃
m−1∑
k=0

Pkk

]

= q̃

[
(1− q̃)Cm−1 − q̃

m−1∑
k=0

Pkk

]
= q̃ [1− q̃− q̃Mm−1]Cm−1.

Similarly, the expected profits from deviations q̄ and
¯
q are

π(q̄, q̃ | n)= q̄ [1− q̄− q̃Mm−2]Cm−2,

π(
¯
q, q̃ | n)=

¯
q

[
1−

¯
q− q̃Mm

]
Cm.

We also have the equalities

q̃ = 1
2
− 1

2
Mm−1 q̃, q̄ = 1

2
− 1

2
Mm−2 q̃,

¯
q = 1

2
− 1

2
Mm q̃,

which we substitute in the expressions above to obtain

π(q̃, q̃ | n)= q̃2Cm−1, π(q̄, q̃ | n)= q̄2Cm−2, π(
¯
q, q̃ | n)=

¯
q2Cm.18

In equilibrium, the first one of these three profit values must be larger than

the other two. Such values are written in terms of the quantities q̃, q̄, and

¯
q. They, in turn, depend on the values of the conditional mean for different

truncations. So, to compare the three profit values above, it is useful to bound

such a conditional mean and its rate of change as m increases. Hence, together

with the lower bound for Mm in Equation (3.2), we also provide an upper bound.

Lemma 4. For every integer m ≥ 1 we have Mm ≤ n
n+1 m, with equality only if

m = 1.

17 An alternative proof of existence can be constructed using lattice-theoretic methods. While

any selection of the best response correspondence has countably many discontinuity points, some

results obtained in this section can also be used to prove that all its jumps are upwards. Hence,

any such selection is a quasi-increasing function so that the Tarski’s intersection point theorem

(see, e.g., Theorem 3 in Vives, 2018) implies that it intersects the 45 degree line at least once.

We chose to provide a constructive proof as it highlights some economic insights relevant to the

model.
18 Recall that in the model with deterministic population size, q = 1

n+1 is the individual equi-

librium quantity and equilibrium profits are given by q2.
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Proof. We obtain M1 = n
n+1 by direct computation. Let m > 1; we obviously have

Mm−1 < m−1, which can be combined with (3.1) to obtain

Mm < Cm−1

Cm
(m−1)+ Pm

Cm
m = m− Cm−1

Cm
= m− 1

n
Mm.

The result follows after solving for Mm. �

Similarly, together with the upper bound for Mm − Mm−1 in Corollary 1, we

need a lower bound for values of m that are associated with a pseudo-equilibrium.

Lemma 5. If m < n
2 +3 then Mm −Mm−1 > n−4

n+4 .

Proof. From Proposition 1 we know that Mm −Mm−1 is decreasing, so we focus

on Mm̄ − Mm̄−1, where m̄ is defined as in Theorem 1. Subtracting Mm̄−1 from

both sides in (3.1) we obtain

Mm̄ −Mm̄−1 = Pm̄

Cm̄
(m̄−Mm̄−1)≥ Pm̄

Cm̄
(1+Mm̄ −Mm̄−1), (4.1)

and solving for Mm̄ −Mm̄−1,

Mm̄ −Mm̄−1 ≥ Pm̄

Cm̄−1
= n

Mm̄
−1.

Since Mm̄ ≤ m̄−1 and m̄ < n
2 +3 the last expression implies

Mm̄ −Mm̄−1 > n− m̄+1
m̄−1

= n−4
n+4

.

�

We are now equipped to prove the following necessary condition on m such

that the pseudo-equilibrium that lives in
[ 1

m+1 , 1
m

)
is an equilibrium.

Proposition 2. If q∗ ∈ [ 1
m+1 , 1

m
)

is an equilibrium then

n
4
+ 1

4
< m <

(
4
9

n+ 8
9

)(
3n+12
3n+4

)2
+1.

Proof. We first show that m ≤ n
4+1

4 implies that the associated pseudo-equilibrium

q̃ satisfies
¯
q2Cm > q̃2Cm−1. On one hand, we use Corollary 1 to obtain(

¯
q

q̃

)2
=

(
1

2q̃
− 1

2
Mm

)2
=

(
1− 1

2
(Mm −Mm−1)

)2
> 1

4
.

On the other hand, the upper bound on m and Lemma 4 imply

Cm−1

Cm
= 1

n
Mm ≤ m

n+1
≤ 1

4
.
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We now show that m ≥ (4
9 n+ 8

9

)(3n+12
3n+4

)2+1 implies q̄2Cm−2 > q̃2Cm−1. Lemma 5

implies (
q̄
q̃

)2
=

(
1

2q̃
− 1

2
Mm−2

)2
=

(
1+ 1

2
(Mm−1 −Mm−2)

)2
>

(
3n+4

2(n+4)

)2
.

While the lower bound on m together with the lower bound on Mm−1 in (3.2)

imply
Cm−1

Cm−2
= n

Mm−1
< n+2

m−1
≤

(
3n+4

2(n+4)

)2

and establish the desired result. �

Hence, equilibria of the Poisson-Cournot model are, for n sufficiently high,

between two and four times as large as the equilibrium quantity without popu-

lation uncertainty. We note that the upper bound for m in Proposition 2 is more

efficient than the bound n
2 +3 found in Theorem 1 for pseudo-equilibria only for

n > 25.86.

We now derive a sufficient condition which ensures that, for every value of

m between two given thresholds, the interval
[ 1

m+1 , 1
m

)
contains an equilibrium.

The lower threshold guarantees that there is no profitable deviation from the

pseudo-equilibrium in that interval to a smaller quantity, while the higher one

rules out a profitable deviation to a larger quantity.

Proposition 3. If q̃ ∈ [ 1
m+1 , 1

m
)

is a pseudo-equilibrium such that(
n
4
+ 1

2

)(
n+12
n+4

)2
≤ m ≤ 4

9
n+ 13

9

then q̃ is an equilibrium.

Proof. We first show that if the first inequality holds then q̃2Cm−1 ≥
¯
q2Cm.

Lemma 5 implies (
¯
q

q̃

)2
=

(
1− 1

2
(Mm −Mm−1)

)2
<

(
n+12

2(n+4)

)2
.

On the other hand, m ≥ (n
4 + 1

2

)(n+12
n+4

)2 and the lower bound on Mm in (3.2) imply

Cm−1

Cm
= 1

n
Mm > m

n+2
≥

(
n+12

2(n+4)

)2
.

It remains to show that the second inequality implies q̃2Cm−1 ≥ q̄2Cm−2. Using

Corollary 1 we have (
q̄
q̃

)2
=

(
1+ 1

2
(Mm−1 −Mm−2)

)2
< 9

4
.
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FIGURE 2. Bounds for m found in Proposition 2 and Proposition 3

given 20≤ n ≤ 160.

While the second inequality and Lemma 4 imply

Cm−1

Cm−2
= n

Mm−1
≥ n+1

m−1
≥ 9

4

as we wanted. �

We remark that the double inequality in the last proposition can only be sat-

isfied for n ≥ 17.29.

Figure 2 plots the bounds for m found in Proposition 2 and Proposition 3 for

values of n between 20 and 160 together with numerical computation (in red)

Interval Equilibrium quantity Equilibrium for[1
3 , 1

2

) 1
Mn

1+2 0< n ≤ 3.61[1
4 , 1

3

) 1
Mn

2+2 1.69≤ n ≤ 7.46[1
5 , 1

4

) 1
Mn

3+2 3.69≤ n ≤ 11.39[1
6 , 1

5

) 1
Mn

4+2 5.79≤ n ≤ 15.33[1
7 , 1

6

) 1
Mn

5+2 7.93≤ n ≤ 19.3[1
8 , 1

7

) 1
Mn

6+2 10.11≤ n ≤ 23.27[1
9 , 1

8

) 1
Mn

7+2 12.29≤ n ≤ 27.26[ 1
10 , 1

9

) 1
Mn

8+2 14.5≤ n ≤ 31.24

TABLE 2. Equilibria for small values of n.
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FIGURE 3. New bounds for m found using Mm−Mm−1 > n−6
n−2 given

20≤ n ≤ 160.

of the maximum and minimum values of m for which there is an equilibrium in[ 1
m+1 , 1

m
)
. Table 2 provides the results of the analytical computations of equilib-

ria for smaller values of n that are offered in Appendix D. Focusing on integer

values of n, we can see that from n = 3 every equilibrium of the Poisson-Cournot

model exhibits overproduction relative to the model with deterministic popula-

tion size. From n = 40, in every equilibrium, firms produce more than twice the

equilibrium quantity of the deterministic case. The multiplicity of equilibria is

more pervasive as n increases. It arises from the different production levels that

firms can coordinate on, each production level being associated with the number

of firms that can operate in the market and prices still be positive.

Of course, the tightness of the bounds in Proposition 2 and Proposition 3 de-

pend on the tightness of our bounds for Mm and Mm − Mm−1. For instance,

Proposition 8 in Appendix A shows that, as long as n > 2 and m < n
2 +3, we have

Mm − Mm−1 > n−6
n−2 . This bound is tighter than the one in Lemma 5 whenever

n > 8. Using this new bound, we obtain the following necessary and sufficient

conditions for equilibria that are represented in Figure 3.

Proposition 4. Let n > 2. If q∗ ∈ [ 1
m+1 , 1

m
)

is an equilibrium then

n
4
+ 1

4
<m <

(
4
9

n+ 8
9

)(
3n−6
3n−10

)2
+1.
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Furthermore, if q̃ ∈ [ 1
m+1 , 1

m
)

is a pseudo-equilibrium such that(
n
4
+ 1

2

)(
n+2
n−2

)2
≤m ≤ 4

9
n+ 13

9
then q̃ is an equilibrium.

To illustrate the efficiency of these bounds consider, e.g., n = 100. According

to Proposition 4 every equilibrium quantity must be larger than 1
48 and smaller

than 1
26 . Furthermore, every interval

[ 1
m+1 , 1

m
)

from 1
46 to 1

28 contains an equilib-

rium, which is given by 1
M100

m−1+2
. According to numerical computations, there is

an equilibrium in each interval from 1
48 to 1

27 . (Without population uncertainty,

the unique equilibrium quantity is 1
101 .)

The upper bound in Proposition 4 is more efficient than the one in Theorem 1

for n > 14. Proposition 4 implies that, as n goes to infinity, every sequence of

expected total equilibrium quantities converges in probability at least to 2.25

(and at most to 4).

5. WELFARE

5.1. Profits

The set of equilibria can be Pareto ranked from the firms’ viewpoint. Given

any equilibrium, the individual profit to a firm increases under any other equi-

librium associated with a smaller quantity. The smaller production is compen-

sated by the higher price for any given realization of the number of firms and,

additionally, by the larger probability that prices remain strictly positive. For

any m, let q̃m−1 = 1
Mn

m−1+2 . We have the following result.

Proposition 5. Let q̃m and q̃m−1 be two equilibria. Then π(q̃m−1, q̃m−1 | n) <
π(q̃m, q̃m | n) for every n.

Proof. Since q̃m < q̃m−1 and both are equilibria, we have

π(q̃m−1, q̃m−1 | n)=
m−1∑
k=0

Pn
k (1−kq̃m−1 − q̃m−1)q̃m−1 <

m−1∑
k=0

Pn
k (1−kq̃m − q̃m−1)q̃m−1 ≤π(q̃m−1, q̃m | n)<π(q̃m, q̃m | n).

�

Nonetheless, even under the lowest equilibrium quantity, profits are still lower

than in the unique equilibrium quantity if there is no population uncertainty.

Thus, we claim the following result, which is proven in Appendix B.
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Claim 1. Let q̃m−1 be an equilibrium. Then π(q̃m−1, q̃m−1 | n)< 1
(n+1)2 for every n.

Recall that m̄ is the integer associated with the smallest pseudo-equilibrium

quantity, so every equilibrium is larger than q̃m̄−1. In Appendix B we show that,

for n large enough,

q̃2
m̄−1Cn

m̄−1 <
1

(n+1)2 .

The result follows from the fact that for m < n the value of Cn
m converges expo-

nentially to zero as n increases, i.e. faster than 1
n2 .

5.2. Consumer surplus

Not surprisingly, results about consumer surplus move in the opposite direc-

tion. Obviously, consumers always prefer equilibria with larger quantities as

the probability distribution over prices induced by any quantity is first order

stochastically dominated by the corresponding distribution induced by a smaller

quantity. Moreover, even in the lowest quantity equilibrium of the Poisson-

Cournot game, the consumer surplus is bigger than in the unique equilibrium of

the Cournot model without population uncertainty.

When firms have common knowledge about the total number of firms n in the

industry, the loss in consumer surplus equals
2n+1

2(n+1)2 .

In the Poisson-Cournot model, when firms produce the equilibrium quantity

q̃m−1 ∈
[ 1

m+1 , 1
m

)
then, if no firm is realized, the loss in consumer surplus equals

1
2 ; if there is 1 firm, the loss equals

1−q̃2
m−1

2 ; if there are 2 firms, the loss equals
1−4q̃2

m−1
2 . In general, if there are k ≤ m firms, the loss in consumer surplus is

equal to
1−k2 q̃2

m−1
2 .19 So, the expected loss in consumer surplus is

1
2

Cn
m − 1

2
q̃2

m−1

m∑
k=0

Pn
k k2 = 1

2
Cn

m − 1
2

q̃2
m−1(nCn

m−1 +n2Cn
m−2).

Focusing on integer values of n for a meaningful comparison with the Cournot

model with deterministic population size, every equilibrium under population

uncertainty exhibits overproduction when n ≥ 3. Correspondingly, we make the

following claim.

Claim 2. Let q̃m−1 be an equilibrium. Then, for n ≥ 3,

Cn
m − q̃2

m−1(nCn
m−1 +n2Cn

m−2)< 2n+1
(n+1)2 .

19 If k > m the price is zero and so is the loss in consumer surplus.



22 DE SINOPOLI, KÜNSTLER, MERONI, AND PIMIENTA

Therefore, under population uncertainty, consumer surplus converges faster

to the perfect competition value 1
2 as n goes to infinity. While we skip the proof

to the previous claim, we note that this result can be demonstrated when q̃m−1

is the smallest equilibrium quantity using a similar argument as in the proof

of Claim 1. Furthermore, also using similar arguments, one can show that the

expected total surplus of the Poisson-Cournot model is higher than the total

surplus in the standard Cournot model, at least, for sufficiently high n.

6. POSITIVE PRODUCTION COSTS

We relax the assumption of zero marginal cost and discuss the robustness

of the results in the previous sections. The effect of marginal costs on outcomes

depends on their magnitude relative to the expected number of firms n. First, we

consider a given economy n and show that the main qualitative results remain

valid if costs are sufficiently small. Then, we consider a fixed marginal cost φ

and examine the stability of results letting n vary.

Given marginal cost φ > 0, the profit to a firm that produces q when every

other firm produces q′ is given by

π(q, q′ | n,φ) :=
∞∑

k=0
Pn

k max
{
0,1−kq′− q

}
q−φq =π(q, q′ | n)−φq.

The pseudo-profit, pseudo-best response, and pseudo-equilibrium can be defined

analogously to Section 2. We provide the following essential result, whose proof

follows the same arguments as the case φ= 0 and can be found in Appendix C.

Theorem 3. For every marginal cost φ> 0 there is at least one equilibrium.

If we fix the expected number of firms n, equilibria of the Poisson-Cournot

game with positive marginal cost exhibit overproduction with respect to the

Cournot model with exactly n firms, at least if such a marginal cost is suffi-

ciently small. If an equilibrium is strict (as is typically the case), it is robust to

every sufficiently small perturbation of the parameters of the model, including

the marginal cost. Thus, let q∗ be a non-strict equilibrium when φ = 0 and let

qφ be the close-by pseudo-equilibrium when φ> 0.20 If a deviation from q∗ to a

higher quantity leads to the same profit level then, by continuity, any deviation

20 Note that, since the profit function is continuous in φ, if φ is sufficiently small there is a

pseudo-equilibrium close to every pseudo-equilibrium of the model with no costs. Indeed, recall

that if φ= 0 there is a quasi-equilibrium in the interval
[ 1

m+1 , 1
m

)
as long as m−2< Mn

m−1 ≤ m−1

and that the second inequality is always satisfied as a strict inequality.
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from qφ to a higher quantity leads to a strictly smaller profit level if φ is suffi-

ciently small. The only event in which qφ would not be an equilibrium is when a

deviation from q∗ to a smaller quantity leads to the same profit level. However,

the same argument as the one used in the proof of Theorem 2 implies that this

cannot be the case when q∗ is the smallest pseudo-equilibrium quantity.21 It

follows that, if φ is sufficiently small, every equilibrium quantity is greater than

the smallest pseudo-equilibrium quantity when φ= 0.

When the marginal cost is substantial, firms can no longer ignore the events

in which they face a large number of opponents, as in those events they now

make negative profits. As a consequence, the incentive to overproduce relative

to the deterministic case “betting” on the events in which opponents are few and

mark-ups are high, is mitigated by the possibility of incurring a substantial loss

when competitors are many. Even if such a possibility may be neglected when

the expected number of firms is small, it becomes more and more relevant as n

increases.

In the Cournot model without population uncertainty, when the total number

of firms is n and the marginal cost is 0 < φ < 1, a firm’s equilibrium quantity

is q∗∗
n (φ) = 1−φ

n+1 . Correspondingly, let q∗
n(φ) be a firm’s production under some

equilibrium of the Poisson-Cournot model with expected number of firms n and

marginal cost 0 < φ < 1. We prove that {q∗
n(φ)− q∗∗

n (φ)}n converges to zero as n

grows to infinity. Indeed, we show that for any ε there is an N such that if n > N

no quantity larger than q∗∗
n (φ)+ε or smaller than q∗∗

n (φ)−ε can be an equilib-

rium of the Poisson-Cournot model. If each one of the firm’s competitors produce

a quantity larger than q∗∗
n (φ)+ε, a firm producing that same quantity faces neg-

ative profits with probability that rapidly approaches 1 as n increases. In that

case, a firm would prefer not to produce to avoid the loss. On the other hand,

if each one of the firm’s competitors produce a quantity smaller than q∗∗
n (φ)−ε,

the firm can gain strictly higher profits deviating to q∗∗
n (φ) as long as n is suffi-

ciently large because the total quantity produced by competitors is smaller than

in the deterministic case with probability that rapidly converges to 1 as n grows.

Proposition 6. For every 0 < φ < 1 and real number α > 1, there exists a value

nφ,α ∈R++ such that if n ≥ nφ,α then α−1
α

q∗∗
n (φ)≤ q∗

n(φ)≤ α+1
α

q∗∗
n (φ).

21 See also the proof of Lemma 11.
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Proof. Let us write q∗
n and q∗∗

n instead of q∗
n(φ) and q∗∗

n (φ). We begin showing

that for any 0 < φ < 1 and α > 1 there exists a value ňφ,α such that if n ≥ ňφ,α

then q∗
n ≤ α+1

α
q∗∗

n .

Suppose to the contrary that q∗
n > α+1

α
q∗∗

n for every n, and consider a firm

whose opponents all produce q∗
n. If it also produces q∗

n then, in the event in

which the number of opponents is strictly larger than m̌ = ⌈
α

α+1 n
⌉−1, the price

is lower than

1− α

α+1
nq∗

n − q∗
n < 1−

( α

α+1
n+1

)(
α+1
α

1−φ
n+1

)
=φ− 1

α

1−φ
n+1

.

If n is sufficiently large this last estimate is positive. So, if indeed the realized

number of firms is larger than m̌, profits are lower than

−
(

1
α

1−φ
n+1

)
q∗

n.

Profits in the events in which the number of opponents is smaller than m̌ must

be lower than the monopoly profit (1− q∗
n −φ)q∗

n. We have

π(q∗
n, q∗

n | n,φ)< Cn
m̌

(
1− α+1

α

1−φ
n+1

−φ
)

q∗
n − (1−Cn

m̌)
1
α

1−φ
n+1

q∗
n,

which is negative if

Cn
m̌ < 1

αn
. (6.1)

Since m̌ < n, we can use the Chernoff bound

Cn
m ≤ e−n(en)m

mm

to show that Cn
m̌ converges to zero exponentially, so faster than 1

n , as n goes to

infinity.22 It follows that, for every φ and α, there exists a value ňφ,α such that,

for n ≥ ňφ,α, we have π(q∗
n, q∗

n | n)< 0, so q∗
n cannot be an equilibrium.23

The second part of the proof consists of showing that for every 0 < φ < 1 and

α> 1 there exists a value n̂φ,α such that if n ≥ n̂φ,α then q∗
n ≥ α−1

α
q∗∗

n . Suppose

22 Inequality (6.1) does not depend on φ. For a proper comparison with the model with zero

costs, we need to consider the case in which the price is zero when the realized number of

opponents is strictly larger than m̌. In that case we have

π(q∗
n, q∗

n | n,φ)< Cn
m̌(1−φ)q∗

n − (1−Cn
m̌)φq∗

n,

which is negative if Cn
m̌ <φ. Since m̌ < n and m̌ depends linearly on n, this inequality is satisfied

as long as n is sufficiently high. Furthermore, for any given n, Cn
m̌ <φ is never satisfied if φ= 0,

consistently with our previous results.
23 Substituting Cn

m̌ with the corresponding Chernoff bound in (6.1) and using a similar ap-

proach to the proof of Claim 1, it is possible to explicitly calculate ňφ,α.
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to the contrary that q∗
n < α−1

α
q∗∗

n for every n. Note that when the number of

opponents producing q∗
n < α−1

α
q∗∗

n is smaller than or equal to m̂ = ⌊
α

α−1 (n−1)
⌋
,

the total quantity they produce is less than (n− 1)q∗∗
n and a deviation to q∗∗

n

will produce higher profits (and the lower the realized number of other firms the

higher the profit). In turn, if the realized number of other firms is larger than

m̂ then the firm’s losses are never greater than 1. Thus, we have

π(q∗∗
n , q∗

n | n,φ)−π(q∗
n, q∗

n | n,φ)>
Cn

m̂[(1− m̂q∗
n − q∗∗

n −φ)q∗∗
n − (1− m̂q∗

n − q∗
n −φ)q∗

n]− (1−Cn
m̂)=

Cn
m̂(1−φ− m̂q∗

n − q∗∗
n − q∗

n)(q∗∗
n − q∗

n)− (1−Cn
m̂)>

Cn
m̂

[
nq∗∗

n − (m̂+1)
α−1
α

q∗∗
n

](
q∗∗

n − α−1
α

q∗∗
n

)
− (1−Cn

m̂)≥

Cn
m̂

[
nq∗∗

n −
( α

α−1
(n−1)+1

) α−1
α

q∗∗
n

]
1
α

1−φ
(n+1)

− (1−Cn
m̂)=

Cn
m̂

[
1
α

1−φ
(n+1)

]2
− (1−Cn

m̂).

As in the first part of the proof, we can show that, for n sufficiently large,

the last expression is greater than zero. That is, if n is large enough then m̂ >
n and the the Chernoff bound 1−Cn

m ≤ e−n(en)m

mm implies that 1−Cn
m̂ converges

exponentially to zero as n goes to infinity, hence faster than 1
n2 . Thus, for every

φ and α, there exists a value n̂φ,α such that q∗
n cannot be an equilibrium if

n ≥ n̂φ,α.

Setting nφ,α =max{ňφ,α, n̂φ,α}, we obtain the desired result. �

APPENDIX A. PROOFS OF RESULTS ABOUT THE CONDITIONAL MEAN Mn
m

To simplify notation, as in most of the main text, we fix n and drop the cor-

responding superscript from every expression as long as it does not lead to con-

fusion. Recall that, whenever convenient, the Poisson distribution can be ex-

pressed in terms of the incomplete gamma function as follows

Γ(m+1,n) :=
∫ ∞

n
sme−sds = m!Cm.

We can similarly use the exponential integral,

1
nm+1Γ(m+1,n)= E−m(n) :=

∫ ∞

1
sme−nsds = e−n

∫ ∞

0
(1+ s)me−nsds.

Thus, we define the expression

Jm :=
∫ ∞

0
(1+ s)me−nsds. (A.1)
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Using the properties of the incomplete gamma function, we can write the con-

ditional mean as Mm = mJm−1
Jm

which is, therefore, also defined for non-integer

values of m. Integrating by parts, we see that Jm satisfies the recurrence

nJm = 1+mJm−1, (A.2)

therefore, Mm = n− 1
Jm

.

With this in mind we can now prove the following result.

Proposition 1. The expression Mm −Mm−1 is decreasing in m for all m > 0.24

Proof. Since Mm is increasing in m it is enough to show that Mm is concave in

m which holds if 1
Jm

is convex or, taking derivatives with respect to m, if

2J′2
m − J′′

mJm

J3
m

≥ 0. (A.3)

Since Jm is always positive, we need to prove 2J′2
m − J′′

mJm ≥ 0. From (A.1) we

have

2J′2
m−J′′

mJm = 2
∫ ∞

0

∫ ∞

0
log(1+ s1) log(1+ s2)(1+ s1)m(1+ s2)me−n(s1+s2)ds1ds2−∫ ∞

0

∫ ∞

0
log(1+ s1) log(1+ s1)(1+ s1)m(1+ s2)me−n(s1+s2)ds1ds2.

Using the change of variables s2 = s− s1, the last expression equals∫ ∞

0
e−ns

∫ s

0
(1+ s1)m(1+ s− s1)m log(1+ s1)

[
2log(1+ s− s1)− log(1+ s1)

]
ds1ds.

It is useful to define the functions

gm(s1 | s) := (1+ s1)m(1+ s− s1)m,

h(s1 | s) := 2log(1+ s− s1)− log(1+ s1), and

f (s1 | s) := log(1+ s1)h(s1 | s).

Due to the symmetry of the function gm(s1 | s) around s/2 where it attains its

unique maximum we have

2J′2
m − J′′

mJm =
∫ ∞

0
e−ns

∫ s

s/2
gm(s1 | s)

[
f (s1 | s)+ f (s− s1 | s)

]
ds1ds. (A.4)

The function h(s1 | s) is strictly decreasing on 0 < s1 < s and is zero at s̃1 =
s+ 3

2 −
√

s+ 9
4 . It follows that f (s1 | s) is strictly decreasing on s̃1 < s1 < s. Fur-

thermore, we can show that f (s1 | s) is increasing in 0 < s1 < s− s̃1. First note

that

24 An alternative proof, only valid when m is an integer value, is available from the authors

upon request.
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f ′(s1 | s)= 2log(1+ s− s1)
1+ s1

− 2(s+2)log(1+ s1)
(1+ s− s1)(1+ s1)

> 2log(1+ s̃1)
1+ s1

− 2(s+2)log(1+ s− s̃1)
(1+ s− s1)(1+ s1)

.

Since s̃1 satisfies 2log(1+ s− s̃1) = log(1+ s̃1) the right hand side of the last in-

equality equals

2log(1+ s̃1)
1+ s1

− (s+2)log(1+ s̃1)
(1+ s− s1)(1+ s1)

= log(1+ s̃1) (s−2s1)
(1+ s1)(1+ s− s1)

,

which is strictly positive because s1 < s− s̃1 and s̃1 > 2
3 s (this bound can be di-

rectly verified using the expression for s̃1). Therefore, f (s1)+ f (s− s1) is strictly

decreasing on s̃1 < s1 < s and there exists a unique s̄1 with s̃1 < s̄1 < s at which it

vanishes. Hence, Equation A.4 is equal to∫ ∞

0
e−ns

(∫ s̄1

s/2
gm(s1 | s)

[
f (s1 | s)+ f (s− s1 | s)

]
ds1 +∫ s

s̄1

gm(s1 | s)
[

f (s1 | s)+ f (s− s1 | s)
]
ds1

)
ds

>
∫ ∞

0
gm(s̄1 | s)e−ns

(∫ s̄1

s/2

[
f (s1 | s)+ f (s− s1 | s)

]
ds1+∫ s

s̄1

[
f (s1 | s)+ f (s− s1 | s)

]
ds1

)
ds

=
∫ ∞

0
gm(s̄1 | s)e−ns

∫ s

s/2

[
f (s1 | s)+ f (s− s1 | s)

]
ds1ds

=
∫ ∞

0
gm(s̄1 | s)e−ns

∫ s

0
f (s1 | s)ds1ds.

Consider the inner integral

F(s) :=
∫ s

0
f (s1 | s)ds1.

We obviously have F(0)= 0. We establish the desired result by proving F ′(0)= 0

and F ′′(s)> 0 for every s ≥ 0. Indeed, using the Leibniz integral rule we obtain

F ′(s)= f (s | s)+
∫ s

0

∂ f (s1 | s)
∂s

ds1 =− log(1+ s)2 +
∫ s

0

2ln(1+ s− s1)
1+ s1

ds1

so that F ′(0)= 0. Furthermore,

F ′′(s)=−2ln(1+ s)
1+ s

+0+
∫ s

0

2
(1+ s1)(1+ s− s1)

ds1 = 2s ln(1+ s)
(1+ s)(2+ s)

> 0,

as we wanted. �

We move now to complete our proof of Theorem 1. To obtain the upper bound

for m̄ we need the following basic fact about the conditional mean of a Poisson

random variable.
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Lemma 6. The conditional mean Mn
m is strictly increasing in n for every m > 0.

Proof. Since Pn
m/Pn

m′ is strictly increasing in n if m > m′, an increase in n makes

any realization m > 0 of the Poisson random variable relatively more likely than

any smaller realization m′. The result follows. �

Proposition 7. The greatest m such that Mm−1 > m−2 satisfies m < n
2 +3.

Proof. We actually show that m ≥ n
2 +2 implies Mm ≤ m−1. Given Lemma 6, it

is enough to show that m = n
2 +2 implies Mm ≤ m−1. But if m = n

2 +2, the lat-

ter inequality can be written in continuous terms using the incomplete gamma

function as

(m−3)
∫ ∞

0
e−2(m−2)s(1+ s)mds ≤ 1.

With the change of variables et = 1+ s on the left hand side we have

(m−3)
∫ ∞

0
e−2(m−2)(et−1)+(m+1)tdt < (m−3)

∫ ∞

0
e−2(m−2)(t+ t2

2 + t3
6 )+(m+1)tdt

so that, with the new change of variables u = (1+ t)3 and rearranging, it is

enough to prove

(m−3)e−3
∫ ∞

1
e−

1
3 (m−2)(u−1)+3u1/3

(
1
3

u−2/3
)

du ≤ 1. (A.5)

Let Im be the value of integral above. Integrating by parts we obtain the equality

(m−2)Im = e3 +
∫ ∞

1
e−

1
3 (m−2)(u−1)+3u1/3

(
u−4/3 − 2

3
u−5/3

)
du.

Combining the last expression with the left hand side of (A.5) we have that the

latter approaches 1 as m tends to infinity. To show that (A.5) holds for every m

we prove that (m−3)Im is increasing for every m.

d
dm

(m−3)Im = d
dm

(m−2)Im − d
dm

Im =∫ ∞

1
e−

1
3 (m−2)(u−1)+3u1/3

(
−1

3
u−1/3 + 1

9
u−2/3 + 1

3
u−4/3 − 2

9
u−5/3 + 1

9
u1/3

)
du.

The derivative of (m− 3)Im is positive as long as the bracketed expression is

strictly positive for almost every u ≥ 1. That is, as long as, for almost every u ≥ 1

f (u) := u+3u1/3 +u2 > g(u) := 3u4/3 +2.

Functions f and g are always positive and coincide at u = 1. The same properties

can be verified for the pairs of functions ( f ′, g′) and ( f ′′, g′′). However, f ′′′(u) >
0> g′′′(u) for every u ≥ 1, thereby proving inequality (A.5) . �
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Lemma 5 establishes that m < n
2 +3 implies Mm−Mm−1 > n−4

n+4 . In the remain-

der of this appendix we find the alternative bound Mm − Mm−1 > n−6
n−2 which is

tighter whenever n > 8. We begin with a preliminary lemma.

Lemma 7. If n > 2 then (
n
2
−1− n−6

n−2

)
Jn

2 +3 ≥ 1.

Proof. Given some a such that |a| < 1 and some b, we begin by finding a new

expression for nJan+b. We use the equality nJm = 1+ mJm−1 recursively to

obtain

nJan+b = 1+ (an+b)Jan+b−1

= 1+bJan+b−1 +a
(
1+ (an+b−1)Jan+b−2

)
= 1+a+bJan+b−1 +a(b−1)Jan+b−2 +a2nJan+b−2

= ·· ·

=
N∑

k=0

(
ak +ak(b−k)Jan+b−1−k

)+aN+1nJan+b−1−N .

If an+b is not an integer (so that an+b+1−N 6= 0 for every N) we can take the

limit as N goes to infinity to obtain

nJan+b =
1

1−a
+

∫ ∞

0
e−ns(1+ s)an+b−1

∞∑
k=0

(b−k)
( a
1+ s

)k
ds

= 1
1−a

+
∫ ∞

0
e−ns(1+ s)an+b b(1+ s)−a(b+1)

(a−1− s)2 ds.

If an+ b is an integer then a continuity argument implies that the previous

equality also holds. We use such an equality to obtain an expression for n2Jan+b.

n2Jan+b =
n

1−a
+n

∫ ∞

0
e−ns(1+ s)an+b b(1+ s)−a(b+1)

(a−1− s)2 ds. (A.6)

Integrating by parts we obtain

n
1−a

+ b−a−ab
(a−1)2 +

∫ ∞

0
e−ns

[
(an+b)(1+ s)an+b−1 b(1+ s)−a(b+1)

(a−1− s)2 +

(1+ s)an+b d
ds

b(1+ s)−a(b+1)
(a−1− s)2

]
ds

and, rearranging,

n
1−a

+ b−a−ab
(a−1)2 +∫ ∞

0
e−ns(1+ s)an+b

[
b

1+ s
b−a(b+1)
(a−1− s)2 + d

ds
b(1+ s)−a(b+1)

(a−1− s)2

]
ds+
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an
∫ ∞

0
e−ns(1+ s)an+b−1 b(1+ s)−a(b+1)

(a−1− s)2 ds.

The last integral in the previous expression can be integrated by parts in the

same fashion as the integral in Equation (A.6). Doing so we obtain

n
1−a

+ b−a−ab
(a−1)2 +a

b−a−ab
(a−1)2 +∫ ∞

0
e−ns(1+ s)an+b

[
b

1+ s
b(1+ s)−a(b+1)

(a−1− s)2 + d
ds

b(1+ s)−a(b+1)
(a−1− s)2

]
ds+∫ ∞

0
e−ns(1+ s)an+b

[
a(b−1)
(1+ s)2

b(1+ s)−a(b+1)
(a−1− s)2 + a

1+ s
d
ds

b(1+ s)−a(b+1)
(a−1− s)2

]
ds+

a2n
∫ ∞

0
e−ns(1+ s)an+b−2 b(1+ s)−a(b+1)

(a−1− s)2 ds.

Iterating the same step ad infinitum we have

n
1−a

+ b−a−ab
(a−1)2

∞∑
k=0

ak+
∫ ∞

0
e−ns(1+ s)an+b b(1+ s)−a(b+1)

(a−1− s)2

∞∑
k=0

ak(b−k)
(1+ s)k+1 ds+

∫ ∞

0
e−ns(1+ s)an+b d

ds
b(1+ s)−a(b+1)

(a−1− s)2

∞∑
k=0

ak

(1+ s)k ds,

which we simplify by solving the infinite sums to obtain

n2Jan+b =
n

1−a
+ b−a−ab

(1−a)3 +∫ ∞

0
e−ns(1+ s)an+b 1

(a−1− s)4

[
b(b−1)s2+

+ (2b2 −2ab2 −ab+2a−2b)s+a2b2 +2a2b−2ab2 +a2 −ab+b2 +2a−b
]
ds

When a = 1
2 and b = 3 the expressions for n2Jan+b and nJan+b become

nJn
2 +3 = 2+4

∫ ∞

0
e−ns(1+ s)

n
2 +3 3s+1

(2s+1)2 ds, and

n2Jn
2 +3 = 2n+8+8

∫ ∞

0
e−ns(1+ s)

n
2 +3 12s2 +5s+1

(2s+1)4 ds,

from where it readily follows(
n
2
−1− n−6

n−2

)
Jn

2 +3 =

n2 −6n+16
2n−4

Jn
2 +3 = 1+ 16

n−2

∫ ∞

0
e−ns(1+ s)

n
2 +3 s2(8s2 +7s+3)

(2s+1)4 ds ≥ 1.

�
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Proposition 8. If n > 2 and m < n
2 +3 we have Mm −Mm−1 > n−6

n−2 .

Proof. Given Lemma 7 and Propositions 1 and 7,

Mm −Mm−1 > M n
2 +3 −M n

2 +2

= 1
Jn

2 +2
− 1

Jn
2 +3

≥
(n

2
−1

)
−

(
n
2
−1− n−6

n−2

)
= n−6

n−2
.

�

APPENDIX B. PROOF OF CLAIM 1

Claim 1. Let q̃m−1 be an equilibrium. Then π(q̃m−1, q̃m−1 | n)< 1
(n+1)2 for every n.

Proof. We begin to show that, for n large enough,

q̃2
m̄−1Cn

m̄−1 <
1

(n+1)2 . (B.1)

Replacing qm̄−1 by its value and using Mn
m̄−1 > m̄−2, we actually prove that for

n large enough

Cn
m̄−1 <

(
m̄

n+1

)2
.

A tight upper bound for Cn
m̄−1 can be found as follows. Since Mn

m̄ ≤ m̄−1 and

Mn
m̄ = n

Cn
m̄−1

Cn
m̄

= n
(
1− Pn

m̄
Cn

m̄

)
we obtain Cn

m̄ ≤ Pn
m̄

( n
n+1−m̄

)
, so that Cn

m̄−1 = Cn
m̄ −Pn

m̄ ≤
Pn

m̄
( m̄−1

n+1−m̄
)
. Thus, inequality (B.1) is satisfied whenever

Pn
m̄

(
m̄−1

n+1− m̄

)
<

(
m̄

n+1

)2
.

Recall that, by Theorem 1, n
2 + 1 < m̄ < n

2 + 3. Assuming n > 6, the previous

inequality is satisfied if it holds after replacing the factorial in Pn
m̄ by Stirling’s

approximation
p

2πm̄( m̄
e )m̄ and m̄ by n

2 +3.25 Making the change of variables

x = n
2 we obtain the inequality

e−x+3 1p
2π(x+3)

(
2x

x+3

)x+3 (
x+2
x−2

)
<

(
x+3

2x+1

)2

25 To see this, note first that m−1
m2(n+1−m) is increasing in m when m > n

2 +1. Second, we can

write the density Pn
m as a continuous function of m using the gamma function instead of the

factorial. If n > 6 then, necessarily, m < n and the resulting continuous function is increasing in

m so that we can replace m̄ by n
2 +3. Finally, we substitute the value of the gamma function at

n
2 +3 with the value of Stirling’s approximation.
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which holds for, e.g., x = 3.174 (i.e. n = 6.348). To show that it also holds for

every x > 3.174 (n > 6.348) we prove that the inequality still holds after we

differentiate it with respect to x. Indeed, taking logarithms and differentiating

we obtain

−1+ x+3
x

+ log(2x)+ 1
x+2

+ 4
2x+1

< 2
x+3

+ 1
2(x+3)

+ log(x+3)+1+ 1
x−2

.

Collecting the logarithms, using the bound log(y) ≤ y−1, and rearranging we

find the simpler expression

x+3
x

+ 4x−5
2(x+3)

+ 1
x+2

+ 4
2x+1

< 3+ 1
x−2

.

This last inequality can be easily verified when x > 2 by noticing that 4x−5
2(x+3) <

2x−2
x+2 and 4

2x+1 < 2
x , and that

x+3
x

+ 2x−2
x+2

+ 1
x+2

+ 2
x
= 3+ 10

x(x+2)
< 3+ 1

x−2
.

Hence, (B.1) is satisfied for n ≥ 6.348.

Furthermore, using the computation of equilibria for small values of n in Ap-

pendix D, Claim 1 can be directly verified for every n > 0. �

APPENDIX C. EQUILIBRIUM EXISTENCE WITH POSITIVE PRODUCTION COSTS

If φ≥ 1 not producing is the unique equilibrium. Therefore, in this appendix

we assume 0<φ< 1. We show that there is always an equilibrium following the

same strategy of the proof as when φ= 0. However, we previously need to show

that when 0 < φ < 1 a pseudo-equilibrium always exists. To simplify notation,

we fix n and drop the corresponding superscript from every expression.

If q, q′ ∈ [ 1
m+1 , 1

m
)

then the pseudo-profit equals

π̃m−1(q, q′ | n,φ) :=
m−1∑
k=0

Pk(1−kq′− q)q−φq

which can be used to derive the pseudo-best response

B̃Rm−1(q′) := 1
2
− 1

2
Mm−1q′− 1

2
φ

Cm−1

and, if it exists, the pseudo-equilibrium

q̃ =
1− φ

Cm−1

Mm−1 +2
.

Such a pseudo-equilibrium q̃ does exist if 1
m+1 ≤ q̃ < 1

m . That is, if

L(m−1) := (m−2)−m
φ

Cm−1
< Mm−1 ≤ H(m−1) := (m−1)− (m+1)

φ

Cm−1
. (C.1)
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Theorem 4. A pseudo-equilibrium exists.

Proof. Using the incomplete gamma function we can temporarily work with the

continuous versions of Cm−1, L(m−1), H(m−1) and Mm−1. Since φ< 1, there is

an m′ such that Cm′−1 =φ. For such a value, L(m′−1)= H(m′−1)=−2< Mm′−1.

Note that for every m > m′ we have L(m−1) < H(m−1) and that, as m goes

to infinity, both L(m−1) and H(m−1) also go to infinity while Mm−1 converges

to n. Therefore, there is some m ∈ R++ such that the double inequality (C.1)

is satisfied. We need to show that such a double inequality is also satisfied for

some integer value of m.

To the contrary assume that there is no pseudo-equilibrium. Let m̂ be the

largest integer such that Mm̂−1 > H(m̂−1), since there is no pseudo-equilibrium

we must have Mm̂ ≤ L(m̂). Therefore,

Mm̂ −Mm̂−1 < L(m̂)−H(m̂−1)= (m̂+1)φ
Pm̂

Cm̂Cm̂−1
.

From Equation (4.1) in the proof of Lemma 5 we know

Mm̂ −Mm̂−1 = Pm̂

Cm̂
(m̂−Mm̂−1),

and combining the last two expressions

Mm̂−1 > m̂− (m̂+1)
φ

Cm̂−1
= H(m̂−1)+1.

Repeating this same argument but using Mm̂−1 > H(m̂−1)+1 we obtain

Mm̂−1 > m̂+ Cm̂

Pm̂
− (m̂+1)

φ

Cm̂−1
> H(m̂−1)+2.

Thus, if we iterate on the argument we conclude Mm̂−1 > m̂−1, which is impos-

sible. Therefore, there is at least one pseudo-equilibrium. �

In order to show that there is always an equilibrium we follow the same strat-

egy as in the case φ = 0. That is, given a pseudo-equilibrium, we find the best

possible deviation to a higher and to a lower quantity. Then we show that both

deviations cannot be profitable at the same time and that, if two consecutive

pseudo-equilibria are not equilibria, then either both have a profitable devia-

tion to a smaller quantity or both have a profitable deviation to a larger quan-

tity. The existence result follows from establishing that at the smallest pseudo-

equilibrium there is no profitable deviation to a smaller quantity, and that at the

largest pseudo-equilibrium there is no profitable deviation to a larger quantity.

We now show each of these results in turn.
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A pseudo-equilibrium q̃ ∈ [ 1
m+1 , 1

m
)

is an equilibrium if no firm can profitably

deviate to either a quantity smaller than 1
m+1 or to a quantity larger than 1

m .

The best deviation to a smaller quantity is

¯
q = 1

2
− 1

2
Mm q̃− 1

2
φ

Cm
.

And a necessary condition for it to be a profitable deviation is
¯
q < 1−mq̃. On the

other hand, a necessary condition for some q̄ > 1
m to be a profitable deviation is

q̄ > 1− (m−1)q̃.

Lemma 8. The best possible deviation to a quantity higher than 1
m is

q̄ = 1
2
− 1

2
Mm−2 q̃− 1

2
φ

Cm−2
.

Proof. We begin establishing the following fact: if q̃ ∈ [ 1
m+1 , 1

m
)

is a pseudo-

equilibrium then for any j ≥ 3 we must have

Mm− j > m−2( j−1)−m
φ

Cm− j
. (C.2)

Indeed, using Corollary 1 and the assumption that q̃ is a pseudo-equilibrium we

obtain

Mm− j > Mm−1 − ( j−1)> (m−2)− ( j−1)−m
φ

Cm−1
and it can be easily shown that if j ≥ 3 this estimate is larger than the right-

hand side of (C.2) thereby establishing such an inequality.

Suppose now that for j ≥ 3 the deviation to

qm− j = 1
2
− 1

2
Mm− j q̃− 1

2
φ

Cm− j
.

is more profitable than the deviation to

qm− j+1 = 1
2
− 1

2
Mm− j+1 q̃− 1

2
φ

Cm− j+1
.

If that is the case then qm− j > 1− (m− j+1)q̃. Substituting qm− j by its value

and solving for q̃ we have

q̃ >
1+ φ

Cm− j

2(m− j+1)−Mm− j
>

1+ φ

Cm− j

m
(
1+ φ

Cm− j

) = 1
m

,

where the second inequality follows from (C.2). But this provides the desired

contradiction. �

Lemma 9. Let q̃ ∈ [ 1
m+1 , 1

m
)

be a pseudo-equilibrium. If there is a profitable

deviation to the higher quantity q̄ then there cannot be a profitable deviation to

the lower quantity
¯
q and vice versa.
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Proof. If both q̄ and
¯
q are profitable deviations, using q̄ > 1− (m−1)q̃ and

¯
q <

1−mq̃, substituting q̄ and
¯
q by their corresponding values, and applying Mm −

Mm−2 < 2 we obtain

q̃
(
m− 1

2
Mm

)
> 1

2

(
1+ φ

Cm−2

)
and q̃

(
m− 1

2
Mm

)
< 1

2

(
1+ φ

Cm

)
.

However, they cannot both hold at the same time because Cm−2 < Cm. �

Lemma 10. Let q̃ ∈ [ 1
m+1 , 1

m
)

and q̂ ∈ [ 1
m+2 , 1

m+1

)
be two pseudo-equilibria. If

there is a profitable deviation from q̂ to a higher quantity q̄ then there cannot be

a profitable deviation from q̃ to a lower quantity
¯
q, and vice versa.

Proof. Suppose there is a profitable deviation from q̂ to a higher quantity and

from q̃ to a lower quantity. From the necessary conditions for those two devia-

tions to be profitable we obtain the inequalities

m−1− 1
2

Mm − 1
2

Mm−1 > φ

Cm−1
+ 1

2
φ

Cm−1
Mm +m

φ

Cm
− 1

2
φ

Cm
Mm−1

m−1− 1
2

Mm − 1
2

Mm−1 < φ

Cm
+ 1

2
φ

Cm
Mm−1 +m

φ

Cm−1
− 1

2
φ

Cm−1
Mm.

We claim that the right-hand side in the second inequality is strictly smaller

than the right-hand side in the first inequality. That holds if and only if

1
Cm−1

(
m−1−Mm

)
< 1

Cm

(
m−1−Mm−1

)
,

and this inequality holds if and only if

(m−1)Cm −nCm−1 < (m−1)Cm−1 −nCm−2

(m−1)Pm < nPm−1

m−1
n

< Pm−1

Pm
= m

n
,

which establishes our claim and provides the desired contradiction. �

Lemma 11. At the highest pseudo-equilibrium quantity, deviating to a higher

quantity is not profitable. Similarly, at the lowest pseudo-equilibrium quantity,

deviating to a lower quantity is not profitable either.

Proof. Let q̃ ∈ [ 1
m+1 , 1

m
)

be the smallest pseudo-equilibrium quantity so that

Mm ≤ L(m). If deviating to a lower quantity was a profitable deviation, then

1− q̃m > 1
2
− 1

2
q̃Mm − 1

2
φ

Cm
≥ 1

2
− 1

2
q̃

(
m−1− (m+1)

φ

Cm

)
− 1

2
φ

Cm

and, solving from q̃, we have q̃ < 1
m+1 which is impossible.
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Let q̃ ∈ [ 1
m+1 , 1

m
)

be the highest pseudo-equilibrium quantity so that Mm−2 >
H(m−2). If deviating to a higher quantity was a profitable deviation, then

1− (m−1)q̃ < 1
2
− 1

2
q̃Mm−2 − 1

2
φ

Cm−2
< 1

2
− 1

2
q̃

(
m−2−m

φ

Cm−2

)
− 1

2
φ

Cm−2
.

Solving from q̃, we obtain q̃ > 1
m which is also impossible. �

APPENDIX D. COMPUTATION FOR SMALL n

This appendix contains the computation of pseudo-equilibria and equilibria

for small values of n that leads to the values provided in Tables 1 and 2.

Let q, q′ ∈ [1
2 ,1

)
. A firm’s profit is given by

π(q, q′ | n)= Pn
0 (1− q)q

and is maximized at q̃ = 1
2 , which is a pseudo-equilibrium for every n. The best

potential deviation to a lower quantity maximizes the function

π(q, q̃ | n)= Pn
0 (1− q)q+Pn

1

(
1
2
− q

)
q

and is equal to

¯
q = 1

2
− 1

2
Mn

1 q̃ = 1
2
− 1

4
n

n+1
= n+2

4n+4
,

which is smaller than 1
2 for every n. Since q̃ = 1

2 could be a solution of this

maximization problem but is not,
¯
q is always a profitable deviation and q̃ is not

an equilibrium for any n.26

Let q, q′ ∈ [1
3 , 1

2

)
. A firm’s profit is given by

π(q, q′ | n)= Pn
0 (1− q)q+Pn

1 (1− q′− q)q

and we have

q̃ = 1
Mn

1 +2
= n+1

3n+2
.

Since q̃ < 1
2 (i.e. Mn

1 > 0) for every n, q̃ is a pseudo-equilibrium for every n. The

best possible deviation to a higher quantity is q̄ = 1
2 but, being q̄ < 1− q̃, it cannot

be profitable. The best possible deviation to a lower quantity
¯
q maximizes

π (q, q̃ | n)= Pn
0 (1− q)q+Pn

1

(
1− n+1

3n+2
− q

)
q+Pn

2

(
1−2

n+1
3n+2

− q
)

q

and is equal to

¯
q = 1

2
− 1

2
Mn

2 q̃ = n3 +4n2 +8n+4
2(3n+2)(n2 +2n+2)

.

26 Note that, as q̃ is the endpoint of the considered interval, the last term of π(q, q̃ | n) is zero

and not negative.
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To be profitable it must render the last term of the above function positive, i.e.

¯
q < n

3n+2 , which is equivalent to n3 −4n−4 < 0. This holds for n > 2.39. The

profits at the pseudo-equilibrium and of deviating at
¯
q are respectively

π (q̃, q̃ | n)= e−n
(

n+1
3n+2

)2
(n+1),

π
(
¯
q, q̃ | n

)= e−n
[

n3 +4n2 +8n+4
2(3n+2)(n2 +2n+2)

]2 (
n2

2
+n+1

)
and we have

π(
¯
q, q̃ | n)>π(q̃, q̃ | n) ⇐⇒ n > 3.61.27

Thus, q̃ is an equilibrium for 0< n ≤ 3.61.

Let q, q′ ∈ [1
4 , 1

3

)
. The profit function is

π(q, q′ | n)= Pn
0 (1− q)q+Pn

1 (1− q′− q)q+Pn
2 (1−2q′− q)q

and we have

q̃ = 1
Mn

2 +2
= n2 +2n+2

2(2n2 +3n+2)
,

which is a pseudo-equilibrium (i.e. Mn
2 > 1) for n >p

2. The best potential devia-

tion to a larger quantity is

q̄ = 1
2
− 1

2
Mn

1 q̃ = 3n3 +8n2 +8n+4
4(1+n)(2n2 +3n+2)

and to be profitable it must be larger than 1−2q̃, which is true for n < 2.38. The

profits at the pseudo-equilibrium and of deviating at q̄ are

π(q̃, q̃ | n)= e−n
[

n2 +2n+2
2(2n2 +3n+2)

]2 (
n2

2
+n+1

)
,

π(q̄, q̃ | n)= e−n
[

3n3 +8n2 +8n+4
4(n+1)(2n2 +3n+2)

]2

(n+1) ,

and we have

π(q̄, q̃ | n)>π(q̃, q̃ | n) ⇐⇒ n < 1.69.

On the other hand, the best potential deviation to a smaller quantity is

¯
q = 1

2
− 1

2
Mn

3 q̃ = n5 +6n4 +22n3 +48n2 +48n+24
4(2n2 +3n+2)(n3 +3n2 +6n+6)

and to be profitable it must be
¯
q < 1−3q̃, which is true for n > 5.13. We have

π(
¯
q, q̃ | n)= e−n

[
n5 +6n4 +22n3 +48n2 +48n+24
4(2n2 +3n+2)(n3 +3n2 +6n+6)

]2 (
n3

6
+ n2

2
+n+1

)
27 Values of n in this appendix are rounded to two decimal places.
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and

π(
¯
q, q̃ | n)>π(q̃, q̃ | n) ⇐⇒ n > 7.46.

It follows that q̃ is an equilibrium for 1.69≤ n ≤ 7.46.

Let q, q′ ∈ [1
5 , 1

4

)
. The profit function is

π(q, q′ | n)= Pn
0 (1− q)q+Pn

1 (1− q′− q)q+Pn
2 (1−2q′− q)q+Pn

3 (1−3q′− q)q

and

q̃ = 1
Mn

3 +2
= n3 +3n2 +6n+6

5n3 +12n2 +18n+12
.

In this case q̃ is a pseudo-equilibrium (i.e. Mn
3 > 2) for n > 3.14. The best possible

deviation to a higher quantity is

q̄ = 1
2
− 1

2
Mn

2 q̃ = 1
2
− n2 +n

n2 +2n+2
· n3 +3n2 +6n+6
5n3 +12n2 +18n+12

,

and q̄ > 1−3q̃ for n < 5.13. The profits at q̃ and of deviating at q̄ are respectively

π(q̃, q̃ | n)= e−n q̃2
(

n3

6
+ n2

2
+n+1

)
,

π(q̄, q̃ | n)= e−n q̄2
(

n2

2
+n+1

)
,

and we have

π(q̄, q̃)>π(q̃, q̃) ⇐⇒ n < 3.69.

The best potential deviation to a lower quantity is

¯
q = 1

2
− 1

2
Mn

4 q̃ = 1
2
−2 · n4 +3n3 +6n2 +6n

n4 +4n3 +12n2 +24n+24
· n3 +3n2 +6n+6
5n3 +12n2 +18n+12

,

and
¯
q < 1−4q̃ for n > 8.01. The profits of deviating at

¯
q are

π(
¯
q, q̃ | n)= e−n

¯
q2

(
n4

24
+ n3

6
+ n2

2
+n+1

)
and

π(
¯
q, q̃)>π(q̃, q̃) ⇐⇒ n > 11.39.

We conclude that q̃ is an equilibrium for 3.69≤ n ≤ 11.39.

Let q, q′ ∈ [1
6 , 1

5

)
. The profit function is

π(q, q′ | n)=
4∑

k=0
Pn

k (1−kq′− q)q

and we have

q̃ = 1
Mn

4 +2
= n4 +4n3 +12n2 +24n+24

2(3n4 +10n3 +24n2 +36n+24)
,
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which is a pseudo-equilibrium (i.e. Mn
4 > 3) for n > 4.96. The best possible devi-

ations to a higher and a lower quantity are given by

q̄ = 1
2
− 1

2
Mn

3 q̃ and
¯
q = 1

2
− 1

2
Mn

5 q̃,

and the profits at q̃ and at these deviations are

π(q̃, q̃ | n)= e−n q̃2
(

n4

24
+ n3

6
+ n2

2
+n+1

)
,

π(q̄, q̃ | n)= e−n q̄2
(

n3

6
+ n2

2
+n+1

)
,

π(
¯
q, q̃ | n)= e−n

¯
q2

(
n5

120
+ n4

24
+ n3

6
+ n2

2
+n+1

)
.

We have

π(q̄, q̃)>π(q̃, q̃) ⇐⇒ n < 5.79,

π(
¯
q, q̃)>π(q̃, q̃) ⇐⇒ n > 15.33,

so q̃ is an equilibrium for 5.79≤ n ≤ 15.33.

Let q, q′ ∈ [1
7 , 1

6

)
. The profit function is

π(q, q′ | n)=
5∑

k=0
Pn

k (1−kq′− q)q

and we have

q̃ = 1
Mn

5 +2
= n5 +5n4 +20n3 +60n2 +120n+120

7n5 +30n4 +100n3 +240n2 +360n+240
,

which is a pseudo-equilibrium (i.e. Mn
5 > 4) for n > 6.84. The best possible devi-

ations to a higher and a lower quantity are

q̄ = 1
2
− 1

2
Mn

4 q̃ and
¯
q = 1

2
− 1

2
Mn

6 q̃,

and we have

π(q̃, q̃ | n)= e−n q̃2
(

n5

120
+ n4

24
+ n3

6
+ n2

2
+n+1

)
,

π(q̄, q̃ | n)= e−n q̄2
(

n4

24
+ n3

6
+ n2

2
+n+1

)
,

π(
¯
q, q̃ | n)= e−n

¯
q2

(
n6

720
+ n5

120
+ n4

24
+ n3

6
+ n2

2
+n+1

)
.

Moreover, we have

π(q̄, q̃)>π(q̃, q̃) ⇐⇒ n < 7.93,

π(
¯
q, q̃)>π(q̃, q̃) ⇐⇒ n > 19.3,
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so q̃ is an equilibrium for 7.93≤ n ≤ 19.3.

Let q, q′ ∈ [1
8 , 1

7

)
. The profit function is

π(q, q′ | n)=
6∑

k=0
Pn

k (1−kq′− q)q

and we have that

q̃ = 1
Mn

6 +2
= n6 +6n5 +30n4 +120n3 +360n2 +720n+720

2(4n6 +21n5 +90n4 +300n3 +720n2 +1080n+720)

is a pseudo-equilibrium (i.e. Mn
6 > 5) for n > 8.75. The best possible deviations

to a higher and a lower quantity are

q̄ = 1
2
− 1

2
Mn

5 q̃ and
¯
q = 1

2
− 1

2
Mn

7 q̃,

and profits are given by

π(q̃, q̃ | n)= e−n q̃2
(

n6

720
+ n5

120
+ n4

24
+ n3

6
+ n2

2
+n+1

)
,

π(q̄, q̃ | n)= e−n q̄2
(

n5

120
+ n4

24
+ n3

6
+ n2

2
+n+1

)
,

π(
¯
q, q̃ | n)= e−n

¯
q2

(
n7

5040
+ n6

720
+ n5

120
+ n4

24
+ n3

6
+ n2

2
+n+1

)
.

We have that

π(q̄, q̃)>π(q̃, q̃) ⇐⇒ n < 10.11,

π(
¯
q, q̃)>π(q̃, q̃) ⇐⇒ n > 23.27,

so q̃ is an equilibrium for 10.11≤ n ≤ 23.27.

Let q, q′ ∈ [1
9 , 1

8

)
. The profit function is

π(q, q′ | n)=
7∑

k=0
Pn

k (1−kq′− q)q

and we have that

q̃ = 1
Mn

7 +2
= n7 +7n6 +42n5 +210n4 +840n3 +2520n2 +5040n+5040

9n7 +56n6 +294n5 +1260n4 +4200n3 +10080n2 +15120n+10080

is a pseudo-equilibrium (i.e. Mn
7 > 6) for n > 10.68. The best possible deviations

to a higher and a lower quantity are

q̄ = 1
2
− 1

2
Mn

6 q̃ and
¯
q = 1

2
− 1

2
Mn

8 q̃,

and profits are given by

π(q̃, q̃ | n)= e−n q̃2
(

n7

5040
+ n6

720
+ n5

120
+ n4

24
+ n3

6
+ n2

2
+n+1

)
,



POISSON COURNOT GAMES 41

π(q̄, q̃ | n)= e−n q̄2
(

n6

720
+ n5

120
+ n4

24
+ n3

6
+ n2

2
+n+1

)
,

π(
¯
q, q̃ | n)= e−n

¯
q2

(
n8

40320
+ n7

5040
+ n6

720
+ n5

120
+ n4

24
+ n3

6
+ n2

2
+n+1

)
.

We have

π(q̄, q̃)>π(q̃, q̃) ⇐⇒ n < 12.29,

π(
¯
q, q̃)>π(q̃, q̃) ⇐⇒ n > 27.26,

so q̃ is an equilibrium for 12.29≤ n ≤ 27.26.

Let q, q′ ∈ [ 1
10 , 1

9

)
. The profit function is

π(q, q′ | n)=
8∑

k=0
Pn

k (1−kq′− q)q

an we have that

q̃ = 1
Mn

8 +2

= n8 +8n7 +56n6 +336n5 +1680n4 +6720n3 +20160n2 +40320n+40320
2(5n8 +36n7 +224n6 +1176n5 +5040n4 +16800n3 +40320n2 +60480n+40320)

is a pseudo-equilibrium (i.e. Mn
8 > 7) for n > 12.62. The best possible deviations

to a higher and a lower quantity are

q̄ = 1
2
− 1

2
Mn

7 q̃ and
¯
q = 1

2
− 1

2
Mn

9 q̃,

and profits are given by

π(q̃, q̃ | n)= e−n q̃2
(

n8

40320
+ n7

5040
+ n6

720
+ n5

120
+ n4

24
+ n3

6
+ n2

2
+n+1

)
,

π(q̄, q̃ | n)= e−n q̄2
(

n7

5040
+ n6

720
+ n5

120
+ n4

24
+ n3

6
+ n2

2
+n+1

)
,

π(
¯
q, q̃ | n)= e−n

¯
q2

(
n9

362880
+ n8

40320
+ n7

5040
+ n6

720
+ n5

120
+ n4

24
+ n3

6
+ n2

2
+n+1

)
.

We have

π(q̄, q̃)>π(q̃, q̃) ⇐⇒ n < 14.5,

π(
¯
q, q̃)>π(q̃, q̃) ⇐⇒ n > 31.24,

so q̃ is an equilibrium for 14.5≤ n ≤ 31.24.
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