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Introduction

The U.S. annuity market has been historically small. Individuals can manage the risk

of outliving their financial wealth by purchasing a life annuity from a life insurer. In

the U.S., the annuity market is dominated by deferred annuities that are purchased by

individuals before their retirement. Deferred annuities allow individuals to accumulate

wealth on a tax deferred basis during the contract period and give them the option to

receive their accumulated wealth as a lump sum or a life annuity at the end of the contract.

Although life annuities pay a rate of return in excess of that received on conventional

assets (Mitchell, Poterba, Warshawsky & Brown 1999), relatively few deferred annuity

contract holders choose the life annuity payout option and Americans generally annuitize

less wealth than what standard economic theory predicts (Yaari 1965, Davidoff, Brown

& Diamond 2005). For example, Americans between 50 and 65 years accumulated about

$42,500 per person in fixed deferred annuity balances in 2018 and those aged 65 years and

above only annuitized about $12,700 of their total per person wealth with a life insurer in

the same year. Why is the annuity market so small?

A standard explanation for the low wealth annuitization rate in the U.S. is the presence

of market inefficiencies. Inefficiencies may arise if life insurers do not observe the mor-

tality risk of individuals seeking longevity insurance, leading to adverse selection. This

type of informational friction may lead to insurers charging a markup over the annuities’

actuarial values (Eichenbaum & Peled 1987, Finkelstein & Poterba 2004). Other types of

inefficiencies may arise from financial and market frictions that affect life insurers’ prod-

uct design and capital structure decisions (Koijen & Yogo 2015, Foley-Fisher, Narajabad

& Verani forthcoming). These supply-side frictions may also be reflected in relatively

high annuity markups. Identifying the effect of demand- and supply-side frictions on

annuity markups is difficult without data separately measuring exogenous shocks and

endogenous responses. Nevertheless, understanding the source of inefficiencies in pri-

vate longevity insurance markets is crucial to analyze the effects of retirement policies,

such as social security reforms.

In this paper, we provide a novel identification that exploits bond market shocks and
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Figure 1: Distribution of actual and actuarial monthly payment for a nominal $100,000
Single Premium Immediate Annuity offered to a 65 year old male.

the U.S. insurance regulatory framework. We develop an algorithm for annuity valuation

to decompose the contribution of demand- and supply-side frictions in annuity markups.

Figure 1 plots the distribution of actual monthly payment offered by U.S. life insurers to

a 65 year old male for a $100,000 single premium immediate life annuity from 1989 to

2019 (the box plots) together with the monthly payments implied by the actuarial value

of the contract calculated using the general population mortality (the dashed line) and

annuitant mortality (the solid line). The difference between the dashed and solid lines is

a measure of the industry’s average adverse selection pricing (henceforth, AS pricing) and

the difference between the actual monthly payment offered and the solid line is an adverse

selection-adjusted annuity price markup (henceforth, AS-adjusted markup). Although the lat-

ter consistently accounts for about 50 percent of the overall annuity markup, the literature

typically focuses on the former through the examination of “money’s worth” calculations
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(Mitchell et al. 1999) and attributes the latter to residual unobserved administrative costs,

monopoly profits and other transaction costs (Einav & Finkelstein 2011).

We show that life insurer interest rate risk management drives the AS-adjusted markup.

We begin by showing theoretically how life insurers set prices in an annuity market with

adverse selection and interest rate risk using a simple three-period model. Interest rate

risk arises in the model because there is aggregate uncertainty over future interest rate

and corporate debt maturity is constrained to be relatively short (Bolton & Scharfstein

1990, 1996, Hart & Moore 1994, 1998, Huang et al. 2019). Life insurers are exposed to

interest rate risk because the duration of their assets is less than the duration of their in-

surance liabilities. This negative duration gap means that a decrease in the interest rate

increases the present value of a life insurer’s fixed rate liabilities faster than the present

value of its fixed income assets, which could lead to insolvency. Since the prospect of ex-

post insolvency is incompatible with the sale of long-term longevity insurance ex-ante,

limited liability life insurers credibly manage interest rate risk by choosing an observable

optimal level of net worth. The cost of financing this net worth is reflected in relatively

high AS-adjusted markups.

Our model differs from the textbook model of adverse selection in insurance markets—

e.g., Einav & Finkelstein (2011)— because the Modigliani & Miller (1958) theorem does

not hold, even when the bond market is complete. With limited liability, insurers must

credibly show to annuity shoppers that they are managing interest rate risks with a

unique ex-ante capital structure. When the bond market is complete, insurers optimally

choose to hold zero net worth and charge the same annuity price as insurers in the text-

book adverse selection model. Limited liability leads to a different optimal annuity price

from the textbook model when the supply of long-term bonds is constrained, which is an

additional source of financial friction in our model. When the bond market is incomplete,

insurers finance a positive level of net worth to hedge against interest rate movement,

which is reflected in a higher AS-adjusted markup.

We then identify the risk management channel in annuity price data by comparing the

change in AS-adjusted markup for annuity contracts with higher average cost to those

with lower average cost as a response to the same shock to the average bond demand.

4



Our identification strategy exploits the property that, under the hypotheses of our model,

the AS-adjusted markup is determined by the difference between the insurers’ average

cost curve and average bond demand curve. We find that conditional on their average

cost of funding, insurers tend to raise their adverse-selection adjusted markups when

annuity reserve requirements become more binding, but do so significantly less when the

spread on long-duration investment grade corporate bonds widens.

We find further evidence of the risk management channel in the cross-sectional varia-

tion of AS-adjusted markups. We show that life insurers that are relatively more adversely

affected by an unexpected change in the yield curve as a result of their ex-ante interest

rate derivative positions disproportionately increase their AS-adjusted markup ex-post.

We identify this second effect using the universe position-level interest rate swap deriva-

tives data and the 2009-2015 zero lower bound period, during which all of the movements

in the treasury yield curve came from fluctuations in the long end of the curve.

Finally, we identify a relationship between shocks that originate in the corporate bond

market and adverse selection in the annuity market. It is well known that higher annu-

ity prices are associated with more severe adverse selection (Rothschild & Stiglitz 1976).

We use our model to show that adverse selection in the annuity market depends on the

severity of frictions in the corporate bond market, as a higher level of optimal net worth

exacerbates adverse selection by increasing the annuity prices. We then present empirical

evidence consistent with this effect by exploiting differences in life insurers’ pricing of

single premium immediate annuities with different types of “period certain” guarantees

and by measuring life insurers’ AS pricing for these products. We show that an exogenous

increase in statutory reserve requirements disproportionately increases the AS pricing for

life annuities with 10 and 20 year period certain guarantees relative to life annuities with

no period certain guarantees. Since individuals choosing life annuities with 10 or 20 year

period certain guarantees think they are at a higher risk of dying within the next 10 or 20

years, respectively, our results suggest that changes in corporate bond market conditions

may have a direct effect on adverse selection in annuity markets.

This paper provides new answers to old questions surrounding the seemingly unpop-

ular life annuity contracts in the U.S. by bridging the economic literature on adverse se-
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lection in the annuity markets and the finance literature on risk management of financial

institutions. Our paper fills the gap in the economic literature that followed the sem-

inal work of Yaari (1965) and Blanchard (1985). This literature models life insurers as

profit maximizing firms operating in frictionless financial markets—e.g., Hosseini (2015).

Under this assumption, life insurers perfectly match the duration and cash flow of their

assets and insurance liabilities, and therefore can costlessly hedge interest rate risk. In

practice, the duration of life insurers’ assets is typically lower than the duration of their

insurance liabilities due to an incomplete bond market. From a theoretical point of view,

these frictions require insurers to manage interest rate risk via an ex-ante capital structure

policy, which is a departure from the Modigliani & Miller (1958) theorem and is simi-

lar to the risk management rationale emphasized by a relatively small but active finance

literature—e.g., Froot & Stein (1998), Foley-Fisher, Narajabad & Verani (2016), Rampini,

Viswanathan & Vuillemey (2017).

The remainder of the paper proceeds as follows. In section 1, we provide a short

overview of the life annuity market. Section 2 presents and analyzes our theoretical

model. Sections 3 and 4 compare the predictions of our model to the “textbook” model

of adverse selection in insurance market and explain our identification strategy. Section 5

reviews our data sources. Our empirical analysis is contained in Sections 6, 7, and, 8 . We

conclude in Section 9.

1 Selling and managing fixed annuities

New retirees can manage the risk of outliving their financial wealth by purchasing a

life annuity from a life insurer either directly or through their employer’s pension plan.

An individual purchasing a life annuity contract transfers its idiosyncratic longevity risk

to the life insurer by surrendering his or her wealth in exchange for a stream of payments

while he or she is alive. In this section, we briefly discuss the life annuity market.
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1.1 The U.S. market

Roughly half of the U.S. life insurance industry’s $600 billion aggregate income in 2018

came from annuity considerations.1 About half of these annuity considerations relate to

fixed annuity sales, which are annuity contracts for which the principal is backed by the

general account of the life insurer.2

The vast majority of fixed annuities sold in the U.S. are actually deferred fixed annu-

ities, which are very similar to banks’ certificates of deposit. Deferred fixed annuities are

purchased by individuals before their retirement age to accumulate wealth on a tax de-

ferred basis during the contract period. At the end of the deferred fixed annuity contract

period and after reaching the age of 59.5 years of age, contract holders have the option of

receiving their accumulated wealth as a lump sum, a term annuity, or a life annuity.

New retirees annuitize a relatively small share of their wealth. We calculate that indi-

viduals in the U.S. accumulated about $2.5 trillion in the form of deferred fixed annuities

using 2018 insurer statutory fillings. This corresponds to roughly $42,500 per American

aged between 50 and 65 years. By contrast, a back of the envelop calculation using the ag-

gregate payment from life insurers to life annuity contract holders assuming a 6 percent

average yield reveals that Americans annuitize only about $625 billion of their wealth

with life insurers, or approximately $12,700 per person aged 65 years and above. This last

observation is consistent with the view in the literature that the market for immediate

annuities in the U.S. is small–e.g., Mitchell et al. (1999).

1.2 The fixed annuity business model

Life insurers’ overall business model consists of earning a spread between the yield

they promise on their insurance liabilities and the yield on the assets backing these liabili-

ties. Life annuities and life insurance contracts are fixed rate liabilities that are illiquid, as

they are not transferable from one individual to another. Consequently, life insurers tend

to invest their annuity considerations and premiums primarily in fixed-income securities

1The other half is roughly split between life and health insurance premiums. See the ACLI’s 2018 Life
Insurers Fact Book https://www.acli.com/posting/rp18-007.

2The other type of annuity is variable annuity for which the principal is backed by assets segregated
from the life insurer’s general account and remains the property of the annuity contract holder.
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in an effort to match their asset and liability cash flows. The illiquidity of life insurance li-

abilities allows insurers to invest considerations and premiums in relatively illiquid fixed

income securities, such as corporate bonds, to offer a competitive return to policyholders.

U.S. Life insurers have been the largest institutional investor in corporate bonds is-

sued by U.S. corporations since the 1930s. At the end of 2017, U.S. life insurers held about

$2.1 trillion of corporate bonds in their general account, which accounts for about half

of their general account assets and roughly one-third of the total corporate bond amount

outstanding in the U.S. (ACLI Life Insurers Fact Book 2018).3 By comparison, the rest

of the life insurers’ general account assets includes 8 percent in U.S. government secu-

rities and 14 percent in mortgage backed securities, including those backed by the U.S.

government.4

1.3 Interest rate risk management

The duration of life insurers’ assets is usually less than the duration of their insurance

liabilities because the maturity of corporate debt is typically much shorter than the length

of life insurance liabilities. For example, over 90 percent of corporate bonds issued by

corporations each year have an initial maturity that is 10 years or less. This contrasts with

the duration of a life annuity which is approximately 10 years. This negative duration gap

means that a decrease in the interest rates increases the present value of a life insurer’s

fixed rate liabilities faster than the present value of its fixed income assets, which could

lead to insolvency. Because the prospect of insolvency is incompatible with the sale of life

annuities, interest risk management is at the heart of the annuity business model.

Life insurers manage interest rate risk by maintaining a suitable level of net worth,

which is also referred to as statutory surplus in the industry. Net worth helps cushion

the effect of interest rate drops that disproportionately affect the value of the life insurer’s

insurance liabilities. Because earnings are the primary source of life insurer capital, the

cost of preserving net worth is reflected in annuity prices. That said, the effect of inter-

est rate risk management on annuity pricing is typically absent from economic models

3General account assets are those assets used by a life insurer to back its insurance liabilities.
4https://www.acli.com/Industry-Facts/Life-Insurers-Fact-Book.
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with life annuities that assume frictionless financial markets—e.g., Yaari (1965), David-

off et al. (2005), Hosseini (2015). We formalize the relationship between interest rate risk

management and annuity prices in the next section.

2 A model of adverse selection and interest rate risk

In this section, we show how life insurers set prices in an annuity market with adverse

selection and interest rate risk. We introduce two additional frictions, which are absent

from the adverse selection literature. The first friction is that life insurers are protected

by limited liability, which means the insurers’ owners’ payoff—e.g., the insurers’ stock

price—cannot be negative. The second friction is that the bond market is incomplete, so

debt maturity is relatively short. Competitive life insurers have an incentive to manage

interest rate risk with net worth, because annuity shoppers can rationally anticipate the

prospect of insolvency associated with certain portfolio and capital structure choices. The

cost of net worth is reflected in annuity prices that are above what the adverse selection

literature refers to as actuarially fair prices.

2.1 Economic environment

The economy lasts for three periods, t ∈ {0, 1, 2}, and it is populated by a continuum

of individuals with wealth normalized to 1. Each individual survives from period to pe-

riod with survival probability α, which is drawn at the beginning of t = 0 from a c.d.f

of G (α) and p.d.f of g (α) with support [α, α] ⊂ [0, 1] . The survival probability α is the

individual’s private information. Every individual is deceased at the end of t = 2.

There are two types financial instruments in the economy that can be used to transfer

wealth across periods. First, there are one- and two-period corporate bonds issued by

non-financial firms, which we do not model explicitly. One unit of the one-period bond

returns R1 ≥ 1 in t = 1 and R2 in t = 2, where R2 ∈
[
1, R

]
with mean E (R2) and is

realized in t = 1. The long-term bond is priced efficiently in t = 0 : 1
Rl

= 1
R1

E
(

1
R2

)
.

Second, there is cash, which is a riskless asset that can be used as storage across periods
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but does not accrue any value over time.

Individuals can also transfer wealth across periods by buying an annuity contract from

a life insurer in t = 0. An annuity contract pays one unit of consumption in each period

the contract holder is alive in exchange for a lump sum payment of q in t = 0. We do

not make explicit assumptions about the individuals’ consumption and investment deci-

sions. Instead, we require that the annuity demand a (α, q) of individuals with survival

probability α satisfies Assumption 1.

Assumption 1 The individual annuity demand a (α, q) satisfies: (i) a (α, q) is differentiable in

α and q, with ∂a
∂α > 0 and ∂a

∂q < 0; (ii) There exists α ∈ (α, α) such that a (α, q) > 0 when

q = α
R1

(1 + α) ; and (iii) a (α, q) = 0 for all α and q if there is a positive probability that the

insurer is insolvent in period t = 1 or t = 2 and a (α, q) ≥ 0 otherwise.

The first condition of Assumption 1 follows from the adverse selection literature. It

requires that agents with lower mortality risk have a higher demand for annuities and

that the demand for annuities is downward sloping. The second condition ensures that

there is a market for annuities regardless of the level R2 and the competitive equilibrium

price for annuities exists.5 The third condition requires that the demand for annuities

provided by insurers who might become insolvent after the aggregate shock R2 is zero.

A stark interpretation of this condition is that an annuity contract is worthless ex-ante

to an individual if there is a positive probability that the insurer may not always honor

its contractual obligations. A less stark interpretation is that an un-modelled insurance

regulator and/or ratings agency requires insurers to hold minimum annuity reserves to

ensure solvency in all states of the world.

2.2 Interest rate risk management

With the aggregate shock R2, the insurer could become insolvent in t = 1 if the present

value of its insurance liabilities exceeds the present value of its assets. Life insurers are

concerned about their solvency because they operate under limited liability and, by As-

sumption 1, will not sell any annuities if they might become insolvent.
5Specifically, this condition requires that annuity demand is strictly positive even when insurers break

even on agents with the lowest mortality rate and interest rate is at its lowest level—R2 = 1.
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2.2.1 The life insurers’ balance sheet

An insurer invests its annuity considerations in a portfolio of cash and bonds:

m1 + b1 + l2 = q
∫ α

α
a (α, q) g (α) dα , (1)

where mt, bt and l2 denote the insurer’s investment in cash, one-period bonds and two-

period bonds, respectively. The insurer’s balance sheet at t = 0 is given by

m1 + b1 + l2 =
∫ α

α

α

R1

[
1 + αE

(
1

R2

)]
a (α, q) g (α) dα + NW0 , (2)

where the first term on the right hand side is the present value of the insurers’ annuity

liability and NWt ≥ 0 is the insurer’s net worth or surplus in t. Note that the weakly

positive net worth reflects the insurer’s limited liability: The owners of the life insurer are

not liable for corporate loss that exceed the value of the insurer’s assets.

The aggregate shock R2 is realized at the beginning of t = 1, and the insurers’ balance

sheet becomes:

b2 (R2) + m2 (R2) =
1

R2

∫ α

α
α2a (α, q) g (α) dα + NW1 (R2) , (3)

where

b2 (R2) + m2 (R2) = R1b1 +
Rl l2
R2
−
∫ α

α
αa (α, q) g (α) dα. (4)

The limited liability insurer risks becoming insolvent in t = 1 if the present value of its

insurance liabilities exceeds the present value of its assets, in which case NW1 (R2) < 0.

Under Assumption 1, individuals do not purchase an annuities from an insurer that has

a non-zero probability of becoming insolvent in t = 1. Therefore, life insurers have an

incentive to engage in interest rate risk management (IRM) because they are concerned

about the solvency risks associated with their long-term liabilities. Life insurers can man-

age interest rate risk by choosing an asset portfolio, a price for their annuity, and a capital

structure such that NW1 (R2) ≥ 0 for all realizations of R2.
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2.2.2 Optimal interest rate hedging strategies

Optimal IRM requires no duration mismatch between the insurers’ assets and liabili-

ties. The duration D of an asset or liability is the elasticity of its present value PV with

respect to the interest rate: D = ∂PV
∂R

R
PV . A negative duration gap occurs when the dura-

tion of its insurance liabilities exceeds the duration of its assets. With a negative duration

gap, the present value of the insurance liabilities increases more rapidly than the present

value of the insurer’s assets when the interest rate decreases, leading to insolvency.

Consider first, an economy in which insurers can purchase as much two-period bonds

as they need to perfectly hedge their interest rate risk. We refer to this special case as the

economy with a complete bond market. The insurer chooses bond holdings such that it

remains solvent. The insurer prefers bonds over cash holdings because Rt ≥ 1. It follows

that for a given annuity price q and two-period bond holding l2, an insurer is guaranteed

to remain solvent in t = 2 if its asset portfolio satisfies the following condition:

b1 (l2) =
1

R1

[∫ α

α
α (1 + α) a (α, q) g (α) dα− Rl l2

]
. (5)

By (3) and (4), if (5) holds, then the insurer’s net worth is always weakly positive at t = 1,

and zero when R2 = 1. Since Rl =
R1

E
(

1
R2

) , from (2), (3), and (4), we can show that when

l2 =
1
Rl

∫ α

α
α2a (α, q) g (α) dα, (6)

then

b1 =
∫ α

α

α

R1
a (α, q) g (α) dα

and NW0 = NW1 (R2) = 0 for all R2.

With a complete bond market, an insurer can perfectly match the duration of its asset

and insurance liabilities with a suitable portfolio of one- and two-period bonds. To see

why the bond market is complete when the supply of two-period bonds is unlimited,
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note that the duration of the insurance liabilities at t = 0 is

D(L) =
∂PVL

∂R2

R2

PVL
= −

1
R2

∫ α
α α2a (α, q) g (α) dα∫ α

α α
(

1 + α
R2

)
a (α, q) g (α) dα

.

On the asset side, the duration of the one-period bond holding is 0 and the duration of

the two-period bond holding l2 is equal to the duration of the insurance liabilities. This

demonstrates that when the economy has an unlimited supply of two-period bonds, the

insurers are able to perfectly hedge the interest rate risk and they do not need to hold

positive net worth: NWt = 0 for all t when the supply of l2 is unlimited.

We now consider an economy where the supply of two-period bonds is limited. In

this economy, the insurers’ optimal two-period bond holding is given by

l2 = ζ
∫ α

α

α2

Rl
a (α, q) g (α) dα ,

where ζ indexes the constraint on the supply of long-term bonds. When ζ = 1, there is

an unlimited supply of two-period bonds, and by (6), the insurers perfectly hedge the

interest rate risk. When ζ ∈ [0, 1), the insurers’ IRM is constrained. In particular, when

ζ = 0, the economy only supplies one-period bonds. Theorem 1 characterizes the optimal

IRM in an incomplete bond market. Furthermore, the optimal IRM strategy is unique.

Theorem 1 For a given annuity price q and ζ ∈ [0, 1] , the unique optimal IRM strategy requires

an asset allocation and a capital structure that satisfies:

i. Asset portfolio:

b1 =
1

R1

∫ α

α
α [1 + (1− ζ) α] a (α, q) g (α) dα,

l2 =
ζ

Rl

∫ α

α
α2a (α, q) g (α) dα,

b2 (R2) =

(
1− ζ +

ζ

R2

) ∫ α

α
α2a (α, q) g (α) dα .
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ii. Capital structure:

NW0 =
1− ζ

R1

∫ α

α
α2
[

1−E

(
1

R2

)]
a (α, q) g (α) dα,

NW1 (R2) = (1− ζ)

(
1− 1

R2

) ∫ α

α
α2a (α, q) g (α) dα .

When there is an insufficient supply of two-period bonds (ζ < 1), the duration of an

insurer’s assets is strictly lower than the duration of its insurance liabilities. The insurer

can eliminate its duration gap by decreasing the duration of its liabilities, which requires

holding a strictly positive amount of net worth.

2.3 Annuity pricing

Life insurers engage in Bertrand competition over the annuity price q : Any insurer

charging the lowest q and implementing an optimal IRM strategy captures the entire an-

nuity market. Lemma 1 in the appendix characterizes the basic properties of the Bertrand

equilibrium.

We focus our analysis on the decision of life insurers that are implementing an optimal

IRM strategy. Let us start by considering how adverse selection contributes to the annuity

price markup. To do so, first consider the case when the bond market is complete. By (1)

and Theorem 1, the equilibrium annuity price is given by:

qAF
∫ α

α
a
(

α, qAF
)

g (α) dα =
1

R1

∫ α

α
α

[
1 + αE

(
1

R2

)]
a
(

α, qAF
)

g (α) dα .

We refer to qAF as the risk-adjusted actuarially fair price, which accounts for adverse selec-

tion in the annuity market in a complete market setting.

Next, consider a complete information economy. Let qCI (α) denote the equilibrium

price in an economy in which insurers observe individual mortality types and the bond

market is complete. The complete information actuarially fair price qCI (α) is given by:

qCI (α) =
α

R1

[
1 + αE

(
1

R2

)]
.
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Theorem 2 establishes the classic adverse selection result by illustrating the markup caused

by adverse selection.

Theorem 2 qAF >
∫ α

α qCI (α) g (α) dα.

Finally, to understand how IRM affects the markup, we characterize how the equilib-

rium annuity price is affected by a marginal change in the supply of long-term bonds in an

incomplete bond market. From (1) and Theorem 1, when the bond market is incomplete

(ζ ∈ [0, 1)), the equilibrium annuity price is characterized by

q
∫ α

α
a (α, q) g (α) dα =

1
R1

∫ α

α
α

[
1 + α

(
1− ζ + ζE

(
1

R2

))]
a (α, q) g (α) dα.

Let z = 1− ζ + ζE
(

1
R2

)
and define V (q, z) as the insurers’ profit, such that

V (q, z) = q
∫ α

α
a (α, q) g (α) dα− 1

R1

∫ α

α
α (1 + αz) a (α, q) g (α) dα ,

where z ∈
[
E
(

1
R2

)
, 1
]

. This means that the supply of long-term bonds is constrained

whenever z ∈
(

E
(

1
R2

)
, 1
]
. Similar but inversely related to ζ, the variable z captures the

severity of the bond market incompleteness, and, therefore, the need for insurers to man-

age their interest rate risk with net worth. Let q∗ be the equilibrium annuity price—the

lowest positive annuity price such that V (q∗, z) = 0. Theorem 3 shows that the equilib-

rium annuity price q∗ is higher than the risk-adjusted actuarially fair price qAF.

Theorem 3 The competitive annuity price is increasing in the severity of the bond market incom-

pleteness: ∂q∗
∂z > 0.

Theorem 3 demonstrates how IRM affects the AS-adjusted markup: q∗ − qAF. When

bond markets are complete, then the AS-adjusted markup is zero: q∗ = qAF. The AS-

adjusted markup increases as the severity of the bond market incompleteness increases.

In the next two sections, we explain how our theory differs from the “textbook” model

of adverse selection in insurance market and how we can make progress identifying the

risk management channel in annuity price data.
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3 The missing ingredient in the textbook environment

It is easiest to grasp the fundamental difference between our model and the text-

book model of adverse selection in insurance markets—e.g., Einav & Finkelstein (2011)—

through graphical illustration. Figures 2 and 3 are graphical representations of the equi-

librium in our model with a complete and incomplete bond market, respectively. The

horizontal axis indicates the annuity price q. The vertical axis indexes the total demand

of annuities by individuals who differ in their mortality risk α, which is not observable by

insurers. The downward-sloping demand curve is denoted as A (q) =
∫

a (α, q) dG (α) .

When the bond market is complete and the supply of long-term bonds is unlimited

(ζ = 1), the equilibrium price q∗ in our model corresponds to the equilibrium price in

the textbook model. In the textbook model, the competitive price is determined by the

intersection of the downward-sloping demand curve and the insurer average cost curve,

which is the cost per dollar of annuities sold. This is because insurers can only offer a

single annuity price to heterogeneous individuals when their mortality risk is not observ-

able. Perfect competition drives the equilibrium annuity price to be equal to the insurers’

average cost.

Unlike the textbook model, the competitive equilibrium price q∗ in our model is de-

termined by the intersection of the demand curve A (q) and the insurers’ average bond

demand B (q) /q, which is the amount of bonds insurers demand per dollar of annuities

sold. The intersection of A (q) and the average cost curve C (q) /q pins down the risk-

adjusted actuarially fair price qAF discussed in the previous section. Recall that when the

bond market is complete, life insurers can construct an optimal bond portfolio that per-

fectly hedges the interest rate risk. This case is shown in Figure 2: Insurers optimally hold

zero net worth and the average cost curve C (q) /q is equal to the bond demand curve

B (q) /q. Therefore, the equilibrium price q∗ in our model corresponds to the equilibrium

price in the textbook model when the bond market is complete, such that q∗ = qAF.

An important difference with the textbook model is that the Modigliani & Miller (1958)

theorem does not hold in our model even if the bond market is complete (ζ = 1). As

explained in Theorem 1, insurers’ risk management consists of choosing an optimal ex-
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Figure 2: Equilibrium with ζ = 1

q

C(q)
q

B(q)
q

A(q)

q∗qAF

NW0
q

Figure 3: Equilibrium with ζ < 1

ante capital structure and asset portfolio. When the bond market is complete, insurers

optimally choose to hold zero net worth—i.e., NW0(q)/q = 0. In contrast, an insurer’s

capital structure is irrelevant in the textbook model because financial markets are fully

efficient. The financial friction that leads to a departure from the Modigliani & Miller
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(1958) theorem is the insurers’ limited liability. Limited liability implies that insurers

must credibly show to annuity shoppers that they are managing their risks, which pins

down a unique ex-ante capital structure even when the bond market is complete.

Limited liability leads to a different outcome from the textbook model when the sup-

ply of long-term bonds is constrained (ζ < 1), which is an additional source of financial

friction in our model. Theorem 1 shows that insurers must finance a positive level of net

worth per dollar of annuities sold (NW0/q > 0) to cushion the effect of future interest

rate shocks and prevent insolvency. As shown in Figure 3, the average cost curve C (q) /q

and average bond demand curve B (q) /q are no longer equal when the supply of long-

term bonds is constrained. From Theorem 3, insurers finance their net worth by charging

a higher annuity price—the equilibrium annuity price q∗ is higher than the risk-adjusted

actuarially fair price qAF.

The size of the AS-adjusted markup, which we define as q∗− qAF, reflects the effects of

financial frictions associated with IRM. Using Theorem 3, we can derive the equilibrium

relationship between insurers’ optimal net worth, which is generally not observable and

annuity price markups, which are observable at a high frequency:

NW0 =
∫ α

α

(
q∗ − qCI (α)

)
a (α, q∗) dα−

∫ α

α

(
qAF − qCI (α)

)
a
(

α, qAF
)

dα .

In the next section, we discuss how we measure annuity markups in the data and how we

identify the risk management channel using exogenous shifters to the average cost curve

C (q) /q and average bond demand curve B (q) /q.

4 Identification

There are two main empirical challenges to identifying the risk management channel

in annuity price data. First, it is not possible to directly measure the duration gap be-

tween U.S. insurers’ assets and insurance liabilities. The reason is that the actual discount

rate used by life insurers to value their insurance liabilities is not observable and insur-

ance liabilities are not reported at the contract level in statutory fillings. Second, different

18



types of “supply-side” frictions may lead to observably equivalent annuity markups. For

example, annuity markups could be the outcome of monopolistic competition. We over-

come these challenges by exploiting shocks that differentially affect the average cost curve

C(q)/q and the average bond demand curve B(q)/q of different annuity contracts offered

by the same insurer.

Our identification strategy exploits the property that, under the hypotheses of our

model, the C(q)/q and B(q)/q curves determine the AS-adjusted markup when the bond

market is incomplete (ζ < 1). On the one hand, an exogenous increase in C(q)/q means

that an insurer faces a larger insurance liability for a given pair of annuity price and quan-

tity. Because the interest rate risk is unchanged, competitive insurers finance additional

bonds per unit of annuity sold by increasing q∗ to maintain the optimal NW(q)/q. As a re-

sult, B(q)/q increases relatively more than C(q)/q and the AS-adjusted markup q∗ − qAF

increases. On the other hand, an exogenous decrease in B(q)/q means that the insurer can

fund a block of new annuity business with fewer bonds. Competitive insurers respond

by offering a higher annuity yield (i.e., a lower price q∗), which increases the average cost

along the the C(q)/q curve and q∗ − qAF decreases.

The combination of exogenous shocks to the average cost curve C(q)/q and the av-

erage bond demand curve B(q)/q is necessary to identify the risk management channel.

Loosely speaking, one shock allows us to identify the effect of supply-side frictions while

the other shock allows us to tease out the risk management channel from other supply

side channels. We can identify the risk management channel by comparing the change

in AS-adjusted markup q∗ − qAF for annuity contracts with higher average cost to those

with lower average cost as a response to the same shock to the average bond demand

curve B(q)/q. In the remainder of this section, we discuss how we measure q∗ − qAF,

and the two different sources of variation that exogenously shift the average cost curve

C(q)/q and the bond demand curve B(q)/q. In the next section, we explain how we can

implement our test of the risk management channel using a regression framework.
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4.1 Annuity price markups measurement

Life insurers reprice their annuities frequently in response to changes in market condi-

tions. It is straightforward to interpret our simple model as the marginal pricing decision

of a life insurer. Using this interpretation, a life insurer creates a new block of business

at date t, which is added to its existing block of annuities. Therefore, the first step in our

identification strategy is to evaluate the insurers’ marginal pricing decisions conditional

on bond market conditions.

The first input in valuing annuity cash flows is the discount rate. We follow our the-

ory closely and value new annuity cash flows from the perspective of the owner of a life

insurer operating under limited liability. As discussed in Section 1, annuity contracts are

illiquid fixed rate liabilities and life insurers invest their annuity considerations primarily

in relatively illiquid fixed-income securities in an effort to match their asset and liability

cash flows and offer a competitive return to annuitants. Therefore, our choice of cash flow

discount rate needs to be consistent with the yield at which the marginal shareholder of

this insurer is willing to commit capital to support the issuance of illiquid long-term fixed

rate liabilities.6 Almost all life insurers offering annuities in the U.S. have around an

A rating and invest their annuity considerations in a portfolio of A-rated fixed income

instruments, on average. Therefore, the discount rate of an average insurer’s marginal

shareholder should be close to the (duration-matched) yield on A-rated debt securities.

We proxy for the unobserved discount rate of the marginal life insurer shareholder

using the zero-coupon High Quality Market (HQM) yield curve produced by the U.S.

Treasury.7 The HQM yield curve is calculated using AAA, AA, and A-rated U.S. corporate

bonds and is heavily weighted towards A-rated bonds, consistent with their market share.

For example, the sample of bonds used to calculate the HQM yield curve on August 31,
6The discount rate of an annuity shopper is likely to be different from the discount rate of the owner

of a life insurer. An annuity shopper seeking a safe longevity insurance contract may perceive an annuity
contract to be relatively “safe” because of the existence, for example, of a state insurance guarantee fund.
Consequently, the payoff structure of a life insurer’s shareholders and the annuity contract holders are
vastly different in the event the life insurer is placed in receivership by its state insurance regulator. For
the latter, using a default free discount rate to value annuity contracts may be appropriate. See Novy-Marx
& Rauh (2011), Brown & Pennachi (2016) for related discussions about the appropriateness of different
discount rates for pension liabilities.

7The HQM yield curve data is available at https://www.treasury.gov/resource-center/

economic-policy/corp-bond-yield/Pages/Corp-Yield-Bond-Curve-Papers.aspx.
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2011 includes 12 commercial papers, 42 AAA bonds, 299 AA bonds, and 1,345 A bonds.8

The second input to valuing annuity cash flows is an assumption about individuals’

mortality. Virtually none of the fixed annuities sold by U.S. life insurers are underwritten,

which means these contracts require no medical exam and their terms only depend on

the date of birth and gender of the individual. We use three different types of mortality

assumptions. First, we use a “general” population period mortality table produced by the

U.S. Internal Revenue Service that is updated annually with the mortality experience of

the entire U.S. general population.9 Second, we use two different versions of the Individ-

ual Annuitant Mortality table produced by the Society of Actuaries (SOA) in collaboration

with the National Association of Insurance Commissioners (NAIC). In addition to a “ba-

sic” annuitant mortality table, which is estimated from the actual mortality experience of

a large pool of annuitants, the SOA produces a “loaded” annuitant mortality table which

is used by state insurance regulators to set annuity reserves.10

We define the actuarial value of a life annuity contract with an M-year guarantee term

per dollar using mortality assumption i ∈ {General, Basic, Loaded} as

Vi
t (n, S, M, r) =

M

∑
m=1

1
Rt(m, r)m︸ ︷︷ ︸

M-year term certain annuity

+
Ni

S−n

∑
m=M+1

Πm−1
l=0 pi

S,n+l

Rt(m, r)m︸ ︷︷ ︸
Life annuity from year M + 1

, (7)

where M ≥ 0 is the number of years the life annuity pays a guaranteed fixed income, pi
S,n

is the one-year survival probability for an individual of gender S at age n from the i-th

8For more information, see https://www.treasury.gov/resource-center/economic-policy/

corp-bond-yield/Documents/ycp_oct2011.pdf
9The general population mortality tables are available at https://www.irs.gov/retirement-plans/

actuarial-tables.
10The SOA mortality tables are available at https://mort.soa.org/. There are two important differ-

ences between the “basic” and the “loaded” annuitant mortality tables. First, the loaded table adds a flat
10 percent loading on estimated survival probabilities which requires insurer to hold more reserve per dol-
lar of annuity sold. Second, statutory regulation did not require insurers to apply the SOA generational
mortality improvement factor to the static loaded mortality table for their reserve calculations prior to 2015
when the 2012 table was adopted in most states. As a consequence, regulatory reserves prior to the adop-
tion of the generational table around 2015 became less conservative over time, as the population mortality
naturally improved. This phenomenon led the NAIC to update the loaded table in 2000 to essentially “re-
set” the loading factor. For all our calculations prior to the adoption of the 2012 SOA generational table, we
follow industry practice and apply the SOA generational factor to adjust the mortality estimate from the
static basic table to the year of observation.
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mortality table, and Ni
S is the maximum attainable age for this gender in the i-th mortality

table, and 1/Rt(m, r)m is the reference discount factor for period m cash flow evaluated at

time t using the HQM yield curve, r = HQM, or the regulatory reference rate , r = NAIC,

which we will explain below.

Let Pt(n, S, M) be the price of an M-year guaranteed life annuity offered by a life

insurer to an individual of gender S and age n at date t, we decompose the total an-

nuity price markup into an insurer-contract-level AS-adjusted markup and an industry-

contract average measure of adverse selection pricing (AS pricing) as:

Pt(n, S, M)−VGeneral
t (n, S, M, r = HQM)

=
(

Pt(n, S, M)−VBasic
t (n, S, M, r = HQM)

)
︸ ︷︷ ︸

Adverse selection-adjusted markup

+
(

VBasic
t (n, S, M, r = HQM)−VGeneral

t (n, S, M, r = HQM)
)

︸ ︷︷ ︸
Average adverse selection pricing

,

It follows that the insurer-contract-level variable Pt(n, S, M)−VBasic
t (n, S, M, r = HQM)

is the counterpart of the AS-adjusted markup q∗ − qAF in our model.

Figure 1, which we discussed in the introduction, plots the distribution of actual

monthly payments offered to a 65 year old male for a $100,000 single premium immedi-

ate life annuity from a sample of U.S. life insurers against the monthly payment implied

by the the actuarial value of the contract calculated using the general population mortal-

ity (dashed) and the annuitant mortality (solid). The difference between the dashed and

solid lines measures AS pricing and the difference between the actual monthly payments

offered by insurers (the box plot) and the solid line is related to the AS-adjusted markup.

We turn to sources of exogenous variation next.

4.2 Regulatory reserve requirements

The first source of exogenous variation comes from annuity contract-level time series

variation in the regulatory reserves insurers are required to set aside for each dollar of
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annuity they sell. As explained by Koijen & Yogo (2015), exogenous time-series variation

in reserve requirements across contract maturity arises because regulatory reserves are

calculated using a single interest rate that is reset infrequently. We denote this regulatory

interest rate by r = NAIC in the present value discussed above.

Prior to 2018, state insurance regulation required that insurers calculate their annuity

reserves—i.e., their insurance liabilities—using a single reference interest rate calculated

as “the average over a period of twelve (12) months, ending on June 30 of the calendar

year of issue or year of purchase, of the monthly average of the composite yield on sea-

soned corporate bonds, as published by Moodys Investors Service, Inc.”11 The Moody’s

composite yield on seasoned corporate bonds is a weighted average yield on all invest-

ment grade corporate bonds rated between Baa and Aaa with maturity of at least 20 years.

From 2018, state insurance regulators adopted a new methodology to calculate the sin-

gle reference interest rate used in regulatory reserve regulations. With the new method-

ology, the reference interest rate is the sum of a weighted average U.S. Treasuries yield

plus a credit spread and an expected default cost. The spread over the reference Treasury

rate is calculated by the NAIC using the public bond portion of an average US life insur-

ers asset portfolio. The new reference interest rate varies by the type of annuity contract

guarantee period and is reset once a quarter (for retail annuity contracts). For example,

the reference rate for a Single Premium Immediate Annuity issued on March 2, 2018 with-

out a guarantee period to a 68 year-old was 3.25 percent, which is about 75 basis points

(0.75 percentage points) higher than the reference Treasury rate used in the reference rate

calculation.12 By comparison, Moody’s seasoned Aaa and Baa corporate bond yields on

the same day are 3.9 and 4.58 percent, respectively.

By construction, the regulatory reference interest rate is close to the average of the

longer end of the HQM yield curve. When the actual yield curve is upward sloping, the

actuarial value of a life annuity calculated using the average of the long end of a yield

curve is mechanically smaller than the corresponding actuarial value calculated using

the entire yield curve. Moreover, this difference is greater for life annuities with shorter

11https://www.naic.org/store/free/MDL-820.pdf
12For more details, see https://www.soa.org/globalassets/assets/library/newsletters/

financial-reporter/2018/june/fr-2018-iss113-hance-gordon-conrad.pdf.
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expected maturity—i.e., sold to older individuals. Because the regulatory interest rate is

reset infrequently (once a year prior to 2018 and once a quarter from 2018 instead of daily),

the difference between the ratio of reserves required to the reserve calculated using the

daily yield curve exogenously fluctuates over time across annuity contract maturity.

Figure 4: Reserve ratio for Single Premium Immediate Annuity sold to a 65 year old
male (top line) and 70 year old male (bottom line)

Figure 4 graphically illustrates this source of exogenous variation by plotting the re-

serve dollars an insurer needs to set aside for each dollar of annuity sold on day t to 65

and 70 year old males. We calculate the regulatory reserve ratio as VLoaded
t (n, S, M, r =

NAIC)/VBasic
t (n, S, M, r = HQM). A ratio above 1 indicates that the reserve require-

ment is binding, as the insurer must create a reserve that is greater than the insurance

liability warranted by the insurers’ yield curve-based actuarial calculation. Conversely, a

ratio below 1 indicates that the reserve requirement is not binding because the required

reserve is below the insurer’s own actuarial calculation. Figure 4 shows the additional
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source of variation arising from US states staggered adoption of new regulatory mortal-

ity assumptions between 2015 and 2016, and the 2018 adoption of the new methodology

to calculate the regulatory reference interest rate previously discussed.13

Using Figure 3 as a guide, an exogenous increase in reserve requirements increases

the average cost curve C(q)/q because the insurer must create a larger insurance liability

for a given pair of annuity price and quantity. The insurer matches this larger insurance

liability by financing additional bonds per unit of annuity sold, which requires increasing

q∗ to maintain the optimal NW(q)/q and offset some of the increase in C(q)/q. As a result,

B(q)/q increases relatively more than C(q)/q and the AS-adjusted markup q∗− qAF rises.

4.3 Yield spreads on long duration investment grade bonds

The second source of exogenous variation comes from aggregate time-series variation

in the spread between the yield on Baa-rated and Aaa-rated corporate bonds that have

at least 20 years of maturity. As we explained above, the regulatory interest rate used

prior to 2018 is a weighted average of the corporate bond yields rated above Baa that

have at least 20 years of maturity. Under state insurance regulation, corporate bonds

rated above Moody’s Baa are designated as NAIC 1 and attract the lowest statutory risk-

based capital charge. This risk-based capital charge reflects the fact that, historically, the

increase in credit risk for a firm moving from A to Aaa is negligible. As explained in

Section 1, the life insurer’s business model is to earn a spread between the yield on the

assets purchased with premiums and considerations and the yield credited on insurance

liabilities. Therefore, a widening in Baa-Aaa spread for long duration corporate bonds

conditional on the insurer’s cost of funding corresponds to higher yielding investment

opportunities for new annuity money.

Figure 5 graphically illustrates this source of exogenous variation by plotting the Baa-

Aaa spread for seasoned corporate bonds and the 10 year HQM yield spread over 10

year US treasury in percentage points. Life insurers can generate more yield per dollar

13Roughly half of the U.S. States required insurers to use the 2012 Annuitant mortality table in 2015 and
the other half from 2016. We carefully parse each state insurance regulators’ website to identify the year at
which a new mortality table is implemented for the purpose of regulatory reserve calculation based on the
NAIC standard valuation model law 820-1.
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of annuity sold when the Baa-Aaa spread increases more than the 10 year HQM yield

spread, which is our proxy for the insurers’ average cost of funding, since life annuities

have an original duration of about 10 years.

Figure 5: Baa-Aaa spread and insurers’ average cost of funding

Using Figure 3 as a guide once more, an exogenous increase in long duration bond

yield decreases B(q)/q because the insurer can fund a block of new annuity business

with fewer bonds. Other things being equal, the decrease in B(q)/q results in a level of

NW(q)/q that is higher than the optimal level. Competitive insurers respond by lowering

the price of their annuity q∗—increasing the yield on their annuities. This corresponds to

a movement up along C(q)/q and results in a lower AS-adjusted markup q∗ − qAF.

That said, our model assumes that the annuity demand curve is fixed. In reality, an-

nuity demand and bond market conditions are likely to be correlated as both financial

instruments allow individuals to transfer wealth across periods. In Section 6, we explain

how we can implement our test of the IRM channel in a difference-in-differences regres-
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sion framework that compares the change in AS-adjusted markup for annuity contracts

with higher relative reserve requirement to those with lower relative reserve requirement

in response to the same shock to the Baa-Aaa spread. We briefly discuss our data next.

5 Data and variable definitions

We focus our analysis on Single Premium Immediate Annuities (SPIA) and SPIA with

10 and 20 year term certain guarantees, which are annuity contracts offered to individuals

to fund their retirement. SPIA with 10 and 20 year term certain guarantees promise a

payment to a beneficiary during a term period irrespective of the annuitant’s survival.

Our sample includes quotes from 99 life insurers, with about 20 life insurers per reporting

dates. Price quotes are typically reported for male and female individuals aged between

50 and 90 years with five year interval. Annuity prices are collected from the 1989-2019

issues of the Annuity Shopper Buyer’s Guide.14 Table 1 reports the summary statistics for

the variables used in our analysis.

Our main dependent variable Annuity markupijt is the normalized AS-adjusted markup

for product j sold by insurer i, defined as

Annuity markupijt =
Pijt(n, S, M)

VBasic
jt (n, S, M, r = HQM)

− 1 .

The AS-adjusted markup is just over 15 percent on average and consistently above 10

percent during our sample period. The variable Reserve Ratioijt is the ratio of reserve

dollars insurers need to set aside for each dollar of annuity j sold on day t, defined as

Reserve Ratiojt =
VLoaded

jt (n, S, M, r = NAIC)

VBasic
jt (n, S, M, r = HQM)

.

The reserve ratio fluctuates precisely around 1, confirming that the regulatory discount

rate and the insurers’ discount rate are aligned on average. We also obtain time-varying

insurer characteristics data from NAIC statutory filings for 2001-2019. We measure in-

14Koijen & Yogo (2015) use the same data source from 1989 to 2011.

27



Table 1: Summary statistics

Obs. Mean St. Dev. Pctl(25) Median Pctl(75)

Number of insurers by period 19.8 6.14 16 19 23.2
Number of contracts by period 634 374 294 686 914
Life annuity contract (binary):

Life only 111,065 0.36
10 year guarantee 111,065 0.35
20 year guarantee 111,065 0.29
50 years old 111,065 0.11
55 years old 111,065 0.11
60 years old 111,065 0.14
65 years old 111,065 0.14
70 years old 111,065 0.14
75 years old 111,065 0.13
80 years old 111,065 0.10
85 years old 111,065 0.09
90 years old 111,065 0.04
Male 111,065 0.50
Female 111,065 0.50

Annuity markupijt (%) 111,065 15.68 4.72 12.57 15.30 18.33
Reserve Ratioijt 111,065 1.00 0.06 0.96 1.00 1.04
10Y-3M Treasury spreadt 111,065 1.83 1.02 1.06 1.98 2.56
Baa-Aaa spreadt 111,065 0.99 0.36 0.78 0.93 1.13
10 HQM spreadt 111,065 1.53 0.58 1.17 1.39 1.72
Log total assetsit (from 2001) 99,737 2.69 1.59 1.76 2.84 3.78
Leverage ratioit (from 2001) 99,737 10.55 5.23 6.96 10.05 13.54

surer size as the log of insurers’ general account assets and leverage as the ratio between

the insurers’ general account assets and general account liabilities minus statutory ac-

counting surplus.

We obtain Moody’s Seasoned Aaa and Baa corporate bond yields, the 10-Year Trea-

sury Constant Maturity Rate, and 10-Year Treasury Constant Maturity Minus 3-Month

Treasury Constant Maturity from the Saint Louis Fed’s FRED database. We proxy for the

insurers’ cost of funding by calculating the spread between the 10-year High Quality Mar-

ket and the 10-Year Treasury Constant Maturity Rate. For all our regressions, we retain

the last set of prices observed in a quarter. Our final dataset contains 111,065 insurer-

contract-quarter observations with an average of 634 insurer-contract observations per

reporting period.
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6 Main empirical analysis and results

Adopting a difference-in-differences approach, we test the hypothesis that the AS-

adjusted markups on annuity contracts facing higher regulatory reserve requirements are

relatively higher in periods when the Baa-Aaa spread is lower. In the main specification,

the first difference is between annuity contracts i offered by insurer j with relatively high

reserve requirement and different annuity contracts −i offered by the same insurer with

relatively low reserve requirement. The second difference is between periods in which

the Baa-Aaa spread is high and periods in which the Baa-Aaa spread is low. As discussed

in Section 4, we condition all our tests on the average cost of funding of the insurer, which

we proxy using the 10 year HQM zero coupon yield over the 10 year US Treasury spread.

We implement our test in a linear regression framework. The unit of observation is

a life insurer-product-time. The sample of observation extends from 1989 to 2019. The

coefficient β3 on the interaction between Reserve Ratiojt and the Baa-Aaa spreadt in the

following linear model allows us to trace the difference-in-differences effect of the reduc-

tion in reserve requirement on AS-adjusted markup during times of increasing Baa-Aaa

spreads conditional on the level of the 10 HQM spreadt:

Annuity markupijt =αi
1 + α

j
2 + β1Baa-Aaa spreadt + β2Reserve Ratiojt

+ β3Baa-Aaa spreadt × Reserve Ratiojt

+ β410 HQM spreadt + z′itγ + εijt . (8)

Specification (8) includes an insurer fixed effect αi
1 to absorb the effects of potentially

unobserved fixed insurer characteristics—e.g., difference in state regulations and insurer

rating—that may directly affect life insurers’ pricing behaviour. We also include a com-

plete set of product fixed effects α
j
2—age, gender, and annuity guarantee type—to absorb

the effect of fixed demand characteristics that may influence pricing. The vector z′it in-

cludes other insurer-level time varying financial variables, such as insurer size and lever-

age. We report insurer clustered robust standard errors throughout.

Table 2 summarizes our main result. The coefficient estimate on the interaction term
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Table 2: The effect of investment-grade corporate-bond yield spread on life annu-
ity markups The unit of observation is a life insurer-product-year. The sample of ob-
servation extends from 1989 to 2019. The dependent variable Annuity markupijt is the
adverse selection adjusted markup for life annuity j sold by insurer i at date t. Col-
umn 1 reports insurer clustered robust standard errors in parentheses and Column 2
and 3 report two-way insurer and date clustered robust standard errors in parentheses.
*** p < 0.01; ** p<0.05; * p<0.1.

Dependent variable: Annuity markupijt
(1) (2) (3)

Baa-Aaa spreadt ×Reserve Ratioijt -12.68∗∗∗ -12.68∗∗ -12.87∗∗

(3.21) (4.94) (5.06)
Reserve Ratioijt 28.93∗∗∗ 28.93∗∗∗ 28.73∗∗∗

(3.25) (5.69) (6.03)
Baa-Aaa spreadt 11.15∗∗∗ 11.15∗∗ 11.29∗∗

(3.28) (5.27) (5.42)
10 HQM spreadt 2.98∗∗∗ 2.98∗∗∗ 3.07∗∗∗

(0.40) (0.77) (0.82)
Log total assetsit 0.35

(0.66)
Leverage ratioit -0.03

(0.03)
Fixed effects:
Contract characteristics (j) Y Y Y
Insurer (i) Y Y Y

Observations 111,065 111,065 99,737
Adjusted R2 0.40 0.40 0.40
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suggests that, conditional on the average cost of funding proxied by 10 HQM spreadt, a

one standard deviation increase in Reserve Ratioijt (0.055) raises the AS-adjusted markup

by almost one full percentage point when Baa-Aaa spreadt is at its median level (0.93).

Moreover, this effect is about 23 percent lower in periods when Baa-Aaa spreadt is in

the 3rd quartile of its distribution relative to periods when Baa-Aaa spreadt is in the first

quartile of its distribution. This means that, conditional on their average cost of funding

proxied by 10 HQM spreadt, insurers tend to raise their AS-adjusted markups when the

reserve requirement becomes binding (Reserve Ratioijt is higher), and do so significantly

less when Baa-Aaa spreadt increases. This result suggests that insurers offset some of the

higher cost of supplying life annuities due to excess reserve requirement with the extra

yield on investment grade bonds.

Column 2 reports the two-way insurer and date clustered robust standard errors that

allow for arbitrary types of within insurer correlation as well as contemporaneous cor-

relation of the errors across different insurer clusters. Although onerous in terms of de-

grees of freedom, allowing for cross-insurer cluster correlation could be important given

that insurers reprice their annuity products in response to aggregate bond market shocks.

Consistent with this prior, Column 2 shows that the two-way clustered robust standard

errors are about twice as large as those reported in Column 1. Nevertheless, our main

coefficient estimate of interest remains significant at the less than 5 percent significance

level. Finally, Column 3 controls for time varying insurer size measured as the log of the

insurer’s general account asset and insurer leverage measured as the ratio of the insurer’s

general account assets to liability minus statutory surplus (statutory surplus is analogous

to our definition of net worth in the model in Section 2). Although we only observe these

financial variables from 2001, the coefficient estimates in Column 3 are almost identical to

those obtained with the full sample in Column 2.

In the next section, we present further evidence of the IRM channel using cross-sectional

rather than within-insurer variation in annuity markups.
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7 Cross-sectional evidence from interest rate derivatives

The paper so far emphasized building a cushion of net worth to manage future interest

rate shocks. Another important aspect of life insurers’ risk management is the preserva-

tion of net worth, as a long enough sequence of bad shocks could lead to insolvency. This

motive is absent from our model because the economy ends at the end of the second pe-

riod. In this section, we venture outside the predictions of our simple model and look

for further evidence of the IRM channel in the cross-section of insurers by studying their

interest rate derivative positions.

Life insurers can add positive duration to their balance sheet by entering into a long-

term fixed-for-float interest rate swap with a counter party. Issuing a fixed-for-float interest

rate swap is economically equivalent to financing a fixed maturity bond with short-term

floating rate debt. The duration of a fixed-for-float swap contract is then the difference be-

tween the (hypothetical) underlying fixed rate instrument (usually a US Treasury bond)

and the duration of the floating rate liabilities that finances the fixed rate instrument (usu-

ally 3 month LIBOR). An insurer adding more net positive duration with interest rate

swaps is more likely to manage the risks associated with a widening negative duration

gap between its assets and insurance liabilities.

Although it is not possible to measure a U.S. life insurer’s duration gap, we can con-

struct a proxy for the marginal net duration added by a life insurer’s interest rate swaps.

We can then measure how different hedging programs perform facing the same sequence

of aggregate interest rate shocks and trace out the effect on annuity prices. For example,

an insurer adding positive net duration with swaps is relatively more hedged against a

flattening yield curve, and vice versa. Although an insurer’s swap position is an ex-ante

endogenous variable, variations in the the 10 year over 3 month Treasury spread during

the period of the zero lower bound act as an exogenous shifter of the value of the swap

portfolio ex-post. Therefore, we can compare the AS-adjusted markups of insurers that

are favorably affected by the aggregate interest rate shock ex-post as a result of their ex-ante

hedging program relative to those that are adversely affected by the shock.

An important issue with this test strategy is that the value of an insurer’s swap port-
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folio may respond differently from a steepening of the yield curve that is driven by lower

short rates and higher long rates. By focusing on the period of the zero lower bound from

2009 to 2015, we overcome this issue, since all the variations in the yield curve were driven

by movements in long rates.

7.1 Interest rate swaps

We use position-level interest rate swap data to calculate a proxy of the net duration

added by the swaps as a fraction of an insurer’s general account asset portfolio—see Ap-

pendix B for details. Our position-level swap data comes from NAIC statutory filings

Schedule DB. Schedule DB provides detailed information on each insurer’s position-level

derivative contracts, including a description of the contract term and its notional amount.

We carefully parsed the text of more than 82,000 individual contract-year observations

from 44 U.S. life insurers from 2009 to 2015 and extracted the receiving leg, notional

amount, and residual maturity of the contracts. Life insurers in our sample have on aver-

age 1,416 open interest rate swap contracts at year’s end with a standard deviation of 978.

The average notional amount of a swap contract is $45 million with a standard deviation

of $83 million.

We first calculate the quarter-end individual swap position using each contract’s resid-

ual maturity. At each quarter-end, we normalize each individual swap contract duration

by the duration of a reference 10 year fixed-for-float swap contract and multiply by the

contract’s notional amount. This number is the dollar amount of duration, which can

be positive or negative, added to an individual swap contract. We then sum over an in-

surer’s entire swap portfolio to obtain the aggregate dollar amount of duration added by

the swaps. Finally we divide by the insurer’s total general account assets to obtain the

amount of net duration added by the swaps expressed as a fraction of the insurer’s asset

portfolio. We obtain 1,700 insurer-quarter observations from 2009 to 2015. A value of zero

indicates that the insurer is not adding positive or negative duration using swaps. A value

of 0.5 indicates that the insurer is adding net positive duration that is 50 percent of its

size. We merge our net duration ratio variable, which we denote as Net swap durationit,
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to the insurer-level annuity markup data, yielding 31,042 insurer-contract-date observa-

tions from 2009 to 2015. The variable Net swap durationit has a mean of 0.09, a median

of 0.01, and a standard deviation of 0.16, which confirms that life insurers add positive

duration with interest rate swap on average.

7.2 Regression results

We implement our cross-sectional test by interacting the Net swap durationit variable

with 10Y-3M Treasury spreadt in the following equation:

Annuity markupijt =αi
1 + α

j
2 + αt

3 + β1Net swap durationit + β2Reserve Ratioijt

+ β310Y-3M Treasury spreadt × Net swap durationit + z′itγ + εijt .

We focus on the cross-sectional variation in life insurer Net swap durationit by including

date fixed effect αt
3. We continue to include an insurer fixed effect αi

1 to absorb the effect

of fixed unobserved insurer characteristics, a complete set of product fixed effects α
j
2, and

time varying insurer-level z′it, which includes insurer size and leverage. We report two-

way insurer and date clustered robust standard errors as our benchmark, although the

addition of a date fixed effect means that we obtain very similar standard errors using

insurer clustered robust standard errors.

Column 1 of Table 3 summarizes our cross-sectional results. The coefficient estimate

on the interaction term suggests that, conditional on time t market conditions and any

fixed insurer and contract characteristics, a flattening of the yield curve (a one standard

deviation decrease in 10Y-3M Treasury spreadt) decreases the AS-adjusted markup of an

insurer with a median level of Net swap durationit (0.013) by about 0.034 percentage point.

The small economic magnitude of this average effect suggests that insurers’ hedging strat-

egy is effective on average. However, this effect is almost 50 times larger for insurers in the

top quartile of the Net swap durationit distribution relative to those in the bottom quartile

of the distribution. Insurers in the top quartile of the Net swap durationit distribution de-

crease their AS-adjusted markup by almost a third of a percentage point (1.8 percent of

the average AS-adjusted markup) in response to a flatter yield curve.
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Table 3: Cross-sectional evidence of the risk managment channel The unit of observation is
an insurer-product-year. The sample of observation extends from 2009 to 2015, which covers the period of
zero lower bound. The dependent variable Annuity markupijt is the life annuity markups for product j sold
by insurer i in year t. Column 1 is a fixed effect regression with two-way insurer and date clustered robust
standard errors reported in parentheses. Column 2 to 4 is a quantile fixed effect regression implemented
using the penalized fixed-effects estimation method proposed by Koenker (2004). Percentiles are indicated
in the square parenthesis. Clustered bootstrapped standard errors (1,000 replications) are implemented
using the generalized bootstrap of Chatterjee & Bose (2005) with unit exponential weights sampled for
insurer-contract observations, and reported in parentheses. *** p < 0.01; ** p<0.05; * p<0.1.

Dependent variable: (1) Dependent variable: (2) (3) (4)
Annuity markupijt Annuity markupijt τ = 0.25 τ = 0.5 τ = 0.75

Net swap durationit× 5.35∗∗ Net swap durationit× 6.98*** 4.6*** 2.98***
10Y-3M Treasury spreadt (2.38) 10Y-3M Treasury spreadt (0.57) (0.36) (0.32)

Net swap durationit -10.32∗ Net swap durationit -13.89*** -7.44*** -4.85***
(5.69) (1.49) (1.04) (0.91)

10Y-3M Treasury spreadt -0.76*** -0.73*** -0.31**
(0.14) (0.14) (0.13)

Reserve Ratioijt 42.41∗∗∗ Reserve Ratioijt 12.85*** 17.1*** 24.18***
(6.79) (1.31) (2.1) (2.29)

Baa-Aaa spreadt 0.86*** 0.36 -1.33***
(0.28) (0.39) (0.48)

10 HQM spreadt 1.6*** 2.35*** 3.72***
(0.22) (0.26) (0.32)

Leverage ratioit 0.10 Leverage ratioit -0.04 -0.05 -0.04
(0.10) (0.04) (0.04) (0.03)

Log total assetsit -1.61 Log total assetsit -0.14 -0.12 -0.09
(1.60) (0.14) (0.15) (0.14)

Fixed effects: Fixed effects:
Product characteristics (j) Y Product characteristics (j) Y
Insurer (i) Y Insurer (i) Y
Date (t) Y Date (t) N

Observations 31,042 Observations 31,042
Adjusted R2 0.51 Chi2 test 54.06***

Columns 2 to 4 dive deeper by estimating a quantile regression with fixed effects. We

estimate the conditional quantile functions QAnnuity markupijt(τ|xijt) of the response of the t-

th observation on the j-th annuity contract offered by the i-th insurer’s Annuity markupijt

given by

QAnnuity markupijt(τ|x
′
ijt) =β3(τ)10Y-3M Treasury spreadt × Net swap durationit

+ β1(τ)Net swap durationit + β2(τ)10Y-3M Treasury spreadt

+ β3(τ)Reserve Ratioijt + β4(τ)Baa-Aaa spreadt

+ β5(τ)10 HQM spreadt + αi
1 + α

j
2 + z′itγ(τ) , (9)
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for quantile τ ∈ {0.25, 0.5, 0.75}, where x′ijt is the vector of covariates, z′itγ(τ ) is a vec-

tor of insurer level time varying controls, and αi
1 and α

j
2 are the insurer and contract

fixed effects, respectively. We also control for the effect of corporate bond market shocks

Reserve Ratioijt, Baa-Aaa spreadt, and 10 HQM spreadt that we discussed in the previous

section.

The bottom row of Column 4 reports a χ2 test of the null hypothesis that the 25th and

75th percentile coefficients on the interaction term are equal. The difference in the coef-

ficients on the interaction term between the 25th and the 75th percentile is economically

meaningful. The counterfactual decrease in AS-adjusted markup in response to a flatten-

ing of the yield curve (i.e, a one standard deviation decrease in 10Y-3M Treasury spreadt)

would have been about twice as large for an insurer moving from the bottom to the top of

the AS-adjusted markup distribution. Moreover, consistent with the results in Column 1,

the decrease in AS-adjusted markup by insurers at the top of the Net swap durationit dis-

tribution is almost 50 times larger than the decrease in AS-adjusted markup by insurers at

the bottom of the Net swap durationit distribution in response to a flattening of the yield

curve. Combining these two effects, the coefficients on the interaction terms in Columns 2

to 4 suggest that the least competitive insurers (those with relatively high markups) that

are beneficially affected by the interest rate shocks as a result of their hedging program

disproportionately cut their AS-adjusted markup.

For example, among the insurers in the top quartile of the AS-adjusted markup distri-

bution (the least competitive insurers) who are also in the top of the Net swap durationit

distribution (the better hedged against flattening of the yield curve) cut their markup

by about 2 percent in response to a flattening of the yield curve (a one standard devia-

tion decrease in 10Y-3M Treasury spreadt). In contrast, those insurers at the bottom of the

Net swap durationit and the top of the AS-adjusted markup distributions do not signifi-

cantly cut their markup (0.04 percent).
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8 The effect of bond market shocks on adverse selection

For the remainder of the paper, we return to our model in Section 2 to derive another

testable hypothesis about the relationship between shocks originating from the corporate

bond market and adverse selection in the annuity market. It is well-known that higher

annuity prices are associated with more severe adverse selection (Rothschild & Stiglitz

1976). Using our model, we can decompose the effect of a change in the supply of the

long-term bond, z = 1− ζ + ζE
(

1
R2

)
, on the equilibrium annuity price into a risk man-

agement effect and an adverse selection effect:

∂q∗

∂z
=

1
R1

∫ α
α α2a (α, q∗) g (α) dα∫ α
α a (α, q∗) g (α) dα︸ ︷︷ ︸

Risk management effect

+
∂q∗

∂z

∫ α
α −e (α, q∗)

[
1−

α
R1

(1+αz)
q∗

]
a (α, q∗) g (α) dα∫ α

α a (α, q∗) g (α) dα︸ ︷︷ ︸
Adverse selection effect

, (10)

where e (α, q∗) is the price elasticity of annuity demand: e (α, q∗) = ∂a(α,q∗)
∂q∗

q∗

a(α,q∗) . Note

that each component of ∂q∗
∂z represents the average marginal effect of IRM on annuity

price because each component is normalized by the total amount of annuity supplied.

A marginal increase in IRM raises the equilibrium annuity price because the insurer

must finance greater net worth in t = 0. By Theorem 1, we can express the optimal amount

of net worth at t = 0 as a function of z : NW0 (z) = 1
R1

∫ α
α α2

[
z− E

(
1

R2

)]
a (α, q∗) g (α) dα.

It follows that the risk management effect in equation (10) can be written as

Risk management effect =
∂NW0(z)

∂z∫ α
α a (α, q∗) g (α) dα

,

showing that higher net worth for IRM requires insurers to charge a higher equilibrium

annuity price.

Life insurers’ IRM amplifies the effect of adverse selection in the annuity market be-

cause the average survival probability of individuals purchasing annuities increases as

insurers charge a higher annuity price to finance their net worth. Equation (10) shows

that the main determinant of the adverse selection effect is the price elasticity of annuity
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demand. The adverse selection effect amplifies the price increase if demand is more elastic

for agents with lower survival probability α : −e (α′, q∗) > −e (α′′, q∗) when α′ < α′′. This

is because the insurer would lose more agents of high mortality risk than those with lower

risk when price increases, which worsens the adverse selection problem and precipitates

further increases in price. This phenomenon is often referred to as a death spiral. To see

this, first note that among agents purchasing annuities (all α such that a (α, q∗) > 0), there

exists a α̃ such that q∗ < α
R1

(1 + αz) for any α > α̃ and q∗ > α
R1

(1 + αz) for any α < α̃.15

Next, notice that α
R1

(1 + αz) corresponds to the full information actuarially fair price when

the constraint on the supply of long-term bonds is binding. This means insurers make a

profit off of mortality types α < α̃, which equates to the loss from types with α > α̃ due

to competition. If demand is more elastic for agents with low α, then insurers lose more

agents with mortality type α < α̃ than mortality type α > α̃ for an increase in annuity

price. This creates a net loss, so the insurer must further raise prices to compensate for

more severe adverse selection. This theoretical result establishes a direct link between the

supply-side and demand-side frictions, connected by the IRM channel.

8.1 Regression results

The above discussion suggests that corporate bond market shocks may have a direct

effect on adverse selection. We look for evidence of this effect by exploiting differences

in life insurers’ pricing of SPIA with different types of “period certain” guarantees and

by measuring the relative change in AS pricing for these products. Note that individuals

choosing a life annuity with 10 or 20 year guarantees think they are at a higher risk of

dying within the next 10 or 20 years (Finkelstein & Poterba 2004, 2006).

We measure AS pricing as the difference between the total annuity markup and the

AS-adjusted markup as follows:

AS pricingijt =
Pijt(n, S, M)

VGeneral
jt (n, S, M, r = HQM)

−
Pijt(n, S, M)

VBasic
jt (n, S, M, r = HQM)

.

15Due to competition,
∫ α

α

(
1−

α
R1

(1+αz)
q∗

)
a (α, q∗) g (α) dα = 0, which implies the existence of α̃.
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We then test the hypothesis that AS pricingijt for annuity contracts with longer guarantee

periods increase more when regulatory reserve requirements increase in a difference-in-

differences framework. In this test, the first difference is between annuity contracts i

offered by insurer j with a long guarantee period and annuity contracts −i offered by

the same insurer with no guarantee period. The second difference is between periods in

which reserve requirements are more binding and periods in which reserve requirements

are less binding. We implement our test in a linear regression framework as follows:

AS pricingijt =αi
1 + α

j
2 + β1Baa-Aaa spreadt + β210 HQM spreadt

+ β310yr guarantee period + β420yr guarantee period

+ β510yr guarantee period× Reserve Ratioijt

+ β620yr guarantee period× Reserve Ratioijt

+ β7Reserve Ratioijt + z′itγ + εijt , (11)

where 10yr guarantee period and 20yr guarantee period are binary variables indicating the

length of guarantee period. The coefficients β5 and β6 on the interaction terms are mea-

sured relative to the effect on SPIA without guarantee period, which is the third type

of life annuity contract in our sample and is omitted from this regression. As with our

main specification in Section 6, we focus on within-insurer variation using insurer fixed

effects and we condition our test on Baa-Aaa spreadt and the average cost of funding of

the insurer proxied with 10 HQM spreadt. The vector z′it includes other insurer-level time

varying financial variables, such as insurer size and leverage.

Table 4 summarizes the results of regression (11). The coefficients in Column 1 show

that an exogenous increase in statutory reserve requirement disproportionately increases

the AS pricing in life annuities with 10 and 20 year guarantees relative to life annuities

without guarantees. For example, a standard deviation increase in the reserve ratio de-

creases the AS pricing of life annuities without a guarantee period by 0.84 percentage

points. In contrast the AS pricing of life annuities with 10 and 20 year guarantees increase

by 0.5 and 0.6 percentage points, respectively, as a response to the same shock. We con-

tinue to report two-way insurer and date clustered robust standard errors. The results
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in Column 2 are broadly similar when the same specification is estimated on a shorter

sample period with time-varying insurer-level financial controls. Because individuals

choosing life annuities with period certain guarantees think they are at a higher risk of

dying within the next few years, this implies that changes in corporate bond market con-

ditions have a direct effect on adverse selection in annuity markets, which is reflected, at

least partly, in annuity prices.

Table 4: The effect of corporate bond market shocks on adverse selection The unit
of observation is a life insurer-product-year. The dependent variable Adverse selection
pricingijt is the difference between the markup computed using the general population
mortality table and the corresponding markup computed using the annuitant pool mor-
tality table for annuity j sold by insurer i in year t. Two-way insurer and date cluster
robust standard errors are reported in parentheses in columns (1) and (2), respectively.
*** p < 0.01; ** p<0.05; * p<0.1.

Dep. variable: AS pricingijt
(1) (2)

10yr Guarantee×Reserve Ratioijt 24.04∗∗∗ 23.13∗∗∗

(3.50) (3.75)
20yr Guarantee×Reserve Ratioijt 26.19∗∗∗ 25.99∗∗∗

(3.90) (4.32)
Reserve Ratioijt -15.18∗∗∗ -14.38∗∗∗

(2.76) (2.98)
10yr Guarantee -28.67∗∗∗ -27.72∗∗∗

(3.56) (3.78)
20yr Guarantee -34.09∗∗∗ -33.83∗∗∗

(3.98) (4.36)
Baa-Aaa spreadt 0.64∗∗∗ 0.71∗∗∗

(0.23) (0.22)
10 HQM spreadt -0.79∗∗∗ -0.82∗∗∗

(0.16) (0.16)
Leverage ratioit -0.01

(0.01)
Log total assetsit 0.56∗∗

(0.25)
Insurer FE Y Y
Observations 111,065 99,737
Adjusted R2 0.68 0.68

40



9 Conclusion

In this paper, we show that almost half of the notoriously high life annuity price

markups cannot be explained by adverse selection in annuity markets. We develop an

algorithm for annuity valuation to decompose the contribution of demand- and supply-

side frictions in annuity markups and provide a novel identification that exploits bond

market shocks and the U.S. insurance regulatory framework. We show theoretically and

empirically that life insurers’ interest rate risk management drives the adverse selection-

adjusted annuity price markup. We also identify a relationship between shocks that origi-

nate in the corporate bond market and adverse selection in the annuity market.

This paper bridges the gap between the economic literature on adverse selection in

insurance markets and the finance literature on financial institutions’ risk management.

We hope our findings will motivate researchers to revisit important questions in public fi-

nance. For example, a robust result in the public finance literature is that social insurance

crowds out private insurance—e.g., Peltzman (1973), Cutler & Gruber (1996), and Hos-

seini (2015). This result holds even when there are informational asymmetries in insur-

ance and labor markets, as contracts can be designed to overcome this friction (Golosov

& Tsyvinski 2007). It is unclear if this seminal result holds when considering the problem

of life insurers managing interest rate risk. Moreover, studying life insurers’ interest risk

management may also shed light on important puzzles surrounding the shrinking US

long-term care insurance market in the “low-for-long” interest rate environment—e.g.,

Ameriks, Briggs, Caplin, Shapiro, Tonetti et al. (2016), Braun, Kopecky & Koreshkova

(2019).
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A Theoretical results and proofs

Proof of Theorem 1: By Assumption 1, insurers must remain solvent to be able to sell an-

nuities. Thus, insurers must engage in IRM so that NW1 (R2) ≥ 0 for any R2. The optimal

IRM strategy comprises of an optimal asset portfolio and an optimal capital structure,

which can be derived following the arguments presented in Section 2.2.2.

Finally, we will argue that the optimal IRM is also unique in a competitive equilib-

rium. To do this, it is sufficient to show that (5) pins down the unique demand for b1 for

any q and l2. If b1 (l2) < 1
R1

[∫ α
α α (1 + α) a (α, q) g (α) dα− Rl l2

]
, then there exists R̂2 such

that NW1 (R2) < 0 when R2 ∈
[
1, R̂2

]
: The insurer becomes insolvent when R2 is suffi-

ciently small. On the other hand, if b1 (l2) > 1
R1

[∫ α
α α (1 + α) a (α, q) g (α) dα− Rl l2

]
, then

NW1 (1) > 0 : The insurer has strictly positive net worth even when R2 is at its lowest

level. This implies that the insurer can lower q and buy less b1 and still perform IRM. This

proves uniqueness.

Lemma 1 Under Bertrand competition, no insurer earns a strictly positive profit and at least two

insurers implement the optimal IRM strategy.

Proof The first part of Lemma 1 follows from standard Bertrand competition argument.

To see why the equilibrium features at least two insurers managing interest rate risk, sup-

pose that instead none manages interest rate risk according to the strategy in Theorem 1.

In this case, Assumption 1 implies that one insurer can earn strictly positive profit by

choosing a price q and implement the hedging strategy in Theorem 1, which is a contra-

diction.

Proof of Theorem 2: Rewrite

qAF
∫ α

α
a
(

α, qAF
)

g (α) dα =
1

R1

∫ α

α
α

[
1 + αE

(
1

R2

)]
a
(

α, qAF
)

g (α) dα .

as ∫ α

α

[
qAF − qCI (α)

]
a
(

α, qAF
)

g (α) dα = 0.
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There exists α∗ ∈ (α, α) such that a
(
α∗, qAF) > 0, and qAF > qCI (α) for any α < α∗ and

qAF < qCI (α) for any α > α∗. This yields

0 =
∫ α∗

α

[
qAF − qCI (α)

]
a
(

α, qAF
)

g (α) dα +
∫ α

α∗

[
qAF − qCI (α)

]
a
(

α, qAF
)

g (α) dα

< a
(

α∗, qAF
) ∫ α

α

[
qAF − qCI (α)

]
g (α) dα .

The result follows as a
(
α∗, qAF) > 0.

Proof of Theorem 3: First, we show that there exists a q∗ = min {q|V (q, z) = 0} for any

z. By Assumption 1, when q = α
R1

(1 + εα) , then V (q, z) > 0. Also, when q = 0, then

V (q, z) < 0. Since V (q, z) is continuous in q, the intermediate value theorem implies that

there exists q such that V (q, z) = 0. Therefore, the set {q|V (q, z) = 0} is non-empty. Also,

{q|V (q, z) = 0} is closed, because {0} is closed and V is continuous in q so V−1 ({0} , z)

is closed. Furthermore, {q|V (q, z) = 0} is bounded below by zero. Hence, a minimum

for {q|V (q, z) = 0} exists. Next, through implicit differentiation,

∂q∗

∂z
=

∫ α
α

α2

R1
a (α, q∗) g (α) dα

∂V(q∗,z)
∂q∗

.

Immediately, notice the numerator is strictly positive. Suppose the denominator, ∂V(q∗,z)
∂q∗ ,

is strictly negative. Then, this implies an insurer can deviate by lowering the price to

capture the whole market and earn strictly positive profits. However, this contradicts the

fact that q∗ = min {q|V (q, z) = 0}.

B Additional details about variable construction

B.1 Mortality assumption

[To be completed]
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B.2 Interest rate derivatives

We proxy for the duration of each individual swap contract by assuming that the du-

ration of the hypothetical zero coupon fixed rate bond is 0.75× the residual maturity of

the contract and the the interest rate reset on the floating leg of the swap occurs every

3 months. The factor 0.75 is a commonly used ruled of thumb when the actual swap

curve is unavailable. Although it is quite crude, this assumption is reasonable to study

the variation in average swap duration across insurers in our setting. Assuming that

interest rate reset on the floating leg of the swap occurs every 3 months is consistent

with the widely used 3-month LIBOR benchmark among life insurers. It follows that

that the duration of a fixed-for-float swap is given by Swap durationReceive Fixed
it =

0.75×Contract residual maturity− 1/4× 1/2. Similarly, we calculate the swap duration

of individual float-for-fixed swap duration as Swap durationReceive Float
it = −0.75 ×

Contract residual maturity + 1/4× 1/2.

We then multiply each individual swap contract duration by their respective notional

amount and divide this number by the duration of a reference 10 year fixed-for-float swap

contract, which is calculated as 0.75 × 10 − 1/4 × 1/2. Taking the average over each

individual life insurer’s swap portfolio in each year yields how much the insurer buy

of the reference 10 year fixed-for-float swap. Finally, we divide by the insurers’ total

general account asset to obtain the amount of duration added by the swaps as a fraction

of the insurer asset portfolio. This ratio is a measure of life insurers’ interest rate risk

management. A value of zero indicates that the insurer is not adding positive or negative

duration to its portfolio using swaps.
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