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Abstract This article uses satellite data to estimate the effectiveness of government

protection on forested land across the globe over 2000-2018. Since deforestation is

a significant contributor to precipitous declines in biodiversity, spillover of zoonotic

viruses and climate change, measuring and analysing the effectiveness of protection is

important for the future of conservation. It uses a regression discontinuity design at

the boundaries of protected forest to overcome the fact that protection is not randomly

assigned. It finds that many countries lack effective protection, and that effectiveness

is strongly related to the quality of institutions and negatively related to economic

development.
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Two hundred years of dramatic economic development and population growth has

established a dichotomy in our interaction with the natural world: the capability to

eradicate most biodiversity from the planet and to protect large swathes of it through

legislation enforced by governments. Thus far our interaction has focused on the first

capability, where extensive deforestation has contributed to both precipitous declines in

animal populations and a rapidly warming climate (Brondizio et al. 2019). According to

numerous scientific institutions such as the UN’s IPCC and IPBES, it is a critical time

in history to prevent an irreversible collapse in biodiversity and mitigate the potentially

catastrophic effects of climate change. Moreover, deforestation plays a key role in the

spillover of zoonotic diseases, seen currently in the global pandemic of COVID-19.1 These

three crises will have unknown effects on the global economy and require substantial
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deviations from business-as-usual policies (see Dı́az et al. 2019). Healthy forests can serve

a key role in mitigating rising greenhouse gas emissions, through their ability to store

carbon, and halting the deterioration of biodiversity. Our ability to prevent unsustainable

deforestation relies on governments providing protection on forested land from being

cleared, yet little is known about its effectiveness.2

Accordingly, it is very important to understand whether giving forest protection is

effective for conservation (see e.g. Andam et al. 2008). Policymakers require credible

information on how economic policies, such as restrictions on the use of particular tracts

of land, affect ecosystems. Given the vast diversity of economic and political contexts

across the world, it is just as important to ascertain whether some countries are better

at enforcing environmental protection than others and why that is the case. This will aid

conservation practitioners in understanding where existing policies are failing, and where

to focus the very limited resources that are available for environmental conservation at

an international level. It will also lead to a greater understanding on what drives effective

environmental protection and how it can be improved in the future.

These questions have been difficult for researchers to answer due to the lack of com-

prehensive data on global deforestation and the fact that protection is never assigned

randomly. The lack of global data is the reason that most prior studies on this topic

are restricted to specific countries or regions (e.g. Carranza et al. 2014, Pfaff et al. 2014,

and Andam et al. 2008). Governments also do not assign protection randomly, as they

are more likely to protect land that has less economic benefits to its logging or clearing

(e.g. rough terrain, poor soil for agriculture, or more remote areas). Forest is also more

likely to be protected when it provides significant economic returns in its natural state,

such as natural beauty or biodiversity leading to ecotourism. In both cases, it would be

unclear whether it is the government protection or these other features of the forest that

reduce the incidence of deforestation in those areas. Because of the endogeneity arising

from omitted covariates that are correlated with protection, it is inappropriate to esti-

mate the effect of protection by simply comparing deforestation rates inside and outside

of protected areas. Since the direction of the bias is likely to be negative there will be

overestimation of the effectiveness of government protection on deforestation rates.

This article seeks to overcome both problems. It utilises high resolution satellite data

on deforestation that was developed in Hansen et al. (2013) and extended to have global

2The United Nations Convention on Biological Diversity (2020) recently proposed to have at least

30% of the planet under protection before 2030. This is a dramatic increase over the current protection

rate of roughly 15% of land and 7% of oceans, and is motivated by the extreme urgency of conserving

remaining biodiversity and the acknowledgement that protection under the law is one of the few means

available to achieve this.
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coverage from 2000 to 2018. Furthermore, it develops a regression discontinuity design

around the borders of protected forest to estimate the causal effect of government pro-

tection on deforestation, whereas the existing literature relies on matching methods to

try and reduce the OLS bias. By combining high resolution global data with an appro-

priate method of estimating the causal effects of government protection, the article is

able to explore the heterogeneity of this effect across several dimensions. In particular,

exploiting the heterogeneity in the effectiveness of protection by country allows for the

consideration of the factors that drive certain countries having more effective protection

than others.

To the author’s knowledge, the use of regression discontinuity to estimate the causal

effect of protection is new to the literature, as is obtaining estimates of effectiveness by

country and using that variation to explain what drives the effectiveness of protection.

Bruner et al. (2001) consider park effectiveness at a micro-level by looking at the man-

agement practices of specific protected areas in tropical regions, and analysing which

features of the parks lead to more successful conservation. Heino et al. (2015) uses an

earlier version of the same Hansen et al. (2013) dataset between 2000 and 2012, and find

that effectiveness is positively correlated with GDP and the proportion of agricultural

land. They do not attempt to remove the endogeneity in the regression, leading to sig-

nificant bias in the estimates of effectiveness which limit the ability to analyse variation

in the measure.

The results show significant heterogeneity between regions and countries in their ability

to enforce environmental protections over the last two decades, as well as the scale of

the challenge ahead to ensure the effective protection of remaining forest area. Many

countries lack effective protection, including several that possess significant tracts of

standing forest that house vast amounts of the planet’s remaining biodiversity. Clearly,

it is not only the amount of forest that is protected but also the quality of the protection

that will determine the future of biodiversity on our planet. International treaties, such as

the Convention on Biological Diversity, need to pursue targets that improve both aspects

of environmental protection.

Analysing the heterogeneity exhibited between countries reveals that it is the quality

of the country’s institutions that are the main driver of effective environmental protec-

tion, in particular the prevalence of corruption and the raw of law within the country.

Indeed, the results show a clear link between the struggle against corruption across the

world and the need for better environmental protection. The level of economic develop-

ment is positively correlated with effectiveness as well, but only because of its positive

correlation with the quality of institutions. When corruption perceptions are held con-

stant, for instance, the relationship between the level of economic development and the
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effectiveness of environmental protection is negative and significant. It is likely due to

the fact that economic growth increases the capacity for agents within a country to fell

trees and extract economic returns from the cleared land. This suggests that countries

seeking to develop without improving their political and civil institutions will likely lead

to very adverse environmental consequences for a future that can hardly spare it.

The effectiveness of protection is also considered by source of governance and the

type of protection given to the area. The results show that governance by individuals

or non-profit organisations is much less effective than governance by the state or local

communities. Forest with strict protections are generally more effective than ones with

looser restrictions, but a notable exception is when the country has both high corruption

and GDP per capita. In that context, forest with strict protections have an average effec-

tiveness of almost zero, which is alarming considering it represents 38% of the remaining

protected forest in those countries (including Russia, Venezuela, Argentina, and Mexico).

The article is structured as follows: Section 2 outlines the econometric methodology

and the development of the dataset used for the results. Section 3 presents descriptive

statistics, regression discontinuity estimates of the regional and country-level effective-

ness of environmental protection, and an analysis into the drivers of country-level effec-

tiveness. Section 4 presents results by source of governance and management category,

while Section 5 concludes. An Appendix presents additional results on the validity of the

econometric approach and more detailed country-level results.

1. ESTIMATING THE EFFECTIVENESS OF ENVIRONMENTAL PROTECTION

1.1. Previous Approaches to Estimating Effectiveness

For the purposes of this article, the effectiveness of environmental protection is defined

as the causal effect that providing legal protection has on the probability of deforestation

over an area of forested land. A naive way of estimating this effect by region is the

following equation:

Di = αr + βrPi + εi (1.1)

where Di is a binary variable indicating whether the forested plot of land i = 1, 2, ..., N

was deforested or cleared over a set sample period, and Pi is a dummy variable indicating

whether i is inside a protected area. Region-specific intercept and slope parameters αr

and βr can be estimated by running OLS on the subsample of all N that belong to r. In

this case, the OLS estimate of the effect of protection, βr, is simply the difference between

deforestation rates inside protected areas and deforestation rates outside protected areas

or E(Di|Pi = 1)−E(Di|Pi = 0) for that region. Heino et al. (2015) estimates (1.1) using
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a global dataset between 2000 and 2012, and after considering deforestation outside and

inside protected areas find that it is positively correlated with GDP and the proportion

of agricultural land.

The problem with this approach is that Pi is likely to be strongly correlated with

εi, resulting in severe endogeneity bias. εi contains everything that affects deforestation

other than protection, such as the slope and elevation of the terrain (which will affect

the cost of clearing the land), accessibility (e.g. whether the plot of land is near a road or

other types of infrastructure), type of tree (which will determine the market price for the

timber), soil type (which will determine its attractiveness for agriculture), and natural

beauty or biodiversity (which will affect the economic benefits of conserving the forest).

Many of these factors are likely to be correlated with Pi, as protection is never randomly

assigned by governments. They are more likely to give protected status to forest that

is especially beautiful or contains high levels of biodiversity, and are less likely to give

protection to forest that has large economic benefits to its clearing (e.g. located close to

human settlements or contains rich flat soil that is suited for agriculture). The result is

a potentially severe degree of bias in the negative direction.

One method to try and remove the bias is to include all relevant omitted variables into

(1.1), but that is very difficult given the limitations of available data and makes strong

linearity assumptions. Another method, which is very popular in the existing literature,

is to use sample matching. There are several approaches to matching, such as nearest

neighbour matching and propensity score matching, but the basic idea is to compare the

deforestation rate between pairs of protected and unprotected forest that have similar

values of omitted yet observed variables (such as slope and elevation). By matching on

these relevant and observed variables, under certain assumptions their omission is unable

to cause bias in the estimation of βr (e.g. see Stuart 2010).

The issue with matching methods in this application is that there are many omitted

covariates inside εi that are not observable. If there is selection on these unobservable

covariates, matching the sample moments to the omitted covariates that are observable

will not remove the bias nor even necessarily improve it. Even if the bias is reduced by

matching on the observable omitted covariates, it could still be severe.

Despite this issue, estimating βr as an average treatment effect of matched observations

has been popular in the existing literature as a way to reduce the bias that is present

in (1.1). The strength of the matching method will depend on the number of omitted

covariates that are matched, which vary by paper. Andam et al. (2008) attempt to match

samples on various terrain features and then compare deforestation inside protected areas

to that outside. They apply this method to Costa Rica’s protected-area system between
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1960 and 1997 and conclude that around 10% of the protected areas would have been

deforested over this period if protection status was not granted.

Carranza et al. (2014) applies matching methods to the effect of government protection

in the Brazilian Cerrado region, and find that while protection does have a meaningful

effect on deforestation rates, the matching method implies a smaller effect than the naive

approach in (1.1). Pfaff et al. (2014) also consider the effectiveness of protection in part

of the Amazon using matching methods. They find that the IUCN management category

of the protected area impacts on effectiveness, and in areas with higher deforestation

threats allowing for some sustainable collection of forest resources can actually improve

effectiveness in these areas. Nelson and Chomitz (2011) use fires as a proxy for land

clearing and matching methods to determine the effectiveness of protected areas. They

consider the three continents with tropical forest, and find that while strict protected

areas are effective they are not as effective as multiple use protected areas.

Lastly, Laurance et al. (2012) consider 60 protected areas in tropical regions and ex-

amine their biodiversity health over decades without using matching methods. They find

that about half of all reserves have been effective in conserving biodiversity within their

regions, but the rest featured an alarming erosion of biodiversity. Some of the factors

that damaged the reserve health include logging, fires, hunting, and human populations

within the reserve.

In summary, the existing literature relies on methods that require strong assumptions

on the extent to which endogeneity is controlled for in observed omitted covariates.

Matching methods may indeed reduce the bias from the naive approach in (1.1), but it

remains unclear how close to a true causal effect they provide given the many omitted

covariates that are not observable. Accordingly, this article will propose a new approach.

1.2. Regression Discontinuity at the Boundaries

The method this article will pursue is a regression discontinuity design that focuses on the

boundaries of the protected areas. The argument is that while protected and unprotected

forest vary in meaningful ways (some of which are unobservable), if there is forested land

either side of a protected area boundary then that land is not expected to meaningfully

vary around the boundary. Another way of phrasing the argument is that the treatment

(protection) is as good as random for forested land just on either side of the boundary.

Estimating the effect of protection on deforestation rates will now be:

Di∈B = αr + βrPi∈B + εi∈B (1.2)

where B is the set of all points inside N which are just on either side of the boundary of
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a protected area. Accordingly, any bias in the estimation of βr will arise from correlation

between εi∈B and Pi∈B , and if treatment is as good as random inside B then there will

not be correlation.

There are two natural objections to this argument. The first is that significant geo-

graphical features might form the boundary of a protected area, like a river or a major

highway, and that forested land on either side of this feature may meaningfully vary (in

areas such as accessibility). To address this, the set B will only contain observations

adjacent to boundaries that contain forested land on both sides of the boundary. For

example, if a national park is bordered by a river on its southern edge, no observations

from that part of the park will be included in B as one side of the boundary contains a

river.

Another objection is that the boundaries of protected areas might be set at the start of

an incline, such as a hill or mountain, where slope and elevation changes significantly at

the boundary. To address this, data will be collected for slope and elevation to ensure that

they do not change discontinuously at the boundaries of the protected areas. It is also

possible to augment (1.2) with these additional covariates, either linearly or nonlinearly,

to ensure that any variation does not meaningfully change the estimate of βr.

Note that equation (1.2) is specifically the local randomization approach to regression

discontinuity design, as it simply compares deforestation rates just inside and just out-

side of the cutoff of the running variable (in this case distance from the boundary of a

protected area). The canonical Sharp RD design (e.g. local polynomial approaches) as

in Cattaneo et al. (2020) or Lee (2008) is not applicable here because it relies on the

running variable to be continuous. In the dataset used by this article, the distance to a

protected area boundary is not continuous as the data is processed from raster images

at 500x500m blocks. The argument that protection is as good as randomly assigned on

either side of the boundary becomes weaker when the forest is much further than 500m,

even one or two kilometres. One common disadvantage of the local randomization ap-

proach is that it requires a great deal of observations just on either side of the cutoff,

but in this application it is not an issue.

The only previous study in this literature that uses a related methodology is Bruner

et al. (2001), who compare deforestation rates inside national parks with forest that lie

within 10km of its boundary. This is significantly different approach as they include all

forested land inside national parks, and also extend to 10km beyond the boundary. The

study focuses on tropical biodiversity, and includes 93 protected areas in 22 countries.

They find that the majority of parks are successful at stopping land clearing, and that

effectiveness correlates with certain features of each park (like density of guards, com-

pensating local communities, boundary demarcation, etc.). Due to data limitations they
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did not consider whether certain countries were more effective in enforcing national parks

than others and why.

βr is the change in deforestation rates just inside the boundaries of protected areas, and

will be negative if protection is effective at all. It is not an estimate of overall effectiveness,

as its magnitude is relative to overall deforestation in the region.3 Accordingly, we also

report Êr = β̂r/Ur where Ur is the overall deforestation rate of unprotected forest in

that region. Êr is defined as the actual estimate of the effectiveness of protection in that

region, and is comparable across regions.

Lastly, a natural extension of (1.2) is to estimate the effectiveness of environmental

protection by country:

Di∈B = αc + βcPi∈B + εi∈B (1.3)

where c is the country that i is found within. After estimating βc it is possible to construct

Êc = β̂c/Uc. Of course, (1.3) relies on a dataset that is large enough that there remains

many observations within each country to accurately estimate βc.

1.3. Developing the Dataset

Estimating the effectiveness of environmental protection requires global spatial data that

contains information on where the forested land is located at the beginning of the sample

period, which of that land was cleared over the sample period, which of that land is under

some form of government protection, and any other terrain features that are available.

The results in this article rely first on the work of Hansen et al. (2013), who provide

spatial information on tree coverage in the year 2000, the year in which the tree cover

experienced a ‘stand-replacement disturbance’ (i.e. a change from forest to non-forest

state) over the sample period (if they did), and the identification of bodies of water. The

data is provided in the form of raster images with global coverage from 2000 to 2018 with a

resolution of 1 arc-second per pixel (approximately 30 by 30 meters at the equator). Next,

the World Database of Protected Areas, WDPA (2019), provides vector boundaries of a

very large number of protected land areas across the globe. It also contains information on

the IUCN management category of the protected area and the source of governance over

the area (e.g. government, individuals, non-profit organizations, or local communities).

3For example, if in region A deforestation was 20% just outside protected areas and 10% just inside

protected areas then β̂r=A = −0.1. In region B, if deforestation was 10% just outside protected areas

and 5% just inside protected areas then β̂r=B = −0.05. In both regions protection caused a halving of

deforestation rates, and it is inappropriate to conclude that region A has more effective environmental

projection because β̂r=B > β̂r=A.



Institutions and the Effectiveness of Environmental Protection 9

Measures of other terrain features such as slope and ruggedness were obtained from Nunn

and Puga (2012).

For the sake of computational practicality, the Hansen et al. (2013) data was coars-

ened to a spatial resolution of 500m by 500m per pixel which was held constant across

latitudes.4 Next, a series of convolutions are run to identify forest pixels that meet the

following three criteria: (i) the tree coverage of the pixel is estimated by the Hansen et al.

(2013) algorithm to be at least 50% (to help mitigate noise in the data), (ii) are adjacent

to the boundary of a protected area (either inside the area or outside the area), and (iii)

the adjacent protected area contains forest on either side of the boundary. While only

pixels that are adjacent to a protected area boundary can be used to estimate (1.2) and

(1.3), all forested pixels are included to estimate (1.1).

For all forested pixels, the following features were recorded: distance to the nearest

protected area boundary, proportion of surrounding pixels within 10km that are also

forest (‘Tree Proximity’), proportion of surrounding pixels within 10km that are water

(‘Water Proximity’), whether the pixel is inside a protected area or not, and for the pixels

that are protected the source of governance of the area as well as the IUCN management

category. Lastly, the country that has jurisdiction over the pixel is also determined.

Observations are split into the following six regions: North America (defined as every

country north of Panama), South America, Africa, Asia (including Russia), Southeast

Asia, and finally Europe & Oceania.5 A number of country-level variables were also

collected for ex-post analysis of the heterogeneity in effectiveness across countries. This

includes the Corruption Perceptions Index (Transparency International 2018), indices

on the Rule of Law and Enforcement of Property Rights (Vasquez and Porcnik 2019),

annual tourists per capita, GDP per capita in USD, government consumption per capita,

the value of annual foreign investment over GDP, the value of tourism over GDP (all

from The World Bank 2019b), and finally a coarse indicator on whether the government

follows a left-wing, centrist, or right-wing political ideology (The World Bank 2019a).

The outcome is roughly 103 million observations of forested pixels across the globe that

are either outside or inside a protected area. Of that 103 million observations roughly

3.7 million lie directly adjacent to the boundary of a protected area that also contains

forest on the other side. OLS estimates of effectiveness as in (1.1) will use the full dataset,

while the regression discontinuity (‘RD’) estimates as in (1.2) and (1.3) use the 3.7 million

subsample.

4A finer resolution of 250m by 250m was also tested and provided very similar results.
5Europe and Oceania were combined to keep the total number of regions to six, and because their

results were similar when disaggregated.
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1.4. Visual Illustration

In order to compare the OLS and RD approaches to identifying the effect of forest protec-

tion on deforestation rates, consider a visual example in Figure 1. The figure illustrates,

from a location in Bolivia and in Australia, the experience of the forest from 2000 to

2018. The presence of forest cover in the year 2000 which remained by the end of 2018

is measured as a gradient from black pixels (meaning no tree coverage) to white pixels

(meaning full tree coverage). Red pixels indicate existent forest in the year 2000 that

transitioned to a non-forest state sometime between then and the end of 2018. Yellow

lines are sealed roads, while the green shading overlay represents pixels that are under

government protection.

Figure 1: Examples of Deforestation and Estimation Strategies

(a) Rio Grande Valles Crucenos, Bolivia (b) Tidbinbilla and Namadgi, Australia

In subfigure (a) of Figure 1, the forest near the road experiences significant defor-

estation. Further west there is much less deforestation, either inside or outside of the

protected area. The intuitive interpretation is that deforestation here is driven by prox-

imity to the road, and not whether the forest is protected or not. However, using this

data OLS would estimate a negative β, indicating the strong effectiveness of protection,

as almost all of the deforestation occurs outside the protected area. RD, which only uses

observations on either side of the boundary of the protected area, would produce a β

around 0, indicating that these observations provide no evidence that protection status

is effective (which is reasonable).

In subfigure (b) of Figure 1, the forest outside of the protected areas experienced heavy

deforestation over this period, with the forest inside the protected area experiencing

very little. While much of the deforestation was near the road, as in subfigure (a), the
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deforestation extends to the boundary of the protected area and then stops. This suggests

that environmental protection is very effective here, and both OLS and RD regression

would produce a highly negative β using this data (although the magnitude may differ

meaningfully between estimators).

2. EFFECTIVENESS OF PROTECTION BY REGION AND COUNTRY

2.1. Descriptive Statistics

Before discussing the results of the regression discontinuity approach to estimating the

effect of environmental protection on deforestation rates, it is worthwhile to consider

descriptive statistics by region. Table 1 outlines the estimated deforestation rates from

2000-2018 using the Hansen et al. (2013) satellite data, the extent of protection over

forests, the density of forests (e.g. the average proportion of trees within 10km of each

forest pixel), the average water proximity within 10km of forest pixels (whether they be

rivers, oceans, or lakes), and also the slope and terrain ruggedness of the forests. The

latter two are split according to whether they are inside or outside protected areas, as

it will give an indication whether (1.1) is likely to produce bias due to the exclusion of

these two variables.

The first three rows report deforestation rates over these two decades, where S.E. Asia

had the highest total deforestation rate of 14% chiefly due to heavy deforestation in

Indonesia and Malaysia. This is followed by North America at 12%, and deforestation

rates under 10% in all the remaining regions. As expected, all regions featured lower

deforestation rates in protected forest relative to unprotected forest. Deforestation in

protected areas is half that of unprotected areas in Europe and Oceania, and a third

of unprotected areas in S.E. Asia. South America had the greatest divergence, where

deforestation in protected areas was 80% less than that in unprotected areas, and also

had the lowest deforestation rate inside protected areas at 2.2%. Other regions had more

similar deforestation rates between categories. In Asia deforestation was 24% lower in

protected areas, while in Africa it was 36% less. Note that due to natural events such

as wildfires, as well as any false positives in the detection algorithm of Hansen et al.

(2013), we would not expect deforestation rates inside protected areas to be 0% even

with perfect governance. A notable example of this is the 2019-20 bushfire season in

Australia, which is not covered in the sample period of the data, where fires driven by

drought and unprecedented heat burnt around 10 million hectares of land, including large

areas of protected forest, without any (direct) human cause.

Turning to the proportion of forest pixels that lie within protected areas, only Europe
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Table 1: Descriptive Statistics by Protection Status & Region

Region:
Europe &

Asia S.E. Asia
North

Africa
South

Oceania America America

Deforestation Rate 2000-2018:
Total 9.6% 6.6% 14.0% 12.2% 7.9% 8.4%
Unprotected Forest 11.5% 6.8% 15.6% 12.5% 8.5% 12.2%
Protected Forest 5.6% 5.2% 5.1% 9.8% 5.4% 2.2%

Forest Area (km2) 1.4m 4.6m 3.1m 4.5m 3.9m 8.3m

Protection Rate 32.7% 10.6% 15.7% 13.5% 17.3% 37.9%
Tree Proximity 48.1% 56.9% 78.3% 61.2% 71.9% 82.2%
Water Proximity 3.4% 1.4% 2.3% 4.5% 0.6% 1.0%

Slope:
Unprotected Forest 4.30% 4.94% 3.82% 3.69% 1.34% 1.22%
Protected Forest 6.23% 6.70% 6.12% 5.87% 1.64% 1.17%

Ruggedness (100m):
Unprotected Forest 1.37 1.57 1.41 1.20 0.50 0.45
Protected Forest 2.02 2.17 2.26 1.91 0.61 0.43

Notes: The values reported are the average by region from the Hansen et al. (2013) dataset processed

as 500m x 500m pixels and only includes those areas where the estimated tree coverage is at least

50%. The estimate of forest area in km2 will accordingly vary from other estimates.

& Oceania and South America have protection rates above 20%.6 Accordingly, while S.E.

Asia may have had less deforestation than Europe & Oceania in protected areas, it only

protects roughly 16% of its forest and experienced much higher deforestation rates outside

protected areas over the last two decades. South America had very low deforestation rates

in protected areas, and has the highest protection rate among all the regions at 38%.

However, it does also feature an incredible amount of forested land (mostly in the Amazon

rainforest), significantly more than any other region, and accordingly its deforestation

rate of 8.4% becomes remarkable in that it implies a very large amount of forest was

cleared over these two decades.

The Tree Proximity statistics indicate that South America had the densest forest land

of all the regions, which is expected due to the Amazon, followed by S.E. Asia and

Africa. The Water Proximity statistic reveals that North America had forest pixels with

the most surrounding water of all regions, followed by Europe & Oceania and S.E. Asia.

Finally, the table illustrates that the slope and ruggedness of the terrain significantly

6Note that these percentages may differ notably from other measurements due to different assump-

tions. For instance, this article is looking specifically at the proportion of pixels that the Hansen et al.

(2013) algorithm detected had over 50% of trees present that were protected.
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increases in the protected areas of all regions except South America. Since slope and

ruggedness is likely to affect the desirability of clearing a piece of land, this supports

the notion that protection is not randomly assigned and simply comparing deforestation

rates between unprotected and protected land is not a valid measure of the effectiveness

of environmental protection (as the protected areas are on average found in less desirable

land for clearing).

2.2. Regional RD Results

This section of the article will present the results of estimating (1.2) which allows for

heterogeneity in the effect of environmental protection on deforestation by region. Figure

2 charts average deforestation rates by region and proximity to borders of protected

forest.7 Negative values on the x axis indicates that the land is inside a protected forest,

while positive values indicates that they are outside the protected forest. The value 0 is

the exact boundary for all of the protected areas inside each region. Each dot in the charts

represent the probability of a pixel at that distance having been cleared between 2000-

2018. If there is any enforcement of protected land in that region, then a discontinuous

decrease in the deforestation rate should be observable at the boundary. The charts report

deforestation rates 10km of either side of the boundaries, even though the model in (1.2)

only compares deforestation rates just outside and just inside the boundary.

Deforestation rates in South America and Southeast Asia follow a similar trend along

the proximity to the boundaries of protected areas, albeit from a higher base rate in the

case of Southeast Asia. The deforestation rates decline for land closer to the boundaries,

which is likely due to the forest becoming more remote (further away from roads and

other infrastructure) and rougher as it approaches the protected areas. Then a discon-

tinuous break in deforestation rates occurs just at the boundary, which suggests that

environmental protection does have a causal effect on deforestation. The deforestation

rate then further declines inside the protected areas.

Europe & Oceania possess a very clear discontinuous break in deforestation rates at

the boundary, which is indicative of strong (average) effectiveness of protected areas by

the governments of the region. The fact that deforestation rates actually increases the

further inside protected areas, as it does more strikingly in North America and Asia

as well, may be due to wildfires that are only fought effectively when they approach

the boundaries of protected areas which are closer to infrastructure and human settle-

ments (another possible reason is state logging inside protected forest). In Africa, only

7Note that to be included in this sample the border of the protected area must have forest on either

side of the boundary.
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Figure 2: Deforestation Rates by Region & Proximity to Borders of Protected Forest

.0
3

.0
6

.0
9

.1
2

-10-50510

South America

.0
4

.0
8

.1
2

-10-50510

Africa

.0
4

.0
5

.0
6

.0
7

-10-50510

Asia

.0
5

.1
.1

5
.2

-10-50510

Southeast Asia

.0
5

.1
.1

5

-10-50510

North America

.0
5

.1
.1

5

-10-50510

Europe & Oceania

D
ef

or
es

ta
tio

n 
R

at
e 

20
00

-2
01

8

Distance to border of Protected Forest (KM)

the slightest discontinuous break in deforestation rates can be observed at the boundary.

Interestingly, unlike the other regions of the world, deforestation in Africa increases close

to the boundary, before significantly declining inside the protected areas. This deforesta-
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tion pressure on protected areas in Africa could be due to human settlements around the

edges of the parks there (partly driven by ecotourism), or otherwise governments that

are struggling to enforce the boundaries of its protected areas. Areas deep inside the

protected areas are likely spared due to their remoteness and lack of infrastructure.

Next consider numerical estimates of the effect that environmental protection has

on deforestation rates (i.e. β̂r in (1.1) and (1.2)), which is outlined in Table 2. The

table contains both the regression discontinuity (‘RD’) and OLS estimates of βr and

the corresponding Êr = β̂r/Ur, which is the estimate of overall effectiveness which is

comparable between regions.

Table 2: Estimates of the Effectiveness of Protection by Region

Region:
Europe &

Asia S.E. Asia
North

Africa
South

Oceania America America

RD Estimate of β̂ -0.054 -0.005 -0.038 -0.033 -0.013 -0.026
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

RD Estimate of Ê 0.469 0.069 0.241 0.260 0.150 0.214
(0.005) (0.008) (0.006) (0.005) (0.013) (0.004)

OLS Estimate of β̂ -0.059 -0.015 -0.105 -0.027 -0.031 -0.100
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

OLS Estimate of Ê 0.511 0.226 0.674 0.218 0.368 0.817
(0.002) (0.003) (0.002) (0.002) (0.002) (0.001)

N :
Total 5.5M 18.6M 12.6M 18.0M 15.4M 33.2M
Just Out 380,753 271,610 181,969 526,152 143,830 395,569
Just In 346,726 253,630 193,753 434,871 146,195 435,480

Notes: Robust standard errors are in parenthesis.

The RD estimate of Ê is highest for Europe & Oceania at 47%. The OLS estimate

for the same region is only slightly larger at 51%, which is intuitive as the deforestation

rates were quite flat on either side of the boundary for this particular region in Figure

2. The RD estimate for North America is 26%, which is larger than the OLS estimate

of 22%. This is due to the fact that for the North American region deforestation rates

increased significantly the further inside the protected areas. For the remaining regions,

the OLS estimate of Ê vastly overestimates the effectiveness of protected areas in these

regions. The effectiveness of protection in Asia is just 7% (the OLS estimate is 23%), for
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Southeast Asia 24% (OLS exhibits a severe bias with its estimate at 67%), for Africa only

15% (the OLS estimate at 37%), and finally South America at 21% (the OLS estimate

is 82% which represents severe bias).

Not only do the RD estimates lead to a significantly lower estimated level of effec-

tiveness, it also changes the relative ordering between regions. With the OLS estimates

of Ê, South American protected areas have the highest level of effectiveness, followed

by Southeast Asia, Europe & Oceania, Africa, Asia, and finally North America. Using

RD, Europe & Oceania has the highest level of effectiveness, followed by North America,

Southeast Asia, South America, Africa, and finally Asia. It is unfortunate that the region

with the highest estimated level of effectiveness also has the smallest amount of forest

across all regions.

Standard errors are very small across all regions due to the large sample sizes, which

are listed in the last three rows of Table 2. Total N is the total number of 500m x 500m

forest pixels that are present in the dataset for that region with over 50% of estimated

tree canopy in 2000. Unsurprisingly, South America contains the largest sample at over

33 million observations at this resolution, followed by Asia and North America.8 The OLS

estimates use the total number of observations, which explains why the standard errors

are smaller than for RD. The RD results use the observations that are just inside or just

outside the boundary, and these are listed in the last two rows. There is no systematic

difference between them across regions, as some regions have more observations just inside

the boundary and vice versa for other regions. The number of observations available for

RD depend not only on the total amount of forest in the region, but also the size and

number of protected areas. For instance, even though Asia, Southeast Asia, and Africa

have significantly more forest than Europe & Oceania, the number of observations usable

for the purposes of RD is larger for Europe & Oceania due to its higher protection rate.

The results show that the RD estimates are significantly different from the OLS es-

timates, but that does not necessarily imply that the RD estimates have removed most

of the endogeneity bias in (1.1). The Appendix to this article presents several diagnos-

tic and robustness tests that support the validity of the RD approach. It considers the

average value of omitted and observable covariates around the cutoff, and shows that

any variation does not compromise the RD estimates. It also provides three robustness

checks that change certain definitions or assumptions implicit in this section, such as

the denominator used to construct Êr and using pixels further away from the cutoff to

estimate β̂r (to try and account for any measurement error in both the deforestation rate

and the treatment). The results do not change significantly in either case. In fact, the

8Asia and North America mostly contain boreal forest, not tropical, which means the average level

of biodiversity within the forest will be significantly lower.
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next subsection offers the best evidence that the RD methodology is sound, as it is able

to find meaningful and significant correlations between country-level heterogeneity in the

RD estimate and a range of other country-level variables, whereas alternative estimators

do not.

2.3. Exploring Heterogeneity by Country

This section extends the analysis to explore heterogeneity in the effectiveness of environ-

mental protection by country, found in β̂c of (1.3). It is motivated by the fact that even

within regions there is substantial heterogeneity in effectiveness between countries, and

that it enables the possibility to analyse why some countries have more effective envi-

ronmental protection than others. Due to the number of countries, it is not feasible to

present plots of deforestation rates by proximity to the boundaries of protected areas, as

in Figure 2. Instead, the estimated enforcement level or effectiveness of protected forest

are mapped by country in Figure 3. Tables 12 and 13 of the Appendix also list the exact

estimates for a large number of countries.

Figure 3: Effectiveness of Environmental Protection by Country

Effectiveness:
Negative to 5%
5% to 20%
20% to 50%
50% to 100%
No data

Note: Results are based on the RD estimates of Êc. The Appendix lists the exact results for many countries.

The figure codes the estimates of effectiveness into five categories: first is negative

or nil effectiveness where −1 ≤ Êc < 0.05, which means that protection is completely

ineffective or actually increases the risk of clearing over this period, then low enforcement

which we define as 0.05 ≤ Êc < 0.2, medium enforcement where 0.2 ≤ Êc < 0.5, and

high enforcement where 0.5 ≤ Êc ≤ 1.0. Countries that had fewer than 50,000 available

observations to estimate βc were excluded due to insufficient data.
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The highest level of effectiveness is found in the Oceanic countries of Australia and New

Zealand, Scandinavian countries, the Baltic countries, and South Korea. A number of

countries in Central and Southern America possess a medium level of effectiveness, most

notably Brazil, Mexico, Peru, and Argentina. Many, however, have low or negative levels

of effectiveness including Chile, Bolivia, Colombia, and the politically volatile Venezuela.

Most countries in Central and Eastern Europe have low levels of effectiveness such as

Germany and Poland, while Western Europe has higher levels of effectiveness as in France

and Spain.

Russia has completely ineffective forest protection, while China and India have low

levels of effectiveness. Southeast Asia is a mix of medium and low effectiveness, with

Malaysia having better enforcement of protected areas than Indonesia (which is un-

surprising), Thailand and Vietnam having medium effectiveness, and countries such as

Cambodia and Myanmar with low or negative levels of effectiveness. Other than South

Africa, continental Africa has low or worse levels of effectiveness. There are some more

countries with completely ineffective protection over these two decades, including Iran,

Pakistan, North Korea, the Philippines, and Nepal.

The map illustrates the scope of the challenge to achieve the goal of effective protected

forests around the world. Many of the countries with low levels of effectiveness have vast

stretches of standing forest with abundant biodiversity, such as Indonesia, the Democratic

Republic of the Congo, Bolivia, Colombia, and Russia. The countries with high levels of

effectiveness have comparatively little forest, and one slight exception to this, Australia,

recently lost a significant amount of its biodiversity from bushfires that occurred after the

end of the sample period. The results demonstrate that it is not only the amount of forest

that is inside the network of protected areas, but the effectiveness of that protection that

will determine the future of biodiversity in the coming century. They also show that the

outlook for the future of biodiversity and climate change is poor unless significant work

is done in the countries with low level of effectiveness.

How can the effectiveness of environmental protection be improved in these countries?

The natural first step to answer this question is to understand why some countries have

more effective protection than others. Table 3 collects the Êc from each country that was

mapped in Figure 3 and measures the correlation between them and a number of other

country-level variables, in an attempt to understand what (if anything) drives highly

effective protection. Using the data sources outlined in 1.3, each country-level variable’s

correlation is measured with Êc from RD, the estimates of Êc from OLS and a matching
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method for the sake of comparison,9 the deforestation rate over this period, and finally

the proportion of forest in this dataset that is protected.

The first striking result is that this exercise validates the regression discontinuity ap-

proach. Using the RD estimates it is not difficult to find a number of meaningful cor-

relations between the effectiveness of environmental protection and a range of measures

relating to the institutions and development of the country, while using the OLS or

matched estimates leads to no meaningful correlation with almost any of the variables

(reflecting the great deal of bias that can be found in those estimates).

Table 3: Spearman correlations of Êc with various country-specific variables

Spearman Correlation Êc (RD) Êc (OLS) Êc (Match) Deforest. Rate Prot. %

Corruption Perceptions Index 0.53*** 0.00 0.01 -0.01 0.13
Rule of Law Index 0.51*** 0.00 -0.01 -0.01 0.08
Property Rights Index 0.49*** 0.10 0.10 -0.01 0.01
Logistics Index 0.43*** -0.06 0.01 0.14 0.12

GDP Per Capita (PPPs) 0.42*** -0.05 -0.03 -0.10 0.04
Tourism Per Capita 0.42*** -0.09 -0.12 0.01 0.12
Gov. Cons. Per Capita 0.41*** -0.05 -0.04 -0.11 0.06
Gov. Cons. Over Protected Area 0.27*** -0.33*** -0.26** -0.02 -0.09

Tourism / GDP 0.19* -0.11 -0.05 0.17 0.38***
Deforestation Rate 0.03 0.04 0.10 0.04
Protected Status (%) -0.11 -0.22** -0.16 0.04
Executive Left/Right -0.21* -0.11 -0.02 0.14 0.02

Notes: ***, **, and * denote statistical significance at the 1%, 5%, and 10% level respectively.

The table shows strong correlations between effectiveness and several variables often

loosely defined as part of a country’s ‘institutions’. The corruption perceptions index,

which is larger for less perceived corruption in the country, offers the strongest positive

correlation, closely followed by indexes for the ‘Rule of Law’ and the strength of prop-

erty rights which were developed by Vasquez and Porcnik (2019). Both of these indices

relate to the strength of the government in the country to enforce contracts and more

broadly their own laws, and accordingly it is intuitive that these would be related to the

enforcement or effectiveness of the government providing legal protection against the use

of certain forest land. It is also intuitive for corruption to be strongly correlated with

9For sample matching, a very simple regression-adjusted approach was used where the sample was

being matched against slope, ruggedness, elevation, and tree proximity.
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effectiveness, as it is impossible to maintain the integrity of protected forest boundaries

when the people assigned to protect it may accept bribes.

Other variables with significant positive correlations include the number of tourists per

capita (providing a financial incentive to protect forests), GDP per capita, government

consumption per capita, and government consumption per hectare of protected forest.

The latter two correlations are intuitive as the government having more resources, either

per population or the amount of protected forest they must protect, is likely to lead to

more effective protection. The OLS and Matched estimates, however, have a negative

and significant correlation with government consumption per hectare of protected forest.

This does not make much sense, and suggests that the correlation may be driven by the

bias inherent in these estimates. Lastly, a minor negative correlation was found with a

variable that measures the ideological inclination of the executive branch of government,

which is measured as -1 for left-wing, 0 for centrist, and 1 for right wing.

Figure 4: Effectiveness of Forest Protection and Corruption
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Surprisingly, the effectiveness of environmental protection is not found to be correlated

with the deforestation rate of the country nor the proportion of the forest that has been

protected. It is possible that while governments who decide to protect more of its forest

land are more likely to want the protection to be effective, this is countered with the

fact that the more forest that is protected the harder it is to enforce this protection
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(assuming a given level of available resources) leading to no significant correlation in

either direction. The deforestation rate is uncorrelated with all the variables considered.

The protection rate is only correlated with the proportion of the country’s GDP that is

provided by tourism. It is intuitive to expect that a country with more protected land

to have a more prosperous tourism industry, or in reverse that a country that is more

economically reliant on tourism has a greater incentive to protect their forest land.

Figure 4 presents a scatter plot of Êc, estimated by RD, against the average corruption

perceptions index (larger is better) over the same 2000-2018 period. Labels have been

added to some noteworthy countries. The scatter plot shows a clear positive correla-

tion between the two variables, albeit with significant divergences away from any linear

regression line. On one end are countries such as the DRC, Nigeria, and Russia who

have severe problems with corruption and also very ineffective environmental protection.

Towards the middle are some countries with less corruption and more effective environ-

mental protection, such as Brazil, Malaysia, and China. The least corruption countries

also have the most effective environmental protection, such as Australia, New Zealand,

Canada, and Scandinavian countries like Norway and Finland. There are also several

underperforming countries like Chile.

Table 4: Regression Results for Êc

Dependent Variable: Êc by RD (1) (2) (3) (4)

Corruption Perceptions Index 0.006 0.011 0.011
(0.001) (0.002) (0.003)

GDP Per Capita (’000 USD) 0.003 -0.014 -0.013
(0.004) (0.005) (0.009)

GDP Per Capita (’000 USD)2 0.000 0.0002 0.0001
(0.000) (0.0001) (0.0001)

Ideology of the Executive -0.039
(0.038)

Logistics Index -0.025
(0.116)

Tourism Arrivals (% of Pop) -0.058
(0.059)

R2 0.308 0.185 0.376 0.370
N 75 77 75 62

Notes: Robust standard errors are in parenthesis. Larger values of the Corruption Perceptions

Index indicate less perceived corruption.

In order to further investigate these correlations, Table 4 presents several regression
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models of the effectiveness of environmental protection Êc against several country-level

covariates. The first model finds a statistically significant linear relationship between

corruption perceptions and effectiveness of protection, as expected from the results in

Table 3. The second model estimates a quadratic relationship between GDP per capita

and effectiveness. The R2 is much smaller in this model at 0.19, and while the estimated

coefficients are positive they are not statistically significant. The third model regresses

effectiveness against both corruption perceptions and a quadratic of GDP per capita,

and the results change significantly. The marginal effect for corruption almost doubles in

size when holding GDP per capita constant. The marginal effect of GDP per capita now

becomes negative yet flattens at high levels of economic development. The R2 increases

notably above the first model to be 0.38. The fourth model adds several other variables

that possess significant correlation with effectiveness but is unable to find statistically

significant linear relationships once corruption and GDP per capita are held constant.

The most interesting finding from Table 4 is that while GDP per capita is positively

correlated with effectiveness, when you hold corruption constant it becomes a statisti-

cally significant negative relationship. Indeed, the marginal effect of corruption percep-

tions doubles when holding GDP per capita constant. Figure 5 explores this dynamic by

presenting a scatter plot of the estimated effectiveness of environmental protection with

GDP per capita. The black line shows the quadratic regression line from Model (2) of

Table 4, which is positive but not statistically significant due to the large errors. The

grey line, in contrast, presents the regression line from Model (3) of Table 4, which holds

constant the corruption index. In this line we see GDP per capita is negatively related

to the effectiveness of protection before flattening out around 40 thousand USD.

This result is intuitive, as when the level of economic development of a country increases

there are two things that usually happen: (i) the capability of the country to clear land

quickly and at a larger scale increases (which increases the economic returns for agents to

breach the boundaries of protected areas), and (ii) the institutions of the country improve

on average (which increases the risks or economic costs associated with breaching the

boundaries of protected areas). The regression results in Table 4 suggest that the latter

effect dominates the former,10 but once the latter effect is held constant the former effect

appears and is significant.

To summarize, exploring the heterogeneity of effectiveness by country has provided

evidence that it is actually the quality of institutions, the prevalence of corruption in

particular, that drives effective environmental protection and not economic development.

10Which explains why there is a positive yet weak relationship between GDP per capita and the

effectiveness of protection.
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Figure 5: The Effectiveness of Protection and GDP Per Capita
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The results suggest that improving the economic conditions of a country, while keeping

the quality of institutions constant, would actually make protection less effective.

2.4. Trends in Effectiveness Over Time

Given that deforestation data is available over two decades, it is useful to consider where

the effectiveness of environmental protection has declined or improved over this period.

In order to estimate this, the following equation is estimated for each country and decade:

Dti∈B = αtc + βtcPti∈B + εti∈B (2.4)

where t = 1 for deforestation events between 2001 and 2009 and t = 2 for events from

2010 to 2018. By estimating the country-level effect of protection on deforestation by

decade, giving β̂tc, it is possible to determine whether protection is lower or higher in

the second decade of the sample period relative to the first. After collecting the β̂tc, the

change in effectiveness is measured simply as ∆Êc = β̂t=2,c/Ut=2,c − β̂t=1,c/Ut=1,c.

Figure 6 maps ∆Êc across the globe. The change is categorised into five buckets from

a significant degradation in the effectiveness of protection to a significant improvement.

Due to the possible measurement and estimation error, any change from negative five

percent to positive five percent is placed into the same category. Some countries have
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also been excluded if the deforestation rate in either decade was below 0.9%, as this led

to very noisy values of ∆Êc for those countries.

Figure 6: Change in Effectiveness by Country from 2001-2009 to 2010-2018

Change in Effectiveness:
-50% to -20%
-20% to -5%
-5% to 5%
5% to 20%
20% to 50%
Excluded or No Data

Note: Results are based on the RD estimates of Êtc. Some countries were excluded due to very

low deforestation rates in one of the decades.

Very few countries showed large improvements in the effectiveness of environmental

protection between the last decade and the most recent one. Ethiopia, South Korea, and

parts of Eastern Europe did show strong improvement. In the case of Ethiopia, three

major droughts occurred between 1999 and 2010 which would put alot of pressure on

forest resources. Significant land and agricultural reforms also occurred over this period,

with conservation one of the stated goals of the changes. There is also evidence of more

moderate improvements in the effectiveness of protection in countries such as India,

Tanzania, parts of Central and Eastern Europe, as well as Venezuela and Bolivia.

Several countries also had significantly worse protection in the most recent decade.

The effectiveness of protection in China declined from 37% to -10%, indicating that

in the second decade protected forest was more likely to be cleared than unprotected

forest (adjacent to the boundaries). It is difficult to find the likely causes of this change,

beyond it being associated with a change in the government’s leadership in 2012. In

Nigeria, the effectiveness of protection declined from 0% to -25%, and is also associated

with a more than doubling of deforestation. A number of countries also experienced a

more moderate decline in the effectiveness of environmental protection, including the

Oceanic countries of Australia and New Zealand, Russia, parts of Central and Southern

America, the Philippines, Madagascar, and Zambia.

After considering how the effectiveness of environmental protection changed over time
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Table 5: Regression Results for ∆Êc

Dependent Variable: ∆Êc by RD β̂

∆ Corruption Perceptions Index 0.007
(0.003)

%∆ GDP Per Capita (USD) -0.310
(0.107)

∆ Ideology of the Executive -0.071
(0.036)

R2 0.297
N 48

Notes: Standard errors are in parenthesis.

across the globe over these two decades, it is important to try and understand why they

have changed the way that they have. This is akin to the analysis in Tables 3 & 4.

The analysis in that section revealed that the prevalence of corruption, along with the

level of economic development and other variables such as the ideology of the executive,

were related to the effectiveness of protection. Table 5 considers whether the change in

corruption, GDP per capita, and the ideology of the executive were also related to the

change in the effectiveness of protection.11

The results show that each are related to the change in the effectiveness of protection

that we observe. A change in the corruption perceptions index (which has a 1-100 scale)

in the second decade of 2.5, which was the average improvement in corruption perceptions

for that period, is associated with an increase in the effectiveness of protection of 1.5%

which is a fairly small marginal effect. A percentage increase in the GDP per capita

in the second decade of 25%, which is the average growth of GDP per capita for this

sample between decades, is associated with a reduction in the effectiveness of protection

of 8% which is a moderate marginal effect. Furthermore, the ideology of the executive,

which is on a -1 to 1 scale where -1 refers to a left-wing government and 1 a right-wing

executive (with 0 being loosely defined as centrist), a change in the average ideology of

the executive in the second decade of 1, which represents a change from a left-wing to a

centrist executive or a centrist to a right-wing executive, is associated with a reduction

in the effectiveness of protection of 7% which is a meaningful effect.

In summary, the results suggest that in quite a few countries the effectiveness of en-

vironmental protection is degrading over time, rendering it more difficult to conserve

biodiversity and use legal protection as the main legislative tool to protect forest into

11All other country-level covariates in Table 3 were excluded from this regression as they were statis-

tically insignificant.
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the future. Brief regression analysis suggests that the causes of this declining trend may

be attributed to economic growth in a number of developing countries, the rise of more

reactionary governments in these countries, and stagnating perceptions of corruption.

3. THE EFFECTIVENESS OF PROTECTION BY GOVERNANCE AND

MANAGEMENT CATEGORY

3.1. Exploring Heterogeneity by Source of Governance

Another dimension of potentially significant heterogeneity in the effectiveness of envi-

ronmental protection is in the source of governance. While all legal protection inevitably

stems from the government of a country, a variety of sources may own and manage the

land. If some form of governance over protected areas prove much less effective than

others, it may be an indication that improvement or change is needed for the sake of

future conservation. It may also indicate that certain types of governance are found in

areas more difficult to control, or have fewer resources to ensure effective protection. The

available data from WDPA (2019) categorises governance into several sources, and these

have been further streamlined here for the sake of brevity.12 This article considers four

categories of direct governance: the state (both national and sub-national governments),

ownership by individuals or non-profit organizations (‘NPOs’), collaborative and joint

governance, and lastly governance by local communities.

Table 6: Effectiveness of Environmental Protection by Source of Governance

Protection Category
RD OLS

N
β̂ Ê β̂ Ê

The State (National or Sub-national) -0.033 0.298 -0.067 0.608 32,800,000
(0.000) (0.003) (0.000) (0.001)

Individuals / Non-Profit Organizations -0.016 0.115 -0.018 0.126 1,184,805
(0.002) (0.015) (0.001) (0.010)

Collaborative or Joint Governance -0.051 0.383 -0.077 0.584 1,436,084
(0.001) (0.010) (0.001) (0.004)

Local Communities -0.045 0.322 -0.120 0.863 5,198,171
(0.001) (0.009) (0.000) (0.002)

Notes: Standard errors are in parenthesis.

Table 6 lists the number of observations by category, showing that roughly 80% of

protected forest is governed by the state. Local communities are the next most common

12Typically categories that share similar results or are very close thematically to another category are

combined together.
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Figure 7: Deforestation Rates by Governance & Proximity to Borders of Protected Forest
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at approximately 13%, and the remainder being filled by the other two categories. Figure

7 plots the deforestation rates by source of governance and proximity to the boundaries

of protected forest. A clear discontinuity can be seen in the case of governance by the

state, local communities, and any collaborative/joint governance. Individual and non-

profit ownership does not show any discontinuity at the boundary, suggesting protection

in these areas is very ineffective (on average).

Table 6 lists both the RD and OLS estimates of effectiveness by source of governance.

Of the three types of governance that show a clear discontinuity at the boundary, collab-

orative or joint governance provide the most effective protection with Ê = 0.38, followed

by local communities at 0.32, and the state at 0.30. Governance by individuals or NPOs

are estimated to provide the least protection at 0.12. Note that these results do not nec-

essarily indicate that the individuals and NPOs governing these protected areas are in

some way negligent or malicious. It could be the case that the protected areas that are

left to being governed by these groups face the toughest challenges in preventing defor-
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estation inside the areas or else have the least resources to accomplish such a feat. The

results do suggest, however, that local communities have been a very successful source of

governance for protected forest over these two decades and its success should be further

studied in future research.

3.2. Exploring Heterogeneity by Protection Type

Another potential avenue of significant heterogeneity in the effectiveness of environmen-

tal protection is by the management category of the protected area. The IUCN has a

list of protection categories which indicate the level of human presence that is tolerated

and the extent of management that the land receives.13 This study considers the pro-

tection offered by strict nature reserves (Category Ia and Ib), which emphasise strict

protection and preservation of both the biodiversity and natural character of the areas,

national parks (Category II) which are dedicated to protecting local ecosystems yet also

allow sustainable recreation and scientific visitor opportunities, habitat management ar-

eas (Category IV) whose aim is to protect particular species or habitats and that may

involve significant human intervention in the area, protected landscapes (Category V)

which have historical interaction between people and nature and this type of protected

area seeks to preserve this interaction, and sustainable use protected areas (Category

VI) where some use of natural resources in the area are accepted but the priority is for

this to occur in a sustainable way. There is also the protected areas where the protection

category is either not applicable or not reported, and these are included in the results to

provide complete coverage of the dataset.

The existing literature offers contrasting views on the relative effectiveness of these

protection categories. Locke and Dearden (2005) argues that only Category I to Category

IV should be considered proper protected areas, as both Category V and VI allow for

partial collection of the forest. This would suggest that the latter two categories should

be observed to have less effectiveness, which is testable. Pfaff et al. (2014) consider

protection categories in the Amazon, and find that of the protected areas under high

threat or pressure (such as encroaching settlements or brazen loggers) the use of Category

V and VI management can actually have greater effectiveness than categories with greater

restrictions on the use of the land. Lastly, Nelson and Chomitz (2011) find in their study

that multiple use protected areas tend to be more effective than more strict protected

areas.

Figure 8 charts deforestation rates by protection category and the proximity to the

13The full list and descriptions of the IUCN protected area categories can be found at:

https://www.iucn.org/theme/protected-areas/about/protected-area-categories
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Figure 8: Deforestation by Protection Type & Proximity to Borders of Protected Forest
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boundary of the protected areas. Discontinuous breaks can be seen across all categories

but to varying degrees. It is difficult to gauge relative effectiveness using visual inspection,

although it does appear that protected landscapes, which is Category V, offers the least
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effective protection to its forest. Table 7 presents the estimates of Ê across protection

types using both the RD and OLS approaches. It also lists the number of observations

per protection type, showing that protected landscapes are by far the most common

followed by strict nature reserves.

The three most effective protection categories are strict nature reserves (category I),

habitat management areas (category IV), and protected areas where the category type is

either not applicable or not reported. It is difficult to interpret the uncategorised areas as

there could be many reasons why they are in this category. Category V and VI allow for

more exploitation of natural resources than the other categories, and their effectiveness

are notably lower than the other categories, with category V doing better than VI. This

somewhat contradicts some of the earlier results in the literature. OLS produces very

different estimates from RD, and incorrectly puts protected landscapes (category V) as

among the most effective forms of protection. It also significantly overestimates effective-

ness for all types, leading to the wrong impression that most areas are doing extremely

well in conserving the forest. In summary, the results suggest that strict protection of

forest offers more effective protection than multiple use areas, at least on average across

the globe over the two most recent decades.

Table 7: Estimates of Enforcement of Protected Forest by Protection Type

Protection Category
RD OLS

N
β̂ Ê β̂ Ê

Strict Nature Reserve (Cat I a/b) -0.039 0.364 -0.076 0.702 8,430,305
(0.001) (0.006) (0.000) (0.002)

National Park (Cat II) -0.030 0.316 -0.035 0.363 6,703,810
(0.001) (0.007) (0.000) (0.003)

Habitat Management Area (Cat IV) -0.036 0.298 -0.072 0.594 4,292,361
(0.001) (0.008) (0.000) (0.002)

Protected Landscape (Cat V) -0.025 0.214 -0.074 0.641 16,700,000
(0.001) (0.005) (0.000) (0.001)

Sustainable Use Protected Area (Cat VI) -0.024 0.180 -0.056 0.422 6,245,148
(0.001) (0.005) (0.000) (0.002)

Not Applicable or Not Reported -0.031 0.299 -0.079 0.765 6,706,973
(0.001) (0.007) (0.000) (0.002)

Notes: Standard errors are in parenthesis.
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3.3. Do institutions and development affect the optimal management of forest?

It is worthwhile considering whether the results of Sections 3.1 and 3.2 are dependent

on the extent of corruption and economic development of each country. While Section

2.3 finds that both corruption and economic development have adverse consequences on

the effectiveness of protection, it is unclear if these effects are focused on specific types

of parks (like those with strict protections) or forms of governance. For instance, it is

natural to expect that corruption will have a larger effect on protected forest that is

directly managed by the state.

To answer these questions, the countries in the dataset are split into four categories

based on whether they have high corruption or less corruption, and whether they have

low GDP per capita or higher GDP per capita. The countries are split based on whether

they have a Corruption Perceptions Index less than or greater than 35, and whether they

have a GDP per capita above or below $9,000 USD.14 Table 8 lists certain countries in

each of the buckets that are notable in the sense that they have a significant amount

of remaining forest. Each category includes at least a few notable countries, and has

diversity across continents and hemispheres.

Table 8: Notable Countries in Each Category of Corruption and GDP per capita

Category Notable Countries

High Corruption:

Low GDP per capita
Bolivia, DRC, India, Indonesia, Papua

New Guinea
Higher GDP per capita Argentina, Mexico, Russia, Venezuela

Less Corruption:
Low GDP per capita China, Colombia, Peru, Thailand
Higher GDP per capita Australia, Brazil, Canada, Malaysia

Notes: High Corruption is defined as a CPI index less than 35, and Low GDP per

capita is defined as less than $9,000 USD per capita.

Figure 9 presents the effectiveness of environmental protection by corruption, GDP

per capita, and whether the forest has strict protections (defined as nature reserves, na-

tional parks, or habitat management areas) or looser protections (defined as protected

14Note that the alternative to high corruption is called ‘less’ corruption and not low corruption, as

countries within the 35-60 range of the CPI are still considered to have a significant level of corruption.

This is also true in the terminology for GDP per capita not being ‘low’ and ‘high’, as exceeding $9,000

USD does not necessarily imply a high level of economic development.
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landscapes or sustainable use protected areas). Accordingly, there are three dimensions

in which to analyse environmental effectiveness: the effect of corruption, of higher GDP

per capita, and the effect of stricter protections. For strictly protected forest high cor-

ruption has a clear negative effect on effectiveness, while low GDP per capita has a clear

positive effect on effectiveness. The latter effect is particularly stark for countries with

high corruption, where the combination of higher GDP per capita and strictly protected

forest lead to an estimated level of effectiveness close to zero on average.

Figure 9: Effectiveness of Protection by Park Type, Corruption, and GDP per capita
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The effect of higher economic development is much less pronounced for countries with

less corruption. This is intuitive, as economic development increases the capacity of agents

to clear large tracts of land (through the use of machinery), which will have a larger

impact on forests that are already poorly protected. Surprisingly, for forest with looser

protections we see a much weaker effect from high corruption, and the effect from higher

economic development completely disappears. There is no reduction in effectiveness of

protection when GDP per capita improves. Nevertheless, the overall effectiveness is lower

for forest with looser protections except when a country has both high corruption and

higher GDP per capita. In that case, looser protection types are actually more effective

than strict ones (on average).



Institutions and the Effectiveness of Environmental Protection 33

Figure 10: Effectiveness of Protection by Governance, Corruption, and GDP per capita
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Figure 10 presents the same estimates of effectiveness after grouping the source of

governance as the state or all other forms of governance (such as local communities,

collaborative and joint governance, or by individuals). Forest managed by the state per-

form similarly to ones that are strictly protected, as there is a clear negative effect from

high corruption and positive effect to having low GDP per capita (albeit a more minor

one than in Figure 9). These trends do not apply to protected forest with other forms

of governance. Here, high corruption only affects protection for countries with higher

GDP per capita, while for countries with low GDP per capita it is the reverse.15 Having

higher levels of GDP per capita does not significantly affect protection for high corruption

countries, but for less corrupt countries it appears to significantly improve protection.

For countries with less corruption and higher GDP per capita, other forms of governance

are on average slightly more effective than state governance. This is not true for any

of the other categories. The results are intuitive as they show corruption has a clearer

impact on parks that are directly governed by government officials. When other forms of

governance are involved, like local communities or between multiple parties, the direction

of the effect becomes more ambiguous.

15The difference is exacerbated by the imprecision of the estimate for countries with low development

and less corruption.
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4. CONCLUSION

Deforestation has been a significant driver of both precipitous declines in animal pop-

ulations and a rapidly warming climate over the last century. It has also increased the

incidence of spillover of zoonotic diseases from wild animals to humans, worsening the

risk of pandemics. For decades, governments have sought to mitigate these impacts by as-

signing protection for certain forest land within their jurisdiction. While this has proven

to be one of the more common defences against the further eradication of primary forest

on the planet, there has been little research on its overall effectiveness. This paper has

sought to improve on the existing literature in several significant ways.

The first contribution is to estimate the effectiveness of environmental protection across

the globe, for each country and region. Existing studies usually focus on a specific country

or small group of countries, and do not tend to produce statistics that are directly com-

parable with those of other studies.16 It is possible to address this by using the recently

developed Hansen et al. (2013) deforestation dataset which is global, high resolution, and

has coverage between 2000 and 2018. Combined with a global database of coordinates of

protected areas in WDPA (2019), the article found significant heterogeneity in effective-

ness both between regions and within regions of the planet, which suggests that there

may be systematic variation in effectiveness between countries that is explainable.

The second contribution is to estimate the effectiveness of environmental protection

using a regression discontinuity approach. This approach relies on much weaker assump-

tion than existing methods used in the literature, such as matching on observable terrain

features. By comparing deforestation rates just outside the boundary and just inside

the boundary of protected areas, the article was able to identify discontinuous breaks in

the probability of deforestation with the proximity to the boundary. The results found

that more naive approaches typically overestimated the effectiveness of protection, and

indeed many countries have highly ineffective protection when estimated using the RD

approach. The best test of the validity of the methodology used in this article is that it

was able to find meaningful relationships between the estimates of effectiveness between

countries and other covariates.

This leads to the third major contribution of the paper which is to analyse why some

countries are more effective at protecting forest than others, by conducting simple corre-

lation and regression analysis on the estimated country-level effectiveness of protection

and other country-level variables. The results suggest that the quality of a country’s

institutions are the main driver of more effective environmental protection. Economic

development is positively correlated with effectiveness as well, but only because it is pos-

16One exception is Heino et al. (2015).
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itively correlated with the quality of institutions as well. Indeed, economic development,

when institutions were held fixed, was found to be negatively correlated with the effec-

tiveness of environmental protection. This suggests that countries that seek to develop

without reforming their political and civil institutions away from autocracy will have

environmental consequences for a future that can hardly spare it.

The results make clear that significant improvement across the globe is required for

effective environmental protection of forests, and that it is not only the amount of forest

that is protected but the quality of the protection that will determine the future of

biodiversity on our planet. The most striking conclusion of analysing the heterogeneity

in effectiveness between countries is that the struggle against corruption around the world

is tightly linked to the preservation of biodiversity. Given the urgent and extraordinary

nature of the warning offered by scientific institutions around the world on the future

of biodiversity, leading examples being Brondizio et al. (2019) and Dı́az et al. (2019),

more research is needed to understand how to best implement policies to combat sharp

declines in biodiversity. This is especially true in the field of economics since economic

activity is considered the main driver of our current predicament and the potentially

severe effects of further declines will reach many industries, economies, and peoples.
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P. Ashton, J. Beńıtez-Malvido, A. Blom, K. S. Bobo, C. H. Cannon, M. Cao, R. Car-

roll, C. Chapman, R. Coates, M. Cords, F. Danielsen, B. De Dijn, E. Dinerstein,

M. A. Donnelly, D. Edwards, F. Edwards, N. Farwig, P. Fashing, P.-M. Forget,

M. Foster, G. Gale, D. Harris, R. Harrison, J. Hart, S. Karpanty, W. John Kress,

J. Krishnaswamy, W. Logsdon, J. Lovett, W. Magnusson, F. Maisels, A. R. Marshall,

D. McClearn, D. Mudappa, M. R. Nielsen, R. Pearson, N. Pitman, J. van der Ploeg,

A. Plumptre, J. Poulsen, M. Quesada, H. Rainey, D. Robinson, C. Roetgers, F. Rovero,

F. Scatena, C. Schulze, D. Sheil, T. Struhsaker, J. Terborgh, D. Thomas, R. Timm,

J. Nicolas Urbina-Cardona, K. Vasudevan, S. Joseph Wright, J. Carlos Arias-G, L. Ar-

royo, M. Ashton, P. Auzel, D. Babaasa, F. Babweteera, P. Baker, O. Banki, M. Bass,

I. Bila-Isia, S. Blake, W. Brockelman, N. Brokaw, C. A. Brühl, S. Bunyavejchewin,
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FOR ONLINE PUBLICATION

Appendix A: Diagnostic tests on the regression discontinuity approach

This part of the appendix provides a diagnostic check on the regression discontinuity

approach that was used in (1.2) and (1.3). For the approach to be valid, it relies on the

assumption that omitted covariates do not change discontinuously at the cutoff (oth-

erwise, treatment would not be as good as random around the boundary of protected

areas). Terrain characteristics and other omitted covariates should be similar on either

side of the boundary, and if they do vary it is important to ensure that it does not

compromise the results.

Figure 11: Omitted Covariates by Region & Proximity to Borders of Protected Forest
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The first way to check is to see if the average value of certain omitted covariates shift

discontinuously at the boundaries. Figure 11 plots average slope, terrain ruggedness, the

extent of tree proximity, and the extent of water proximity by proximity to the borders

of protected areas. If terrain has larger slope and ruggedness then the suitability of the

land for agriculture declines (and cost of clearing the land increases), which will affect
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deforestation rates. Tree proximity can affect deforestation rates as it is related to the

proximity of human settlements, major roads, and farming land. Water proximity (or

rather, the proximity of any major water source such as a river, lake, or sea), in turn, is

related to sea lanes, traffic, and the economic value of clearing the land.

Both average slope and terrain ruggedness increase as the land approaches the bound-

aries of protected areas, before peaking 1km inside the areas and then starting to decline.

Tree proximity decreases slightly as the land approaches the boundary, and then signifi-

cantly increases inside the protected areas which is expected. Water proximity increases

when approaching the boundary, before peaking a kilometre or two from the boundary

and starting to decline. In all cases, the average value of the covariates do not change

discontinuously at the boundary of the protected areas.

Table 9 presents descriptive statistics of these covariates just inside and outside the

protected area boundaries. It compares the average value and standard deviations by

region. Consistent with the graph, average slope and terrain roughness is slightly higher

just inside the boundary of protected areas in all regions except South America.17 It

is possible to test the statistical significance of this difference, which is common in the

regression discontinuity literature, but due to the very large sample sizes here the stan-

dard errors of the means are very small, causing even minor differences to be statistically

significant. Instead, the table lists the standard deviations below the mean which reveal

large amounts of variability within regions.

It is important to ascertain whether these differences are of practical significance and

potentially causing the regression discontinuity approach to overestimate the effectiveness

of protection in all regions except South America. Figure 11 did show they were not

changing discontinuously, and Table 9 showed that the differences in average values is

very small relative to the overall variation in the variables. It is possible to add these

covariates to the model in (1.2) to determine if they affect the estimates of βr (which

involves making parametric assumptions). When adding the covariates linearly the RD

estimates of βr hardly change from those in Table 2: -0.052 for Europe & Oceania, -0.004

for Asia, -0.035 for S.E. Asia, -0.032 for North America, -0.013 for Africa, and -0.025

for South America. Adding quadratics or cubes do not affect the estimates meaningfully

neither. From all of this evidence, it is reasonable to conclude that these differences are

of little practical relevance to the results.

17In contrast, tree and water proximity do not vary systematically on either side of the border across

the regions.
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Table 9: Terrain Characteristics Either Side of Borders to Protected Forest

Region:
Europe &

Asia S.E. Asia
North

Africa
South

Oceania America America

Slope:

Just Out 4.99% 6.02% 5.53% 4.45% 2.15% 2.28%
(5.88%) (6.33%) (4.95%) (5.87%) (3.71%) (4.59%)

Just In 5.44% 6.21% 5.87% 4.82% 2.28% 2.26%
(6.17%) (6.58%) (5.06%) (6.29%) (3.90%) (4.64%)

Ruggedness (100m):

Just Out 1.61 2.00 2.06 1.46 0.80 0.82
(1.89) (2.13) (1.80) (1.89) (1.36) (1.62)

Just In 1.76 2.06 2.18 1.59 0.85 0.81
(1.98) (2.22) (1.83) (2.03) (1.42) (1.62)

Tree Proximity:

Just Out 50.52% 63.50% 76.40% 67.18% 68.91% 83.45%
(18.24%) (18.12%) (17.86%) (19.20%) (20.68%) (20.28%)

Just In 50.83% 63.24% 76.41% 67.03% 68.79% 83.91%
(19.00%) (18.27%) (17.83%) (19.74%) (20.59%) (20.15%)

Sea Proximity:

Just Out 3.48% 2.61% 3.10% 5.05% 1.20% 1.90%
(8.72%) (8.26%) (9.63%) (9.06%) (5.82%) (6.08%)

Just In 2.96% 2.54% 2.90% 4.99% 1.18% 2.25%
(8.31%) (8.27%) (9.23%) (9.38%) (5.80%) (6.85%)

Notes: Reported in parenthesis is the standard deviation across observations.

Appendix B: Robustness Checks

Several assumptions were made in the development of the estimation approach in Section

1, and it is necessary to determine whether the results of the article are sensitive to these

particular assumptions. The first is that the effectiveness of environmental protection

was defined as Êr = β̂r/Ur, where β̂r is obtained from estimating (1.2) and Ur is the

overall deforestation rate of unprotected forest in that region or Ur = E(Di|Pi = 0)

for all observations in region r. To check the robustness of the results to this particular

definition, this section considers a different formulation of Ur = E(Di|Pi = 0) ∀ i ∈ B
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for region r in Êr. Recall that B is the set of observations adjacent to the boundaries

of protected areas, and accordingly the denominator is now the deforestation rate of

unprotected forest just outside the boundaries.

Another assumption implicit in Section 1 is that measurement error is not biasing the

results. Unfortunately, both Di and Pi are likely to have measurement error. Di is itself an

estimate from an algorithm designed in Hansen et al. (2013) to examine satellite images

and determine the extent of tree coverage, and like all estimation techniques will contain

false positives and negatives. The vector boundaries of protected areas, which determine

the assignment of treatment Pi, will not always be perfectly inputted by governments into

WDPA (2019). Since identification in (1.2) relies on the observations that are on either

side of these boundaries, it is plausible that measurement error in Pi introduces significant

noise into the dataset. To try and determine if this is true, the second robustness check

estimates (1.2) and (1.3) using the observations that are between 500m-1000m both inside

and outside the boundaries of the protected areas, instead of the 0m-500m observations

that were used in the main body of the paper.18 If the results are significantly stronger,

this would suggest that measurement error in the boundaries are causing noise. The

downside is that using pixels that are further away from the boundary may introduce

some correlation between Pi and εi in (1.2).

Another factor that complicates analysis of the data is wildfires. Fire is one of the main

methods used by humans to clear land, but it can also occur for natural reasons. Manmade

fires are just another form of deforestation, and are therefore important to include in the

data. Natural fires, in comparison, will burn forest without regard for the boundaries

of protected areas, and will also affect some countries in the dataset more than others

(such as Australia and the United States). This means that the existence of wildfires may

bias the estimates of βr in (1.2) and βc in (1.3). To address this in the third robustness

check, a model specification is considered that: (i) only considers deforestation events

from 2000-2012, and (ii) excludes all observations that have been identified by Hansen

et al. (2013) to have experienced regrowth from the deforestation event in 2000-2012

up until the end of the sample period 2018. This gives the best chance of avoiding any

deforestation events that are likely to have been caused by natural wildfire.

Table 10 lists the estimate of effectiveness of environmental protection by region for

the standard estimates that were outlined in Table 2 and the three robustness checks.

In the first robustness check, the estimates of effectiveness increase for all regions except

Africa. This is intuitive as in all regions (except Africa) the deforestation rate declines

as the land approaches the boundary of a protected area, leading to a decrease in the

18In Figure 2, this distance to the second dot away or inside the protected area cutoffs.
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Table 10: Robustness Checks of the Effectiveness of Protection by Region

Region:
Europe &

Asia S.E. Asia
North

Africa
South

Oceania America America

Standard RD Estimate 0.469 0.069 0.241 0.260 0.150 0.214
(0.005) (0.008) (0.006) (0.005) (0.013) (0.004)

RD Estimate Check 1 0.533 0.111 0.338 0.332 0.113 0.362
(0.006) (0.013) (0.008) (0.006) (0.010) (0.007)

RD Estimate Check 2 0.536 0.092 0.448 0.265 0.341 0.355
(0.006) (0.009) (0.006) (0.006) (0.013) (0.004)

RD Estimate Check 3 0.505 0.067 0.250 0.257 0.139 0.216
(0.007) (0.011) (0.008) (0.006) (0.021) (0.005)

Notes: Standard errors are in parenthesis. ‘Check 1’ changes the definition of the denominator in the

calculation of Êr, ‘Check 2’ uses 500m-1000m pixels outside and inside the boundaries of protected

areas for estimation, and ‘Check 3’ uses 2000-2012 data while excluding all observations that have

detected regrowth in the forest since the time of the shock. See the text for further details.

size of the denominator for the alternative calculation of Êr. The second test, which

attempts to remove any potential for measurement error, also increases the estimates of

the effectiveness of protection across all regions. This is expected as the risk of removing

measurement error in this way is to introduce some negative bias into the estimation

of β̂r. The relative ordering between regions does not change significantly except North

America declines somewhat in the ranking. The results for the third robustness check is

very similar to the standard results.

Next, Table 11 applies these three robustness checks to the correlation between country-

level estimates of effectiveness and a range of country-level covariates, as it is useful to

test whether the direction or strength of the correlation changes significantly when the

specification is changed. With the first and second robustness checks there are slight

declines in the strength of correlation across mostly all covariates. This suggests that the

methodology proposed in Section 1 produces results that are robust to changes in some

of the assumptions. The third robustness check sees a significant decline in the strength

of correlation, which is not very surprising as relying on around half of the sample period

for the results will introduce significantly more noise in the country-level estimates of

effectiveness (even if the regional estimates were not significantly affected) which results

in a weaker correlation. Importantly, the direction of correlations do not change across

the robustness checks, and they all produce results that remain significantly better than

the OLS or sample matching estimates.
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Table 11: Spearman correlations of Êc with various country-specific variables

Spearman Correlation with Êc Standard Check 1 Check 2 Check 3

Corruption Perceptions Index 0.53*** 0.52*** 0.52*** 0.23**
Rule of Law Index 0.51*** 0.49*** 0.47*** 0.22**
Property Rights Index 0.49*** 0.48*** 0.47*** 0.29***
Logistics Index 0.43*** 0.43*** 0.4*** 0.17

GDP Per Capita (PPPs) 0.42*** 0.39*** 0.39*** 0.14
Tourism / Pop 0.42*** 0.36*** 0.44*** 0.14
Government Cons. Per Capita 0.41*** 0.38*** 0.39*** 0.14

Tourism / GDP 0.19* 0.15 0.24** 0.13
Deforestation Rate 0.03 0.11 0.16 0.1
Protected Status (%) -0.11 -0.14 -0.15 -0.19*
Executive Left/Right -0.21* -0.2* -0.15 -0.22*

Notes: ***, **, and * denote statistical significance at the 1%, 5%, and 10% level respectively.

‘Check 1’ changes the definition of the denominator in the calculation of Êc, ‘Check 2’ uses 500m-

1000m pixels outside and inside the boundaries of protected areas for estimation, and ‘Check 3’ uses

2000-2012 data while excluding all observations that have detected regrowth in the forest since the

time of the shock. See the text for further details.

Appendix C: Results and Descriptive Statistics by Country

Table 12 and 13 contain descriptive statistics and RD estimates of the effectiveness of

environmental protection from notable countries which were summarized in Figure 3.

A number of smaller countries were excluded from the tables for the sake of brevity.

The table also lists the number of observations of 500m by 500m forest tiles that were

included in the dataset, as well as the deforestation rate and protection rate observed over

the 2000-2018 period. Note that these statistics may differ from other datasets as they

specifically involve forest area that was detected using the Hansen et al. (2013) dataset,

and then only tiles that have at least 50% of tree coverage according to the algorithm

used in that paper. The protection rate is only the rate for these specific tiles, and not the

protection rate of all types of natural environments (e.g. mountains or Savannah land)

or mixed areas (such as those with a less than 50% tree coverage).



44 Timothy Neal

Table 12: Enforcement of Protected Forest & Descriptive Statistics by Country

Country β̂ Ê N Deforest Rate Prot. Rate

Argentina -0.063 0.322 16,064 0.171 0.153
(0.005) (0.026)

Australia -0.056 0.450 146,114 0.095 0.468
(0.001) (0.014)

Austria -0.007 0.103 18,541 0.069 0.296
(0.004) (0.054)

Belarus -0.004 0.038 10,462 0.089 0.132
(0.005) (0.054)

Bolivia -0.013 0.122 45,768 0.080 0.327
(0.002) (0.029)

Brazil -0.040 0.237 465,478 0.103 0.453
(0.001) (0.007)

Bulgaria -0.012 0.297 15,597 0.030 0.550
(0.003) (0.087)

Cambodia -0.013 0.038 12,288 0.262 0.416
(0.007) (0.027)

Cameroon -0.010 0.200 19,947 0.042 0.126
(0.002) (0.044)

Canada -0.049 0.468 335,310 0.102 0.100
(0.001) (0.009)

Chile -0.009 0.048 30,872 0.136 0.326
(0.002) (0.012)

China -0.004 0.158 10,484 0.028 0.035
(0.003) (0.103)

Colombia -0.006 0.102 89,162 0.051 0.177
(0.001) (0.026)

Congo -0.003 0.119 15,846 0.027 0.171
(0.003) (0.108)

Czech Republic -0.019 0.175 9,217 0.100 0.373
(0.006) (0.060)

DRC -0.007 0.087 52,133 0.076 0.153
(0.002) (0.028)

Ecuador -0.008 0.156 21,534 0.043 0.224
(0.002) (0.048)

Estonia -0.147 0.766 17,504 0.161 0.195
(0.005) (0.030)

Ethiopia -0.003 0.059 10,085 0.044 0.539
(0.004) (0.092)

Finland -0.136 0.737 28,745 0.174 0.073
(0.004) (0.023)

France -0.022 0.342 53,179 0.065 0.372
(0.002) (0.032)

Germany -0.005 0.091 74,966 0.054 0.574
(0.002) (0.029)

Ghana -0.013 0.063 21,583 0.175 0.296
(0.005) (0.026)

Honduras -0.012 0.086 14,475 0.144 0.394
(0.006) (0.041)

India -0.004 0.073 27,935 0.049 0.123
(0.002) (0.039)

Indonesia -0.031 0.174 150,740 0.162 0.133
(0.002) (0.010)

Italy -0.004 0.100 41,223 0.033 0.330
(0.002) (0.050)
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Table 13: Enforcement of Protected Forest & Descriptive Statistics by Country

Country β̂ Ê N Deforest Rate Prot. Rate

Ivory Coast 0.003 -0.011 15,600 0.267 0.355
(0.007) (0.026)

Japan -0.005 0.180 142,158 0.025 0.235
(0.001) (0.029)

Laos -0.048 0.286 17,150 0.143 0.241
(0.005) (0.036)

Madagascar -0.057 0.202 27,253 0.248 0.253
(0.005) (0.021)

Malaysia -0.110 0.377 36,017 0.266 0.110
(0.004) (0.014)

Mexico -0.021 0.236 45,155 0.080 0.166
(0.002) (0.027)

Myanmar -0.007 0.081 24,777 0.078 0.126
(0.003) (0.033)

New Zealand -0.161 0.694 64,581 0.111 0.539
(0.002) (0.020)

Nigeria 0.011 -0.174 10,793 0.074 0.311
(0.005) (0.069)

Norway -0.055 0.791 12,940 0.067 0.051
(0.004) (0.058)

Peru -0.010 0.212 69,492 0.037 0.253
(0.001) (0.031)

Philippines -0.001 0.020 27,668 0.066 0.204
(0.003) (0.039)

Poland -0.014 0.139 28,416 0.098 0.618
(0.004) (0.037)

Romania -0.003 0.065 21,534 0.045 0.390
(0.003) (0.065)

Russia -0.003 0.034 264,755 0.079 0.098
(0.001) (0.011)

South Korea -0.025 0.316 21,161 0.042 0.179
(0.002) (0.058)

Spain -0.038 0.244 30,555 0.119 0.444
(0.003) (0.027)

Sri Lanka -0.018 0.313 24,896 0.042 0.417
(0.003) (0.060)

Sweden -0.110 0.605 51,523 0.170 0.079
(0.003) (0.018)

Tanzania -0.026 0.148 17,016 0.122 0.475
(0.005) (0.041)

Thailand -0.037 0.213 79,831 0.098 0.492
(0.002) (0.017)

Uganda -0.019 0.088 14,161 0.173 0.341
(0.007) (0.041)

Ukraine -0.022 0.237 17,267 0.087 0.095
(0.004) (0.047)

United States -0.027 0.176 511,959 0.148 0.124
(0.001) (0.005)

Venezuela -0.002 0.026 49,549 0.034 0.583
(0.002) (0.049)

Vietnam -0.048 0.204 18,062 0.193 0.310
(0.005) (0.024)

Zambia -0.009 0.100 17,077 0.075 0.372
(0.004) (0.055)
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