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Abstract

Contest theory analyses an anarchic economy where agents use resources in acquisitive conflict

as well as for consumption, and explores condition for peace or conflict to prevail in equilibrium.

History indicates that peacekeepers in the shape of kings, dictators or states often endogenously

arise in such circumstances. I analyse an extended version of the canonical Tullock contest in

which each of the potential contestants first has the option of contributing some resources to a

neutral peacekeeper, and then allocates her remaining resources between arms and consumption.

In the subsequent subgame, if one of the contestants attacks the other, then the peacekeeper joins

its resources with the agent that is attacked. I show that, for less unequal resource distributions,

contribution to peacekeeping is positive and subsequently leads to peace. The deterrence equilibria

are pareto-superior to the corresponding equilibria of the pure Tullock contest except in a narrow

range. However, no contributions are made when the endowment distribution is sufficiently unequal,

and conflict occurs in equilibrium.

Keywords: Tullock contest, peacekeeping, voluntary contribution.



1 Introduction

Rulers throughout history have derived their legitimacy and authority from the ability to perform

two functions, those of peacekeeper and protector. The primary legitimacy of the contemporary

nation-state is also founded on these roles. Citizens, even individually powerful citizens, pay taxes

to the state to enable it to curb their natural tendencies to encroach on each other, and of outsiders

to encroach upon them. Conversely, a mechanism that keeps these tendencies in check, both

internally and externally, for a multiplicity of agents enhances the well-being of those agents and

satisfies the rudimentary definition of a state.

In this paper we focus on the function of peacekeeping; protecting property rights and maintaining

peace between agents who might otherwise engage in conflict in a condition of anarchy. In order

to maintain peace in a potentially predatory setting a ruler or state must possess two important

properties. First, it must generate adequate resources from its subjects to be able to contain and

even dissuade conflict. Further, it must be in the peacekeeper’s interest to use the resources to

indeed contain conflict, rather than for the purposes of self-aggrandisement. Empires and kingdoms

in their prime, as well as successful contemporary states, satisfy the second condition because long-

term benefits from preserving their rule overshadow the short-term benefits of pillage and plunder.

Conversely there have been pillagers and plunderers that do not rule, and are held at bay by walls

painstakingly built by the same kings and emperors. In this paper I explore the first condition—

circumstances in which potential contestants voluntarily contribute sufficient resources to maintain

a central peacekeeping mechanism.

The phenomenon of the emergence of stable property rights out of anarchy has exercised the imag-

ination of social thinkers from the very earliest times. In the absence of a mechanism to protect

property, warring adversaries are likely to engage in destructive conflict, or expend substantial

resources to defend against aggression. Thus agents have a common interest in collaborating to de-

velop an enforcement mechanism to keep their mutual aggressive inclinations in check. Enforcement

mechanisms with varying properties have been provided by kings, emperors and nation-states that

sometimes commanded the love and respect of their subjects, as well as by despots and dictators

that elicited resentment and hatred.

Security of property is inseparable from internal order, which has historically been fundamental for

the stability of kingdoms. The prosperity of the Roman Empire was founded upon a lasting peace

between its subject states, which allowed trade and commerce to flourish. During the feudal period

in Europe, potential conflict between great lords was often held in check by a monarch, funded

by tribute from those very lords. At a local level, markets and trade fairs extended this peace to
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merchants and traders. At the other extreme, empires that were built on conquest without concern

for peacekeeping, like that of Alexander the Great, crumbled with the passing of the conqueror.

In contemporary economic literature, the rational contest model (Tullock, 1980) is a construct

that has been widely used to investigate conflict (as well as lobbying contests and patent races).

Competing agents can use resources in their possession to engage in production, or to wrest away

resources from other agents. Consequences of various formulations of the nature of contests are

explored in papers such as Hirshleifer (1991, 1995), Skaperdas (1992), Grossman and Kim (1995),

and several others.

In the literature that has developed around the Tullock contest, the primary concern is to inves-

tigate technological conditions under which, in the absence of an external enforcer, the potential

contestants will enter into active conflict, and conditions under which they will coexist in peace.

In Hirshleifer’s (1991) formulation resources that are devoted to conflict can be used both for ag-

gression and defence, thus an investment to dissuade the adversary may also turn out to provide

incentive for aggression. Grossman and Kim (1995) consider investments that are earmarked for

aggression (e.g., cannons) or defence (e.g., fortification) and obtain equilibria in which peace may

sometimes prevail. Baliga and Sjöström (forthcoming) explore more complex interactions between

conflict strategy and technology. Skaperdas (1992) analyses a model in which contestants possess

resources that are complements in production of a consumption good, but can also be used in

conflict over allocation of the jointly produced good. Peace occurs when the productivity of re-

sources in production is sufficiently larger than their effectiveness in conflict. Peaceful outcomes are

also often more efficient than outcomes that involve armed conflict.1 The consequences of specific

contest success functions are examined in Skaperdas (1996) and Hwang (2012), among others.

Surprisingly, however, very few contributions in this literature explore the viability of peacekeep-

ing institutions or self-enforcing cooperative arrangements to deter aggression. Meirowitz, Morelli,

Ramsay, and Squintani (2019) explore how third-party institutions that resolve or mitigate the

consequences of destructive disputes influence the conflict strategies of contestans. McBride, Mi-

lante, and Skaperdas (2011), is one of the few papers that explore the possibility that contestants

can invest in the establishment of a state, which is able to protect from conflict a fraction of all

resources (see also McBride and Skaperdas, 2007). Konrad and Skaperdas (2012) analyze a scenario

where a number of producers face the threat of extortion from external aggressors (‘bandits’), and

compare collective provision of security with provision of security for profit by a private provider.

The profitability of private provision (a “king”) is also exlored in Grossman (1998). This is far from

1Peace obtains under less stringent conditions in dynamic infinite-horizon models, where cooperative equilibria
can be supported with elaborate punishment strategies (see, for example, Powell, 1993).
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an exhaustive list, but the underrepresentation in the literature of publicly funded peacekeeping

arrangements is nevertheless striking, given that such arrangements have held sway across much of

human civilization over much of the time.

In the very simple extension of the Tullock contest presented here, the two potential contestants

choose to make contributions to enable a peacekeeper, who uses those resources to arm itself. In the

subsequent subgame each contestant can allocate their resources between consumption and private

arms with which she can attack the other. The fruits of successful aggression is the capture of the

adversaries consumption, while failure results in one’s own consumption resources being forfeited.

If one of the contestants chooses to be an aggressor (and the other does not), then the peacekeeper

contributes its resources to the defence of the victim. It follows that the potential aggressor would

be dissuaded from attacking if the peacekeeper and the defender together have sufficient arms to

render aggression unattractive.

Now suppose that the peacekeeper alone receives sufficient resources such that each contestant finds

aggression unattractive, even when his rival devotes no resource to arms. Then it is an equilibrium

for neither agent to devote resources to arms, and we must have peace in this equilibrium. Such

an equilibrium can obtain if each contestant finds it more profitable to make the corresponding

contribution and consume his remaining resources rather than to contribute nothing and arm for a

contest. Note that if one agent contributes less than the required amount, then the deterrent effect

of the peacekeeper is reduced, and that agent also has more resources available to arm and attack.

Thus there are tradeoffs and non-trivial strategic concerns involved.

I find nevertheless that the only peace equilibria are of this class, where the peacekeeper is endowed

with strong deterrent capabilities and neither contestant devotes resources to arms. Further, peace

prevails except when there is extreme inequality in initial endowments between the agents. In the

latter case agents no longer contribute to peacekeeping in equilibrium. With appropriate invest-

ments, peace becomes incentive compatible for two reasons; first, resources invested in peacekeeping

are no longer available as conflict payoffs to the contestants, making conflict less attractive, and

secondly the same defence investment acts as a deterrent against aggression by both contestants.2

Contrast this with the case where there is no peacekeeper and the corresponding arms were in

the possession of the defender. The aggressor would then similarly have no incentive to attack

because this is not a profitable option. But if the aggressor did not arm at all, then he would be

vulnerable to an attack from the erstwhile defender, and the roles would be reversed. Thus both

2The “peacekeeper” is conceived here as a very rudimentary instance of a participatory government. However, a
government is by nature a more complicated construct than a mere peacekeeper, and I have refrained from using the
term because it will likely confuse more than it will illuminate.
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parties must arm. By endowing the peacekeeper, the defender commits to not use the defensive

forces in aggression, and further provides a foil against his own aggressive instincts. Since the same

resources can be used to defend against aggression by either party, peace with a peacekeeper is less

costly than peace with mutual deterrence, even when the latter is possible.

Two further observations are of interest. First, for a large range of parameter values there are

multiple equilibria, but the most efficient equilibrium is always the one in which the richer agent

makes the largest contribution. If we interpret contributions as taxes that maintain the state, then

the most progressive taxation scheme turns out to be the most efficient. Secondly, we find that

there is a range where inequality is high (but not sufficiently extreme for peacekeeping to break

down) where a peace equilibrium prevails, but a contest would in fact be more efficient. In this

case an inefficiently large peacekeeping force is maintained in equilibrium by contributions from

the rich agent, who stands to lose from conflict.

This paper complements many of the papers mentioned earlier, which find that conflict is more

likely when there is high inequality between the agents, and that in these cases the poorer agent

is more likely to be the aggressor.3 Some of the intuition in the present paper is close to Beviá

and Corchón (2010), who consider the possibility that the richer agent may transfer some of her

wealth to the poorer in order to avoid conflict. Such transfers reduce inequality and therefore the

likelihood of conflict. It can be shown that if this option were available in the present model, the

richer agent would prefer to secure peace by contributing to peacekeeping than by making transfers

to the poorer agent when inequality is low, and would be indifferent between the two options when

inequality is high (but not extreme).

The next section describes the model and identifies the subgame that constitutes the canonical

contest model in its simplest form. Section 3 analyses the subgame that follows after positive

contributions are made to peacekeeping. Section 4 characterises the outcomes that follow after

investments that ensure mutual deterrence. Section 5 establishes the equilibria and discusses ef-

ficiency properties. Section 6 shows that the results are robust to re-specifications of the payoff

function that some may find more realistic. Section 7 concludes.

2 The model and preliminaries

There are two agents in the economy, 1 and 2. N = {1, 2} is the agent (or player) set. The economy

is endowed with a quantity R of resources, which is normalised to unity. The resources are initially

3However, in an experimental setting, Prasada and Bose (2018) find that the greatest amount of conflict occurs
when the players have only slightly unequal endowments.
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distributed between the agents as R1 and R2, with R1 +R2 = 1, and R = (R1, R2)� 0.

Notation For any pair of player-indexed quantities (q1, q2), we will denote q = (q1, q2) and q =

q1 + q2. The exception is σ = (s1, s2) which represents a strategy-profile.

Each agent i ∈ N can allocate her resources between three uses, (i) contributions to public peace-

keeping denoted by gi, (ii) private arms to attack the other agent or defend against such attacks,

denoted by xi, and (iii) the remaining resources Ri − (gi + xi) to consumption goods. The actual

consumption enjoyed by an agent is determined by the outcome of the game described below.

Informally, the game proceeds as follows. First, each player chooses a contribution gi to peacekeep-

ing. The sum of these contributions determine the resources at the disposal of the peacekeeper,

which are converted into arms. Then each player may choose to devote some or all of his remaining

resources to private arms. Finally, each player that has devoted positive resources to private arms

decides whether to attack the other.

The objective of each player is to maximize her final consumption. If neither player attacks the

other, then each player consumes her remaining resources and the game ends. If both players

attack, then they play a Tullock contest over the remaining resources using their private arms,

and the peacekeeper remains neutral. However, if player i attacks and player j does not, then the

peacekeeper adds its arms to the private arms of player j, and the same Tullock contest is played

for the remaining resources with these arms. The winner of the contest receives the sum of the

remaining consumption resources.4

It follows that, if neither player makes a contribution to peacekeeping in the first stage, then the

remainder of the game reduces to a Tullock contest with the original resource endowments.

2.1 The game

The players play a one-shot, three-stage game with complete information. After each stage, they

observe each others’ actions and proceed to the next stage.

2.1.1 Game form

Stage 1 (game Γ): Each agent i ∈ N simultaneously choose the amount gi ∈ [0, Ri] she

will contribute to peacekeeping. A pair g = (g1, g2) is a contribution profile. The sum of

contributions g = g1 + g2 is the aggregate contribution to peacekeeping.

4The peacekeeper is part of the game form and not a player, it passively follows the rules. Thus this paper does
not provide a theory of the state, only a rationale for citizens to willingly fund its peacekeeping function.
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Let wi = Ri− gi; then wi is agent i’s remaining resources after contributions are made.

Denote the post-contribution allocation by w = (w1, w2).

Stage 2 (subgame Γ2|g): Agents observe g and simultaneously choose their arms investments

xi ∈ [0, wi]. A pair x = (x1, x2) is an arms profile (or arms). The total arms expenditure is

x = x1 + x2.

Stage 3 (subgame Γ3|(g,x)): Agents observe x. Then they simultaneously choose ai ∈ {0, 1}.
0 is “defend”, 1 is “attack”. A pair a = (a1, a2) is an attack profile. An agent i can choose to

attack (ai = 1) only if xi > 0.

2.1.2 Payoffs

Given a play z of the game, payoffs Π(z) are determined in the following way.

If neither player attacks the other, then each player consumes his remaining resources, and

the peacekeeper plays no role:

(a1, a2) = (0, 0) =⇒ Πi(z) = Ri − gi − xi, i ∈ N .

If both players attack, then also the peacekeeper plays no role. Each player wins with a

probability equal to the ratio of his arms in the total. The winner captures the sum of their

remaining resources.

(a1, a2) = (1, 1) =⇒ Πi(z) = xi
xi+xj

[1− x− g] i ∈ N .

If one player attacks and the other does not, the winner is again determined as in the previous

case, except that now the peacekeeper adds its arms to that of the player that did not attack.

(ai = 1, aj = 0) =⇒

 Πi(z) = xi
xi+xj+g [1− x− g]

Πj(z) =
xj+g

xi+xj+g [1− x− g]

Comment: The payoffs above imply that, if i attacks j, the peacekeeper’s forces join i’s forces in

defence, and if i wins the contest then he keeps his own consumption resources and also acquires

j’s resources. This can be significantly relaxed. In Section 6 we show that the results hold even if

j’s resources are confiscated or destroyed rather than being allocated to i.

2.1.3 Equilibrium

A strategy for player i is therefore a triple si = {gi, xi(g), ai(g,x)}. A strategy profile is represented

by σ = (s1, s2), and the resulting choices by g(σ) or gi(σ) etc. We use z = [g,x,a] to denote an
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arbitrary play of the game without reference to a strategy, and z(σ) = [g(σ),x(σ),a(σ)] to denote

a play of the game resulting from σ. We will sometimes drop the argument (σ) when no confusion

will arise. The restriction of σ to subgames Γ2 and Γ3 are denoted σ|g and σ|(g,x), and similarly

for the restrictions of z(σ).

Note that, given R, the contribution profile g determines the post-contribution endowments w.

Thus the subgame Γ2 is completely specified by the sum of contributions g and the post contribution

allocation w.

Each agent tries to maximize his payoff which is his final consumption. σ = (s1, s2) is an equilibrium

if it is a subgame-perfect Nash equilibrium of the game Γ. The corresponding play z(σ) is an

equilibrium outcome.

2.2 Peace, war and deterrence

We are particularly interested in equilibria in which neither player attacks the other. As Section

2.4 shows, such equilibria generically do not exist in the pure Tullock contest. If they exist in the

present game, then it is a consequence of the presence of the peacekeeper and the size of the player

contributions. Sufficient peacekeeping resources have a deterrent effect on potentially aggressive

players. This section defines important concepts and establishes preliminary results, which we use

in the next section to identify a critical level of public contributions that must be made to pre-empt

armed conflict.

Definition 1 (Peace and War Equilibria.) An equilibrium σ is a peace equilibrium if, in the

associated outcome z(σ) we have a = (0, 0). It is a war equilibrium if it is not a peace equilibrium.5

Definition 2 (Deterrence.) A player i is deterred by a contribution profile g = (g1, g2) if, in the

subgame Γ2|g, xi = 0, i.e., not devoting any resources to arms, is a best response for i to xj = 0,

i.e, when j 6= i chooses not to arm.

Correspondingly g is full deterrent (fd) if both players are deterred in Γ2|g. g is minimal full

deterrent (mfd) if there does not exist g′ � g which is also full-deterrent. g is not full deterrent

(nfd) if at least one player is not deterred in Γ2|g.

2.3 Preliminary observations

Consider the subgame Γ3 after an arbitrary history (g,x), where gi + xi ≤ Ri for i ∈ N . We first

observe that:

5Since we are restricting to pure strategies, an equilibrium must be a war equilibrium or a peace equilibrium.

7



Lemma 1 Let g 6= 0, and let z|g = (x,a) be an equilibrium of the subgame Γ2|g. Then we must

have a 6= (1, 1).

[All proofs are in the Appendix.]

Lemma 1 is self-evident. It says that if a positive peacekeeping contribution has been made then

both players will not attack in equilibrium. If one player attacks then the other is better off not

attacking since he gets the benefit of the public defence. Further, for tie-breaking reasons we

assume:

Assumption 1 Given (g,x, aj), if player i is indifferent between setting ai = 0 and ai = 1 (i.e.,

between attack and not attack) then he sets ai = 0.

The assumption posits that agents are not inherently warlike. An agent engages in conflict only

when it is strictly beneficial, the expected prize is strictly larger than her consumption when she

does not attack.

This translates to:

Lemma 2 Given (g,x), player i ∈ N will attack if and only if xi
wi
> g + x.

If in an equilibrium one player attacks in the last stage, then both will choose their arms optimally

in the second stage. These best responses are catalogued in the following lemma.

Lemma 3 (Best war responses) Let g < R be arbitrary, and suppose σ|g is an equilibrium of

Γ2|g with ai(σ|g) = 1. Then (dropping the argument σ for convenience),

xi = min{
√
xj + g − [xj + g], wi}

xj = max{
√
xi − [xi + g], 0}

These expressions are derived by choosing each agent’s arms expenditure to maximize her payoff,

and noting that it is i that attacks. Of course, in order to be consistent, the choices must be such

that i satisfies the condition in Lemma 2.

2.4 The Tullock contest: Γ2|(g = 0)

The canonical Tullock contest consists of the subgame Γ2 that follows the contribution profile

g = 0, i.e., zero contributions to peacekeeping by both players. In the subgame the players first

simultaneously choose private arms xi ≤ Ri. They observe x and then make attack decisions

ai ∈ {0, 1}. Note that here it is inconsequential if one or both agents choose to attack, since there
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are no peacekeeping resources to aid a non-attacker that is attacked. This section summarizes the

equilibrium in that game for future reference and for benchmarking purposes.

Proposition 1 Let σ be an equilibrium in Γ2|(g = 0). Then the following are true.

(i) x(σ)� 0.

(ii) If R1 6= R2 then exactly one player attacks.

(iii) σ is a peace equilibrium if and only if R1 = R2 = 1
2 . In this equilibrium, each player invests

xi = 1
4 in arms, and is subsequently indifferent between peace and war.

(iv) The payoffs to the two players are as follows:

If min{R1, R2} ≥ 1
4 , then Πi(σ|(g = 0)) = 1

4 , i = 1, 2.

If (wlog) R1 = min{R1, R2} < 1
4 , then Π1(σ|(g = 0)) =

√
R1(1 −

√
R1), Π2(σ|(g = 0) =

(1−
√
R1)

2

Notation The pure contest payoffs listed in Proposition 1 part (iv) will be denoted Πcontest below.

Note that when R1 = R2, the players invest as in the best response war efforts (Lemma 3), and

are subsequently indifferent between war and peace. The peace equilibrium is unique only as a

consequence of our Assumption 1.

The pure contest payoffs of each player as a function of the player’s initial endowment, described

in Proposition 1 part (iv) above, will be useful later, and are plotted in Figure 1 below. Note that

for an endowment Ri ∈ (0, 14), player i is better off with a contest than if he were able to consume

his entire initial endowment, but this is reversed for Ri >
1
4 .

3 The subgame Γ2 with positive contributions (g > 0)

In this section we turn to the characterization of equilibrium outcomes of the subgame Γ2 when

positive contributions to peacekeeping are made in the first stage. The significance of positive

contributions g > 0 is that it may dissuade one or both players from investing in private arms, and

therefore pre-empt the possibility of war. We establish two primary propositions. First, for each

initial endowment vector there is a locus of contribution profiles that are minimal full-deterrent.

Secondly, if a full-deterrent contribution is made, then in the ensuing subgame there is a unique

peace equilibrium with no investment in private arms by either agent. Finally, if the contribution

profile is not full-deterrent, then in the subsequent subgame there are no peace equilibria.

Consider an arbitrary contribution profile g = (g1, g2) that results in a total contribution g. Let
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Figure 1: Pure contest payoffs plotted against endowment

the remaining endowments be w = (w1, w2). In the subgame Γ2|g, the players’ optimal strategies

depend only on (g,w), and hence this is the only information that is relevant to the analysis in the

present section.6

Recall from Lemma 2 that player i will only attack if xi
wi
> g+x, and this cannot be simultaneously

satisfied for both players (see the proof of the lemma). Now suppose that g > 0 and player 2 chooses

x2 = 0, hence she cannot choose to attack. Player 1 will then compare his current resources w1

with his maximized war payoff if he arms and attacks. We know that his war payoff is maximized

by setting x1 = min{√g − g, w1}. He attacks if this payoff is greater than w1, otherwise he, too,

sets x1 = 0 and we have peace. This defines a threshold level of g, which we call ĝ(w1), such that 1

will not attack if 2 does not. A similar condition holds for 2. These are the contribution levels that

deter players 1 and 2 respectively (see Definition 2). Clearly a contribution larger than ĝi will also

deter i (given wi). Thus the larger of the two thresholds define the lower bound for contributions

that are full deterrent (Definition 2), written ĝ(w).

6The subgame Γ2 is defined fully by the triple (g, w1, w2) ≥ 0 where w1 +w2 = 1−g. Note that the same subgame
can result from different initial endowments, with appropriate contribution profiles.
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Lemma 4 A contribution profile g = (g1, g2) is full deterrent if g ≡ g1 + g2 ≥ ĝ(w), where

wi = Ri − gi, and

ĝ(w) =

{
(1−

√
min{w1, w2})2 if min{w1, w2} ≥ 1

4
1
2 −min{w1, w2} if min{w1, w2} < 1

4

A player that retains more resources after contributions are made is deterred by a smaller peace-

keeping contribution, since the player has more to lose if he loses the contest, and less to win. In

order to ensure full deterrence it is therefore sufficient to deter the player who has the smaller re-

maining resource endowment min{w1, w2} after contributions. Further, the minimum contribution

needed for full deterrence increases as min{w1, w2} falls. Hence it is intuitive that full-deterrence

is attained with the smallest peacekeeping force when both players retain equal resources after

contributions. The specific configuration that yields this outcome is w1 = w2 = 4
9 , g = 1

9 . This is

catalogued for later reference.

Observation 1 If g is full-deterrent and (w1, w2)� 0, then g ≥ 1
9 .

In Assumption 1 we asserted that agents are not inherently inclined to war. In the same spirit we

make the further tie-breaking assumption that if g is full-deterrent and agent j sets xj = 0, then

i 6= j chooses not to arm. This is non-trivial only when g is minimal full deterrent (g = ĝ(w)) and

wi ≤ wj , so i is indifferent between attacking optimally and not arming. When this is the case, we

assume that she will indeed choose the peaceful option.

Assumption 2 If g ≥ ĝ(w) and xi = 0, then j chooses xj = 0; where i, j = 1, 2; i 6= j.

Lemma 4 and Assumption 2 lead to the following results.

Lemma 5 If g is full deterrent, then in the subgame Γ2|g there is a peace equilibrium with x =

0, a = 0.

Lemma 6 If g is full deterrent, then in the subgame Γ2|g there is no peace equilibrium with x 6=
0, a = 0.

Lemma 7 If g is full deterrent, then in the subgame Γ2|g there is no war equilibrium.

What if a full-deterrence contribution is not made in the first stage? It must then be true that at

least one of the players is not deterred by the contribution, and would attack if the opponent did

not acquire further arms. However, a priori it is possible that the other agent may invest enough

in arms such that, together with the public contribution, his total defence is sufficient to deter the

first player. Hence it is possible that we could have a peace equilibrium with g < ĝ(w) and x 	 0.
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The following lemma assures us that such an outcome is not an equilibrium.

Lemma 8 If g is nfd, then there is no peace equilibrium in the subgame Γ2|g.

Together these imply that a full deterrent contribution is necessary and sufficient to ensure that

there is a unique peace equilibrium in the subsequent subgame.

Proposition 2 There is a peace equilibrium in the subgame Γ2|g if and only if g is full-deterrent.

Further, this peace equilibrium is unique and has (x,a) = (0,0).

It therefore follows that, in equilibrium, either a full-deterrence contribution is made and peace

obtains with no further investment in arms, or there is war.7 In the latter case, it is rational

for a player to invest in peacekeeping only if she will not subsequently attack, and even then her

contribution could not exceed the amount she would invest in private defense in the absence of

public resources. The following proposition formalises this intuition.

Proposition 3 If σ is an equilibrium of Γ, then either (i) g(σ) is minimal full deterrent and

(x,a) = (0,0), or (ii) Π(σ) is identical to the pure contest payoffs Πcontest.

4 Deterrence outcomes

Proposition 3 tells us that two kinds of outcomes are possible in equilibrium: either the players

receive their pure (Tullock) contest payoffs, or they contribute enough to peacekeeping to achieve

a minimal full-deterrence outcome. We already know how endowments map into payoffs under

pure contest. In this section we map endowments to feasible full-deterrence payoffs. The next

section will identify the endowment distributions for which peace and war prevail, respectively, in

equilibrium.

Pick8 w1 ≤ 4
9 and consider configurations (g;w1, w2) such that w1 = min{w1, w2}. Then w2 lies

between w1 and (1− w1), with g correspondingly ranging between 1− 2w1 and 0. Let us evaluate

player 1’s incentive to arm and attack for different configurations in this range, assuming that

player 2 invests no resources in arms. Clearly, when w2 is at its highest feasible value 1 − w1 and

g is correspondingly 0, player 1 has the strongest incentive to arm and attack, both because there

is much to gain from a victory, and the probability of a victory is large. As w2 declines and g

correspondingly increases, the incentive to arm and attack declines on both counts. By Lemma

4 we know that player 1 is indifferent between attacking and not arming at all when g = ĝ(w),

7It is possible that for some not-full-deterrent contributions there is no equilibrium in pure strategies in the
subgame.

8We know from Observation 1 that min{w1, w2} > 4
9

is incompatible with full-deterrence.
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allocations (w1, w2) that result from full-deterrence contributions.9 To see that allocations below

the frontier also induce full-deterrence, note that in an allocation such as B′, the public contribution

is larger than in B, but min{w1, w2} = w1 is the same as in B. Thus since B is compatible with

full-deterrence so is B′. We restrict attention to the section of the frontier lying above the 45-degree

line, where R1 ≤ R2. The analysis of the complementary segment is symmetrical.

Agents are restricted to non-negative contributions, and transfers between agents are not allowed.10

Therefore, starting from any initial endowment point, the attainable post-contribution allocations

lie in the southwest quadrant relative to that point. The allocations that result from minimal

full-deterrence are those attainable allocations that lie on the frontier, and are not dominated by

another attainable allocation also on the frontier.

For example, starting from the initial distribution R
′′
, all post-contribution allocations in the

quadrant ER
′′
D are attainable. However, allocations outside the frontier are not compatible with

full-deterrence. Allocations on the frontier that lie on the horizontal section to the left of B

are pareto-dominated by B, and each point strictly inside the frontier is dominated by one or

more points on the frontier. Thus the minimal full-deterrence outcomes starting from an initial

endowment vector R
′′

are those on the segment BD on the frontier. If the initial endowment is R,

however, then there is only a unique attainable mfd allocation A. A corresponding statement is

true for any initial endowment with min{w1, w2} ≤ 1
4 .11

Let G(R) denote the set of minimal full deterrence contributions for a given initial endowment R,

and let W (R) be the set of allocations that satisfy w = R − g such that g ∈ G(R). Then each

w ∈ W (R) is a consumption pair on the full deterrence frontier. Note that no vector in W (R)

(weakly) dominates any other vector in W (R).

In Figure 2, if R � (14 ,
1
4), then W (R) is the segment of the full deterrence frontier contained in

the rectangle defined by R and (14 ,
1
4). If R1 ≤ 1

4 , then W (R) = {(R1,
1
2)}, and if R2 ≤ 1

4 then

W (R) = {(12 , R2)}. Thus when R1 or R2 is ≤ 1
4 the full deterrence consumption vector is unique,

but when Ri ∈ (14 ,
3
4), i = 1, 2, there is a continuum of such vectors. Using Proposition 4, we can

define the range of feasible mfd allocations for player i that correspond to his initial endowment

Ri.

Proposition 5 Let W (R) be the set of minimal full-deterrence allocations corresponding to initial

9Since full-deterrence implies x = 0 in the equilibrium of the subgame, wi is also the equilibrium consumption of
i in the subgame that follows after (w1, w2).

10See Section 6 for a different formulation.
11If transfers between agents were allowed, then starting from R it would have been possible to attain allocation

B, which pareto-dominates the (unique) minimal full-deterrence allocation A.
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resource endowment R. Then the set of attainable allocations for Player i in allocation w ∈W (R)

are (where j 6= i):

wi



= Ri if Ri ≤ 1
4

∈ [14 , Ri] if Ri ∈ (14 ,
1
2 ]

∈ [12{1 +
√

(2Rj − 1)}, 12 ] if Ri ∈ (12 ,
5
9 ]

∈ [2{
√

1−Rj − (1−Rj)}, 12 ] if Ri ∈ (59 ,
3
4 ]

= 1
2 if Ri >

3
4

(2)

For Ri ∈ (14 ,
3
4), the set of feasible full-deterrence contributions constitute a non-degenerate compact

interval. To attain full-deterrence, a corresponding well-defined contribution must be made by

player j. In figure 3 we plot the lower and upper bounds of the payoffs of player i that correspond

to this range of contributions, corresponding to i’s initial resource allocation Ri. Note that the

curvature of the full deterrence frontier in the range R1 ∈ (14 ,
1
2) implies that the contributions of

the two players are imperfect substitutes; a reduction in g2 must be compensated by a more than

equal increase in g1. The reverse is true in the range R1 ∈ (12 ,
3
4), where a reduction in g2 must be

compensated by a less than equal increase in g1.

5 Equilibria and efficiency

Proposition 5 describes the contribution profiles and consequent allocations that correspond to

minimal full-deterrence outcomes. By Proposition 2, if these contributions are made, then a peace

equilibrium will prevail in the subgame, and players will receive these allocations as payoffs. Observe

that the richer player must always contribute to a full deterrence outcome. The poorer player may

not contribute, and will indeed not contribute at all when his initial resource endowment is less

than 1
4 . Conversely, if these contributions are not made then in equilibrium players will receive

their pure contest payoffs.

Starting with an arbitrary endowment R, there are therefore two classes of candidates for equi-

librium. Any or all of the full-deterrence outcomes are potential equilibria, as is the pure contest

outcome starting from R. There are no other possible equilibrium payoffs. A full-deterrence out-

come will obtain in equilibrium only if each player that is required to make a positive contribution

in that equilibrium prefers the outcome to that resulting from pure contest.

Consider an individual player i. Figure 4 superimposes the full deterrence payoffs (Figure 3) to i

on the pure contest payoffs (Figure 1) for each level of the initial endowment. The pure contest

15





the following result.

q

Figure 4: Comparison of payoffs under pure contest and full deterrence

Theorem 1 (Equilibria) Let q =
√

2− 1
2 . If R1, R2 ∈ [1−q, q] and R1 6= R2, then all equilibria are

full-deterrence. If initial endowments are outside these limits then in the equilibrium outcome there

is war, and payoffs are equal to the pure contest payoffs for those endowments. If R1 = R2 = 1
2 ,

then there are both full-deterrence equilibria and a war equilibrium, and all of the full-deterrence

equilibria pareto-dominate the war equilibrium.

One should note that either both endowments are within the interval stated in Theorem 1, or both

are outside the interval. Further, both endowments are outside the interval, with one within 1− q
of zero and the other within that distance of unity, if and only if |R1 −R2| > 2q−1 = 2[

√
2−1].

For a given initial distribution of resources within the appropriate interval, each deterrence equi-

librium is efficient, since under minimal full deterrence either only one player contributes (when

min{R1, R2} ≤ 1
4), or the contributions of the two players are (imperfect) substitutes for each

other. However, owing to imperfect substitutability, the total consumption in the economy in an

equilibrium differs with the allocation of contributions between the two players. A possible measure
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of aggregate efficiency is total consumption in the economy:

c = 1− g − x.

We can compute c in the pure conflict outcome corresponding to each distribution of resources. In

full deterrence equilibria x = 0, so c = 1− g, hence the equilibrium that maximizes aggregate con-

sumption is the one that minimizes g. But since g is strictly negatively related to (min{w1, w2}), this

is equivalent to maximizing the smaller of the two incomes min{w1, w2} subject to full-deterrence.

This can be restated as:

Theorem 2 (Rawlsian condition) For resource distributions that accommodate multiple full de-

terrence equilibria, the contribution profile that maximizes total consumption in the economy is also

the contribution profile that maximises min{w1, w2}, the income of the poorer player, conditional

on full-deterrence.

The proof follows directly from Lemma 4, and is omitted. Theorem 2 says that, for efficient full

deterrence, the richer agent must make the maximum contribution consistent with full deterrence.

If contributions were levied as taxes by a public authority, then the proposition indicates that the

most efficient taxation scheme is one that is most progressive subject to incentive-compatibility.

Finally we note that full deterrence is not efficient over the entire range in which it is an equilibrium.

Full-deterrence is more efficient than contest only when the endowment vector is in a sub-interval of

the range where full-deterrence is an equilibrium. Thus there is a range of values for max{R1, R2} to

the left of q (and a corresponding range for min{R1, R2} to the right of 1−q) where the pure contest

outcome is more efficient than the equilibrium outcome, but the equilibrium is full deterrence.

Theorem 3 (Inefficient deterrence equilibria) In the range min{R1, R2} ∈ (1−q, 1−
√
3
2 ) ⇔

max{R1, R2} ∈ (
√
3
2 , q), the equilibrium is full-deterrence where pure conflict would yield a more

efficient outcome.

The intuition is that in this range the richer player unilaterally pays for deterrence in equilibrium,

because for her the deterrence payoff is larger than the conflict payoff. However, the poorer player

would gain relative to his deterrence payoff in a pure contest, and this gain is larger than the

loss that the richer player would suffer if pure contest replaced the equilibrium deterrence outcome.

Thus contest is more efficient in aggregate, but peace is enforced in equilibrium by the richer player.

Note that the nature of equilibria and the resulting degree of efficiency are determined by the

initial inequality in the distribution of endowments. Observation 2 summarises this aspect of

theorems 1 and 3 in economically relevant terms.
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Definition 3 (Unequal distributions) The endowment distribution is extremely unequal if min{R1−
R2} < 1− q. The endowment distribution is highly unequal if min{R1 −R2} ∈ [1− q, 1−

√
3
2 ).

If the distribution is neither extremely unequal nor highly unequal, then it is moderate.

Observation 2 (Inequality and conflict) (i) When the endowment distribution in the econ-

omy is moderate, all equilibria in the economy are peace equilibria, and every equilibrium

generates greater total consumption than does pure contest.

(ii) When the endowment distribution is extremely unequal, the unique equilibrium is a pure con-

test (with no resources devoted to peacekeeping), and this generates greater total consumption

than any feasible peace outcome.

(iii) However, when the endowment distribution is highly unequal but not extremely unequal, in

equilibrium there is peace, but this generates less total consumption than a pure contest (war)

outcome.

6 Two variations

6.1 A confiscating peacekeeper

Throughout this paper I assumed that if there is conflict the peacekeeper sides with the defender

against the aggressor, and if the aggressor is defeated the spoils of war are awarded to the defender.

However, peacekeepers or protectors in reality, be they governments or international organizations,

do not often act in this way. Some or all of the aggressor’s wealth may be confiscated, and he may

be subjected to penalties or sanctions. Proceeds may sometimes be used to make reparations to the

other party. The peacekeeper does not simply reduce to a mercenary army at the service of the agent

that has been attacked.12 Fortunately the equilibrium outcomes in our model are preserved if we

modify the payoff function to accommodate this consideration. Consider the following alternative

specification of payoffs:

(i) If there is no conflict then each agent consumes any resources that remain after contributions

and arms expenditures as before.

(ii) If there is conflict and there is a single aggressor (i.e., a1 + a2 = 1), then any peacekeeping

contributions are pooled with the arms of the agent that is attacked. If the aggressor loses,

then his remaining wealth is confiscated by the peacekeeper and destroyed. In particular, the

defender is not awarded the aggressor’s remaining resources.

12For a related concern see Meirowitz, Morelli, Ramsay, and Squintani (2019).

19



Define the game Γ′ as the game form described in Section 2 with these payoffs, which translates to

the payoff function Π′ described below:

If (a1, a2) = (0, 0), then

Π′i(z) = Ri − gi − xi, i = 1, 2.

If (a1, a2) = (1, 1) then

Π′i(z) =
xi

xi + xj
[1− x− g]

If ai = 1 and aj = 0, then

Π′i(z) =
xi

xi + xj + g
[1− x− g]

Π′j(z) =
xj + g

xi + xj + g
[Rj − gj − xj ]

Note that the only difference between the two payoff functions is in j’s payoff when ai = 1 and

aj = 0, where j now only retains her remaining resources after contributions and arms, but does

not acquire the consumable resources of the attacker. Then there is a correspondence between the

equilibria in Γ and Γ′ as follows:

Proposition 6 (The game with confiscation) : A strategy profile σ∗ is a peace equilibrium of

Γ′ if and only if it is a peace equilibrium of Γ.

A strategy profile σ∗ is a war equilibrium of Γ′ if and only if it is a war equilibrium of Γ, and

g(σ∗) = 0.

We omit the proof, but provide the intuition here. The change in payoffs between Γ and Γ′ does

not affect the players’ equilibrium payoffs in a full-deterrence peace equilibrium. The only payoffs

that change in such an equilibrium are off the equilibrium path, where one agent does attack. In

this case the defending agent receives a smaller payoff under Γ′ than under Γ. A reduction in a

player’s payoff off the equilibrium path cannot destroy the equilibrium. Thus a peace equilibrium

under the old rules must remain an equilibrium under the new rules. The converse is also true,

since an attacker’s payoff remains the same under both rules, so a change in the defender’s payoff

cannot induce an agent to change his strategy and attack.

In a war equilibrium, this change from Γ and Γ′ does not affect the aggressor’s incentives and best

responses, since if he is defeated then he loses his remaining resources under this amended payoff

function just as he did under the original one, and his payoff is no different if he wins. We therefore

need to examine how the change affects the defender. For the defender, it is now less attractive
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to contribute to peacekeeping. Recall from Proposition 3 that in a war equilibrium under the

original payoff rules if there is a positive peacekeeping contribution at all then it comes only from

the defender, who is indifferent between putting his defensive resources into the peacekeeper and

into his private arms. With the amended payoff function he is no longer indifferent, and puts his

entire defensive resources into private arms. Conversely, in a war equilibrium in Γ′, neither player

invests in the peacekeeper. Thus all war equilibria are pure contests that are not dominated by a

peacekeeping outcome, and it is easy to see that these would continue to be equilibria in Γ.

Thus the set of payoffs that correspond to equilibrium outcomes do not change if the peacekeeper

confiscates the aggressor’s resources rather than channeling them to the defender.13 With the

reformulation of the payoffs in Γ′, we only lose those war equilibria in which the defender deployed

part of her defensive forces as peacekeeping contributions (see Proposition 3), when they would

serve exactly the same purpose if deployed as private arms.14

6.2 Transfers between agents

We saw earlier that the amount of resources that must be devoted to deterrence increases as the

smaller of the post-contribution endowments declines. Further, we know that in a deterrence

equilibrium, the richer agent must always contribute to peacekeeping. It is therefore natural to ask

if it may not be more attractive for the richer agent to transfer some resources to the poorer one,

instead of contributing those resources to peacekeeping. This question is in the spirit of Beviá and

Corchón (2010), who explore the effectiveness of inter-player transfers for avoiding war in a contest

economy. In the main specification of their model, for a range of parameters the (richer) potential

defender transfers resources to the (poorer) potential attacker until the latter is indifferent between

war and peace, which leaves the defender better off.

In the present model, there is a range of endowments in which the rich defender is indifferent

between transferring resources to the peacekeeper or the attacker, and if he does transfer to the

attacker then the latter is better off. In the rest of endowment range the defender prefers to make

the same contributions to the peacekeeper, or not transfer to either the peacekeeper or to his rival.

In both cases the equilibria that we identified remain unaffected.

Proposition 7 (Transfers between players) : Suppose that, before contributions are made to

13This of course generates additional incentives for the peacekeeper, but they are not too relevant here since no
attack ever happens when the peacekeeper is endowed with resources.

14An alternative formulation would have the defender winning a fraction θ of the aggressor’s resources if the defence
prevailed. θ = 0 and 1 would correspond to games Γ′ and Γ respectively. Then we lose all of the war equilibria in
which the defender also endows the peacekeeper as soon as θ falls below unity, which underlines that only the
full-deterrence and pure contest equilibria are robust.

21



the peacekeeper, each player i is allowed to make a transfer tij to the other player j. Then the

equilibria corresponding to the different endowment distributions are as follows (where q =
√

2− 1
2 ,

and Ri = 1−Rj):

(i) For Rj ∈ (0, 1 − q), player i will make no transfer to player j, and the equilibria in the

remainder of the game are unaffected.

(ii) For Rj ∈ [1 − q, 14), player i is indifferent between transferring nothing to player j, and

transferring any amount up to 1
4 − Rj. In the subsequent subgame, player i reduces his

peacekeeping contribution by an amount equal to the transfer. Player j utility increases by

the amount of the transfer, and player i is indifferent.

(iii) For Rj ∈ [14 ,
1
2), player i transfers nothing to player j and the remainder of the game remains

unaffected.

We outline the (straightforward) intuition rather than provide a formal proof. For Rj < 1 − q,
we know that i prefers a contest than to peacekeeping. In the contest j is the one that has the

incentive to attack, putting all his resources into arms. A transfer to j that still leaves him in this

range would only increase j’s arms and hence reduce i’s expected payoff. A transfer that lifts j into

the range Rj + tij > 1− q, on the other hand, would produce a peace equilibrium in the subgame,

with i receiving a payoff of 1
2 (see Proposition 5 and Theorem 1). From Figure 4, it is clear that

i’s payoff is larger than 1
2 in the pure contest with the original endowments. Thus i prefers not to

make a transfer.

In the range 1 − q ≤ Rj ≤ 1
2 , on the other hand, the equilibrium without transfers is a peace

equilibrium, where i contributes 1
2 −Rj to the peacekeeper, retaining a consumption of 1

2 . Thus he

is indifferent between transferring any amount up to 1
4 − Rj to j, and contributing the remainder

to the peacekeeper.

Once Rj (or Rj + tij) rises above 1
4 , however, there is no longer perfect substitutability between

wj and the peacekeeper’s resources. As the curvature of the full-deterrence frontier (see Figure 2)

shows, an increase of ∆ in min{w1, w2} reduces the full-deterrence contribution by less than ∆.

This can also be seen from Lemma 4, which shows that in this range

∂ĝ(w)

∂min{w1, w2}
= 1− 1√

min{w1, w2}

which must be negative and smaller in magnitude than unity since min{w1, w2} > 1
4 .

Recall that in this range there are multiple equilibria, all of them full-deterrence, with the two

players contributing different amount of the total which is determined by the smaller of the re-
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maining resource endowments. Let us fix an equilibrium of the original game, and ask if transfers

can produce a pareto-improvement. It follows immediately from the observations above that this

is not possible.

Thus when inequality is extreme, the possibility of transfers does not rescue the economy from

anarchy. Voluntary inter-agent transfers can reduce inequality to produce a pareto-superior outcome

in economies that are just this side of anarchy, where inequality is somewhat less than extreme.

However, these possibilities disappear as the gap between the incomes narrows, even though it

still remains considerable with the poorer agent receiving no more than a quarter of the total

endowment.

7 Conclusion

This paper re-examines a standard model of contest in anarchy, where two agents possess resources

that can be devoted to consumption or to acquisitive warfare. In the simplest version of that

economy, the equilibrium necessarily involves conflict. However, since war is wasteful, it is likely

that one or both agents would be willing to precommit some resources to avoid conflict, even if

such precommitment is somewhat costly.

This is a context that is intuitively conducive to the genesis of a peacekeeping state. I use a

simple model of an exogenous peacekeeper which, to be effective, must be voluntarily endowed with

resources provided by the potential contestants. I find that, when inequality is low to moderate

(in a sense made precise), all agents find that the existence of a public peacekeeper is in their

interest. Hence agents voluntarily commit sufficient resources to the peacekeeper, and the resultant

equilibrium is characterised by the absence of conflict. For higher inequality, the poorer agent finds

such enforcement contrary to his interest, but the richer agent unilaterally endows the peacekeeper.

In part of this range there is peace, but this is less efficient than pure conflict. At very high levels of

inequality a peacekeeper is incompatible with the interests of either agent. The peacekeeper is not

endowed with resources in equilibrium, and there is conflict.We should thus expect to see the least

conflict in more equal societies and the most in very unequal ones. Some of these observations,

summarised in Observation 2, may arguably reflect the shapes of some troubled states, where law

and order is either absent, or enforced by militias that are maintained by wealthy overlords at great

cost to contain the dissent of a discontented population.

It is important to underline the relevant questions that this paper does not address. I have assumed

throughout that the peacekeeper acts impartially, even though it may be funded entirely or largely

by the richer agent. If instead the agent that contributes more to the peacekeeper can bend the

23



latter to his own purposes, then to that extent the peacekeeper is less impartial, and the nature

of the equilibria must be affected. The analysis here needs to be supported by a much more

sophisticated political theory of the nature of the state. A concern that naturally springs to mind

is that, in order to gain legitimacy, even a government funded entirely by the elite must distance

itself to some extent from that elite and assume some semblance of impartiality. Another relevant

concern is the number of contestants and the weight of each in the pool of resources yielded up to the

peacekeeper. In the introduction I have also alluded to the long-term interests of the peacekeeper,

whose long-term revenue streams may well be dependent on the security of property among the

subjects and the resulting commercial activity that is generated. Finally, the peacekeeper may

also act as a “true” state, providing productive public goods or effecting redistribution using the

contributed resources, once it is ascertained that the players have not invested in arms. We leave

these concerns for future consideration.
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Appendix: Proofs

Proof of Lemma 1:

(i) If ai = 1, then j 6= i improves his payoff by setting aj = 0 since then in the subsequent contest

the public defence is added to j’s arms. �

Proof of Lemma 2:

Player i will attack if his payoff from doing so is strictly greater than otherwise, which implies

(i) xi
g+x [1− (g + x)] > wi − xi, and

(ii) aj = 0.

The first condition says that the player’s expected consumption from a contest is greater than that

when there is no contest. The second follows from Lemma 1 if g > 0, and from Assumption 1

otherwise.

The inequality in the Lemma is a rearrangement of Condition (i) above. Condition (ii) follows from

the fact that the inequality cannot be simultaneously satisfied for both players. Otherwise suppose

that it is; rearrange and add for i = 1, 2 to get

x1 + x2 > (w1 + w2)(g + x)

⇒ x > wx+ w(1− w) since g = 1− w

⇒ x >

{
x if g = 0

w if g > 0

which cannot be true. Thus if i satisfies (i), then we must have
xj

g+x [1 − (g + x)] < wj − xj , so

j 6= i strictly prefers not to attack and (ii) is also satisfied. �

Proof of Lemma 3:

Since i attacks, he uses arms xi, while j defends with xj + g, and the prize is 1 − g − x. Let

ΠA
i (xi, xj ; g) denote i payoff when he attacks and the arms are as specified. Then i solves:

max
xi≤wi

ΠA
i (xi, xj ; g)

xi
g + x

[1− (g + x)]

which yields xi =
√
xj + g − [xj + g] if the constraint is not binding. The payoff Π is strictly

increasing for values of xi to the left of this, so xi = wi when the constrain is binding.

Similarly, let j maximize ΠD
j (xi, xj ; g) which denotes his payoff when defending. This yields xj+g =

√
xi−xi when the maximum is interior. Note that the resource constraint cannot be binding for j,

for if she were to devote all her resources to defence then i would not have an incentive to attack.

However, if the peacekeeping contribution g already (weakly) exceeds the optimum defence
√
xi−xi

26



then xj = 0. �

Proof of Proposition 1:

(i) Otherwise suppose xi(σ) = 0, then j 6= i can invest a small amount 0 < ε < Ri and attack,

thereby capturing all of the remaining resources and obtaining consumption in excess of Rj .

But then i consumes nothing, and can improve her position by choosing xi > 0.

(ii) Otherwise suppose neither attacks, then from Lemma 2, we must have xi
Ri
≤ x for i = 1, 2.

Rearranging and adding the conditions for i = 1, 2 we get x ≤ x, which implies that the

condition must hold with equality for both players, and hence

x1
R1

=
x2
R2

= x (3)

⇒ xi
x

= Ri i = 1, 2.

With these arms investments, the war payoff xi
x [1−x] is equal to the peace payoff Ri−xi, so

neither player goes to war. But for this to be equilibrium, it must be further true that neither

player prefers to vary her arms investment and go to war, which implies that her war payoff

is maximized at the current investment given the opponent’s investment. Thus we must have

∂
∂xi

[
xi
x (1− x)

]
= 0

⇒ xj

x2 = 1

⇒ xj = x2 =
x2j
R2

j

which from (3) implies that Rj =
xj

Rj
for both players j = 1, 2. But this can only be true if

R1 = R2 = 1
2 , and not otherwise.

Further when R1 6= R2, it follows from Lemma 2 that exactly one player attacks.

(iii) Follows directly from the proof of (ii) above.

(iv) Follows from substituting Lemma 3 and the specification of the payoffs.

�
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Proof of Lemma 4.

Let g be given and set xj = 0. If i attacks with arms xi, then his expected payoff is

Πi(xi, g) =
xi

xi + g
[1− (xi + g)].

This is maximised at x̃i(g) =
√
g − g, and is increasing in xi for xi <

√
g − g. Thus i will choose

to arm up to xi(g, wi) where

xi(g, wi) =

{ √
g − g if wi ≥

√
g − g

wi if wi <
√
g − g

His corresponding payoff can be obtained from the previous two expressions:

Πi(g, wi) =

{
(1−√g)2 if wi ≥

√
g − g

wi
wi+g [1− (wi + g)] if wi <

√
g − g

Define g(wi) as the value of g that solves wi = Πi(g, wi). Since Πi(g, wi) is decreasing in g, it

follows that g deters i if and only if g ≥ g(wi).

Now let g = g(wi).

First suppose wi ≥
√
g− g, so wi = Πi(g, wi) = (1−√g)2. Then (1−√g)2 ≥ √g− g ⇒ g ≤ 1

4 ⇒
wi ≥ 1

4 . Conversely note that
√
g − g ≤ 1

4 ∀g ∈ [0, 1], so if wi ≥ 1
4 then Πi(g, wi) = (1 − √g)2.

Hence it follows that if wi ≥ 1
4 then g(wi) = (1−√wi)

2.

Next let wi <
√
g−g so wi = wi

wi+g [1−(wi +g)] ⇒ g = 1
2−wi. Then wi <

√
1
2 − wi−(12−wi) ⇒

wi <
1
4 . Conversely, if wi <

1
4 then by the previous paragraph we cannot have (1−√g)2 ≥ √g− g,

hence indeed wi <
√
g − g.

from the above it follows that:

g(wi) =

{
(1−√wi)

2 if wi ≥ 1
4

1
2 − wi if wi <

1
4

Finally, suppose wj ≥ wi. If wi ≥ 1
4 then g(wi) = (1 − √wi)

2 > (1 − √wj)
2 = g(wj). If wi <

1
4

and g(wi) = 1
2 − wi >

1
4 then wj = 1− wi − g(wi) = 1

2 and g(wj) = (1− 1√
2
< 1

4 < g(wi). Hence if

wj ≥ wi, then g(wi) is sufficient to deter j. �
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Proof of Observation 1.

This follows from solving ming,w1,w2 ĝ(w) subject to g + w1 + w2 = 1; w1, w2 > 0. �

Proof of Lemma 5. Let g ≥ ĝ(w), then by Lemma 4, x1 = 0, x2 = 0 are optimal responses to each

other. Hence x = 0, a = 0 is an equilibrium of Γ2|g. �

Proof of Lemma 6. Let g ≥ ĝ(w), and suppose in the subgame Γ2|g there is an equilibrium with

x 6= 0, a = 0. then by Lemma 4 and Assumption 2, we must have x� 0, for suppose x1 = 0, then

2 can weakly improve his payoff by setting x2 = 0.

But if x � 0 then it must be true that in Γ3|(g, x) both players i = 1, 2 are exactly indifferent

between ai = 0 and ai = 1, i.e., the condition for preferring peace

xi
x+ g

[1− x− g] ≤ wi − xi (4)

holds with equality. For if i strictly prefers ai = 0, which implies that the condition (4) holds with

a strict inequality, then there is ε > 0 such that the inequality continues to hold if j reduces xj by

ε. But this increases j’s payoff, hence xj could not be the optimal response to xi given g.

But then adding together (4) for i = 1, 2 and rearranging, we get

x

x+ g
[1− x− g] = w − x

⇒ x

x+ g
− x = w − x

⇒ x

x+ g
= w ≡ 1− g

⇒ x = x+ g − gx− g2

⇒ 1− g − x = 0 (5)

But then each player i has zero consumption, and can increase his payoff by reducing xi, hence this

cannot be an equilibrium. �

Proof of Lemma 7.

Let g ≥ ĝ(w), and suppose in the subgame Γ2|g there is a war equilibrium s|g. By Lemma 1,

exactly one player attacks in stage 3, wlog let this be player 1. Let (x1, x2) be the arms profile

chosen in stage 2. Since s|g is an equilibrium of Γ2, x1 and x2 must be optimal responses to each

other given g and a 6= 0. Hence, by Lemma 3, we have
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x1 = min{
√
x2 + g − (x2 + g), w1}

x2 = max{0,min{
√
x1 − (x1 + g), w2}} (6)

Note that (
√
x1 − x1) ≤ 1

4 for all values of x1, so if g ≥ 1
4 then 2’s optimal response to any value

of x1 is x2 = 0. But then by Lemma 4, 1 cannot improve his payoff by arming and attacking

unilaterally, hence by Assumption 2 there does not exist a war equilibrium.

So let g < 1
4 =⇒ (w1, w2)� (14 ,

1
4). Then by (6) we have x1 = x2 + g = 1

4 , and Π1 = Π2 = 1
4 .

Now consider the deviation s′1|g by 1, with x′1 = 0, a′1 = 0. Suppose in the subgame Γ3 following

the deviation, 2 does not attack. Then 1 gets the payoff Π′1 = w1 > Π1. Alternatively suppose 2

does attack. Then 1 gets the payoff

Π′1 =
g

g + x2
[1− (g + x2)] =

g
1
4

[1− 1

4
] = 3g

Π′1 >
1
4 if 3g > 1

4 =⇒ g > 1
12 , which is always true by Observation 1.

Hence given g and s2|g, the deviation s′1|g dominates s1|g for 1, and s cannot be an equilibrium.

�.

Proof of Lemma 8.

Contrary to hypothesis, suppose there is a peace equilibrium with outcome z|g = (x, a) where

g < ĝ(R− g). Let w = (R− g), and suppose wlog that w1 ≤ w2. Since g is nfd, at least player 1

is undeterred.

Suppose both players are undeterred, then we must have x′ � 0, for if xi = 0 then j 6= i will arm

and attack.

Suppose player 2 is deterred, then too x′ � 0, for if x′1 = 0 then 2 will not arm, but if x′2 = 0 then

1 will arm and attack, hence with x′2 = 0 we cannot have a = 0.

Thus both x′1 and x′2 must be strictly positive. But then by the argument in the proof of Lemma

6, (4) must hold with equality, and (5) must be true, hence z|g cannot be an equilibrium of Γ2|g.

�
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Proof of Proposition 2.

The proposition follows directly from lemmas 5, 6, 7 and 8 above. �

Proof of Proposition 3.

Part (i) follows directly from Proposition 2. Further, it is easy to see that g(σ) > ĝ(w) cannot

be chosen in equilibrium. So it remains to prove part (ii) for g(σ) < ĝ(w).

If g(σ) = 0 then the result follows from Proposition 1.

So suppose 0 < g(σ) < ĝ(w). By Lemma 8, if σ is an equilibrium then it is a war equilibrium.

By Lemma 1 exactly one player attacks in this equilibrium; let i be the attacker, and j the

player that is attacked (the “defender”). Recall that this implies xj < wj (otherwise i has no

incentive to attack).

Since σ is an equilibrium, it must be true that (dropping the argument σ for convenience) xi

and g + xj are best responses to each other in the subgame Γ2|g, as described in Lemma 3.

First suppose that gi = 0 so g = gj . Then g+ xj must equal the resources that j would have

invested in private arms in the pure conflict subgame, and the result follows.

Hence we need to consider g such that gi > 0.

In the subgame following g, we must have g weakly less than the defender j’s best

response to the attacker’s arms xi. Otherwise suppose g >
√
xi − xi, then the defender

invests xj = 0 in private arms. But then the attacker could reduce gi by a small ε

without affecting the defender’s choice of arms. It can easily be seen that this strictly

increases the attacker’s payoff, so gi was not optimal.

From the previous step it follows that xj + g =
√
xi− xi. The attacker i’s best response

to this is xi = min{√xj + g − (xj + g), wi}. If wi ≥
√
xj + g − (xj + g) then i invests

this amount, and it follows that xi = xj + g = 1
4 . These are exactly the arms that the

two contestants use in pure contest, and lead to the pure contest payoffs Πcontest.

Finally suppose wi <
√
xi + g− (xi + g), so xi = wi. Note that

√
a−a ≤ 1

4 for a ∈ [0, 1].

As in the previous step, j responds optimally to this choice. From Proposition 1 we

have Πi =
√
xi(1−

√
xi), which is increasing in xi for xi <

1
4 . But then let i reduce his

contribution to g′i = gi − ε and increase his arms to x′i = xi + ε. Given that j responds

optimally, i’s payoff must increase. So the initial choice of gi was suboptimal and this

cannot be an equilibrium.
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Proof of Proposition 4

Corresponding to Lemma 4 consider the two cases of minimal full deterrence:

(i) If w1 <
1
4 then ĝ(w1) = 1

2 − w1 and w2 = 1
2 .

(ii)If min{w1, w2} = w1 ≥ 1
4 . Then ĝ(w1) = (1−√w1)

2. Hence

w2 = 1− [w1 + (1−
√
w1)

2] = 2(
√
w1 − w1)

It can be checked that w2 ≥ w1 provided w1 ≤ 4
9 . When w1 = 4

9 , we have w1 = w2, and ĝ(w1) = 1
9 .

We know that ĝ(w) depends only on min{w1, w2} and g > ĝ(w) is also full deterrent. Hence all

values of w2 between w1 and the value derived above are consistent with full deterrence.

If w2 ≥ w1 >
1
4 , then from (ii) above w1 + g(w1) +w2 ≥ 2w1 + (1−√w1)

2 = 3w1 − 2
√
w1 + 1. But

the last term is ≤ 1 only if w1 ≤ 4
9 . Hence full deterrence is not feasible with min{w1, w2} > 4

9 . �

Proof of Proposition 5.

We focus on the case R1 ≤ R2. The proof for the complementary case is identical.

First suppose that R1 ≤ 1
4 . Then the post-contribution allocation must have min{w1, w2} ≤

1
4 . Then full deterrence requires g = 1

2 − min{w1, w2}, which gives max{w1, w2} = 1
2 . Hence

contributions by i where wi = min{w1, w2} do not alter the contribution required from j 6= i.

Thus the only contribution from i consistent with minimality is gi = 0, and j must contribute

gj = Rj − 1
2 . It follows that when R1 ≤ 1

4 , the only contribution profile that is a candidate for

equilibrium is (g1, g2) = (0, R2 − 1
2), which yields the consumption profile (R1,

1
2).

This leaves endowments with (R1, R2) ≥ (14 ,
1
4). By the argument in the preceding paragraph, a

minimal fd allocation starting from this endowment must have wi ≥ 1
4 , i = 1, 2. Hence w1 and w2

are related by the second line of equation (1). For each value of R1 in the initial endowment, we

want to identify the smallest and largest values of w1 that is attainable in a mfd allocation.

Let R1 ∈ [14 ,
1
2 ] ⇔ R2 ∈ [12 ,

3
4 ]. By the previous argument, the largest contribution player 1 can

make is g1 = R1 − 1
4 which leaves him with w1 = 1

4 . This calls for g = 1
4 ≥ g1, so player 2 must

contribute the rest, resulting in the allocation [14 ,
1
2 ]. Thus in this range the smallest allocation w1

consistent with mfd is 1
4 .

To identify the largest allocation, consider two intervals. First let R1 ∈ [14 ,
4
9 ] ⇒ R2 ∈ [59 ,

3
4 ]. We

know from Lemma 4 that if g1 = 0 then player 1 can be deterred if player 2 contributes (1−
√
R1)

2.
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This leaves player 2 with consumption w2 = 2(
√
R1 − R1) ≥ w1. Since 1 does not contribute,

w1 = R1 = 1−R2, the resultant consumption vector is (R1, 2[
√

1−R2 − (1−R2)]).

Next let R1 ∈ (49 ,
1
2 ], if player 2 contributes sufficiently to deter player 1, this leaves him with

w2 < w1. Hence to ensure full deterrence with no contribution from player 1, he must deter

himself. This implies g2 = (1−√w2)
2. Since g2 + w2 = R2, This leaves player 2 a consumption of

[12{1 +
√

(2R2 − 1)}]2, which ranges from w2 = 4
9 when R2 = 5

9 to w2 = 1
4 when R2 = 1

2 . Of course,

since player 1 does not contribute to deterrence, his allocation remains at w1 = R1.

Finally, note that when player 1 with R1 makes his minimum possible contribution, player 2 with

R2 = 1− R1 must make the maximum contribution. Putting these together we obtain the propo-

sition. �

Proof of Theorem 1

Without loss of generality we focus on R : R1 ≤ R2. We consider three cases.

Case 1: R1 ∈ [14 ,
1
2) ⇔ R2 ∈ (12 ,

3
4 ].

Suppose there is an equilibrium z∗ such that a∗ 6= 0, i.e., there is war. Then g∗ is not full deterrent,

and by Proposition 3 the players receive the pure contest payoffs (14 ,
1
4).

Thus player 1 will never contribute more than R1 − 1
4 to public defence, hence in any equilibrium

we must have w1 ≥ 1
4 = ΠC

1 .

But then to ensure full-deterrence the largest contribution 2 may be required to make is g2 =
1
4 − g1 ≤

1
4 , which leaves him with w2 >

1
4 = ΠC

2 . Hence for any incentive compatible contribution

from player 1, player 2 prefers to ensure full-deterrence rather than engage in contest. Thus if there

is an equilibrium then it must be full-deterrence.

It is easy to verify that g = (R1 − 1
4 ,

1
2 − R1) is an equilibrium. Hence there is at least one

equilibrium, and any equilibrium is full-deterrence.

Case 2: R1 = R2 = 1
2 .

The arguments for Case 1 carry over for any contribution 0 < g1 <
1
4 , which lead to full-deterrence

equilibria with payoffs Πi >
1
4 , i = 1, 2.

However, for g1 = 0, player 2 has two optimal choices; he can contribute g2 = 1
4 , which ensures

full-deterrence and yields him a payoff of 1
4 , or he can set g2 ∈ [0, 14), leading to war (see Proposition

3) which also yields a payoff of 1
4 . An equivalent argument applies to player 1, hence, in particular,

g = (0, 0) followed by a pure contest is an equilibrium.

It follows that any minimal full-deterrence equilibrium where each player contributes a strictly
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positive amount to public defence strictly dominates the unique pure contest equilibrium. Further,

if g1 = 0, the deterrence equilibrium with g2 = 1
4 yields payoffs (12 ,

1
4), which pareto dominates the

contest outcome.

Case 3: R2 >
3
4 ⇔ R1 <

1
4 .

By Proposition 5, any full-deterrence equilibrium must have g1 = 0 and g2 = R2− 1
2 , yielding player

2 a payoff of 1
2 .

A pure contest equilibrium yields player 2 a payoff of (1−
√
R1)

2.

Hence the nature of the equilibrium depends on player 2’s choices, and he will choose to deter if

and only if
1

2
≥ (1−

√
R1)

2 ⇔ R1 ≥ (
3

2
−
√

2).

�

Proof of Theorem 3

Let R1 ∈ [32 −
√

2, 14 ]. We know from an earlier proposition that in this range player 2 unilaterally

ensures full-deterrence in equilibrium, with g2 = 1
2 − R1. Hence the sum of consumptions in

equilibrium is c∗ = 1
2 +R1.

Consider the corresponding pure contest outcome (see Section 2.4). Since player 1 is constrained,

she invests her entire endowment in arms, and 2 responds optimally, which yields payoffs Π1 =
√
R1(1−

√
R1) and Π2 = (1−

√
R1)

2. Thus total consumption is cC = (1−
√
R1).

Thus full-deterrence is efficient if and only if

1

2
+R1 ≥ (1−

√
R1),

which reduces to R1 ≥ 1−
√
3
2 , which it can be verified is greater than 3

2 −
√

2. �
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