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Abstract 2SLS has poor properties if instruments are exogenous but weak. But how
strong must instruments be for 2SLS estimates and test statistics to exhibit acceptable
properties? A common standard is a first-stage F' > 10. This is adequate to ensure two-
tailed t-tests have small size distortions. But other problems persist: In particular, we
show 2SLS standard errors tend to be artificially small in samples where the estimate
is most contaminated by the OLS bias. Hence, if the bias is positive, the t-test has
little power to detect true negative effects, and inflated power to find positive effects.
This phenomenon, which we call a “power asymmetry,” persists even if first-stage F’
is in the thousands. Robust tests like Anderson-Rubin perform better, and should be
used in lieu of the t-test even with strong instruments. We also show how 2SLS test
statistics typically suffer from very low power when first-stage F' is near 10, leading us
to suggest a higher standard of instrument strength in empirical practice.
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1. INTRODUCTION

Economists frequently use instrumental variable (IV) methods to deal with endogeneity
problems, and the most popular method is two stage least squares (2SLS). But the work of
Bound et al. (1995) and Nelson and Startz (1990) highlights the poor properties of 2SLS
when instruments are exogenous but “weak,” in the sense of being weakly correlated with
the endogenous variable. Two problems have received tremendous attention: size inflation
in 2SLS t-tests and median bias of 2SLS estimates towards OLS. A large literature has
emerged on (i) testing if instruments are strong enough to avoid these problems, and (ii)
developing statistical tests that are robust to weak IV problems.

We provide an accessible guide to this literature. Our main contribution is to highlight
key problems with 2SLS ¢-tests that weak IV tests gloss over. We show how 2SLS standard
errors tend to be artificially small in samples where the estimate is most contaminated
by the OLS bias. Thus, if the OLS bias is positive, the ¢-test has inflated power to find
false positive effects, and poor power to detect true negative effects, even in large samples
where instruments are “strong” by conventional standards. Fortunately, robust tests like
Anderson and Rubin (1949) can avoid this problem and are easy to implement. We argue
they should be widely adopted in lieu of the t-test — even if instruments are strong.

In an important paper, Staiger and Stock (1997) showed that ¢-tests suffer from severe
size distortions if instruments attain only 5% significance in the 2SLS first stage (i.e, a
first stage F' of 3.84 in the single instrument case). This led them to advocate a higher
standard of instrument relevance. They find if first-stage F' is 10 then a 2SLS 5% two-
tailed ¢-test rejects a true null Hy:8 = 0 at a rate not “too far” from the correct 5% rate.
Thus, Stock and Watson (2015, p.490) write: “One simple rule of thumb is that you do
need not to worry about weak instruments if the first stage F-statistic exceeds 10.”
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Later, Stock and Yogo (2005) derived thresholds for first-stage sample F based on the
maximal size distortion in ¢-tests one is willing to tolerate (i.e., How often does a 5%
t-test test reject?). For example, in the single instrument case they show that F>164
ensures (with 95% confidence) that a two-tailed 5% t-test rejects a true null Hy:5=0 at
a rate no higher than 10%. Recently, Lee et al. (2022) show a much higher standard of
F>104.7is required to insure t-tests reject at a rate no higher than the correct 5% rate.

Stock and Yogo (2005) weak instrument tests are designed to assess size distortions in
two-tailed 2SLS t-tests.! The weak IV literature in general has focused heavily on size
inflation of t-tests and bias in 2SLS estimates. We argue this focus on size and bias has
caused the literature to gloss over other problematic properties of 2SLS that persist even
when instruments are “strong” according to Stock-Yogo tests, and even in large samples.

In particular, 2SLS suffers from two key problems if first-stage F'is in the 10 to
20 range typically deemed acceptable. First, estimates are imprecise. Second, a strong
association exists between 2SLS estimates and standard errors: 2SLS generates artificially
low standard errors in samples where the estimate is most contaminated by endogeneity.

The strong association between 2SLS estimates and standard errors that we identify
persists even if instruments are very strong. It has two important consequences: 2SLS
estimates shifted towards OLS will appear spuriously precise, so the ¢-test has inflated
power to judge such estimates significant. Conversely, 2SLS t-tests have little power to
detect a true 8 opposite in sign to the OLS bias. This phenomenon, which we call a
“power asymmetry,” renders the ¢-test unreliable even if instruments are quite strong.?

The 2SLS power asymmetry has serious implications: In an archetypal application of
IV, one seeks to test if a program has a positive effect on an outcome, but a confound
arises because those who participate are positively selected on unobservables. Even if
instruments are quite strong by conventional standards, the 2SLS ¢-test will have inflated
power to find false positive effects, and little power to detect true negative effects.

In the single instrument (exactly identified) case we show that the weak instrument
robust test of Anderson and Rubin (1949) greatly alleviates the power asymmetry prob-
lem that plagues the t-test, making it far more reliable. To illustrate, we also provide an
empirical application to estimating the effect of anticipated income changes on consump-
tion. This clearly shows the superiority of the AR test over the ¢-test — it not only has
correct size but also substantially better power properties. Furthermore, the AR test is
very easy to calculate. Thus we argue the AR test should be widely adopted in lieu of
the t-test in the exactly identified case, even if instruments are strong.

Finally, we consider the over-identified case. The use of multiple instruments increases
efficiency. But it also increases the bias of 2SLS towards OLS, and the size distortion and
power asymmetry in ¢-tests. The limited information maximum likelihood (LIML) esti-
mator of Anderson and Rubin (1949), in conjunction with the conditional likelihood ratio
(CLR) test of Moreira (2003), give much more reliable results. Contrary to widespread
misperception among applied researchers, we show that both LIML and CLR are simple
to interpret and implement.® We argue these methods should be widely adopted, not
only when instruments are weak but also when instruments are strong.

1They also assess bias of 2SLS in models with overidentification of degree 2, so the mean of 2SLS exists.

2As Angrist and Kolesdr (2021) note, our concept of power asymmetry is non-standard, as it requires
one to consider the behavior of test statistics conditional on the parameter estimate. Nevertheless, we
argue this power asymmetry has very important implications for empirical work.

3Finlay and Magnusson (2009) provide Stata code for a heteroskedasticy robust version of CLR. The
continuously updated GMM of Hansen et al. (1996) generalizes LIML to heteroskedastic data.
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2. BACKGROUND: PROBLEMATIC PROPERTIES OF 2SLS T-TESTS

Consider an exactly identified linear IV model, where endogenous variable y is regressed
on a single endogenous variable x, and there is a single exogenous instrument z. We focus
on this simple case as it clarifies the key ideas, and it is the most common in applied
practice. The parameter p € [0, 1] controls the extent of the endogeneity problem, while
7 governs the relationship between the instrument and the regressor:

Yi = i+ u
x; = w2 +e; where e; = pu; ++/1 — p?n; (1)
w; ~ iid N(0,1),m; ~ iid N(0,1), z; ~ iid N(0, 1)

We assume iid-normal errors to allow analytic power calculations. We normalize all error
variances to 1.0 as this allows us to interpret 5 as roughly the standard deviation change
in y induced by a one sigma change in . In much of our analysis it will be useful for the
magnitude of 8 to be interpretable. The OLS bias is E(BOLS —B)=p.

This éid normal setup is not as restrictive as it may appear, as Andrews et al. (2019)
show that for any heteroskedastic DGP, there exists a homoskedastic DGP yielding equiv-
alent behavior of 2SLS estimates and test statistics. Furthermore, any exogenous covari-
ates can be partialed out of y and = without changing anything of substance.

The 2SLS estimator of 5 takes the following form, where " denotes a sample value:

3 Dlicy ZiYi D Zili cov (2, u)
Pascs Doy ZiTi P oz cov (z,x) (2)

This may be obtained via a two-step process where in the first-stage one regresses x on
z, and in the second stage one regresses y on the fitted values from the first stage.

The F statistic from the population first-stage regression of x on z determines the
strength of the instrument. It is often called the concentration parameter, C'. Of course,
we cannot observe F', as we can only observe the sample F from the first-stage regression.
F provides an estimate of the strength of the instrument. In the notation of (1) we have:

C=F= NVar(an') :Nigi

e e

= N7? and F = N#262/62

The size of a statistical test is the probability of rejecting a true null hypothesis.
Unfortunately, the size of a 5% level 2SLS t-test is not generally 5%. The 2SLS t¢-test is
not a pivotal statistic, so its size depends on the nuisance parameters p and C.*

Stock and Yogo (2005) studied how the size of the 5% two-tailed 2SLS ¢-test deviates
from the correct 5% level, and how this size distortion depends on instrument strength.
They derive a formula for power of the ¢-test in terms of C, p and true 8 that we present
in Appendix A, equation (A2). Evaluating power at =0 gives the size of the test.

A complication arises because as size is increasing in |p|, so Stock-Yogo focus on the
maximal size distortion, which occurs when p = £1. The integral in (A2) can then be
evaluated numerically to determine how the size of the ¢-test depends on C'. For example,
doing a grid search over F to set size approximately equal to 15%, they obtain F'=1.82.
So this level of instrument strength guarantees a maximal size distortion of 10%.

Stock and Yogo (2005) weak IV tests are sample F thresholds that give 95% confidence
the population F' is above some threshold that, in turn, implies a maximal size distortion.

4The 2SLS t-test is only asymptotically pivotal as C' grows large. In contrast, the OLS t-test is pivotal,
as its distribution is purely a function of the data.

© 2022
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The sample F'is a draw from a non-central F with non-centrality parameter C. Thus,
for example, F > 8.96 gives 95% confidence that F is at least 1.82, which in turn, implies
the maximum size of a two-tailed 5% t-test is 15% (i.e., maximal size distortion of 10%).

Table 1 give examples of different Stock-Yogo test thresholds and the maximal size that
each achieves. For example, F> 10, which corresponds to the popular Staiger-Stock rule
of thumb for acceptable instrument strength, gives 95% confidence that that C is at least
2.3, which in turn, insures a maximal size of 13.5% (distortion of 8.5%).

Table 1. Stock-Yogo Test: Example First-Stage F' Critical Values
C=PopF T F o5 critical value Max Size

1.82 0.0427 8.96 15%
2.30 0.0480 10.00 13.5%
5.78 0.0760 16.38 10%
10.00 0.1000 23.10 8.6%
29.44 0.1716 50.00 6.4%
73.75 0.2716 104.70 5%

Note: Instrument is significant at the 5% level if first-stage F' > 3.84. Higher levels of F reduce
mazimal size distortion to levels in column 4. The 7 levels are specific to N=1000, as C = Nr2.

The limitation of the Stock-Yogo analysis is it emphasizes the level of the power curve
at the single point =0 and p = +1. Our goal is to obtain a broader view of the properties
of the t-test. We begin with a simple experiment: We simulate 10,000 artificial data sets of
size N=1000 from the model in (1), assuming 5=0, and setting the degree of endogeneity
p=0.80 so the OLS bias is positive. We set 7=0.048 so C = F = Nx? = 2.3. This level
of C' is interesting, as the popular F > 10 rule is actually a 5% level test for I > 2.3.
We then run 2SLS on each artificial data set and summarize the results.

The left panel of Figure 1 plots the 2SLS standard error estimates se(f2s.5) against
the 2SLS estimates BQS 1s- This reveals a striking pattern: A strong negative association is
evident; in fact, the Spearman r, is -0.576 and Kendall’s 7 is -0.511. Notice the magnitude
of the variation in the standard errors is substantial, as the y-axis shows standard errors
that range from about 0.2 to 1.5. Thus, 2SLS estimates that are most shifted toward the
OLS bias appear to be much more precisely estimated.

The red dots in Figure 1 indicate runs where BQSLS differs significantly from zero
according to a two-tailed 5% t-test. The null hypothesis Hy:8 = 0 is rejected at a 10%
rate, so as expected there is a modest size inflation. But this masks a deeper problem:
Due to the negative association between the 2SLS estimates and their standard errors,
all rejections occur when 523L5>0 and none when 525L5<0 Only the estimates most
shifted towards the OLS bias are ever judged significant.

The association between 2SLS estimates and standard errors is not a weak instrument
phenomenon. The right panel of Figure 1 plots results for the very strong instrument
case of C=T4 (F p5=105). A strong negative association persists. In fact, Spearman’s r
is -0.92 and Kendall’s 7 is -0.75. The 2SLS ¢-test now has a rejection rate of 4.87%, so
size is roughly correct. But 93% of those rejections occur when 325 s > 0. In Keane and
Neal (2022b) we show this association persists even with C' in the thousands.

The source of the negative association between 2SLS estimates and standard errors is
simple to understand. In our DGP cov(z,z) > 0. In our simulation éov(z,z) > 0 in all
runs with C=74, and 93.3% of runs with C=2.3. Provided cov(z,z) > 0, equation (2)

© 2022
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Figure 1. Standard Error of BQSLS plotted against BQSLS itself (p = 0.80)
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Note: Runs with standard error > 1.5 not shown. Red dots indicate Hy : 8 = 0 rejected at 5% level.

shows how a positive realization of ¢ov(z,u), the sample covariance between the instru-
ment and the structural error, generates an estimate shifted in the positive direction.
This is the direction of the OLS bias, as E(BOLS) = p = 0.80.

Crucially, a positive sample realization of ¢ov(z,u) also drives up the sample covariance
between the instrument and the endogenous variable. This makes the instrument appear
spuriously strong, as is obvious because:

cov (z,x) = woar (z) + pcov (z,u) + /1 — p2cov (z,n) (3)
This spurious instrument strength drives down the 2SLS standard error.5-%

Thus, a positive sample realization of cov(z,u) generates both (i) an estimate shifted
towards OLS and (ii) a low estimated standard error. Hence, 2SLS will appear “spuriously
precise” in samples where the estimate is most shifted in the direction of the OLS bias.”
This generates the negative association that we see in Figure 1.

We now run a second experiment that illustrates the power asymmetry problem that
afflicts 2SLS as a consequence of the association between the estimates and their standard
errors. We consider DGPs where the true [ is +0.30, and assess the power of the 2SLS ¢-
test to reject the false null Hy:5=0. Importantly, these values of 5 would be quantitatively
large, but plausible, in typical empirical applications, as they imply a one standard
deviation change in = induces an 0.25 standard deviation change in y. We consider all 5
levels of instrument strength in Table 1, and three levels of endogeneity, p € (0,0.5, 1.0).
For each parameter setting we simulate 10,000 artificial data sets with N=1000.

We summarize the results in Table 2. A striking result is that a 2SLS ¢-test has almost
no power to detect a sizeable true negative effect when the OLS bias is positive, unless
instrument strength is far above conventional weak IV test thresholds. For example, if
C=10 and p=0.5, the probability of rejecting Hq:5=0 is 23.7% when § = 0.30 compared

5As VCLT(BQSLS) = Var(BAOLS)/R;x, the larger is ¢ov(z, z) the smaller is the standard error.

61f C=2.3 the chance of cov(z,x) < 0 is 6.7%. These runs typically generate large positive estimates
with large standard errors. But this occurs too infrequently to change the overall negative association.

"We call this phenomenon “spurious precision” as a positive cov(z,u) makes the instrument appear
stronger than it really is — i.e., it drives up cov(z, z) relative to cov(z,x). This drives down the standard
error, so it understates the actual degree of uncertainty about the parameter estimate.

© 2022
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Table 2. Power of 2SLS ¢-Test — Frequency of Rejecting Ho:8 =0 (%)

Concentration P 5=03 B8 =-0.3
Parameter ° p=0 p=05 p=1|p=0 p=05 p=1
1.82 8.96 1.8 11.7 25.5 1.7 0.1 4.2
2.30 10.00 2.4 13.0 25.1 2.2 0.2 3.2
5.78 16.38 7.2 18.8 26.3 7.2 0.5 0.8
10.00 23.10 134 23.7 28.9 13.3 2.3 0.2
73.75 104.7 714 67.8 65.1 71.9 78.0 89.1

Note: The table reports the probability of rejecting the false null hypothesis Ho: B = 0.

to only 2.3% when 8=-0.30. This power asymmetry arises from the geometry of Figure
1. If 8=0.30 the cloud of points shifts right, while if 5=-0.30 it shifts left. Clearly, a
rightward shift generates more significant results.

In summary, the 2SLS estimator has the unfortunate property that it tends to generate
standard errors that are too low precisely when it also generates estimates shifted in the
direction of the OLS bias. As a consequence, it is difficult for a 2SLS t-test to detect
plausibly sized true negative effects when the OLS bias is positive. This pattern is reversed
if the OLS bias is negative. We explore this problem further in the next section.

3. THE ANDERSON-RUBIN TEST VS. THE T-TEST

The usual suggestion of the theory literature is to avoid the t-test if instruments are weak,
and instead use robust tests that have correct size regardless of instrument strength. In
the single instrument case the unambiguous choice is the Anderson and Rubin (1949)
test. The AR test is based on the reduced-form regression of y on z which is y =
2B + (Be + u) = 2€ + v where £ = Bx. Given a valid instrument z, which must satisfy
m # 0 and cov(z,v) = 0, a test of the null hypothesis Hy:{ = 0 provides an alternative
way to test Hy:3 = 0. Thus, The AR test judges Basrs to be significant if z is a significant
predictor of y in the reduced form. Equivalently, the AR test is simply the F-test from
the regression of y on 2@, where 7 is the first stage estimate of .

The AR test has correct size, regardless of instrument strength, as it is simply an F-
test from OLS regression of y on z. It is a pivotal statistic, meaning it does not depend
on C or p. The AR test also has superior power properties relative to the t-test, as
illustrated in Figure 2. It presents analytical power curves for both tests, for the model
in (1), obtained as described in Appendix A. We set the level of instrument strength to
C=10, which is well above conventional weak IV thresholds. The left and right panels
show results for p = 0.50 and 0.80, corresponding to moderate and severe endogeneity
problems, respectively. We adopt a 5% level for both tests.

An unbiased statistical test has the desirable property that the probability of rejecting
Hy: = 0 is minimized if the true § is in fact zero. We can see in Figure 2 that the AR
test is unbiased. It also has correct size, as its power evaluated at 5 = 0 is exactly 5%.

In contrast, the t-test is biased. As we see in Figure 2, left panel, if p = 0.50 the power
of the ¢-test is near zero when the true § is in the vicinity of —0.25. So the probability
of rejecting Hy:8 = 0 is minimized when true § is near -0.25 rather than at zero. And if
p = 0.80 (right panel) ¢-test power is near zero for true § in the —0.25 to —0.40 range.
Recall that S is roughly the standard deviation change in y induced by a one sigma
change x. Effect sizes of —0.25 to —0.40 are quite large in typical applications. Thus,

© 2022
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these results show the t-test has almost no power to detect a wide range of substantively
large true negative effects when the endogeneity bias afflicting OLS is positive. This is
due to the negative association between 2SLS estimates and standard errors.

In contrast, as we also see in Figure 2, the AR test has far better power than the ¢-test
to detect true negative effects. In the single instrument case Moreira (2009) shows AR
is the uniformly most powerful unbiased test (for testing a point null hypothesis). It has
better power than any other unbiased test, regardless of the true parameter value.

Figure 2. Power of t-Test vs. AR-Test when C' = 10 (F55,=23.1)
p=0.5 p=0.8

Power

T-test AR-test

Figure 2 also shows that if true 3 is positive the ¢-test has higher power than AR against
Hy:5=0. We argue this property is not desirable, as it reflects that 2SLS standard errors
are spuriously small for estimates shifted in the direction of the OLS bias (positive).

To clarify this point, consider an unidentified model. Figure 3 presents results for C=0,
so the instrument z is independent of the endogenous variables x and y. The power of the
AR test is, appropriately, a flat line at 5% independent of the level of 8. The chance of
concluding B is significant is exactly the probability of a significant covariance between y
and z arising by chance. In contrast, the t-test rejects Hy:3 = 0 at a 13.2% rate if 5=0,
and its power is strongly increasing in 3, rising to 39.4% if 8 = 1.

What generates t-test power in an unidentified model? The right panel shows results of
10,000 simulation runs for the specific case of 8 = 1. Here E(BOLS):L& Remarkably, the
BQS Ls in the near vicinity of 1.8 appear to be rather precisely estimated, with a median
standard error of roughly 0.49, despite the fact the model is not identified.® This is what
we refer to as “spurious precision.” The significant estimates are shaded red (39.4%).
A striking fact is that only estimates larger than the true value are judged significant
by the ¢-test. Thus, large realizations of ¢ov(z,u) generate upward biased estimates that
seem precise because cov(z, x)>0 is spuriously high. The ¢-test often calls these estimates
significant, which we call “spurious power.” This pattern persists in identified models:®

8Asa point of comparison, 90% of estimates fall in the interval 1.8 £3.7, and 95% fall in 1.8 £7.4. So
a standard error of 0.49 greatly understates the level of uncertainty about the parameter estimate.

9Phillips (1989) notes behavior of 2SLS in the unidentified case impacts its behavior in identified cases.

© 2022



8 Keane & Neal

2SLS standard errors are spuriously small when the estimate is shifted in the direction
of the OLS bias, which gives the t-test spuriously high power in that direction.

Figure 3. Power of the T-Test vs. AR-Test when Model is Not Identified (C' = 0)
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Figure 3 also plots a t-test power curve for C'=2.3 (dashed line). Remarkably, the t-test
power curves for C=0 and C=2.3 look similar over a wide range of 5. Notably, if C=2.3
there is a 33% chance first-stage F will exceed the 5% critical value 3.84, giving 95%
confidence our model is identified. Logically, then, a 5% t-test should not indicate B is
significant more than 33% of the time. But ¢-test power clearly exceeds this logical upper
bound if 3 is large enough. The AR test does not have this problem.

The Staiger-Stock-Yogo approach avoids this problem by ignoring ¢-test results unless
first-stage F' exceeds a threshold — see Table 1. Otherwise, we do not reject the null. Then,
applying even a minimal F>3.84 threshold, t-test power would never exceed 5% when
C=0 or 33% when C'=2.3. However, I tends to be larger when BQSLS is near E(BOLS)7
creating a pre-test bias. So a better and simpler solution is to adopt the AR test.

Figure 2 also shows that power of the two-tailed 5% t-test evaluated at 8 = 0 is close
to 5% for both p=0.5 and p=0.8. This illustrates Angrist and Kolesar (2021)’s point that
two-tailed t-test size inflation is minor unless the instrument is weak and endogeneity
very severe. If ones’ only concern is that the power curve is not too far above 5% at the
single point =0, then one might argue, as they do, that the ¢-test is not too bad. But
as we have seen, inspection of the whole power curve reveals deeper problems.

Finally, we return to the issue of balance between positive vs. negative rejections.
Figure 2 conceals this, as the power of a two-tailed test is defined as their sum. Recall that
in Figure 1 we found that almost all ¢-test rejections of Hy:5=0 occur when BQSLS >0,
reflecting the severe power asymmetry of the t-test. Figure 4 is identical, except now the
red shaded area indicates cases where the AR test rejects the null. The left panel reports
the case of p=0.80 and C=2.3. As expected, the AR test rejects Hy:3=0 at the correct
5% rate. But 85% of those rejections occur when fBagrs > 0. So, surprisingly, the AR
test seems to suffer from the same power asymmetry problem as the t-test.

The reason for the power asymmetry in the AR test is again the strong positive associ-
ation between pcov(z,u) and BQSLS. A large value of pcov(z,u) tends to generate a large
value of the AR statistic, as it tends to make z appear more significant in the reduced
form for y. Thus, if p >0 the AR test and BQSLS have a positive association, making the
AR test more likely to reject Hg:5=0 if BQSLS > 0.

© 2022



Instrument Strength in IV Estimation and Inference: A Guide to Theory and Practice 9

Figure 4. AR-test rejections: SE(BQSLS) plotted against BosiLs (p = 0.80)

C =230 (Fos = 10) C =73.75 (F s = 104.7)

2SLS Standard Error

-2 1 0 1 2 -1

- -5 0
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Note: Runs with standard error > 4 are not shown. Red dots indicate Hg : 8 = 0 is rejected at the
5% level. Results are for the 2SLS t-test (left panel) or the Anderson-Rubin test (right panel).

In contrast the t-test, AR test power asymmetry vanishes quickly as instrument strength
increases. The right panel of Figure 4 shows results for the strong instrument case of
C=74. Here the AR test exhibits a fairly even balance of positive (54%) vs. negative
rejections. So AR achieves this balance at a vastly smaller first-stage F' than the t-test.

To summarize, we have seen that the AR test exhibits far superior power properties
to the t-test, not only when instruments are weak but also when instruments are strong.
Not only does the AR test have correct size, but it also has far better power to detect true
effects opposite in sign to the OLS bias. Based on these considerations, we recommend
that applied reasearchers should adopt the AR in lieu of the t-test even when the first-
stage F-statistic is far above conventional standards for a strong instrument.

We conclude this section with some important observations on the AR test. First, we
note that Moreira (2009)’s optimal power result applies to iid settings. However, Moreira
and Moreira (2019) extend it to settings with heteroskedasticity and clustering. In that
case, one should implement the AR test using a heteroskedasticity and/or cluster robust
F-test, as we illustrate in Section 4 and in Keane and Neal (2022a).

Second, the AR statistic is pivotal, as its distribution under Hy:3=0 does not depend
on p and C. This allows one to invert the AR test to form valid confidence intervals, as
discussed in Anderson and Rubin (1949) and Dufour (2004). We illustrate the use of AR
confidence intervals in Section 4. In contrast, the distribution of the ¢-statistic is highly
dependent on p and C, rendering confidence intervals suspect even in large finite samples
with weak (or moderately strong) instruments.

If instruments are very weak the AR confidence interval can be unbounded. In partic-
ular, if the first-stage I <3.84 then a 95% confidence interval for § is unbounded. As
Dufour (2004) notes, this is not a problem but rather an accurate reflection of uncer-
tainty. If I <3.84 we do not have 95% confidence that the instrument is significant in the
first stage, so we lack 95% confidence that the model is identified. It is an odd property
of the t-test that it gives a bounded confidence interval in this case.

Third, with multiple instruments the AR test is no longer optimal. Instead, Moreira
(2003) shows the conditional likelihood ratio (CLR) test has correct size and better
power than AR. These tests are equivalent in the single instrument case. We compare
the performance of ¢, AR and CLR tests in the over-identified case in Section 6.
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10 Keane & Neal
4. EMPIRICAL EXAMPLE: THE “EXCESS” SENSITIVITY OF CONSUMPTION

Here we present an empirical application that illustrates the ideas discussed in the previ-
ous sections: Estimating the elasticity of consumption with respect to anticipated income
changes. This application is characterized by a concentration parameter C' just above 10.
Thus conventional weak instrument testing thresholds are met, but as we will see, issues
related to problematic behavior of 2SLS t-tests are still relevant.

Simple versions of the permanent income hypothesis (PTH) imply the consumption
elasticity should be zero. A positive value is referred to as “excess sensitivity,” which
may be evidence of liquidity constraints. But elaborations of the PIH to account for con-
sumption/leisure substitution and/or consumer prudence (reluctance to borrow against
uncertain future income) may also generate “excess sensitivity.” Regardless, the elasticity
of consumption with respect to anticipated income changes is of considerable interest.'®

To estimate the elasticity we run the regression:

AlnCi = a+ BAINY; + Vi + €t (4)

where Cj; is consumption of household 7 in period ¢, Yj; is household income, and V;; is a
vector of control variables. This includes year dummies (to capture business cycle effects).
Attanasio and Browning (1995) emphasize the importance of controlling for effects of
household demographics on consumption, so we also include age of the household head,
the change in age squared, and the change in number of children at home.

To estimate the effect of anticipated income changes we need to instrument for AlnYj;
using a variable that is both known to consumers at time ¢—1 and predicts income growth.
As Altonji and Siow (1987) pointed out, the instrument must also be uncorrelated with
measurement error in income, ruling out using income at t— 1. Fortunately, income is well
approximated by an IMA(1,1) process, so AlnY;; is MA(2). Following Mork and Smith
(1989), this means InY; ;o can be used as the instrument for AlnYy, as it is known
at t-1, predicts income growth, and is uncorrelated with error in measuring AlnY;; (if
measurement error is serially uncorrelated). Following Mariger and Shaw (1993) we test
if the MA income process is stable over our sample period, and cannot reject that it is.

We use data from the Panel Study of Income Dynamics (PSID), which follows a sample
of over 5,000 U.S. households and their descendants since 1968. We take a subsample
of married male household heads aged 23-54 (working age and not near retirement). We
use the most comprehensive consumption measure,'! available from 2005 to 2019. As the
PSID became biannual in 1999, we have 8 observations per household. The consumption
and income questions refer to the survey year, so in estimating (4) we use changes over
two-year intervals. For income, we use total family income, which includes all taxable
and transfer income for the head of household, spouse, and any other adults. The use of
changes in log consumption and income accentuates measurement error, so as is typical
in this literature we introduce a number of data screens to remove outliers.'? The first of

10wgy instance, if utility is Cobb-Douglas in consumption and leisure then consumption and work hours
tend to track closely together in life-cycle models, and consumption drops substantially at retirement.
11 mgtal observed consumption is comprised of all food, housing, utilities, transport, education, childcare,
healthcare, clothes, vacation, and recreation expenditure.

12WWe restrict the sample to households with income between $3,000 and $1, 000,000 in every year. We
drop households that report income or consumption changes of less than —70% or more than 300%
between any two survey years. We impose a balanced panel by removing households with missing data
in any survey year from 2005 to 2019, and drop households if the head has less than 6 years of education.
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the 8 observations per household is used to form lagged consumption. This left us with
643 households and 7 observations per household, for a total sample size of 4, 501.

We report the results in Table 3. Estimating (4) by OLS we obtain a coefficient of 0.140
with a standard error of 0.017, indicating a positive covariance between consumption and
income changes. But OLS does not estimate the elasticity with respect to anticipated
income changes for two key reasons: First, observed income changes include both antici-
pated and unanticipated components, and the PIH predicts that unanticipated increases
in income will increase consumption via an income effect, biasing the coefficient upward.
Second, measurement error in income changes is likely to be substantial, biasing the
coefficient downward. So the direction of bias is theoretically ambiguous.

Table 3. Elasticity Estimates - PSID
2SLS 2SLS Reduced

OLS Stage 2"? Stage  Form
Dependent Variable ACy; AY;, AC;; ACy
AY;, 0.1398 0.5524
(0.0166) (0.2920)
[0.0185] [0.2024]
AlnY;_o -0.0321 -0.0177
(0.0100) (0.0085)
0.0078] 0.0062]
F-Stat (Hetero-o Robust) 10.283 4.312
p-value 0.0014 0.0379
F-Stat (Cluster Robust) 16.965 8.182
R? 0.0414 0.0256 0.0224

Note: Heteroskedasticity robust standard errors are in parentheses while standard er-
rors clustered by individual are in square brackets. All regressions control for year
effects, age, change in age® and change in number of children. N = 4,501

We report the first stage 2SLS results in the second column of Table 3. As expected
InY; o is a highly significant predictor of AlnY;;. Higher income at ¢ — 2 predicts an
income decline from ¢ — 1 to t, as we expect given the MA(2) structure of AlnY;;. As we
are now using actual data, rather than the iid normal data of our sampling experiments,
we need to consider robust statistics. The heteroskedasticity robust partial F' statistic is
10.28, so it is slightly above the commonly recommended threshold of 10.

The second stage 2SLS result is reported in the third column of Table 3. The estimated
elasticity is 0.552, implying OLS is downward biased, and that current consumption is
very sensitive to anticipated changes in current income. However, the heteroskedasticity
robust standard error is 0.292, so the 2SLS ¢-test is not significant at the 5% level. In
contrast, the last column presents reduced form results. The heteroskedasticity robust
partial F statistic is 4.31, so the AR test indicates our elasticity estimate is significant at
the 3.8% level. Inverting the AR test,'® we obtain a 95% confidence interval of (0.03, 1.57)

13The inversion requires regressing y — xfp on all exogenous variables, and finding the max and min
Bo values such that the excluded instrument is significant at exactly the 5% level in this regression. We
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which excludes 0. Thus, the t-test and AR test disagree. This highlights the question of
whether the t-test or AR test is more reliable.

We now investigate the behavior of the AR test and the ¢-test in this data environment.
We conduct the following experiment: Using our PSID sample of N=4,501 observations we
can “bootstrap” a new artificial dataset by sampling 4,501 observations with replacement.
We do this 10,000 times to form 10,000 artificial datasets. We then repeat the analysis
of Table 3 on all 10,000 datasets, and summarize the results in Table 4.

Our method of constructing samples means the point estimates in Table 3 are the true
values of the data generating process in our simulation experiment,'* and the concentra-
tion parameter C' of the DGP is 10.28. Thus, we are above conventional thresholds for
an acceptably strong instrument. We begin by noting two features of Table 4:

First, the median OLS, 2SLS and reduced form estimates all agree closely with the
point estimates reported in Table 3. The mean OLS and reduced form estimates also
agree, while of course the sample mean of the 2SLS estimates does not (as the mean of
the 2SLS estimator does not exist in the exactly identified case).

Table 4. Results from Monte Carlo Bootstrap Samples

_ OLS _ 2SLS F Stat. Reduced Form

I} S.E. 15} S.E. First Stage 15} S.E.
Median 0.1395 0.0165 0.5502 0.2971 10.3122 -0.0177  0.0085
Mean 0.1395 0.0166 0.6135 2.7765 11.3651 -0.0177  0.0085

Std. Dev. 0.0164 0.0006 1.6630 156.3519 6.6763 0.0085  0.0003

Second, the heteroskedasticity robust standard errors of the OLS and reduced form
estimates agree with the empirical standard deviations of those estimates across the
10,000 datasets, and also with the heteroskedasticity robust standard errors reported in
Table 3. Thus, the asymptotic standard errors are a good guide to the actual sampling
variation of the OLS and reduced from estimates. In contrast, the empirical standard
deviation of the 2SLS estimates bears no resemblance to the 2SLS standard error, because
the variance of 2SLS does not exist in the exactly identified case.'®

Now we examine the behavior of the 2SLS standard error. In Figure 5 we plot se(f25Ls)
against BQSLS across the 10,000 samples. A strong positive association between 2SLS
estimates and standard errors is evident, reversing the pattern in Figure 1. The reversal
occurs because in this DGP the correlation p between the errors in the structural and
reduced form equations is negative (-0.40). As a result, the mean OLS estimate of 0.14 is

implement this using the Stata command weakiv by Finlay and Magnusson (2009), which does a grid
search over (. It allows for heteroskedastic errors. The Stata command condivreg of Mikusheva and Poi
(2006) calculates the AR confidence interval analytically, but it assumes homoskedastic errors.

14This because the variance-covariance matrix of (y, z, 2) in the PSID sample is the population variance-
covariance matrix in the simulation experiment.

15Table 3 also reports cluster-robust statistics that account for serial correlation. Given the negative
serial correlation in residuals induced by the MA structure of consumption changes, this reduces the
estimated standard errors. As a result, the cluster-robust 2SLS ¢-test indicates the elasticity estimate is
significant. The cluster-robust standard error is appropriate for applied work in this case, given the panel
structure of the data. However, in our simulation experiment we create artificial data by iid sampling
with replacement from the 4,501 observations. This breaks the panel structure of the data, so the data
structure in our sampling experiment is cross-sectional. Hence we focus on the heteroskedasticity robust
statistics that ignore serial correlation, as these are what the sampling experiment will mimic.
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well below the true elasticity of 5 = 0.55. When the OLS bias is negative the association
between 2SLS estimates and standard errors is positive. As we see in Fig. 5, the 2SLS
standard errors imply the 2SLS estimates are much more precise when they are in the
vicinity of the OLS bias than when they are near the true value of § = 0.55.

Figure 5. Standard Error of ng s plotted against BQS Ls itself
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Note: Runs with standard error > 2 are not shown. In the left panel, red dots indicate Hgo : B =0
is rejected at the 5% level, while in the right panel red dots indicate Hg : B = 0.55 is rejected at
the 5% level. Blue and green indicate rejections at the 10% and 20% levels.

In the top panel of Figure 5 we assess the performance of the t-test. In the top left
panel we shade in red cases where fagrg is significantly different from zero according to
a two-tailed 5% level test. This occurs 39.7% of the time, which is the power level. In
the right panel the red dots indicate cases where we reject the true null 5 = 0.55. This
occurs in 3.58% of cases, so the size of the test is too small. More importantly, almost all
rejections occur when Bgs Ls is near zero, because the 2SLS standard errors are relatively
small when the estimate is shifted in the direction of the OLS bias.

The bottom panel of Figure 5 assesses the performance of the AR test. In the bottom
left panel we shade in red cases where BQSLS is significant at the 5% level, which occurs
54.8% of the time. Thus the AR test exhibits substantially better power than the ¢-test
(54.8% vs. 39.7%). In the right panel we consider AR tests of the true null 8 = 0.55. This
is simply the (heteroskedasticity robust) partial F-test from a regression of y — 28 on
the instrument and other exogenous variables. The red region again highlights rejections
at the 5% level. This occurs in 4.69% of cases, so the size of the test is quite accurate.
Moreover, those rejections are almost evenly distributed between cases where BQSLS is
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above vs. below the true value of 0.55. Thus, the AR test largely solves the problem of
asymmetry in test results that affects the 2SLS t-test.'6

These results show that the AR test exhibits both substantially better power and more
accurate size than the t¢-test in this data environment. Moreover, it does not suffer from
the problem that estimates shifted in the direction of the OLS bias appear to be more
precise. This illustrates that the problems with 2SLS ¢-tests and advantages of the AR
test that we discussed in Sections 2-3 are not limited to the iid normal environment, but
are also evident in a non-normal environment constructed from actual data.

Based on our experiment, we conclude the AR test should be viewed as more reliable
than the t¢-test in this context. The AR test indicates our elasticity estimate of 0.552 is
significant at the 3.8% level, so we gain confidence in that result.

In general, the performance of the t-test deteriorates relative to the AR test as the
endogeneity problem becomes more severe. In Keane and Neal (2022a) we present an
application to estimating the Frisch labor supply elasticity. In that case p = —0.70, and
the advantages of the AR test are even greater than we see here.

5. CONDITIONAL T-TESTS: THE ACT AND TF TESTS

As an alternative to adopting AR, some authors propose to “fix” the t-test by adjusting
its critical values. Conventional critical values rely on the assumption the test statistic is
distributed N (0, 1) under the null. In fact the 2SLS ¢-test is highly non-normal, generating
size distortions. A “conditional” t-test adjusts the standard ¢-test critical values to take
this non-normality into account, thus obtaining a test with correct size.

5.1. The Asymmetric Conditional t-Test (ACT)

Given standard critical values, 2SLS t-test size depends on C and p. Mills et al. (2014) use
this relationship to obtain conditional critical values that give correct size. This requires
simulating the conditional distribution of the t¢-test, as we show in Appendix B.

Table 5 gives summary statistics of critical values simulated from the DGP in (1) with
p=0.80. For various levels of C' we report the median and standard deviation of the
simulated critical values. For example, if C=2.30 (F ¢5=10), which is often considered
a standard for an acceptably strong instrument, the median critical values for 2.5% left
and right-tailed t-tests are -0.443 and 3.115, respectively. Using these critical values, the
one-tailed t-tests have approximately the correct 2.5% size. The large deviation from the
usual +1.96 illustrates the extreme power asymmetry of the conventional 2SLS ¢-test.

As Mills et al. (2014) note, left and right-tail conditional critical values can be com-
bined to form two-tailed conditional t-tests with approximately correct size. For example,
we can combine 2.5% left and right-tail critical values to form a two-tailed t-test with
approximate size of 5%. We will call this an “asymmetric” conditional t-test (ACT).

In Table 6 we compare power of the ACT and AR tests. We consider true values of
£=0.30 or 3=-0.30. Clearly, the power of the two tests is almost identical.'” In the strong
instrument case of C'=74 both tests exhibit a clear power asymmetry: a 91% rejection

16We also shade the 10% and 20% level rejections in blue and green. The AR test rejects at 9.85% and
19.9% rates, so size is accurate, and rejections are evenly distributed above/below the true value. The
t-test, in contrast, only rejects at 7.1% and 13.9% rates, with 6.9% and 11.7% in the negative direction.
17 Andrews et al. (2007) find two-tailed conditional ¢-tests have very poor power. This is because — unlike
the ACT test — the tests considered by Andrews et al. (2007) constrain the critical values to be symmetric
around zero, which fails to deal with the power asymmetry problem we have emphasized.
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Table 5. Critical Values for Conditional One-Tailed t-tests, p = 0.80

1% 2.5% 5% 95%  97.5%  99%

Cc=23 -0.444 -0.443 -0.438 2.564 3.115 3.751
(0.178)  (0.178)  (0.178)  (0.147)  (0.147)  (0.157)

C=10 -0.925 -0.913 -0.884 2236 2.762  3.393
(0.178)  (0.167)  (0.146)  (0.102)  (0.128)  (0.157)

C =737 -1.795 -1.585 -1.382 1.885 2.298 2.795
(0.049)  (0.035) (0.026) (0.033) (0.044)  (0.062)

C =336.3 -2.084 -1.788 -1.524 1.760 2.123  2.554
(0.032)  (0.024) (0.019) (0.025) (0.032)  (0.046)

C=1,000 -2.187 -1.861 -1.575 1.712 2.055 2.460
(0.033)  (0.024)  (0.020) (0.023)  (0.030)  (0.042)

Note: The standard deviations in parentheses are across 10,000 simulations.

rate when 8=-0.3 but only a 53% rejection rate when S = 0.3. As we explain in Appendix
A.1, this is because the error variance in the reduced form for y increases with (.

Thus both ACT and AR have good power to detect true effects (8=-0.3) opposite in
sign to the OLS bias. Detection of true negative effects when selection into treatment is
positive is a top priority if one wishes to adopt a “first do no harm” approach to policy
evaluation. The AR and ACT tests are clearly superior to the t-test in this respect.

Table 6. Power of the ACT and AR tests (p = 0.8) (%)

o P Conditional At—test (AACT) ARATest A
" Hyf=0 >0 B<0|Hpf=0 B>0 B<0
True 5 =0.3
2.30 10 7.3 5.6 1.7 6.6 6.5 0.1
5.78  16.38 9.4 8.1 1.3 8.4 8.3 0.2
29.44 50 25.5 25.5 0.1 25.2 25.2 0.0
73.75 104.7 593.7 593.7 0.0 53.4 53.4 0.0
True g = -0.3
2.30 10 5.9 0.7 4.8 9.0 3.2 5.9
5.78 16.38 10.7 0.2 10.5 15.0 0.8 14.2
29.44 50 54.8 0.0 54.8 54.7 0.0 54.7
73.75  104.7 91.0 0.0 91.0 91.0 0.0 91.0

Note: The table reports the frequency of rejecting the false null hypothesis Ho:8=0. Columns
labeled >0 and <0 show how many rejections occur when [ is positive or negative.

Consider now the C'=2.30 (F 95=10) case, often considered a standard for an accept-
ably strong instrument. The power of both ACT and AR is very poor. For example, for
ACT the probability of rejecting Hy:8=0 is only 7.3% if true $=0.3, and only 5.5% if true
B=-0.3. Moreover, many of these rejections occur when Basrs has the wrong sign. The
obvious conclusion is there is simply not much information in the data, and no choice of
testing procedure will change that. This lack of power is concerning given the prevalence
of the ' > 10 rule of thumb in practice. We argue that applied researchers should adopt
a higher threshold for acceptable instrument strength - see Keane and Neal (2022b).

In the case of C=5.78 (F95=16.38) we see small improvements for both tests. Power
attains levels of 8.4% to 15%, and wrong sign rejections become rare. But these power
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levels still seem uninspiring. AR has better power to detect a negative 8 than ACT, 15%
vs. 10.7%. Only with C=29.4 (F 5=50) does power to detect a true negative exceed 50%.

Overall, we conclude that the ACT test is not a very useful alternative to the AR
test in the single instrument case. It is much more difficult to implement and yields very
similar results. We revisit this question in Section 6 on the over-identified case.

5.2. The tF-test

Lee et al. (2022) propose to eliminate the maximal size distortion of the two-tailed 2SLS
t-test by conditioning its critical values on the first-stage F'. They call this the ¢F-test.
It is closely related to the ACT test. The difference is that tF-test critical values are
symmetric about zero, and worst-case values are assumed for both p and C.

They show a first-stage F of 104.7 is required to guarantee size of a 5% two-tailed
t-test is no greater than 5% (i.e., worst-case size inflation is zero).'® Hence, if the first
stage F > 104.7 the tF test uses the conventional +1.96 critical values. At smaller values
of F the t-test size is inflated. Hence the critical values must be scaled up to compensate.
For example, if F =10 one must scale the 5% critical values up to £3.43 to reduce the
maximum size of the t-test to exactly 5%. The smaller is the first-stage F, the greater is
the required scaling up of the critical values to eliminate size distortion.

When F < 3.84 both AR and ¢F 95% confidence intervals are unbounded. The reason
is simple: If I < 3.84 we lack 95% confidence the model is identified. It is logically
inconsistent to place a 95% confidence interval on § in this case. Yet a 2SLS t¢-test based
confidence interval does exactly that. The Stock-Yogo approach avoids this problem by
requiring one to accept the null if F falls below a threshold even higher than 3.84.

Figure 6. Power of the ¢F, ¢t and AR Tests (C = 10, p = 0.5)
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By construction tF-test critical values are always greater than or equal to conventional
t-test critical values. So power of the ¢ F' test is unambiguously less than that of the ¢-test.
This can be observed in Figure 6, which compares the power curves of the tF', t and AR

18The size of the t-test is increasing in |p|, with maximal size inflation at p = +1. Size inflation also
depends on C. Lee et al. (2022) show the worst case for C is [F)/(F1/241.96)]2. Using a procedure similar
to that described in Appendix B, it is possible to simulate the distribution of the t-test conditional on
ﬁ’, assuming p=1 and fixing C' at the worst-case level. Using a modified version of Appendix A equation
(A2), Lee et al. (2022) show F' > 104.7 is required to guarantee the size is no greater than 5%.
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tests in the case of C' =10 and p = 0.5. The tF test has low power in general, and very
little power to detect true negative effects when the OLS bias is positive. Given the poor
power of the tF test relative to AR, we do not advise adopting it when AR is available.

6. THE CASE OF MULTIPLE INSTRUMENTS

Here we consider the over-identified case. As we will see, using multiple instruments
increases efficiency but worsens median bias in 2SLS estimates, as well as size distortion
and power asymmetry in 2SLS ¢-tests. This makes the use of alternative estimators and
robust test statistics even more important. The LIML estimator is particularly attractive.

With K instruments z = (z1, ..., 2k ) the definition of the concentration parameter C is
unchanged. But population F is C/K and the first-stage sample F is (N/K)Var(zm) /5>
which has a non-central F(K, N;C) distribution. Table 7 lists, in the K = 3 case, sev-
eral different levels of C, the associated population F, and the 5% critical value of the
F(3,00; C) distribution to which we compare F to test if F exceeds that value.

The case of three instruments is interesting, as K=3 is required for the mean and
variance of the 2SLS estimator to exist. We begin with this case, turning later to examine
larger instrument sets. We continue to work with the model in (1), and we focus on the
simple case where the three instruments are independently distributed N(0,1), and the
m coefficients on the three instruments are equal (so each is equally strong). Table 7 gives
examples of levels of C' and the maximal size that each achieves.

Table 7. First-Stage F' Critical Values (K=3)
C Pop F T F o5 threshold Max Size

6.90 2.30  0.0480 6.93 28.7%
13.01 4.34  0.0659 10.00 18.6%
40.91 13.64 0.1168 22.30 10%
110.55  36.85  0.1920 50.00 6.8%
360.26  120.09 0.3465 142.50 5.5%

Note: The instrument vector is significant at the 5% level in the first stage if F>2.60. Higher
levels of F reduce size distortions to levels in column 5. The listed 7 levels are specific to N=1000.

Recall that in the single instrument case 7=0.048 and N=1000 gives C=F=2.3. As
we noted in Table 1, the associated 5% critical value of the F(1,00;2.3) distribution is
10. Suppose now we have three equally strong instruments. As we see in Table 7 this
triples C to 6.9, and leaves population F' unchanged at 2.3. The 5% critical value of the
F(3,00;6.9) distribution to test that population F' is at least 2.3 is now 6.93.

One would think three equally strong independent instruments are better than one,
but a problem arises: 2SLS is IV using z7 as the instrument for z, where 7 is obtained
from OLS regression of z on z. Many problematic properties of 2SLS arise due to sample
covariance of the feasible instrument z7 with the structural error u. This tends to exceed
the covariance of the optimal instrument zz with u, by virtue of how OLS forms 7.
Unfortunately, the use of multiple instruments worsens the problem: An instrument zj
that happens to have high sample covariance cov(z, e) with the first-stage error e will
tend to get a larger 7. This drives up the sample covariance cév(z#, €). And if e and u are
correlated (i.e., if we have endogeneity) this also drives up the magnitude of cév(z#, ).

Figure 9 illustrates this problem. We first define the “covariance gap” as the difference
cov(zfr,u) — cov(zm,u). Using 10,000 artificial data sets generated from model (1) with
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p = 0.5 and N=1000, we calculate this covariance gap for the cases of 3 vs. 1 instrument.
The left panel of Figure 9 shows how the gap almost always increases, often substantially,
in the K=3 case. The right panel shows how the density of the covariance gap shifts
sharply to the right. Thus, using three instruments increases the sample covariance of

z7t with the structural error, which tends to bias 2SLS estimates towards OLS.

Figure 7. Instrument Endogeneity with One vs. Three Instruments (C=6.9, p=0.5)
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Note: We define the covariance gap = cov(z#,u) — cov(zm,u) for the cases of K=1 and

K=3. We plot their joint distribution (left), and their marginal densities (right).

The increased sample covariance cév(z#r, u) strengthens the association between 2SLS
estimates and standard errors in the multiple instrument case. This is shown in Figure
8. The left panel is comparable to the left panel of Figure 1, where p=0.8 and C'=2.3,
except now we add two equally strong independent instruments so C=6.9. This causes the
Spearman 7 to increase in magnitude from -.576 to -.781. As a consequence, the size of
the two-tailed 5% 2SLS t-test increases from 10% to 19.9%. As before, all rejections occur
when Bgs s > 0, so only estimates shifted towards the OLS bias are ever significant.

Figure 8. se(BQSLS) plotted against Basrs with Three Instruments (p = 0.80)
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Note: Runs with std. error > 1.5 not shown. Red dots indicate Hg : B = 0 rejected at 5% level.
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Increasing instrument strength to the much higher level of C'=110.6 (F¢5=>50) does
not solve this problem. As we see in the right panel of Figure 8, the Spearman r; between
the 2SLS estimates and their standard errors increases to -.906. The t-test rejection rate
is now 6%, so the size distortion is mostly eliminated. But fully 92% of those rejections
occur when BQS s >0, so the power asymmetry is still severe.

We give a broad overview of the impact of moving from 1 to 3 instruments in Figure 9.
The top two panels consider size and median bias. The third panel considers efficiency.

The top panel of Figure 9 plots how size of two-tailed 5% t-tests depends on C and p.
It is interesting to compare the case of K=1 C=2.3 in left panel with K=3 C=6.9 on
the right. These are the two blue lines. This comparison corresponds to adding two new
independent instruments of equal strength. With 3 instruments the rejection rate rises
much more steeply with p, and it peaks at almost 30%, compared to only 13% in the one
instrument case. So adding instruments clearly worsens the maximal size distortion.

Figure 9. Properties of 2SLS Estimates and t-Tests with 1 vs. 3 Instruments
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Why does t-test size inflation increase with p? If instruments are weak and p=0 the
t-test has little power. So samples where Bosrs is significant are rare if 8 = 0 (i.e.,
size is less than 5%). But if p>0 the power asymmetry problem emerges: A positive
sample covariance cov(zr,u) generates both an estimate shifted towards OLS and a
low standard error. As p increases this negative association between 2SLS estimates and
standard errors gets stronger. Hence, despite g = 0, as p increases we get more samples
where BQSLS is positive and significant, as illustrated in Figures 1-8.

Adding instruments worsens t-test size inflation by increasing the sample covariance
between z# and w, which, in turn, amplifies the power asymmetry problem at any given
level of p. Intuitively, the instrument z7 appears spuriously strong in samples where it is
highly correlated with u, and hence with the endogenous part of z. Unfortunately, such
samples also tend to generate estimates shifted towards OLS, which generates what we
call spurious power. Both higher p and more instruments magnify this problem.

With multiple instruments it is far more challenging to satisfy the Staiger-Stock rule
of thumb. When K=3, F>10 gives 95% confidence that C' is at least 13. This can be
achieved using three independent instruments each with 7=0.0659. Compare to the single
instrument case: There F'>10 gives 95% confidence that C is at least 2.3, and to achieve
this we only need a single instrument with 7=0.0480.

In Figure 9, the dotted blue line in the upper right panel shows the K=3 C'=13 case,
while the solid blue line in the left panel shows the K=1 C'=2.3 case. As we see, moving
from a single instrument to three independent instruments that are individually 50%
stronger actually worsens size inflation considerably.!?

Thus, if size inflation in two-tailed ¢-tests is one’s primary concern, it is hard to justify
using multiple instruments. This is consistent with Angrist and Pischke (2008)’s advice
that applied researchers should choose their one best instrument. The same point applies
to median bias. The middle panel of Figure 9 shows how median bias varies with C' and
p. Again, it is useful to compare the cases of K=1 C=2.3 and K=3 C'=6.9, the two blue
lines. This comparison corresponds to adding two new independent instruments of equal
strength. Clearly, using more instruments makes median bias unambiguously worse.

We argue, however, it is a mistake to focus exclusively on median bias and size dis-
tortions of t¢-tests in assessing the performance of 2SLS. Efficiency and power are also
important. To explore efficiency, the bottom panel of Figure 9 shows how the probability
of 2SLS performing worse than OLS varies with C' and p. We plot the proportion of sim-
ulated datasets where |BQSLS - B > |BOL5 — B|. As before, it is interesting to compare
the cases of K=1 C=2.3 and K=3 C'=6.9, the two blue lines.

We see the addition of two equally strong independent instruments tremendously in-
creases the probability that BQS s is closer to the truth than BO s- There is obviously
a large efficiency gain from using the additional information. This gives a very different
perspective on the potential efficacy of using multiple instruments. In the next section
we ask if alternative estimators or robust tests can successfully exploit the information
in multiple instruments without creating the problems that afflict 2SLS and the ¢-test.

Finally, a notable aspect of the bottom panel of Figure 9 is the high frequency with
which the OLS estimates are closer to the truth than 2SLS, particularly in the single

198¢t0ck and Yogo (2005) show that C=40.9 (F 05=22.3) achieves a maximum size of 10% in the three
instrument case. Figure 9 shows this is accurate. This corresponds to a m of 0.1168 on each of the three
instruments in the first stage (see Table 7). But as we saw in Table 1, the same objective could be
achieved just by using a single instrument with 7=0.076.
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instrument case. Consider the C'=2.30 (F(5=10) case, often considered a standard for an
acceptably strong instrument. Only as p approaches 0.50 does the probability that 325 LS
is closer to the truth than BOLS pass 50%. And even as p approaches 1.0 the probability
that 2SLS will outperform OLS barely passes 75%.

Consider now the case of C'=29.4 (F ¢5=>50). At this higher level of instrument strength
the chance that BQSLS is closer to the truth than BOLS nears 100% as p approaches
0.50. Furthermore, as we see in Figure 9, t-test size distortions are minor, even if K=3,
regardless of the level of p. The same is true for median bias. Based on such considerations,
we think a compelling case can be made for changing the rule of thumb for acceptable
instrument strength to ' > 50. We present further arguments in Keane and Neal (2022b).

We emphasize however, that even at C=29.4 (F ¢5=>50) the t-test exhibits severe power
asymmetry, and has little power to detect large negative effects that are opposite in sign
to the OLS bias. So it is still important to use robust tests like AR in lieu of the t¢-test.

6.1. The LIML Estimator and the LR Test

In the over-identified case the limited information maximum likelhood (LIML) estimator
of Anderson and Rubin (1949) is an important alternative to 2SLS, and the associated
likelihood ratio (LR) test is an important alternative to both the AR and t-tests. The
typical exposition of LIML in textbooks is dauntingly complex, which perhaps explains
why applied researchers rarely use it. In fact the idea is very simple:

Say we wish to estimate the parameter /3 in a simple regression of y on z. Let B denote
a candidate estimate, and consider the residuals 4 = y — Bm Imagine that after choosing
B we run an auxiliary regression of the residuals 4 on xz. OLS chooses 3 so the R? of
this regression is exactly zero, which is equivalent to setting cov(x ©)=0. Similarly, 2SLS
given a single instrument z can be understood as choosing ﬂ so the R? of the regression
of the residuals @ on z is exactly zero, thus setting cov(z, @)=0.

Now say we have a vector of K > 1 instruments z = (21, ..., 2x ). We would like to
adopt a similar strategy, but with multiple instruments it is generally impossible to find
a 5 that sets the R? from regressing the residuals @ = y — ﬂx on z to exactly zero. To
do so we would need to set cov(zx, 1) = 0 for each of the K instruments, but that is
generally impossible as we only have a single B to work with. We are trying to solve K
equations with one unknown.?’ What is the solution?

The LIML estimator solves the problem in a simple and natural way. It chooses ﬂ to
set the R? from regressing the residuals @ = y — 530 on z as close to zero as possible. This
is achieved by solving a standard problem in linear algebra — the generalized eigenvalue
problem. One doesn’t need to know the details to understand how LIML works, just as
one doesn’t need to remember Gaussian elimination to understand OLS.

The 2SLS estimator solves this problem in a different way: As it is not possible to set
the R? in the residual regression to zero, 2SLS gets around the problem by condensing
the K instruments into the single instrument Z = z#, where 7 is obtained from the
first-stage regression of z on z. It then chooses the /3 that sets the R? from regressing
the residuals @ = y — Bx on the single instrument & = z7 exactly equal to zero.

Some comments are in order: The advantage of the 2SLS approach is computational.
The linear algebra for solving a linear system of equations is slightly simpler than the

201f all instruments are valid — i.e., the population cov(zg,u) = 0 for each instrument — it should be
possible to choose 3 so the R? is small. But we can never make it exactly zero due to sampling variation.
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eigenvalue problem. But that is hardly relevant on modern computers. The downside
of 2SLS is that the first-stage tends to put greater weight (larger |#x|) on individual
instruments that have greater sample correlations with the structural error. This induces
bias and size distortion. As we will see below, LIML is less subject to these problems.

Second, when K=1, the same B sets R? = 0 in regressions of the residuals 7 on either
z@ or z (both scalars). Thus 2SLS and LIML are identical in the exactly identified case.

Third, theorists often advise the use of LIML over 2SLS in contexts with many weak
instruments. However, when covariances between the instruments z and the endogenous
variable z are low, the R? from regressing the & = y — Bz on z may be approximately
minimized over a wide range of B . This may cause LIML to “blow up” when instruments
are very weak. We suspect this behavior has often caused applied researchers to abandon
LIML, when in fact it should be viewed as a warning sign of weak identification.

Fourth, textbook expositions of LIML often define the estimator as the solution to an
eigenvalue problem, without motivating (as we did above) why this problem is interesting.
We suspect this is a key reason LIML has not caught on with applied researchers.

Fifth, the R? from regressing the residuals @& = y — Bm on on z has the form:

i 1 7\—1 717
R723,7z _ U Z(ZAZz YA (5)
U'u

where U and Z are N x 1 and N x K vectors that stack the N individual observations.
This has an R? form as the denomination is the total sum of squares of 4, while the
numerator is the variance in 4 explained by projection on z. Solving for the 8 that
minimizes (5) requires solving a generalized eigenvalue problem. That is because both
the numerator and denominator depend on B , via the residuals & =y — /33:

Sixth, if we multiply the R%’z in (5) by N we obtain the “Sargan statistic.” It is
distributed x?(K —1) in large samples if the instruments are valid (i.e., cov(zx, u) = OVk).
Of course the Sargan statistic increases mechanically as we add valid instruments, for
the usual reason that R? always increases as we add (irrelevant) variables to a regression.
This is why the degrees of freedom of the statistic increase with K. A “surprisingly” large
value of the Sargan statistic calls into question the validity of the instruments. Obviously
the LIML estimator minimizes the Sargan statistic.

Seventh, the 2SLS estimator chooses B to minimize the numerator of the Sargan statis-
tic, while ignoring the denominator. This simplifies the eigenvalue problem to the slightly
simpler problem of solving a linear system of equations. The two-step GMM estimator
(GMM-2S) treats the denominator of the Sargan statistic as given, so under homoskedas-
ticity it solves the exact same problem as 2SLS and is equivalent. The Continuously
Updated GMM estimator (GMM-CU) of Hansen et al. (1996) treats the denominator as
a function of B , so under homoskedasticity it is equivalent to LIML.

Having implemented LIML, one can evaluate the significance of the estimate using the
likelihood ratio (LR) statistic. One can also form a t-test by plugging the LIML residuals
into the conventional standard error and t-stat formulas. But the LR test has important
advantages, as we will see below. The LR test is based on the reduced form:

y=2z(fm)+v
r=2zm+e

(6)

Here v = fe 4+ u and, as we suspect cov(e,u) # 0, the errors in the two reduced form
equations are potentially correlated. Thus we can estimate the reduced form as a system
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of two seemingly unrelated regressions (SUR) - see Zellner (1962). The constraint that
the coefficients on z in the y and = equations are proportional (in ratio ) is equivalent
to the assumption that the instruments are excluded from the structural equation for y.

An LR test for Hy:5=0 is obtained by running two versions of the reduced form system,
one imposing f=0 and one imposing [ = BLIML. In the first case, z drops out of the y
equation. In the second case z enters the y equation, but the coefficients are constrained to
be B 1y times the coefficients on z in the x equation. Mechanically, one can implement
this by creating new variables equal to ZB 1y and entering them in the y equation, and
subsequently estimating the SUR system under the constraint that 7 is equal in both
equations. Under normality, one can form the log likelihood for each model. The LR test
for Hy:8 = 0 equals two times the deterioration in the log likelihood when the constraint
B =0 is imposed, and it is distributed as a x?(1) under the null hypothesis.

The LR test takes a very simple form. As we show in Appendix C, it only depends on the
variance-covariance matrix of the residuals in the reduced form. Intuitively, if the residual
variance increases substantially when the 8 = 0 constraint is imposed this indicates that
6 vz s significant. Estimating the SUR system with the constraint 8 = ﬂL v also
delivers as a by-product the LIML estimate of &, although this is often not of primary
interest. Regardless, it is always important to report the first-stage F' from the reduced
form regression of = on z, whether one uses LIML or 2SLS.?!

It is important to understand the difference between the LR and AR tests. Recall that
AR is the F-test from regressing y on z. In large samples we may also define AR as the
N R? from regressing y on z, which is distributed x?(K) under the null 3 = 0.22 The AR
test has degrees of freedom K to adjust for the mechanical increase in R? that occurs as
we add instruments (because R? always increases when we add regressors).

In contrast, LR tests the single constraint 8 = 0 directly, so it is x?(1) regardless of K.
A key fact is that the LR statistic equals AR minus the Sargan statistic. So LR takes the
NR? from regressing y on z, and subtracts off the “mechanical” part of the NR? that
arises from regression of 4 on z. Thanks to this adjustment, the degrees of freedom of
the LR statistic is one regardless of K. This is more efficient than increasing the degrees
of freedom as K increases, so the LR test has better power than AR.

Unlike AR, the LR test is not pivotal when K >1. It uses estimated @ as input, and
these depend on B LML, whose distribution depends on instrument strength. So unlike
AR, the LR test is not guaranteed to have correct size when instruments are weak. The
choice between AR and LR involves a trade off between power and size distortion.

Thus Moreira (2003) has developed a conditional likelihood ratio test (CLR) that
adjusts the critical value of the LR test based on the first stage F, so the resulting CLR
test has approximately the correct size under the null hypothesis. We explain the CLR
test in detail in Appendix C. In the single endogenous variable exactly-identified case,
the AR test, LR test, CLR test and Langrange multiplier (LM) test (Kleibergen 2002)
are all equivalent. In more general settings these tests differ.

2lof course, the OLS estimate of 7 obtained by regressing x on z (i.e., the first stage of 2SLS) is consistent
regardless of the true value of 8. The LIML estimate of 7 is also consistent (provided the instruments
are valid). In contrast, the SUR system that imposes the constraint 8 = 0 delivers a consistent (and
efficient) estimate of = if and only if the constraint 8 = 0 is true. If not, the misspecification of the
y equation will impart asymptotic bias to the = estimate. Thus a comparison of the constrained SUR
estimate of w with the OLS estimate of 7 provides a Hausman-type test of Ho:8 = 0. Interestingly,
Van de Sijpe and Windmeijer (2022) show this is equivalent to the AR test.

220ne translates from the X2 to the F version of AR simply by dividing by K.
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6.2. Performance of Alternative Estimators and Tests

The over-identified case offers a wider choice of estimators (2SLS, LIML, GMM) and tests
(t, AR, LR, CLR) than the single instrument case. Here we consider the performance
of the main alternatives. We start by considering the three instrument case. This is of
particular interest as K > 3 is required for the mean and variance of 2SLS to exist.

Table 8 compares the performance of the 2SLS estimator combined with the ¢-test
vs. LIML combined with AR, LR or CLR. We consider first a DGP with a high level of
endogeneity, p=0.80, to test how the procedures perform in a difficult environment. Later
we look at smaller p. We set true 5 to 0, -0.3 or 40.3. Recall that 5 = £0.3 correspond
to fairly large effects, as they imply a one std. dev. change in z induces an 0.25 std. dev.
change in y. We consider the 5 levels of instrument strength listed in Table 7.

As the mean of 2SLS now exists, it is possible to analyze how bias varies with C.
With K=3, Stock and Yogo (2005) show first-stage F' > 9.08 gives 95% confidence C
is large enough so worst-case bias of 2SLS is less than 10% of the OLS bias. Similarly,
F > 13.91 gives 95% confidence the worst-case bias is less than 5%. Thus, the second
level of instrument strength in Table 8, F5¢;, = 10, gives high confidence bias is below
10%, and the third level, Fyo, = 22.3, is far more than adequate to reduce it below 5%.

Turning to Table 8, the poor performance of 2SLS and the t-test is striking:

First, 2SLS suffers from substantial median bias towards OLS. In the Fj¢, cases of 6.93
and 10, median bias is .200 and .114. These are quantitatively large values if interpreted
as effect sizes. They are 25% and 14% of the substantial OLS bias of p/Var(x) ~ 0.80.23

Second, the 2SLS t-test suffers from large size distortion: In the cases of C=6.9 or C=13
a two-tailed 5% t-test rejects the true null =0 at 19.8% and 13.4% rates, respectively.
Furthermore, all rejections occur when BQS s > 0, so size distortion in one-tailed ¢-tests
is twice as great. The t-test is biased towards finding positive effects.

Third, and even more striking, when true §=-0.30 the t-test has essentially no power to
detect a substantial true negative effect. Remarkably, if C'=6.9, the t-test rejects Hy:56=0
only 2.5% of the time, and all the rejections happen when Bgs s > 0. That is, we conclude
B is positive when it is actually negative!?*

The superior performance of LIML combined with the AR test is evident in Table 8.
LIML essentially eliminates median bias. The size of a 5% AR test is correct. There is a
slight power asymmetry when instruments are weak (C=6.9) but it vanishes quickly as
instrument strength increases. Importantly, the AR test has much better power than the
2SLS t-test to detect true negative effects. For example, when C=13 and true f = —0.3
it rejects the false null =0 at a 18.9% rate compared to only 0.7% for the t-test.

The LR test also performs far better than the ¢-test. The size distortion that affects the
LR test is very modest. If C=6.9 it rejects the true null S = 0 at a 6.5% rate. The weak
IV literature does not tend to regard size distortion as small as 1.5% as a serious problem.
For instance, the widely used Stock-Yogo tests assess whether t-test size distortions are
less than 5% or 10%. We also see that the LR test has superior power to the AR test.

231nterestingly, the Stock-Yogo analysis indicates C=13 (F5y = 10) guarantees mean bias of less than
10% of OLS. Here the mean bias is 8.4%, but the median bias (14%) is much greater.

2400nversely7 the t-test judges positive estimates to be significant far too often. Consider the bottom
panel, where 3=0.30. In the C=6.9 case the t-test rejects Ho:3=0 at a very high 46% rate, despite the
weakness of the instrument. As we explained in Section 3, this apparently high level of power arises
because 2SLS standard errors are spuriously precise when BQSLS > 0. The substantial median bias of
2SLS towards OLS in the multiple instrument case magnifies this problem.
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Table 8. 2SLS vs. LIML: Size and Power with K=3 (p = 0.8) (%)

C 6.90 13.01 40.91 110.55 360.26
Fsocrit 6.93 10.00 22.30 50.00 142.50
Reject Hy:8 = 0 when True 8 =0
2SLS t-Test 198 134 .082 .060 .054
False Positives .198 134 .082 .055 .040
LIML AR Test .051  .051 .051 .051 .051
Fualse Positives .032  .026 .026 .026 .025
LR Test .065 .056 .050 .049 .050
False Positives .038  .027 .024 .024 .024
CLR Test .050 .049 .049 .048 .049

False Positives .029  .024 .023 .023 .024
Reject Hy:5 = 0 when True = —0.3

2SLS t-Test .025 .007 .354 .949 1.000
False Positives .025  .006 .000 .000 .000

LIML AR Test 120 189 521 .936 1.000
Fualse Positives .014  .003 .000 .000 .000

LR Test 191 289 .689 .981 1.000

False Positives .011  .001 .000 .000 .000

CLR Test 162 .268 .683 .980 1.000

Fualse Positives .009  .001 .000 .000 .000
Reject Hg:5 = 0 when True g = 0.3

2SLS t-Test 460  .453 .583 .838 .997
LIML AR Test 075 097 221 .540 977
LR Test 115 150 .333 712 .993
CLR Test .097 138 327 .708 .993

Median Bias
2SLS 200 114 .037 .014 .004
LIML .007 -.002 -.002 -.001 .000

Note: The table reports the frequency of rejecting the null hypothesis Hy: 3 = 0.

For example, when C=13 and true g = —0.3 the LR test rejects the false null 5 =0 at
a 28.9% rate compared to 18.9% for the t-test.

The modest size distortion and superior power of the LR test suggest it may be possible
to correct its size distortion while still maintaining superior power to the correctly-sized
AR test. The CLR test results in Table 8 show this is true. CLR has approximately correct
size by construction. And we see it does have superior power to AR. For example, when
C=13 and true 8 = —0.3 it rejects the false null 8 = 0 at a 26.8% rate compared to only
18.9% for AR (and 0.7% for the 2SLS t-test). Given such results, it is difficult to justify
using 2SLS or the t-test when LIML and the CLR test are available.

The above discussion highlights a general point: The AR test, which is pivotal and
always has correct size, should be viewed as a baseline against which other tests are
judged (see Dufour (1997)). The fact that a new test has correct size does not make
it valuable unless it has superior power to AR. The CLR correction to the LR test is
valuable, as CLR has correct size but still maintains superior power to AR. In contrast,
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for example, the tF test correction to the t-test — see Section 5.2 — has correct size but
greatly inferior power to the AR test. Thus it does not represent an improvement over
AR. Unfortunately, as we noted in the introduction, the heavy focus of the weak IV
literature on bias and size has often caused it to ignore power considerations.

The Online Appendix reports results with lower levels of endogeneity. When p=0.50
the results are similar. Median bias in 2SLS is still substantial. The 2SLS ¢-test suffers
from less size distortion, but the power asymmetry problem remains serious. The ¢-test
has almost no power to detect true negative effects in the C=6.9 and 13 cases, and clearly
inferior power to CLR in the C'=40.9 case. The combination of median bias and power
asymmetry biases the t-test towards finding positive effects (in the direction of OLS).
Remarkably, when p=0.20 the power asymmetry in the t-test remains substantial. The
size of the 5% t-test now falls well below 5% unless instruments are very strong (C=111).
This highlights how the t-test derives much of its power from finite-sample correlation
between the instrument and the structural error, which generates spurious correlation
between x and z. This source of power is limited when endogeneity is weak.

We now return to the p=0.80 case, and compare properties of 2SLS and LIML standard
errors. The upper left panel of Figure 10 plots the 2SLS standard error against the 2SLS
estimate for the case of C=13 (F54=10), with true S=0. We see the familiar comet
shape that illustrates the strong negative correlation between 2SLS estimates and their
standard errors. In the upper left panel the red shaded area shows the 13.4% of cases
where a 5% level two-tailed t-test rejects Hy:3=0. Due to the power asymmetry that
afflicts the t¢-test, all of these rejections occur when 8 > 0 (i.e., in the direction of the
OLS bias). Thus a 2.5% level one tailed t-test of Hy:5 <0 rejects 13.4% of the time.

The upper right panel of Figure 10 plots the LIML standard errors against the LIML
estimates. A crucial point is the LIML standard error has a strong negative association
with the LIML estimate — the same problem that afflicts 2SLS. If one were to form ¢-tests
based on LIML standard errors, there would be a size distortion (in this case the null
Hy:5=0 is rejected at a 7.5% rate), and all rejections occur when 8 > 0. Thus, the use
of LIML alleviates but does not solve the two key problems that afflict the t-test.

The upper right panel of Figure 10 shows how the use of LIML plus CLR resolves both
problems. The red shaded region now shows the approximately 5% of cases where the 5%
level CLR test rejects Hy:8=0, so size is correct. And we see these cases are evenly split
between positive and negative estimates, so the power asymmetry problem is resolved.
It is worth noting at this point that the CLR test may be inverted to form confidence
intervals, so the LIML standard error is not needed for that purpose.

Given heteroskedastic data, the GMM-2S and GMM-CU estimators are important
options. In Keane and Neal (2022a) we compare all estimators and tests discussed here
in an empirical application to estimating the Frisch elasticity. There, we estimate p=-0.70,
so the power asymmetry problem is substantial. We show that GMM-2S has problems
similar to 2SLS, while GMM-CU offers improvements similar to LIML. The advantages of
the CLR test over the t-test are substantial. Thus, for heteroskedastic data, we strongly
advise using the CLR test in conjunction with either LIML or GMM-CU.

6.2.1. Combining 25LS with AR, ACT, CLR

The theory literature often advises applied researchers who use 2SLS to report robust
tests like AR or CLR if weak instruments are a problem (see, e.g., Stock et al. (2002),
Andrews et al. (2019)). This would certainly be an improvement over reporting ¢-tests.
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Figure 10. SE(3) plotted against § itself, C' = 13 (Fso, = 10), p=0.80
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Note: Runs with std. error > 1.5 not shown. Red dots indicate Hp : 8 = 0 rejected at 5% level.

But a concern in the over-identified case is that AR and CLR are specifically designed
for use with LIML. The bottom panel of Figure 10 illustrates a problem that arises from
“mix and matching” estimators and test statistics in this way. It can happen that the
2SLS estimate is near zero, but the AR or CLR test indicates the estimate is significant.
As we see in the upper right, the use of LIML with CLR avoids this problem.??

Putting this issue aside, we nevertheless consider the performance of 2SLS in conjunc-
tion with three alternatives to the t-test — the AR, ACT and CLR tests. The results are
reported in Table 9. All three tests are robust to weak instruments - meaning they have
correct size regardless of instrument strength — correcting the size distortion of the ¢-test.
So the choice among them can be based on power considerations. On this basis the CLR
test is clearly preferred. It has better power than AR or ACT to detect both positive
and negative true values of 3, regardless of the level of instrument strength.

Of course, a CLR test gives the same result whether the researcher reports the 2SLS or
LIML estimate of 8. But CLR is based on the LIML estimate, which gives a better match
between the hypothesis test result and the magnitude/sign of the parameter estimate.
We already saw this in Figure 10. We can also see it by comparing Tables 8 and 9. For
example, when true 8 = —0.3 CLR rejects 8 = 0 16.2% of the time, but in 2.2% of those
cases the 2SLS estimate is positive (the wrong sign) while this problem only arises in
0.9% of cases for LIML. However, this problem vanishes quickly as instrument strength
increases and 2SLS and LIML converge.

250f course this issue does not arise in the exactly-identified case as LIML and 2SLS are identical.
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Table 9. Alternatives to the 2SLS t-test: Size and Power with K=3 (p = 0.8) (%)

C 6.90 13.01 40.91 110.55 360.26
Fsoporit 6.93 10.00 22.30 50.00 142.50
Reject Hy:8 = 0 when True 8 =0
2SLS AR Test .051  .051 .051 .051 .051
False Positives .048  .042 .036 .032 .029
ACT Test .051  .051 .051 .051 .050
Fualse Positives .026  .025 .025 .024 .024
CLR Test .050  .049 .049 .048 .049

False Positives .036  .028 .023 .023 .024
Reject Hy:3 = 0 when True g = —0.3

2SLS AR Test 120 189 521 .936 1.000
False Positives .046  .023 .002 .000 .000

ACT Test 116 .229 .659 978 1.000

False Positives .003  .001 .000 .000 .000

CLR Test 162 268 .683 .980 1.000

False Positives .022  .005 .000 .000 .000
Reject Hy:3 = 0 when True 8 = 0.3

2SLS AR Test 075 .097 221 .540 977
ACT Test 075 109 311 .695 992
CLR Test 097 138 327 .708 993

Note: The table reports the frequency of rejecting the null hypothesis Hy: 3 = 0.

In the single instrument case the AR test is optimal: It has the best power of any
correctly-sized test. As Tables 8-9 illustrate, this optimality property vanishes in the
over-identified case, as CLR has better power. The 2SLS + AR combination also suffers
from a clear power asymmetry problem: For example, as we see in Table 9, in the weak
instrument case of C'=6.9 nearly all rejections of the true null 8=0 occur when BQSLS > 0.
And if true $=-0.3 AR rejects the false null 3=0 only 12% of the time, and 39% of those
rejections occur when Basrs > 0, so we often conclude 8 is positive when it is actually
negative. Thus, the AR test is more likely to judge 2SLS estimates significant when they
are shifted in the direction of the OLS bias (for reasons we explained in Section 3). This
problem is much less severe than it is for the t-test, but it is still of concern.

The AR, LR and CLR tests all have much better power to detect true effects that are
opposite in sign to the OLS bias, even when instruments are quite strong. For example,
in the case of C'=41 (F 5=22.3) the AR test rejects Hp:8=0 at a 51.1% rate when true
B is -0.30, but only a 22.1% rate when true 3 is 0.30. Similarly, the figures for CLR
are 68.3% vs. 32.7%. This occurs because larger 8 increases the noise in the reduced
form relationship between y and z, as we explain in Appendix A.1. The AR test properly
interprets this as implying less certainty about significance of . Recall that LR and CLR
are based on AR minus the Sargan statistic, so they follow the same pattern.

Finally, consider the ACT test. If =0 it has (approximately) the correct 5% size by
construction. In contrast to the AR and CLR tests, it also has symmetric rejections on
both sides of 0 even when instruments are weak. So if test size were one’s only concern
the ACT test would be recommended. However, as Table 8 reveals, when 8 = 4+0.3 the
ACT test has inferior power to the CLR test, particularly when instruments are weak.
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6.3. The Case of Many Instruments

Since the work of Bound et al. (1995), the IV literature has devoted a great deal of
attention to the case of many instruments. As we illustrated at the start of this section,
going from one to three instruments drives up the sample covariance between the 2SLS
instrument z7 and the structural error u. Using larger numbers of instruments worsens
this problem, increasing the bias of 2SLS towards OLS, increasing t-test size distortion,
and worsening the power asymmetry of the ¢-test.

We illustrate the problem in Table 10. We run experiments based on the DGP in (1)
with either 10 or 20 independent and equally strong instruments. The table compares
the performance of 2SLS combined with ¢ vs. LIML combined with CLR. We consider a
high level of endogeneity (p=0.80) to test how these procedures perform in a challenging
environment. We consider three levels of instrument strength:

In the first case we set m7=0.048 for each instrument. Recall from Table 1 that a single
instrument of this strength gives C=2.3, and a first-stage F of 10 is required to have
95% confidence the instrument is this strong. Using 10 independent instruments of the
same strength increases C to 23, and F of 5.19 is required to have 95% confidence that
C is this large. In the 20 instrument case we have C=46 and Fyo,=4.61, respectively.26

Table 10. Results with Many Instruments (p = 0.8) (%)

10 Instruments 20 Instruments
C 23.00 61.59 314.90 46.00 138.33 1114.00
Fyocrit 5.19 10.00 38.54 4.61 10.00 62.30
Reject Hy:5 =0 when True g =0
2S5LS t-Test .384 .199 .082 .604 .289 .082
False Positives — .384 .199 .078 .604 .289 .076
LIML CLR Test .049 .047 .048 .054 .053 .054
False Positives  .026 .025 .024 .028 .028 .029
Reject Hy:8 = 0 when True g = —0.3
2SLS t-Test .018 .400 1.000 .042 .861 1.000
False Positives 012 .000 .000 .007 .000 .000
LIML CLR Test .406 .837  1.000 .685 .994 1.000
Reject Hy:3 = 0 when True = 0.3
2S5LS t-Test 847 879 .998 .982 1991 1.000
LIML CLR Test .195 .452 .989 337 .788 1.000
Median Bias
2SLS 231 .105 .022 .235 .097 .016
LIML .003 .000 .000 .000 -.001 .000

Note: The table reports the frequency of rejecting the null hypothesis Ho: 8 = 0.

As we see in Table 10 the performance of 2SLS and the ¢-test is remarkably poor in
this case. First, the median bias is substantial. It is 0.23 for both =10 and K=20.

26Recall that C = NR?/(1— R?) where first-stage population R? is Var(zr)/(Var(zn)+1) in our DGP.
The R? with 1, 3, 10 and 20 instruments is .0023, .0069, .022 and .044.
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Second, the size distortion is substantial. With 10 instruments the 5% two-tailed ¢-test
rejects the true null of 8 = 0 at a 38.4% rate, increasing to 60.4% with 20 instruments.
Even more striking is that all these rejections occur when Bgs Ls is positive.

Third, the t-test has essentially no power to detect true negative effects of substantial
magnitude. Rates of rejecting Hy:8 = 0 when true g = —0.30 are very low, and often
occur when B is positive, so we conclude ( is positive when it is actually negative.

Fourth, if 8 = 0.30 the t-test rejects Hy:3 = 0 at a 84.7% rate with 10 instruments, and
with near certainty with 20, but this merely reflects the extreme bias of the procedure
towards concluding [ is positive. If a researcher is determined to find a significant effect
in the same direction as OLS, then the use of the 2SLS t-test is a good choice, and the
use of many instruments even better.

In contrast, the performance of LIML combined with CLR is impressive. As expected,
size is close to 5%, but more surprisingly, rejections are evenly balanced between positive
and negative 3. The CLR test has good power to detect true negative effects: The rate
of rejecting Hy:8=0 if true 8=—0.30 is 40.6% with 10 instruments, increasing to 68.5%
with 20 instruments. Of course, CLR has less power on the positive side.

The second (higher) level of instrument strength we consider in Table 10 is C=61.59
(138.33) for K=10 (20). A first-stage £’ > 10 is required to have 95% confidence that C
is at least this high. So this corresponds to the Staiger-Stock rule of thumb.?” At this
level of instrument strength the bias in 2SLS and size distortion in the ¢-test are still
substantial. With 10 instruments the 5% two-tailed ¢-test rejects the true null of 5 =0
at a 19.9% rate, increasing to 28.9% with 20 instruments. Again, all these rejections
occur when B is positive. In contrast, CLR test size is near 5%, with an even balance of
positive vs. negative rejections. The CLR test also has much better power than the ¢-test
to detect true negative effects. The rate of rejecting Hy:8 = 0 when true § = —0.30 is
83.7% for CLR vs. only 40% for t.

Finally, we consider the very high level of instrument strength of C=314.9 (1114.0) for
K=10 (20). A first stage F' > 38.54 (62.3) is required to have 95% confidence that C' is
at least this high. These are the Stock-Yogo test levels for a maximal size distortion of
no more than 10% for the t-test. At this very high level of instrument strength the size
of the 5% level t-test drops below 10% (to 8.2%), as expected based on the Stock-Yogo
analysis. But almost all rejections still occur when B > 0. As we have seen, the power
asymmetry in the t-test vanishes very slowly as instrument strength increases. Notice
that at this high level level of instrument strength both the CLR and ¢-tests detect true
effects as large as § = 4+0.30 with near certainty.

An important point for applied researchers to be aware of is that the difference between
LIML and 2SLS is very systematic. Both estimators are consistent, so they converge as
C grows large. But one can show the 2SLS estimator is a weighted average of LIML
and OLS, so it always lies in between.?® Hence 2SLS “puts back” some of the OLS bias.
As a result, /BQSLS - 6 vz is almost always the same sign as the bias. For example,

27Stock and Yogo (2005) note that the required level of F to give 95% confidence that the 2SLS bias is
less than 10% of the OLS bias is roughly 11 for all values of K > 3, and state “this provides a formal ...
testing interpretation of the Staiger-Stock rule of thumb” as 11 is close to 10.

28The k-class estimators use kz# + (1 — k)x as the instrument for . LIML is a member of the k-class
where k =1/(1 ng,z) =1/(1 - Sargan/N) > 1. If we define a weight W = (k —1)X'X/kX'X € (0,1)
we can write Bagrg = 1- W)BLIML + WpBorLs. LIML is usually defined as choosing 8 to minimize k,
which is equivalent to minimizing Sargan. A higher k means the instruments suffer more finite-sample
contamination, so LIML “pushes away” from OLS.
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in Table 8 there are only 1.5% of runs in the weakest instrument case (C=6.9) where
IBQSLS — BLIML is not the same sign as the OLS bias (positive). These are all extreme
outliers where BgsLS > Bo Ls- In such cases LIML “blows up” to large positive values. If
such behavior is observed one should not abandon LIML and adopt 2SLS, as it means
BQSLS is itself suspect. Such behavior never occurs in the stronger instrument cases.

The fact that BQSLS — BLIML is almost always the same sign as the OLS bias means
LIML is often closer to the true value than 2SLS. In the 10 instrument case, the LIML
estimate is closer to the true value in 72%, 67% and 58% of runs, at the three levels of
instrument strength. In the 20 instrument case this increases to 81%, 72% and 59%.

Finally, we consider the JIVE estimator that we describe in Appendix D, as the liter-
ature often recommends using JIVE with many instruments. Comparing Tables 10 and
11 we see the size of the two-tailed 5% JIVE t-test is less inflated than the 2SLS t-test.
But JIVE suffers from the same power asymmetry as 2SLS: In the F5o = 5.19 and 10
cases the large majority of rejections occur when B > 0, and the JIVE t-test has poor
power to detect true negative effects. With 10 instruments in the F5o, = 5.19 case it only
rejects Ho:8 = 0 in 1.7% of cases when true 8 = —0.30, compared to 40.6% for LIML
+ CLR. In this respect JIVE + t offers only a small improvement over 2SLS + t. When
the true g is positive (i.e., the direction of the OLS bias) the JIVE ¢-test has an inflated
rejection rate compared to CLR, but this problem is not nearly as bad as for the t-test —
i.e., 19.5% vs. 25.3% vs. 84.7%. This is largely because the median bias in JIVE is much
less than in 2SLS.

Table 11. JIVE + ¢-Test Results with Many Instruments (p = 0.8) (%)

10 Instruments 20 Instruments
Fsycrit 5.19 10.00 38.54 4.61 10.00 62.30
Reject Hy:8 =0 when True 8 =0
JIVE t-Test .048  .040 .045 .049 .052 .051

False Positives — .048 .037 .028 .049 .036 .029
Reject Hy:3 = 0 when True g = —0.3

JIVE t-Test 017  .689  1.000 .299 .981 1.000
Reject Hy:3 = 0 when True = 0.3
JIVE t-Test 253 .485 .990 .370 N 1.000
Median Bias
JIVE -.069 -.025 -.005 -.036 -.013 -.002

Note: The table reports the frequency of rejecting the null hypothesis Ho: 3 = 0.

Based on these results, we conclude that no case can be made for using 2SLS ¢-tests
in the over-identified case. It is seriously biased towards finding significant effects in the
same direction as OLS. The power asymmetry of the t-test combines with the median
bias of 2SLS towards OLS to make this bias very strong in the many instrument case.
The use of LIML combined with the CLR test avoids both problems, so we strongly
recommend this approach. Finlay and Magnusson (2009) provide a heteroskedasticity
robust implementation of the CLR test in Stata, that will also invert the test to form
confidence intervals. The use of JIVE also avoids median bias towards OLS, but the JIVE
+ t combination sacrifices a great deal of power compared to LIML + CLR. In results
not reported we find the Fuller estimator behaves similarly to LIML, but slightly worse.

© 2022



32 Keane & Neal
7. CONCLUSION

How strong must instruments be for 2SLS and the associated t-test to exhibit acceptable
properties? Staiger-Stock suggested the popular rule of thumb that first-stage F should be
at least 10 for 2SLS t-tests to give reliable results. And, in the case of a single instrument,
Stock-Yogo showed that a first-stage F' of 16.4 gives high confidence that size inflation in
two-tailed 2SLS t-tests is no more than 5%. However, we find 2SLS estimates and t-tests
are very poorly behaved in environments characterized by F in this 10 to 16.4 range.

The Stock and Yogo (2005) focus on size inflation of two-tailed ¢-tests masks other key
problems. First, 2SLS ¢-tests have very low power for F in the 10 to 20 range deemed
acceptable by conventional weak IV tests. Second, the 25LS estimator has the unfortunate
property that it generates standard errors that are artificially small precisely when it
generates estimates that are most shifted in the direction of the OLS bias. Consequently,
nearly all significant 2SLS estimates are severely shifted towards OLS when instruments
are weak. Surprisingly, this power asymmetry persists if instruments are quite strong.

One consequence of the association between 2SLS estimates and their standard errors
is that 2SLS t-tests have poor power to detect true negative effects when the OLS bias
is positive. This is true even if instruments are quite strong by conventional standards.
This lack of power is of great practical importance, as it means there is little chance of
detecting negative program effects given positive selection on unobservables.

A second consequence is that size distortions in one-tailed t-tests are far greater than
two-tailed tests. For example, Lee et al. (2022) show a first-stage F of 104.7 is sufficient to
eliminate size inflation in two-tailed ¢-tests. But we find a first-stage F' in the thousands
is required to eliminate size distortions in one-tailed 2SLS t-tests.

Applied researchers rarely use one-tailed tests because they expect two-tailed tests to
be symmetric (e.g., a two-tailed 5% test is equivalent to a one-tailed 2.5% test). But that
is completely false with 2SLS: Even with quite strong instruments most estimates judged
significant by two-tailed 2SLS t-tests are shifted in the direction of the OLS bias, rather
then symmetrically distributed around the true value.

The power asymmetry in 2SLS t¢-tests is important for applied work. Take the classic
problem of estimating the effect of education on wages. The usual concern is that unmea-
sured ability biases the OLS estimate upward. But if the OLS bias is indeed positive, then
larger 2SLS estimates of the effect of education on wages will spuriously appear more
precise. This will naturally bias researchers towards exaggerating the effect of education.

Anderson and Rubin (1949)’s test largely avoids the problems that plague the ¢-test.
AR has correct size regardless of instrument strength. Hence, it is widely recommended
by theorists for use in just-identified models with weak instruments. Furthermore, it is
the most powerful unbiased test in the single instrument case, and it does not sacrifice
power to the t-test when instruments are strong. Importantly, we show the AR test is far
less susceptible to the power asymmetry that afflicts the ¢-test. In particular, AR has far
better power to detect negative effects when the OLS bias is positive. Thus, we advise
discarding the 2SLS t-test altogether, and using AR even with strong instruments.

The AR test is also simple to implement, via OLS estimation of the reduced form,
followed by testing for the significance of the instrument. To illustrate, we present an
application to estimating the excess sensitivity of consumption to income using PSID
data. This allows us to assess the relative performance of AR and t-tests in a realistic
setting where the first-stage Fis modestly above the threshold of 10. We show that in
this context the AR test is clearly superior to the t-test in terms of both power and size.
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In over-identified models the size inflation in 2SLS ¢-tests becomes much more severe,
and median bias of the 2SLS estimator towards OLS becomes substantial. The use of
multiple instruments also increases the covariance between 2SLS estimates and their
standard errors, so the power asymmetry of the ¢-test is amplified. The ¢-test has low
power to detect true effects that are opposite in sign to the OLS bias, and is seriously
biased towards finding significant effects in the same direction as the OLS bias.

The bias and size problems that afflict 2SLS and the ¢-test in the over-identified case
led Angrist and Pischke (2008) to argue that applied researchers should choose their one
best instrument. However, the use of multiple instruments can increase the efficiency of
estimation considerably. Thus, we argue it is important to use methods that exploit the
information in multiple instruments without generating bias and size distortions.

In fact, the limited information maximum likelihood (LIML) estimator of Anderson
and Rubin (1949) does not suffer from median bias in the multiple instrument case, and
the conditional likelihood ratio (CLR) test has much better power properties than the
t-test. The use of LIML combined with CLR allows one to exploit the information in
multiple instruments without creating bias and size distortion. Hence, in over-identified
models we recommend using LIML and CLR in lieu of 2SLS and the t-test, even when
instruments are strong. For heteroskedastic data, we advise using a robust version of
CLR in conjunction with either LIML or, to gain efficiency, GMM-CU.

In conclusion, we note that recent papers by Andrews et al. (2019) and Young (2022)
have emphasized that 2SLS can suffer from low power and size distortions in environ-
ments with heteroskedastic and/or clustered errors, even if conventional F' tests appear
acceptable. We complement that work by showing how similar problems may arise even
in 7id normal settings when instruments are acceptably strong by conventional standards.
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APPENDICES

A. ANALYTICAL POWER FUNCTIONS OF THE AR AND T-TESTS

Consider the just-identified ¢4d-normal linear IV model of equation (1). The power of
both the AR and t-tests depends on the true 3, the degree of endogeneity p, and A (=
square root of population F'). The power of the AR test is simply:

Powerar(B|A, p) = ®(AD — z1_4/2) + ®(—21_0/2 — AD) (A1)

where ® is the standard normal cdf, D = 8/+/Var(v) where v = fe + u is the reduced
form error with Var(v) = 14+2pS+ 32, and Z1_q/2 is the 1 —a/2 quantile of the standard
normal distribution. Below we set o = 0.05.

Following the the analysis in Stock and Yogo (2005), Lee et al. (2022) and Angrist and
Koleséar (2021), the power of the two-tailed 2SLS ¢-test is given by the integral:

Power(B|A, p) =
[ (8 2 0 Rt agadf6 Do) + HE = 2 o)) (e~ Vi

where ¢ is the standard normal densrcy, po is the correlation of the reduced form errors,

given by pg = corr(Be +u,e) = (p+ B)/v/1+ 2pB + B2, and:

o ag—)\D—pg(t—/\)_ al—/\D—po(t—)\)
g (BB (om0

pozi_ o2t — [t|z1— a/z\/t2 (1—p3)z2_ /2
a; = )
2 /2 —t?

(A2)

pozi_ a/2t+|t|z1 Cy/g\/t —(1—p3)22_ a/2
— 12

ag =
25 /2
The integral in (A2) must be evaluated numerically.

A.1. Power of the AR vs t-test

We now present an example power comparison between the AR and ¢-test. Consider the
case of C=2.3. We need ' > 10 to have 95% confidence that C' is at least 2.3, so the
Staiger-Stock rule of thumb implies this is an acceptable level of instrument strength.
We set =0 and p = 0.5, so the OLS bias is positive, E(BOLS) =0.5.

Results are shown in Figure Al. The severe power asymmetry of the t-test is evident.
Power is less than 5% over the 0 to -0.70 range. As a one sigma change in z induces roughly
a [ sigma change in y these would be very large effects in most empirical applications.
Notice that t-test size is 3% when true 8 = 0. The literature often calls a 5% test that
rejects at a lower rate than 5% “conservative,” and there is a tendency in the weak IV
literature to consider this acceptable. But it seems odd to call the t-test conservative
when it has no power to detect a large range of true negative effects.

Figure Al also shows the AR test is unbiased, has correct size, and has superior power
to detect true negative effects. It’s power reaches 23% when true f is -0.70, compared to
only 5% for the t-test. Notably, the power of both tests is uninspiring, which is why we
call for a higher standard of instrument strength than F>10in empirical practice.
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Figure Al. Power of the T-Test vs. AR-Test when F' = 2.3 (p = 0.5)

31— T-test —— AR-test

Rejection Rate

True B

Figure A1 also shows how the t-test power curve rises above AR for positive values of
5. As we showed in Section 3, this occurs because 2SLS standard errors are spuriously
small in samples where the 2SLS estimate is shifted in the direction of the OLS bias.

One may understand why the power of AR is asymmetric about zero by using (1)
to write the reduced form as y = & + (1 4 Bp)u + B(1 — p*)'/?1. Assuming p > 0, as
[ increases the error variance increases, making the OLS estimate of the reduced form
parameter £ = B less precise. The denominator of the regression F-stat also increases,
dampening increases in AR generated by increasing 8. The AR test properly interprets
the increased noise in the reduced form as implying less certainty about significance of B.
The 2SLS standard error calculation Var(8) = Var(Bors)/ RZ_, ignores this information.

Conversely, the error variance of the reduced form is minimized when Sp=—1, so the
power of AR spikes at that point, as the OLS estimate of £ = fx is relatively precise.
This helps the AR test to have very good power on the negative side if the OLS bias
is positive. As |5| — oo the relationship between = and y becomes deterministic, so the
chance of finding a significant relationship between y and z is exactly equal to the chance
of finding a significant relationship between x and z. Thus as |3| — co the power of AR
approaches P(F > 3.84|C), the probability of a significant first stage.

B. SIMULATING THE DISTRIBUTION OF THE T-TEST

Following Mills et al. (2014), we begin by defining the covariance matrix of the reduced
form errors Q. The reduced-form equations are y = zf7+(fe+u) = z€+v and x = 27w +e.

2
Thus we have Q = (pOZ”U ”0‘:;"6) where 02 = Var(Be +u) and pg = corr(Be + u,e) =

corr(v,e). Mills et al. (2014) show that:

BasLs (B1)

tosLs =
U2SLS[C%1t,2qR + 2co1Co0t ARt + C§2t%]_1/2

where t4 g is the t-statistic from a regression of y; on the instrument z; (i.e. the “t-test
version” of the AR test statistic),? ¢y, is the t-statistic of a regression of z; — pg 2oy

29Obviously the AR test is equivalent to the squared t-test for significance of the instrument z in the
reduced form for y. We denote this by t4r and refer to it as the “t-test version” of the AR test. It is
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on z;, and o9grs is the standard error of the 2SLS regression. We also have ¢y1 = oy,
C21 = PoTe, and cao = 0o4/1 — p%. Furthermore, 82515 is given by:

2
cric21ty g + cricaatarty
51t g + 2ca1cant ARty + CBot3

BasLs = (B2)
Importantly, the ¢-test version of the AR test ¢t 4 g and the modified first-stage t-statistic
t1, are constructed to be independent. To see this, note that:

(oo )~ (0 zn ) (§ o)
T zm(l—poZef) )7\ 0 oZ(1—pp)

Thus y; and x; — pg ny% are independent, which implies that t4r and ¢y, are indepen-
dent.3? This allows us to simulate the distribution of t 4z while holding ¢/ fixed.

It is possible to use these equations to simulate the distribution of the 2SLS ¢-test under
the null that Hy:5=0, and conditional on the strength of the instruments (captured by
t1/) and the covariance of the reduced form errors (£2), using the following procedure:

Draw a simulated value of t s from the N (0, 1) distribution holding #;. fixed.3!
Calculate 82515 as above but using the simulated value of tag.

Re-estimate o951,5 using the value of Sog1,5 from step 2.

Calculate tog1,s using the values from the first to third step.

Repeat Steps 1-4 N times.

To obtain (simulated) critical values for a-level one-sided conditional t-tests, cal-
culate the o and 1 — « percentiles of the N simulated values of to57.5.

S T W N~

The 2.5 and 97.5 percentiles from step 6 can be used as critical values for a 5%-level
two-sided conditional ¢-test of the Hy:5=0. We call this an ACT test in the text.

The above procedure assumes that §2 is known, but Q) must be used in practice. This is
not important in theory (or practice given large samples), as the covariance structure of
the reduced from errors can be consistently estimated without knowing true 3 or p.32 The
procedure can also be made robust to non-normal disturbances due to heteroskedasticity,
autocorrelation (in the case of time series or panel data), or clustering by adjusting the
standard errors in the reduced form regressions used in the calculation of ¢t 4z and ;..

Construction of Table 5 in the main text requires running a simulation within a simula-
tion. For each dataset drawn from our DGP, we obtain estimates of instrument strength
and the error covariance structure. Conditional on those estimates, we simulate the con-
ditional distribution of the ¢-statistic using the above algorithm.

obvious that ¢4 g is approximately standard normal (in large samples) regardless of the weakness of the
instrument, as it is simply a t-test from an OLS regression.

30Note that tar is obtained from a projection of y; on z;, and ¢/ is obtained from a projection of
T; — po g—zyi on z;. Since y; and z; — po g—Zyi are independent, the independence of the two objects is
preserved by these projections. For this reason, tgr|tys ~tar ~ N(0,1).

311n the case of multiple instruments (k > 2), one would draw t4 g from a k x 1 vector of N(0,1) draws.
32 ACT test results in this article are based on our own Stata code. We are thankful to Marcelo Moreira
for providing his Matlab code that served as a guide. The original Matlab code used a simulation design
in which p implicitly changed as [ varied from zero, in such a way as to ensure pp was held constant
across scenarios. Our designs hold p fixed as we vary (3, which leads to very different results. We prefer
the fixed p design for the reasons explained in Van de Sijpe and Windmeijer (2022). The difference in
simulation design also explains to some extent why the results for the tF test in Section 5.2 may look
different to those in Lee et al. (2022), as they also allow p to change as 8 changes.
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C. THE LIKELIHOOD RATIO (LR) TEST

The likelihood ratio (LR) test developed by Anderson and Rubin (1949) can be used to
test the null hypothesis Hy:8 = 5y when the parameter [y is estimated by IV regression.
Similar to the AR test, the LR test can also be inverted to form confidence intervals.
Here we explain how the LR test is constructed. We focus on Hy:8 = 0 to minimize
notation. The LR test is based on the reduced form system of two equations:33

y=z(Bm)+v (1)
r=2zmw+e
where the error terms e and v have variance-covariance matrix ).

Equation (C1) can be estimated as a SUR system. The LR test compares the likelihood
of two alternative SUR systems: First, fix 8 at the LIML estimate, B 1., and estimate the
k x 1 parameter vector 7, obtaining 7. Second, fix 5 = 0 and estimate 7r, obtaining 7.

Note that the first SUR constrains the coefficients on z in the y equation to be B 7
times their coefficients in the  equation. The second SUR drops z from the y equation
completely, introducing one additional constraint. Letting (31,7 1) and £(0,7) denote
the log-likelihoods of the two SUR systems, the LR test for Hy:8 = 0 is simply LR =

200(Br, 1) — €(0, 7). Tt is distributed x2(1) under the null.

The likelihood for a regression with normal errors takes a simple form. Let V; = (¢¢)
denote the error vector for observation ¢, with V; ~ N (0, ©2). The likelihood is the bivariate
normal density of the errors for the N observations:

L(B,7[$2) = (C2)

N
1 _ 1 _
W(\QI) N2exp l—2 > vty
=1

Now we form the sample likelihood for each of the two SUR models. The vector of sample
residuals for observation ¢ is V; = (yi*ziﬁ:) where (8, #) is either (8, 7L) or (0, 7).

T;—Z;
Let  denote the sample variance-covariance matrix of the residuals, which is Q1 or Q.

Notice that if we plug the sample residuals V; and sample covariance matrix Q into
(C2) the sum of squared residuals term in square brackets simplifies tremendously. The
normalization by Q) renders the residuals independent standard normal, so the sum of
squared residuals is simply 2N. Thus the sample likelihood is:

(1)~ 2eap [-N] (C3)

AiA 1
L(B,7|Q) =
(B.710) = G
Taking logs and cancelling like terms, the likelihood ratio simplifies to:
LR =2 (0(Br, 71100) = €0, 710lQ0) ) = N (log(I2)) — (log(I2))) — (C4)

Thus, the LR test simply compares the estimated variance-covariance matrix of the
residuals in two versions of the reduced form system, with 8 set to either BL or 0.
Intuitively, if the residual variance increases significantly when we constrain g = 0, we
conclude that the estimate of 3 is significant.3*

As we saw in Section 6.2 the LR test suffers a modest size distortion when instruments

33 As with other measures of regression fit, such as R2, calculating the likelihood for the structural
equation y = Bz +u makes little sense as the likelihood will often be worse under the optimised coefficient
estimates than the null hypothesis.

34Notice that || = 6262 — 2Cov(e,v). So the overall residual variance of the reduced form system is
increasing in 02 and o2 and decreasing in the covariance.
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are weak, although far less so than 2SLS. Moreira (2003) developed a conditional LR test
that adjusts critical values based on instrument strength to eliminate the size distortion.
Similar to the conditional ¢-tests discussed in Section 5 and Appendix B, the idea is to
simulate the distribution of the LR test, which depends on instrument strength because
the test is not pivotal. To implement this idea, he assumes that €2 is known. Then,
plugging the sample residuals V; into (C2) we obtain:

N
A 1 o 1 PN
i=1

(C5)

Let Vz; and Vp; denote the residuals from the SUR models with (/3’, ) equal to (BL, L)
and (0, #rg) respectively. Plug the Vi; and Vj; into (C5) to form the likelihoods of the two
models. Taking logs and cancelling like terms, this version of the LR test simplifies to:

LRy =2 (¢(By. 71]Q) — £(0,70/2)) = - (C6)

N
> Ve
=1

N
> vty
i=1

In practice, 2 must be estimated. Moreira (2003) proposes using residuals from estimating
the two reduced form equations in (C1) separately by OLS to form Q). When  is used
in (C6) it is an approximation to the true likelihood ratio statistic in (C4).3°

Moreira (2003) shows that the approximate LR statistic LRy can be written:

LRy = % (s's —T'T+ /('S + T'T)2 + 4[(S'T)2 — (S’S)-(T’T)]) (C7)

where S = (2'Z)"Y2Z'Y Jo, and T = (Z'Z)~Y2Z'(X — poZ2Y)/0er/1 — p2, and where
we have stacked the N observations on y,  and z to form Y and X vectors that are N x 1
and a Z matrix that is N x K. But in the single instrument (K=1) case S is simply the
t-test from regressing y on z, that in Appendix B we denoted t g, and T is the t-test
from regressing x — pg g—zy on z, that we denoted #1,.3% In the over-identified case (k >1)
S’S is the AR test and T'T is an F-test for instrument strength (both scalars).

In the exactly identified case one can replace S and T in (C7) with the scalars ¢ 45 and
t1- and it simplifies down to the AR statistic §’S as the term in square brackets vanishes.
This shows that the AR and LR statistics are equal in the exactly identified case. And
the fact that neither test depends on T shows these tests are pivotal.3”

When K > 1 the LR statistic is no longer pivotal as it depends on instrument strength.
Equation (C7) no longer simplifies to AR because S’T is no longer equal to t s - t1/ when
S and T are vectors. As we discussed in Section 6.1, increasing K mechanically drives
up AR (=S5'S) — which is the NR? from regressing y on z — for the usual reason that
there exists sample covariance between each regressor z; and the errors u. LR corrects
for this by subtracting off the Sargan statistic — the N R? from regressing 7 on z — from

35Moreira (2003) claims the approximation is very accurate, and in our simulations we have not found
any evidence to the contrary.

36Recall from Appendix B that y and « — pg g—zy are independent, so S and T are independent.

375 is simply N(0,1) under the null hypothesis no matter the strength of the instrument. To see this
simply, consider the reduced form for y when K = 1: y = B7z + e. The value of 7, so long as it is not
zero, has no influence on how well the regression can fit the data, as B can adjust freely. In contrast, if
K=2 the we have y = B(z171 + 2272) + e. Now, the particular values of 71 and 72 do matter in terms
of how well the regression can fit the data.
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AR, causing the two statistics to diverge. The residuals @ = y — B .« depend on the LIML
estimate of 3, so the LR test is not pivotal, and its distribution depends on instrument
strength as measured by 7. This introduces a size distortion to the LR test.

Moreira (2003) developed a conditional version of the LR test that adjusts the critical
value as function of instrument strength to correct the size distortion. Given that the
vectors S and T are independent, it is possible to use S to simulate the distribution of
the LR test under the null that Hy:5=0 and H1:5 # 0, conditional on the strength of the
instruments (i.e. holding T fixed across draws of S) and the covariance of the reduced
form errors (€2). He proposes the following procedure:

1 Draw a simulated S as a k x 1 vector of N(0,1) draws, holding T fixed.

2 Calculate LR as in (C7) but using the simulated vector S.

3 Repeat Steps 1-2 J times.

4 To obtain (simulated) critical values for the a-level two-sided Likelihood Ratio test,
calculate the o percentiles of the J simulated values of LR.

As in the simulation of the t-test, the above procedure assumes that €2 is known, yet
we use () in practice. Andrews et al. (2007) provide a method to compute the p-values
of the CLR test using numerical integration, which offers a significant computational
advantage over simulating the critical values. The current user-written commands in
Stata that implement the CLR test, condivreg and weakiv, both provide p-values using
the integration approach. Furthermore, the CLR procedure can be made robust to non-
normal disturbances due to heteroskedasticity, autocorrelation (in the case of time series
or panel data), or clustering by adjusting the estimate of the reduced form covariance
matrix €. Details can be found in Finlay and Magnusson (2009).

D. THE JIVE ESTIMATOR

2SLS can be interpreted as IV using z;7 as the instrument for x;, where 7 is obtained
from OLS regression of z on z. Obviously # tends to be greater in samples where ¢ov(z, €)
is greater, and this has an unfortunate consequence: For an individual observation ¢ we
have that cov(z;7, e;) > 0, because a ceteris paribus increase in z;e; drives up 7. If p > 0
this means cov(z;7, u;) > 0, so the instrument is positively correlated with the structural
error, which biases the 2SLS median towards OLS.3®

Phillips and Hale (1977) noted this phenomenon, and suggested an alternative IV
estimator using z;7_; as the instrument for x;, where 7_; is obtained from OLS regression
of x on z excluding observation i. This approach, later called “jackknife IV” (JIVE),
breaks the correlation between z;7 and wu;.

We have emphasized the problem that 2SLS is much more likely to judge estimates
significant if they are shifted in the direct of the OLS bias. In Section 6.3 we show that
JIVE suffers from the same problem. There exists a strong negative association between
se(ﬁ JivEe) and By1vE imparts positive B,y 5 estimates with spuriously high precision.

In fact, in Keane and Neal (2022b) we show that JIVE can perform worse than 2SLS
in some contexts, because the alternative instrument z;7_; has a smaller correlation
with x than z;7, making the weak instrument problem worse. This has especially dire
consequences if the instrument z is weak to begin with.

38The covariance of zi7 and w; is of order 1/N, as the influence of observation ¢ on # vanishes as N
grows large, but in finite samples it contributes to bias in the 2SLS median.
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MULTIPLE INSTRUMENTS: RESULTS WITH LOWER LEVELS OF
ENDOGENEITY

In this Online Appendix we examine the properties of the 2SLS and LIML estimators
and associated tests given lower levels of endogeneity (as defined by p) than in the main
text. All simulation results presented here are based on the DGP outlined in (1) of the
main article. Other than different values set for p, they are comparable to those found
in Table 8 in the text. We begin with Table 1, which compares the performance of the
2SLS estimator combined with its t-test with the LIML estimator combined with the
CLR test of Moreira (2003). We start by setting p = 0.5, which represents a moderate
level of endogeneity, and compare this case with the high level of endogeneity (p = 0.8)
that was used in Table 8 in the main article.

Many of the conclusions that were drawn in Section 6.2 of the main text carry over to
this scenario of more moderate endogeneity. The median bias of 2SLS remains substantial
but is less severe than in the p = 0.8 case. Again, the LIML estimator removes all of
the median bias. The size distortion of the t-test becomes less severe, due to the fact
that the association between the 2SLS estimate of  and its standard error becomes
somewhat weaker. Yet the power asymmetry problem remains serious. At weaker levels
of instrument strength, such as C' = 6.9 or 13, the t-test has almost no power to detect
true negative effects in stark comparison to the CLR test using LIML. Even in the much
stronger case of C' = 40.9 the 2SLS t-test has notably inferior power to the CLR test.
This combination of median bias and power asymmetry biases the t-test towards finding
effects in the direction of the OLS bias (which is positive as p > 0).

Table 1. 2SLS vs. LIML: Size and Power with K=3 (p = 0.5) (%)

C 6.90 13.01 40.91 110.55 360.26
Fsoporit 6.93 10.00 22.30 50.00 142.50
Reject Hy:8 = 0 when True 8 =0
2SLS t-Test .083 .074 .057 .055 .052
False Positives .083  .074 .054 .042 .033
LIML CLR Test .051  .052 .049 .049 .050

False Positives .029  .025 .023 .023 .024
Reject Hy:8 = 0 when True 5 = —0.3

2SLS t-Test 011  .048 427 917 1.000
False Positives .004  .001 .000 .000 .000
LIML CLR Test 129 210 .566 941 1.000

False Positives .008  .001 .000 .000 .000
Reject Hy:8 = 0 when True g = 0.3

2SLS t-Test 330 .367 555 .849 999

LIML CLR Test .095  .142 357 .758 .998
Median Bias

2SLS 1260 .071 .022 .008 .002

LIML .016 -.001 -.001 -.001 .000

Note: The table reports the frequency of rejecting the null hypothesis Hy: 3 = 0.
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Table 2 reports the same set of results with p = 0.2, which represents a low level
of endogeneity. In this scenario, we would expect many of the problems that afflict
the 2SLS t-test, such as power asymmetry and median bias, to significantly improve.
Remarkably, the table shows that the power asymmetry of the ¢-test remains significant.
The size distortion of the ¢-test becomes negative, as the rejection rate falls below 5%
when 5 = 0. Power is much greater in the direction of the OLS bias when C' = 6.9 or
13. Only when instruments become quite strong, such as C' = 111(Fsqc,¢ = 50), does
the t-test power asymmetry become negligible. At that point the behavior of 2SLS and
the t-test is very similar to that of LIML and the CLR-test.

Table 2. 2SLS vs. LIML: Size and Power with K=3 (p = 0.2) (%)

C 6.90 13.01 40.91 110.55 360.26
Fsopormit 6.93 10.00 22.30 50.00 142.50
Reject Hy:8 = 0 when True g =0
2SLS t-Test 022 .030  .041 .048 .049
False Positives .022  .027 .029 .029 .027
LIML CLR Test .052  .051 .050 .049 .050

False Positives .027  .025 .024 .023 .024
Reject Hy:8 = 0 when True g = —0.3

2SLS t-Test .059  .138 475 .892 1.000
False Positives .000  .000 .000 .000 .000
LIML CLR Test A11 178 479 .889 1.000

False Positives .007  .002 .000 .000 .000
Reject Hy:8 = 0 when True g = 0.3

2SLS t-Test 194 271 .525 .863 1.000

LIML CLR Test .100  .150 .398 .810 .999
Median Bias

2SLS .050 .028  .008 .003 .001

LIML .007 -.001 -.001 -.001 -.001

Note: The table reports the frequency of rejecting the null hypothesis Ho: 3 = 0.

Importantly, Table 2 also reveals that power is poor when p=0.2 unless instruments are
quite strong, regardless of whether the ¢-test or CLR-test is used. This highlights how the
t-test derives much of its power from finite-sample correlation between the instrument
and the structural error, which generates spurious correlation between x and z. This
source of power is limited when endogeneity is weak.

It is also worth considering the bottom right panel of Figure 9 in the main article, which
shows the rate at which OLS estimates are closer to the truth than 2SLS estimates, as
a function of C' and p. When p = 0.2, instruments must be quite strong for 2SLS to
even outperform the inconsistent OLS estimator of 3. Accordingly, while the power
asymmetry and median bias of the 2SLS ¢-test does get weaker as p shrinks, other severe
problems with estimation and inference present themselves.

These results suggest that the 2SLS ¢-test is of dubious use for empirical research even
at modest levels of endogeneity p. Moreover, despite the improvements offered by LIML
and the CLR-test, there is no substitute for strong instruments.
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Lastly, Table 3 compares the performance of 2SLS and LIML in cases with many in-
struments (K'=10 or 20). It is comparable with Table 10 in the main text, but repeats
the analysis with p = 0.5, a more moderate level of endogeneity. All of the main con-
clusions drawn from the p = 0.8 case carry over here. The 2SLS median bias is severe
unless instruments are very strong, as is the size distortion of the ¢-test. With weaker
instruments, such as C' = 23 with K=10 and C' = 46 with K=20, the CLR-test used
in combination with the LIML estimator has significant advantages. It has correct size,
and its power is much stronger in the direction away from the OLS bias. Even when
instruments are very strong, and the tests have perfect power in both directions, the
LIML and CLR-test combination still performs much better in the balance of rejections
when 8 = 0, and also has the advantage in terms of size and median bias.

Table 3. Results with Many Instruments (p = 0.5) (%)

10 Instruments 20 Instruments
C 23.00 61.59 314.90 46.00 138.33 1114.00
Fsqcorit 5.19 10.00 38.54 4.61 10.00 62.30
Reject Hy:8 = 0 when True 8 =0
2SLS t-Test 170 .103 .063 273 140 .067
False Positives .170 101 .054 273 .139 .056
LIML CLR Test .053 .049 .048 .056 .053 .053
False Positives  .028 .026 .025 .027 .027 .027
Reject Hy:8 = 0 when True = —0.3
2SLS t-Test .097 531 1.000 .228 .906 1.000
False Positives  .002 .000 .000 .000 .000 .000
LIML CLR Test .295 711 1.000 521 967 1.000
Reject Hy:8 = 0 when True g = 0.3
2SLS t-Test .708 .826 .999 .929 .983 1.000
LIML CLR Test 192 476 .994 .336 .814 1.000
Median Bias
2SLS 231 .105 .022 .235 .097 .016
LIML .003  .000 .000 .000 -.001 .000

Note: The table reports the frequency of rejecting the null hypothesis Hy: 8 = 0.
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