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Abstract. This paper discusses decision making of project funding allocation under uncertain project costs.
Because project costs are uncertain and funding allocations may not necessarily match the costs required,
each project is inherently subject to a cost overrun risk (COR). In this paper, a model is proposed in which
project cost is treated as a factor with a probability density function. The decision maker then allocates
the total funding to the projects while minimizing a weighted sum of mean and variance of the COR of the
project portfolio. Some properties of project COR are derived and interpreted. Optimal funding allocation, in
relationship to factors such as various project sizes and riskiness, project interdependency, and the decision
maker’s risk preference, is analyzed. The proposed funding allocation model can be integrated with project
selection decision-making and provides a basis for more effective project control.
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Introduction

Project funding allocation is of paramount importance to all management decisions. It
typically refers to an investment decision concerning what portion of total budget to allo-
cate in each project, and how to meet funding requirements throughout the development
of the projects, while maximizing the total reward.

Recognizing project risk is an important issue in making project funding alloca-
tion decisions. Obel and Vander Weide (1979) considered uncertain cash flows in the
presence of a nonlinear utility function and nonlinear resource constraints. Zinn, Lesso,
and Motazed (1977) proposed a probabilistic approach to compute the expected value,
variance, and semivariance of the NPV of an investment. Giaccotto (1984) studied risk
analysis in capital budgeting with serially correlated cash flows. Chiu and Park (1998)
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solves a capital budgeting model with cash flows represented by fuzzy numbers, which
capture the risks and uncertainties involved. Gerchak (1999) models the success rate of
a R&D project to be stochastically increasing in its funding level. Because this paper
focuses on parallel development of R&D projects, detailed project characteristics such as
project scale, cash requirements, interdependency, development risks are not considered.

Decisions made on funding levels of projects are critical to project success. Because
project costs are uncertain and funding allocations may not necessarily match the costs
required, each project is inherently subject to a cost overrun risk (COR). The Association
for Project Management of the United Kingdom defines the cost overrun of a project
as “the amount by which a contractor exceeds or expects to exceed the estimated costs,
and/or the final limitations (the ceiling) of a contract.” A research study representing
3,500 projects drawn from all over the world in several different industries shows that
cost overruns are typically between 40 and 200 percent of the initial project cost (Laufer,
1997). The actual causes of cost overrun for a project may be internal and external to the
project and typically are connected with project performance parameters, time overruns,
and inflation, etc. Though several attempts have been made to identify and incorporate
various risks into project-funding allocation, COR has not been addressed specifically.

It is not uncommon that a project portfolio is comprised of diverse projects of
varying complexity and investment requirements, which complicate the management
of COR. In management literature, rules of thumb have been developed for managing
COR. For example, Taylor (1997) reports that the most expensive projects are the ones
that are most subject to inflation and needs utmost funding attention in the portfolio.
This is because projects with higher costs are prone to the impact of inflation, which, in
other words, have higher exposure to COR. Similarly, traditional cost control technique
Pareto’s law states “20% of the elements effect 80% of the outcome” (Gould, 1997).
Therefore, a manager should identify a small percentage of critical cost components,
which together account for the largest percent of cost variances. These rules, though
general and useful, neither quantify COR nor reveal quantitatively how to allocate fund-
ing among projects, especially in the presence of various investment requirements and
potential risks of projects and their interdependencies. In reality, the funding level of a
project needs constant attention of managers due to dynamic nature of project parameters
for each individual project. Therefore, decisions made on funding levels of projects are
of great importance for managing COR and should be made based on individual project
requirements. This paper will specifically address this important issue.

To minimize the COR of a project portfolio, the decision maker (DM) is expected
to minimize a weighted sum of the mean and variance of the portfolio COR, similar to
the approach of the mean-variance optimization in portfolio investment problems (e.g.,
Markowitz, 1952). Balancing the mean and variance of the portfolio COR depends on
the DM’s risk preference. In this paper, it will be shown how the DM’s risk preference, as
well as project interdependencies, affects portfolio COR and budget allocation. In a later
section, the feasibility for integrating project-funding allocation and COR minimization
will be demonstrated. Project selection decisions are normally made in the concept phase
of a project’s life cycle, where the ability to influence project parameters has the highest
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likelihood. This integration during the concept phase can add value to ability to influence
the project and provide a basis for more effective project control.

This paper is organized as follows. In Section 1, the COR of projects is defined,
based on which the budget allocation problem is formulated. Some properties of COR
of projects are discussed. Section 2 presents the optimality conditions of the budget
allocation problem. Two cases are discussed: all projects are independent and some
projects are dependent. Section 3 reports numerical results. This paper concludes in
Section 4.

1. Project funding allocation and COR analysis

In this paper, we consider the decision making of project funding allocation subject to
uncertain project costs. Because project costs are uncertain and project funding allocation
may not necessarily match the costs required, each project is exposed to a risk of cost
overrun. In this paper, we assume that the DM allocates funding with the COR of the
project portfolio minimized. Detailed mathematical model is presented in the next section.

1.1. The mathematical model

In the development the following standard notation will be used.

i : index for projects i =1, . . . , I , and I is the number of projects.
B: total budget ($).
wi : a decision variable representing amount of funding ($) awarded to project i .
Xi : a random variable representing the actual cost of project i .
fi : �i → R+ is continuously differentiate representing the probability density function

associated with Xi , defined over a set �i ⊂ �+.

Additional symbols will be introduced when necessary.
It is assumed that the actual cost of each project, say project i , is a random vari-

able Xi with a known probability density function (p.d.f.) fi . Unlike in the deterministic
capital budgeting formulation where each project proposes a fixed amount for the bud-
get, it is assumed that each project presents a p.d.f. of the forecast project cost. This
assumption may seem more unusual than it actually is. It has become popular to per-
form cost estimation using Monte Carlo simulation in project management (e.g., Smith,
1994). Using Monte Carlo simulation to forecast the total cost of a project, the p.d.f. of
each cost component must be estimated. The total cost of the project is simply the sum
of all cost components. To make project selection decisions, companies or government
agencies normally estimate the fixed budget cost for a project based on some percentile
of the p.d.f. of the project cost, obtained from the Monte Carlo simulation. Therefore,
the assumption of requiring a p.d.f. for each project is merely a utilization of existing
information, rather than demanding new data. Since the total project cost is a lump sum
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of many cost components, its p.d.f. tends to be bell-shaped and smooth according to the
central limit theorem under some additional assumption such as statistical independence
of cost components. In this paper, the p.d.f. fi for each project is assumed to be contin-
uously differentiable in �+. The cumulative distribution function (c.d.f.) for project j is
also defined by

Fi (wi ) ≡
∫ wi

0
fi (s) ds (1)

and F̄ i (wi ) ≡ 1 − Fi (wi ) is the complement of Fi (wi ).
Because actual cost is random, each project is exposed to a COR. Suppose project

i is funded with wi dollars, its COR is defhed to be

CORi (wi ) ≡ (Xi−wi )
+. (2)

which is a function ofwi and is also a random variable. In (2), the notation x+ ≡ max(x, 0)
is used.

In this paper, the focus is to allocate the total budget to projects with the COR
of the project portfolio minimized. The COR of the project portfolio is quantified as a
weighted sum of the mean and variance of the portfolio COR, similar to the approach
of the mean-variance optimization in portfolio investment problems. The formulation of
the project funding allocation problem is as follows and is denoted by (P0):

(P0)

min
w

g(w) ≡ αE

[
I∑

i=1

CORi (wi )

]
+ βVar

[
I∑

i=1

CORi (wi )

]
(3a)

s.t.
I∑

i=1

wi ≤ B (3b)

ai ≤ wi ≤ bi , i = 1, . . . , I (3c)

where ai and bi are the predetermined lower and upper bounds of funding level for project
j , respectively. Setting appropriate values for ai and bi is important in practice. Intuitively,
CORi (wi ) decreases (stochastically) as wi increases. That is, the more funding a project
is given, the lower its COR is. Therefore, an underestimated ai implies feasibility of
an underfunded solution that may eventually cause the project to be underperformed or
unfulfilled. An overly large bi > max�i implies a feasible solution that overfunds the
project without any real effect in reducing its COR. Therefore, the interval [ai , bi ] is
assumed to be finite and is a subset of �i , i.e.,

[ai , bi ] ⊆ �i , i = 1, . . . , I (4)
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It is clear that if B ≥ ∑I
i=1 bi , each project will be funded at its upper bound

bi , which achieves the minimal COR. Without loss of generality, it is assumed that
competition for funding exists among projects, and in the rest of this paper, only the
equality case of (3b) will be discussed. That is, (3b) will be replaced by

I∑
i=1

wi = B (5)

Implicitly,

I∑
i=1

ai ≤ B ≤
I∑

i=1

bi (6)

is also assumed to guarantee feasibility.
Unlike the mean-variance portfolio optimization where the DM prefers the mean

but not the variance of return, in (P0) both of the mean and variance of the COR are not
desirable. Therefore, in the objective function (3a), both α and β are nonnegative and
are predetermined constants reflecting risk preference of the DM or the funding agency.
Three types of risk preference can be categorized:

• The DM is risk neutral. This corresponds to the case where α > 0 and β = 0, since
the DM values the COR purely based on its expected value.

• The DM is risk averse. This corresponds to the case where α > 0 and β > 0, implying
that the DM likes neither the mean nor the variance of the COR.

• The DM is a variance minimizer. This corresponds to the case where α = 0 and
β > 0.

In this paper, α+β = 1 is further imposed as a way to easily identify the relative values of
these two parameters. As aforementioned, since the DM dislikes both mean and variance
of the COR, the objective function of (P0), (3a), does not include the case that the DM
is risk prone.

1.2. Optimal project funding allocation

The project funding allocation problem in (3a) to (3c) is now restated with (3b) replaced
by (5), and denote it by (P).

(P)

min
w

g(w) (7a)

s.t.
I∑

i=1

wi = B (7b)

ai ≤ wi ≤ bi , i = 1, . . . , I (7c)
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Let w∗ = (w∗
1, w

∗
2, . . . , w

∗
I ) be an optimal solution of (P). Then w∗ satisfies the following

necessary condition of optimality with a λ∗ ∈ � for all i = 1, . . . , I :

∂g(w∗)/∂wi = λ∗, for ai < w∗
i < bi (8a)

∂g(w∗)/∂wi ≥ λ∗, for w∗
i = ai (8b)

∂g(w∗)/∂wi ≤ λ∗, for w∗
i = bi . (8c)

∂g(w∗)/∂wi will be referred to as the marginal COR reduction for the portfolio
by funding project j an additional dollar, or simply the marginal COR.1 Optimality
conditions (8a) to (8c) state that at optimality all projects are funded at a marginal COR
that either equals the same fixed value lambda, or equals the marginal COR corresponding
to the upper or lower bound of a project’s funding level, whichever is closer to lambda.
Here, lambda is used to denote the marginal COR, and this property shall be referred to as
the “equal-lambda” property in the sequel. If g is strictly convex, the optimality conditions
above are also sufficient. Although the convexity of g is not a necessary condition for
(P) to be solvable, it does provide desirable properties such as uniqueness of the optimal
solution. Moreover, with the convexity of g (and convexities for both E[

∑I
i=1 CORi (wi )]

and Var[
∑I

i=1 CORi (wi )]), a one-to-one correspondence exists between any efficient
trade-off (Pareto optima) and a risk preference (α, β) in (P). That is, the DM can obtain
all efficient trade-offs between the mean and variance of the project COR, i.e., the entire
efficient frontier, by merely varying the weights (α, β) in (P). In a later section of this
paper, it will be shown that, although g is not necessarily convex everywhere, it is indeed
convex over the subset of domain that represents most “real” situations.

1.3. Properties of the COR for a single project

Before attacking the optimization of (P), we examine the properties of the COR for a
single project in this section. The expected value of the COR for project i is

mi (wi ) ≡ E[(Xi − wi )
+] =

∫ ∞

wi

(s − wi ) fi (s) ds (9a)

= (s − wi )(−F̄ i (s))|∞wi
−

∫ ∞

wi

(−F̄ i (s)) ds (9b)

=
∫ ∞

wi

F̄ i (s) ds, (9c)

where the preceding follows from integration by part and the fact that (−F̄ i (s))′ = fi (s).
Therefore,

m ′
i (wi ) = −F̄ i (wi ) ≤ 0 (10a)

m ′′
i (wi ) = fi (wi ) ≥ 0 (10b)
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That is, mi (wi ) is strictly decreasing and convex over �i . The variance of the COR for
project i is

vi (wi ) ≡ Var[(Xi − wi )
+]

=
∫ ∞

wi

(s − wi )
2 fi (s) ds − mi (wi )

2 (11)

An illustration of typical function shapes for mi (·) and vi (·) is given in figure 1. To
determine the structural properties of vi (wi ), the completion rate function of project i is
introduced and is defined as

ri (wi ) ≡ fi (wi )

F̄ i (wi )
. (12)

Given that one has already spent wi on project i, ri (wi ) measures the likelihood that the
project will be completed if one spends an additional amount of �wi dollars. In reliability
theory, the completion rate is referred to as the failure rate function of the lifetime of
a component. If the completion rate function of a project ri (wi ) is increasing in wi , it
means that the probability of completing the project with one additional dollar increases
as wi increases. It is believed that all real projects should have an increasing completion
rate function. To facilitate our analysis, the following assumption is made.

Assumption 1. For each project i, the completion rate function ri (wi ) is increasing in wi

when wi is sufficiently large. That is, there exists a hi ≥ 0 such that ri (wi ) is increasing
in wi for all wi > hi .

Lemma 1. If ri (wi ) is increasing in wi for ∀wi > hi ∈ �i , then

mi (wi ) fi (wi ) ≤ Fi (wi )F̄ i (wi ) (13)

for all wi ≥ max(hi , F−1
i (1/2)).

Figure 1. Typical function shapes for mi (wi ) and vi (wi ) (not to scale).
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Proof. By definition,

mi (wi )

F̄ i (wi )
=

∫ ∞

wi

(s − wi )
fi (s)

F̄ i (wi )
ds = E[Xi − wi | Xi > wi ] (14)

Equation (14) is decreasing in wi for all wi > hi , because ri (wi ) is increasing in wi for
all wi > hi . This implies that its first derivative is negative for all wi > hi . That is,

d(mi (wi )/F̄ i (wi ))

dwi
= mi (wi ) fi (wi )

F̄2
i (wi )

− 1 ≤ 0

This implies

mi (wi ) fi (wi ) ≤ F̄2
i (wi )

Furthermore, when wi ≥ F−1
i (1/2), F̄ i (wi ) ≤ 1/2 ≤ Fi (wi ). We then have

mi (wi ) fi (wi ) ≤ F̄ i (wi )F̄ i (wi ) ≤ Fi (wi )F̄ i (wi )

for all wi ≥ max(hi , F−1
i (1/2)).

Proposition 2. The following statements are true:

(i) vi (·) is decreasing, i.e., v′
i (wi ) ≤ 0, ∀wi ∈ �i .

(ii) There exists a γi ∈ �i such that vi (wi ) is convex for all wi > γi .

Proof. To prove (i), from (11) with some algebra we have

v′
i (wi ) = −2mi (wi ) − 2mi (wi )m

′
i (wi )

= −2mi (wi )(1 + m ′
i (wi ))

= −2mi (wi )Fi (wi ) ≤ 0. (15)

To prove (ii), from (15) we have

v′′
i (wi ) = −2mi (wi ) fi (wi ) − 2m ′

i (wi )Fi (wi )

= −2(mi (wi ) fi (wi ) − Fi (wi )F̄ i (wi )) (16)

From Lemma 1, it is clear that there exists a γi ∈ �i such v′′
i (wi ) ≥ 0, for all wi > γi .

Let the point γ ∗
i be the minimal possible value of γi defined in Proposition 2. It is

evident that γ ∗
i satisfies the following equation

mi (γ
∗
i ) fi (γ

∗
i ) = Fi (γ

∗
i )F̄ i (γ

∗
i ) (17)

That is, γ ∗
i is an inflection point of vi (·) such that to the right of γ ∗

i , vi (·) is convex
(e.g. see figure 1). The values of γ ∗

i for some popular distributions have been obtained
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Table 1
The values of γ ∗

i for some distributions.

Distribution of Xi Fi (γ ∗
i )(%) Remark

Normal N (µ, σ 2) 35.37 γ ∗
i = µ − 0.367σ

Exponential 50
Uniform 33.33
Beta(3, 3) 34.37 Symmetric
Beta(4, 2) 29.86 Skewed to right (γ ∗

i = 0.5771)
Beta(2,4) 38.57 Skewed to left (γ ∗

i = 0.2588)

using numerical analysis and are summarized in Table 1, along with the values of Fi (γ ∗
i ).

Note that it can be shown that normal, uniform, and beta distributions all have an strictly
increasing completion rate function, and therefore by Lemma 1 their Fi (γ ∗

i ) are bounded
above by 50%. For an exponential distribution, its completion rate is a constant and its
Fi (γ ∗

i ) is exactly at 50%.
The results in Table 1 and the fact that γ ∗

i can be bounded by the median of Xi ,
i.e. F−1

i (1/2), under the assumption of increasing completion rate suggest that γ ∗
i can

serve a satisfactory lower bound of ai . This is justified because it seems unlikely for a
funding agency to fund a project that has a only 50% chance of being completed within
budget. In later development of this paper, the lower bound of the funding level ai will
be assigned to γ ∗

i , i.e.,

ai = γ ∗
i , i = 1, . . . , I (18)

With (18), both mi (·) and vi (·) are now strictly convex in the feasible region.
The COR for a single project at least reveals the following two mathematical prop-

erties:

1. Monotonically decreasing: Regardless of the risk preference of the DM, every addi-
tional funding dollar to a project helps reduce the mean and variance of the COR of
the project.

2. Convexity: Regardless of the risk preference of the DM, as the funding level for a
project increases, the marginal COR reduction decreases. That is, it becomes harder
and harder to reduce the mean and variance of the COR of a project by merely
increasing the funding level.

The first property of monotonicity is substantiated by the time-cost trade-off rela-
tion of a project, which describes that every additional funding dollar may reduce the
duration required for project completion (e.g., Hillier and Lieberman, 2000). This is be-
cause that additional up-front funding level provides an opportunity for deploying more
resources and better project processes and management, which may lead to reduction of
the project duration. In other words, the project funding level can be increased to prevent
not only cost but time overrun of a project. One example is that a fast-track project, whose
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acceleration is achieved by overlapping project phases, demands a much higher funding
level for resources, processes, and management than otherwise with sequential phases.
This situation is further strengthened in case of fixed-time projects (e.g., launching a
new product, in which time-to-market is crucial), for which preventing cost overrun is
extremely important and an increase in funding level is highly required.

To interpret the convexity of the COR, note that project performance parame-
ters are normally inflienced by both internal and external environments. The time-cost-
performance triangle requires a balance throughout the life cycle of the project, which
unfortunately is not the case for most projects (Chapter 16, Kerzner, 1998). Employing
trade-off decisions for additional funding to reduce the overrun can handle issues within
the control of the firm. Depending upon the magnitude of the issue, the timeliness of its
identification, and the potential impact on the project results, it is possible that beyond
some level, any additional funding dollar has little or no effect for reducing overruns.
This may occur when alternatives for reducing overruns such as additional resources
and processes within the reach of the firm have been completely exploited. Moreover,
restrictions in resource allocation and process changes exist. These restrictions are likely
to be augmented as more resource requiring reallocation. This situation is prevalent in
R&D projects whose cost overruns cannot be controlled by only increasing the funding
levels. Also the effects of external environment such as changes of regulatory and market
requirements can cause overruns, which cannot be reduced by just increasing the funding
level beyond the limits that are controlled by the firm.

2. Solving the project funding allocation problem

2.1. All projects are independent

If the costs of all projects (Xi ) are independent, their CORs are also independent. The
objective function of the project funding allocation problem (P) becomes separable, i.e.,
g(w) = ∑

i gi (wi ), where

gi (wi ) ≡ αE[CORi (wi )] + βVar[CORi (wi )]

= αmi (wi ) + βvi (wi ) (1)

The project funding allocation problem (P) is reduced to a standard resource allocation
problem (e.g., Ibaraki and Katoh, 1988):

(P1)

min
w

I∑
i=1

gi (wi ) (2a)

s.t.
I∑

i=1

wi = B (2b)

ai ≤ wi ≤ bi , i = 1, . . . , I (2c)
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From (10a) and (15),

g′
i (wi ) = αm ′

i (wi ) + βv′
i (wi )

= −α F̄ i (wi ) − 2βmi (wi )Fi (wi )

= Fi (wi )(α − 2βmi (wi )) − α (3)

If {w̃i } is optimal to (P1), there exists a λ̃ such that

Fi (w̃i )(α − 2βmi (w̃i )) = λ̃, for ai < w̃i < bi (4a)

Fi (w̃i )(α − 2βmi (w̃i )) ≥ λ̃, for w̃i = bi (4b)

Fi (w̃i )(α − 2βmi (w̃i )) ≤ λ̃, for w̃i = bi . (4c)

Note that the last term −α in (3) has been absorbed in λ̃ since it is also a constant. Because
(P1) is a convex problem, a dual method can be developed to solve (P1) by iterating the
dual variable λ. Given a λ, the wi that satisfies (4a) to (4c) is solved for each i . The
iteration terminates when (2b) is satisfied.

Proposition 3. When Xi are independent, two special cases for optimal project funding
allocation are:

(i) If the DM is risk neutral, at optimality all of the projects will be funded such that the
probability for each project to be completed within budget is a constant, or close to
the constant to the greatest extent subject to the project’s funding limits.

(ii) If the DM is a variance minimizer, at optimality all of the projects will be funded
such that the probability for each project to be completed within budget, multiplied
by the expected cost overrun, equals to a constant, or close to the constant to the
greatest extent subject to the project’s funding limits.

Proof.

1. Let β = 0, (4a) is reduced to

Fi (w̃i ) = λ̃/α ∈ [0, 1] (5)

That is, each project is funded such that the probability to be completed within budget
is a constant λ̃/α. For a project i such that the constant λ̃/α �∈ [Fi (ai ), Fi (bi )], the
project is funded at either ai or bi , whichever is closer to F−1

i (λ̃/α).

2. With α = 0, (4a) is reduced to Fi (w̃i )mi (w̃i ) = −λ̃/2β. Statement (ii) follows a
similar argument in (i).

From Proposition 3, it is worth noting that a risk neutral DM would treat all projects
equal regardless of project sizes. This is because the equal-lambda condition only involves
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the c.d.f. Fi , which is between 0 and 1 for all projects. However, for a risk-averse DM the
expected COR, mi , plays a role in the equal-lambda condition. In this situation, funding
is leaned toward projects with a greater mi . That is, a bigger project receives greater
funding than a smaller one.

2.2. Some projects are dependent

When some project costs are dependent, the project funding allocation problem (P) be-
comes more complicated and is equivalent to the following problem (P2):

(P2)

min
w

α

I∑
i=1

mi (wi ) + β

I∑
i=1

vi (wi ) + 2β
∑ ∑

i1<i2

Cov
((

Xi1 − wi1

)+
,
(
Xi2 − wi2

)+)

s.t.
I∑

i=1

wi = B

ai ≤ w ≤ bi , i = 1, . . . , I

Because of the covariance terms, the objective function is no longer separable. Consider
two projects j and k such that X j and Xk are dependent. The covariance of the COR
between projects j and k is defined as:

C jk(w j , wk) ≡ Cov((X j − w j )
+, (Xk − wk)+)

= E[(X j − w j )
+(Xk − wk)+] − m j (w j )mk(wk) (6)

Proposition 4. The following equalities are true:

(i) ∂C jk(w j , wk)/∂w j = −F̄ j (w j )(E[(Xk − wk)+ | X j > w j ] − E[(Xk − wk)+])

(ii) ∂2C jk(w j , wk))/∂w j∂wk = Pr{X j > w j , Xk > wk} − Pr{X j > w j }Pr{Xk > wk}
(iii) ∂2C jk(w j , wk)/∂w2

j = f j (w j ){E[(Xk − wk)+ | X j = w j ] − E[(Xk − wk)+]}
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Proof.

1. By definition,

E[(X j − w j − �w)+(Xk − wk)+]

=
∫ ∞

w j +�w

∫ ∞

wk

(s − w j − �w)(t − wk) f jk(s, t) dt ds

=
∫ ∞

w j +�w

∫ ∞

wk

(s − w j )(t − wk) f jk(s, t) dt ds

− �w

∫ ∞

w j +�w

∫ ∞

wk

(t − wk) f jk(s, t) dt ds (7)

where f jk(·, ·) denotes the joint p.d.f. of X j and Xk . Therefore,

∂ E[(X j − w j )+(Xk − wk)+]

∂w j

= lim
�w→0

E[(X j − w j − �w)+(Xk − wk)+] − E[(X j − w j )+(Xk − wk)+]

�w

= −
∫ ∞

w j

∫ ∞

wk

(t − wk) f jk(s, t) dt ds

= −F̄ j (w j )E[(Xk − wk)+ | X j > w j ] (8)

From (6),

∂C jk(w j , wk)

∂w j
= −F̄ j (w j )E[(Xk − wk)+ | X j > w j ] + F̄ j (w j )E[(Xk − wk)+]

= −F̄ j (w j )(E[(Xk − wk)+ | X j > w j ] − E[(Xk − wk)+]), (9)

and (i) is proved.

2. To prove (ii), from (10a) and (9) we have

∂2Cov((X j − w j )+, (Xk − wk))+

∂w j∂wk
= Pr{X j > w j , Xk > wk}

−Pr{X j > w j }Pr{Xk > wk} (10)

3. To derive ∂2C jk(w j , wk)/∂w2
j , note that

E[(Xk − wk)+ | X j > w j ] =
∫ ∞

wk

∫ ∞

w j

f jk(s, t)(t − wk)

F̄ j (w j )
ds dt

E[(Xk − wk)+ | X j > w j + �w j ] =
∫ ∞

wk

∫ ∞

w j +�w

f jk(s, t)(t − wk)

F̄ j (w j + �w)
ds dt
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Therefore,

E[(Xk − wk)+ | X j > w j + �w] − E[(Xk − wk)+ | X j > w j ]

=
∫ ∞

wk

∫ ∞

wk+�w

(t − w j ) f jk(s, t)
F̄ j (w j ) − F̄ j (w j + �w)

F̄ j (w j )F̄ j (w j + �w)
ds dt

−
∫ ∞

wk

∫ w j +�w

w j

f jk(s, t)(t − wk)

F̄ j (w j )
ds dt (11)

Dividing (11) by �w and taking �w → 0 yields

∂ E[(Xk − wk)+ | X j > w j ]

∂w j

=
∫ ∞

wk

∫ ∞

w j

(t − w j ) f jk(s, t)
f j (w j )

F̄2
j (w j )

ds dt −
∫ ∞

wk

f jk(w j , t)(t − wk)

F̄ j (w j )
dt

= f j (w j )

F̄ j (w j )
{E[(Xk − wk)+ | X j > w j ] − [(Xk − wk)+ | X j = w j ]}

We have

∂2C jk(w j , wk)/∂w2
j

= f j (w j ){E[(Xk − wk)+ | X j = w j ] − E[(Xk − wk)+]}, (12)

and (iii) is proved.

The properties of C jk(w j , wk) derived thus far in this section are general, applicable
to any joint p.d.f. of X j and Xk . If X j and Xk are bivariate normal, their joint p.d.f. can
be uniquely identified by a correlation coefficient, along with the means and variances of
X j and Xk . In reality, it seems unlikely to specify a joint p.d.f. for each pair of correlated
projects. The following assumption is imposed.

Assumption 2. For any pair of correlated projects j and k, X j and Xk follow a bivariate
normal distribution with a correlation coefficient ρ jk .

With Assumption 2, the properties of C jk(w j , wk) in Proposition 4 can be further quan-
tifed, as shown in the following corollary:

Corollary 5. With Assumption 2, if ρ jk > 0 (<0), then the following-statements are
true for all feasible w j and wk :

(i) ∂C jk(w j , wk)/∂w j < 0 (>0).

(ii) ∂2C jk(w j , wk)/∂w jwk > 0 (<0).
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(iii) ∂2C jk(w j , wk)/∂w2
j > 0 (<0). when w j is sufficiently large, for any given

wk .

Proof. Because the normal distribution is symmetric, it is sufficient to prove the cases
when ρ jk > 0. First note that when ρ jk > 0.

Pr{X j > w j , Xk > wk} − Pr{X j > w j }Pr{Xk > wk} > 0 (13)

which proves (ii).
To see (i), note that the preceding equation implies

Pr{Xk > wk |X j > w j } > Pr{Xk > wk}, ∀wk (14)

or equivalently, Xk |X j > w j is stochastically larger than Xk . Since the function (x −a)+

increases in x , it then follows that

E[(Xk − wk)+|X j > w j ] > E[(Xk − wk)+] (15)

which proves (i).
To prove (iii), observe that the random variable (Xk − wk)+|X j = w j increases

stochastically in w j : therefore E[(Xk −wk)+|X j = w j ] increases in w j . In addition, it is
easy to see that E[(Xk − wk)+|X j = w j ] → ∞ (or −∞) as w j → ∞ (or −∞). Hence
for any wk , there exists a ŵ j such that

E[(Xk − wk)+|X j = w j ]




<0, if w j < ŵ j

=0, if w j = ŵ j

>0, if w j > ŵ j

(16)

and (iii) follows.

The results in Corollary 5 imply that C jk (w j , wk) may not be convex for every w j ,
wk , and ρ jk . For example, it can be shown that if ρ jk < 0, C jk need not be convex. In
fact, in our experience we have hardly found that C jk convex.

2.3. Convexity analysis

Consider a special case that all project costs are independent except two projects j and
k. Assume that both X j and Xk are normal with means µ j and µk , variances σ 2

j and σ 2
j ,

respectively, and their correlation is ρ jk . In this special case, the objective function of
(P2) can be rewritten as follows:

α
∑
∀i

mi (wi ) + β
∑

∀i �= j,k

vi (wi ) + β[v j (w j ) + vk(wk) + 2C jk(w j , wk)]. (17)
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To study convexity of (17), attention is paid to the last three terms in the brackets because
all other terms are already convex. As aforementioned, since 2C jk is nonconvex, it is
hoped that the convexities of v j and vk can bring their sum to be convex. To facilitate the
analysis, Xi is transformed (normalized) to a standard normal Zi , = (Xi , −µi )/σi , i =
j, k. Similarly, wi is normalized to wn

i ≡ (wi − µi )/σi , i = j, k. Also define vn
i (wn

i ) =
Var[(Zi − wn

i )+], i = j, k, and Cn
jk(wn

j , w
n
k ) = Cov[(Z j − wn

j )
+ , (Zk − wn

k )+], where
the superscript n stands for normalization. We have


(w j , wk) ≡ v j (w j ) + vk(wk) + 2C jk(w j , wk) (18)

= σ 2
j v

n
j

(
wn

j

) + σ 2
k vn

k

(
wn

k

) + 2σ jσkCn
jk

(
wn

j , w
n
k

)
= σ 2

k

(
ξ 2

jkv
n
j

(
wn

j

) + vn
k

(
wn

k

) + 2ξ jkCn
jk

(
wn

j , w
n
k

))
(19)

where ξ jk ≡ σ j/σk . Without loss of generality, assume that ξ jk ∈ (0, 1], i.e., σk ≥ σ j . If
σ j ≥ σk , one can simply switch the roles of j and k.

Not expecting (19) to be convex everywhere, we explore its convexity region. Given
a function 
 : R2 → R, defined in (18), and 
 is continuously differentiable, we define
the convexity region of 
 as the maximal subset of domain in which (19) is convex. That
is,

Convexity region of 
(w j , wk)

= {(w j , wt ) ∈ R2 | both eigenvalues of ∇2
(w j , wk) ≥ 0}, (20)

where ∇2
 is the Hessian of 
. Note that a convexity region may not necessarily be a
convex set. From (19), it is clear that its convexity region depends on the correlation
ρ jk and the ratio of variances ξ jk . To identify the convexity region, we plot the constant
contour of the points of which the smallest eigenvalue of the Hessian of 
 is zero.
Figures 2(a) to (c) show some convexity regions with various values of ρ jk and ξ jk , in
which a region enclosed by a constant contour is a convexity region. Note that a dotted
constant contour corresponds to a negative ρ jk . Figure 2(a) shows the convexity regions
for ξ jk = 1, i.e., projects j and k are of the same level of riskiness because σ j = σk . Each
convexity region is symmetric to the diagonal (wn

j = wn
k ). When ρ jk = 0, the contour is

composed of two perpendicular lines crossing at (wn
1 , w

n
2 ) = (0.367, 0.367), as obtained

in Table 1. As ρ jk is increased from 0, the perpendicular corner is gradually smoothed and
moving northeast. On the other hand, when ρ jk is decreased from 0, the whole convexity
region moves towards northeast. In this paper, each convexity region is approximated
by a quadrant subset: {(wn

j , w
n
k )|wn

j ≥ an
j (ξ jk, ρ jk), wn

k ≥ an
k (ξ jk, ρ jk)}. Implicitly, we

set an upper bound for (wn
j , w

n
k ) at value 2, which corresponds to a probability 97.72%

that a project can complete within budget if it is fully funded (at the upper bound of the
funding level). To maximize the coverage of the quadrant, we move the vertex of the
quadrant towards southwest as much as possible. While such a quadrant is not unique, in
this paper we select the one whose vertex is closest to the 45◦ line, wn

j = wn
k , implying

equal emphasis on each project. Table 2 summarizes the obtained values of (an
j , an

k ) in
terms of their c.d.f. value (Fn(an

j ), Fn(an
k )) obtained by numerical methods, where Fn
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(a)

(b)

(c)

Figure 2. Convexity regions for various values of ρ jk , when ξ jk = 1, (b) Convexity regions for various values
of ρ jk , when ξ jk = 0.1, (c) Convexity regions for various values of ρ jk , when ξ jk = 0.01.
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Table 2
Some values of (Fn(an

j ), Fn(an
k )).

ρ jk ξ jk = 1 ξ jk = 0.5 ξ jk = 0.1 ξ jk = 0.01

−0.7 (67.8%, 67.8%) (71.5%, 71.5%) ∗ ∗
−0.5 (55.0%, 55.0%) (48.3%, 67.1%) ∗ ∗
−0.3 (40.3%, 40.3%) (35.4%, 58.0%) ∗ ∗
−0.1 (37.1%, 37.1%) (35.4%, 39.2%) ∗ ∗

0 (35.4%, 35.4%) (35.4%, 35.4%) (35.4%, 35.4%) (35.4%, 35.4%)
0.1 (38.7%, 38.7%) (39.4%, 39.4%) (36.7%, 41.6%) (49.7%, 35.4%)
0.3 (44.9%, 44.9%) (45.7%, 45.7%) (51.5%, 41.6%) (56.9%, 35.4%)
0.5 (51.9%, 51.9%) (52.5%, 52.5%) (57.5%, 41.6%) (66.0%, 35.4%)
0.7 (60.3%, 60.3%) (60.9%, 60.9%) (65.6%, 39.2%) (76.9%, 35.4%)

∗A useful quadrant does not exist.

(·) is the c.d.f. of a standard normal. In figures 2(a) to (c), each (an
j , an

k ) is marked by a ‘L’
sign.

In figure 2(a) when ξ jk = 1, an
j and an

k are chosen to be equal because of the sym-
metry of the convexity regions. Basically when ξ jk is decreased, i.e., σ j/σk is decreased,
convexity regions corresponding to a positive ρ jk move eastwards, and those correspond-
ing to a negative ρ jk move westwards (see figure 2(b)). When ξ jk < 0.1, i.e., project
k is more than 10 times as risky as project j , a useful quadrant cannot be identified to
approximate a convexity region corresponding to negative ρ jk (see figure 2(c)).

Summary of Convexity Regions

The results in Table 2 can be generalized as follows.

1. ρ jk > 0: Convexity exists for a problem with a “reasonable” lower bound for funding
level (roughly Fn(an

i ) > 60%, i = j, k) and a “common” correlation coefficient
(roughly ρ jk ≤ 0.5).

2. ρ jk < 0: Similar to the case with ρ jk > 0, except that the level of riskiness between
the two correlated projects should be close (roughly σk < 10σ j ).

We conclude that convexity exists in most practical situations for the project funding
allocation problem. Even if convexity may not exist for some instances, it should be
emphasized that the problem remains to be solvable. In theory, without convexity, (P2)
may have local optima.

The following proposition will show the effect of optimal project funding allocation
due to correlation with convexity in place:

Proposition 6. Assume that all Xi are independent except j and k satisfying Assumption
2. Consider those cases that an

i (ξ jk, ρ jk) exists for i = j, k. Suppose ai = an
i (ξ jk, ρ jk) <
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bi , for i = j, k. Let ŵ be the optimal solution of (P2). If ρ jk > 0 (or <0), then

ŵi > (<)w̃i , if i = j, k (21a)

ŵi < (>)w̃i , if i = j, k, (21b)

where w̃ is the optimal funding levels when all projects are independent.

Proof. It suffices to show the case with ρ jk > 0 only. We have

∂g(w)/∂w j = αm ′
j (w j ) + βv′

j (w j ) + 2β∂C jk(w j , wk)/∂w j (22a)

∂g(w)/∂wk = αm ′
k(wk) + βv′

k(wk) + 2β∂C jk(w j , wk)/∂wk (22b)

∂g(w)/∂wi = αm ′
i (wi ) + βv′

i (wi ) ∀i �= j, k (22c)

If ai = an
i (ξ jk, ρ jk) < bi , for i = j, k, then g is convex over the feasible region. From

Corollary 5 (i), both ∂C jk(w j , wk)/∂w j and ∂C jk(w j , wk)/∂wk are negative. Obviously
w̃ is a feasible but not an optimal solution for (P2). Since ∂g(w)/∂wi is increasing in wi

for all i because of the convexity of g, projects j and k should increase their funding
levels from w̃ j and w̃k to make up the loss in lambda due to negative ∂C jk(w j , wk)/∂w j

and ∂C jk(w j , wk)/∂wk , respectively, while other projects should decrease their funding
levels from w̃ (because of the budget constraint (5)) to reach the equal-lambda optimality
condition. (This also includes the case in which some projects are funded at either an
upper bound or a lower bound and cannot be further increased or decreased in funding
level.) Since g is continuously differentiable, ∂g(w)/∂wi is continuous, which ensures
the existence of the optimal lambda.

Summary of the properties when projects j and k are correlated

1. ρ jk > 0: A positive correlation would help both projects j and k obtain more funding
than when they are independent. Because doing so improves (i.e., decreases) the COR
of the entire project portfolio.

2. ρ jk < 0: A negative correlation would cause both projects j and k to have less funding
than when they are independent.

3. The preceding two properties can be extended to a project portfolio with multiple
pairs of projects that are mutually and exclusively correlated. Compared with the case
that all projects are independent, those pairs that are positively correlated get more
funding and those pairs that are negatively correlated get less. However, when some
project, say j , is involved in two different correlated pairs, e.g., Cov(X j , Xk1) �= 0
and Cov(X j , Xk2) �= 0, the preceding properties may not apply.

While conventional project management techniques require managerial attention in fund-
ing and controlling project in isolation, our fhding shows that it may be benefical for an
agency to identify projects that are correlated for funding allocation and management
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control. To further determine whether choosing projects with positive correlation or neg-
ative correlation is more benefical to an agency requires more information such as the
nature of the correlation.

2.4. Discrete distribution case

In reality, cost uncertainty is often modeled in terms of scenarios, or more generally by
discrete distributions. The findings obtained in this paper can be extended to this case.
For example, suppose Xi is a random variable representing the actual cost of project i ,
which is associated with a probability mass function pi (x

j
i ) of Xi by

pi
(
x j

i

) = Pr
(
Xi = x j

i

)
, (23)

where {x1
i , x2

i , . . . , x J
i } are the possible scenarios of the realization of Xi and J is the

number of total scenarios. Given a funding level wi , the expected COR of the project is

m̂i (wi ) = E[(Xi − wi )
+] =

J∑
j=1

pi
(
x j

i

)(
x j

i − wi
)+

(24)

It has been shown in Section 2.3 that mi (wi ) is a smooth, strictly decreasing, and convex
function when Xi , is continuous random variable. When Xi , is discrete, it can be shown
that m̂i , is a piecewise-linear function, which is still strictly decreasing and convex.
Similarly, the variance of COR is a piecewise-nonlinear function. Therefore, when the
project cost is considered in discrete scenarios, the optimal funding allocation problem
(P) becomes a nonlinear and nonsmooth optimization problem, which is generally very
difficult to solve. The optimality conditions and properties derived in the previous sections
at least can be used to approximate the optimal funding allocation.

2.5. Integrating funding allocation and project selection

The proposed project funding allocation problem can be integrated with the deterministic
project selection problem as a multi-objective problem:

(O1) max
ui

I∑
i=1

Ri ui

(O2) min
w

g(w)

s.t.
I∑

i=1

wi ui ≤ B (25a)

ai ui ≤ wi ≤ bi ui , i = 1, . . . , I (25b)

ui ∈ {0, 1}, i = 1, . . . , I, (25c)
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where Ri represents forecasted reward associated with project i and ui is a zero-one
variable indicating whether project i is selected or not. Both objectives (O1) and (O2) are
indeed conflicting. Without minimizing the portfolio COR, (O1) would select as many
projects as possible, with each project funded at the minimal possible level ai . On the
other hand, without considering (O1), (O2) tends to select few or even a single project
to ensure that each project is fully funded so as to achieve the minimal COR. Therefore,
a clear trade-off exists between more projects and a lower portfolio COR. This problem
can be viewed as a bi-level problem such that the upper level problem (O1) performs
project selection, and based on which the lower level problem (O2) allocates funding
with the portfolio COR minimized. How to obtain a project portfolio that balances the
trade-off depends on the DM’s return/risk preference.

3. Numerical results

The proposed method has been applied to a capital-budgeting decision-making of a gov-
ernment agency. Given budget limitations, five different projects out of 70 projects were
selected to pursue. All five projects are different in cost requirements, completion time,
risks involved, and managerial attention. From statistical results, the cost distributions
for each project are obtained. The following are some brief descriptions of these five
projects.

Project 1 is a typical building renovation project. Project cost data are collected
from previous building renovation efforts. Due to the inherent complexity in renovation
projects, the difficulty for estimating the actual up-front project cost has been observed.
Historical data also show that the project cost is more likely to be high than low. The
project cost is modeled as a right-skewed beta distribution, beta(4, 2) between $80 K and
$120 K.

Project 2 is an equipment supply project for facility expansion. An equipment
supply project normally has an uncertain and long lead time. The costs of this type of
project include a large cushion amount to cope with uncertain project delivery time.
The cushion is essentially used to absorb changes in material and labor costs over the
lead period. Since the lead time may be reduced by improved coordination, the project
cost does have a tendency to be greatly reduced and is modeled as a left-skewed beta
distribution, beta(2, 4) between $160 K and $240 K.

Projects 3 to 5 are greenfield building projects. Since these projects are new, cost
data are collected from similar projects both within and outside the agency. Upon identi-
fying the data for project costs for similar projects, it was observed that the project cost
distributions behave as a normal distribution, i.e., Xi ∼ N (µi , σ

2
i ), i = 3, . . . , 5, where

µi and σ 2
i are the mean and variance of the normal distribution. Projects 3 and 4 are of

the same nature, but at different geographical locations. They are modeled to have the
same mean, but Project 4 has a higher standard deviation. A correlation ρ3,4 between X3

and X4 is also modeled. Project 5 involves a bigger area and is more costly than Projects
3 and 4.
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Table 3
Basic information for the projects.

Project i Distribution of Xi ($K) ai ($K) Fi (ai ) bi ($K) Fi(bi )

1 beta(4,2) over [80, 120] 103.08 29.86% 120 100.0%
2 beta(2,4) over [160, 240] 180.70 38.57% 240 100.0%
3 normal, N (400, 602) 377.44 35.35% 520 97.72%
4 normal, N (400, 902) 366.16 35.35% 580 97.72%
5 normal, N (500, 1002) 462.40 35.35% 700 97.72%

For Projects 1 to 5, the lower bounds of funding level are assumed to be γ ∗
i , i =

1, . . . , 5, as in (18). The values of Fi (γ ∗
i ), i = 1, . . . , 5 for the two beta distributions

assigned for Projects 1 and 2 and the normal distribution can be found in Table 1. For
Projects 1 and 2, the upper bounds of funding level are simply assigned to be the maxima
of the ranges for the beta distributions assigned, i.e. Fi (bi ) = 100%, i = 1, 2. For Projects
3 to 5, their funding upper bounds bi are assigned to be µi + 2σi , i = 3, . . . , 5. That
means even if a project is fully funded with bi , the DM still bears a 2.28% (F̄ i (bi )) chance
of cost overrun. The distributions of the project costs and the bounds of funding-level
are summarized in Table 3. The total budget B is $1,700 K.

The case where all projects are independent is tested first, i.e., ρ3,4 = 0. The
corresponding results are summarized in Table 4. When α = 1 and β = 0, the DM
is risk neutral. According to Proposition 3, all projects are funded such that they have
the same probability of cost overrun, 65.25% in this case, regardless of the size of the
project. Gradually increasing β shifts the emphasis of the COR from its mean to its
variance. Since the scale of the variance of the COR is roughly the square of that of
the mean value, the solution is very sensitive to the change of β. It can be seen that
as the value of β is increased, funding is shifted from smaller projects, such as 1 and
2, to bigger projects, such as 4 and 5. Doing so, the variance of the portfolio COR is
reduced but the mean is increased. When β is increased up to 0.03, both Projects 1 and

Table 4
Funding allocation ($K) and the corresponding probability of completion within budget: all projects are

independent.

w1 w2 w3 w4 w5

α β F1(w1) F2(w2) F3(w3) F4(w4) F5(w5) E[COR] Var[COR]
1
2

1 0 110.37 191.51 423.55 435.32 539.25 63.41 66.52
65.25% 65.25% 65.25% 65.25% 65.25%

0.995 0.005 108.32 187.66 419.83 438.49 545.70 63.83 65.15
54.47% 56.35% 62.95% 66.56% 67.61%

0.970 0.030 103.08 180.70 413.25 445.55 557.42 67.30 62.80
29.85% 38.57% 58.74% 69.36% 71.71%

0 1 103.08 180.70 402.98 449.33 563.90 68.98 62.64
29.85% 38.57% 51.98% 70.82% 73.86%
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Table 5
Funding allocation ($K) and the corresponding probability of completion within budget: projects 3 and 4

are dependent (α = 0, β = 1).

w1 w2 w3 w4 w5

ρ3,4 F1(w1) F2(w2) F3(w3) F4(w4) F5(w5) E[COR] Var[COR]
1
2

−0.50 103.08 180.70 377.88 436.55 601.79 73.39 56.46
29.85% 38.57% 35.62% 65.77% 84.56%

−0.30 103.08 180.70 391.22 442.97 582.02 72.80 59.03
29.85% 38.57% 44.18% 68.35% 79.39%

−0.10 103.08 180.70 399.58 447.41 569.22 69.87 61.41
29.85% 38.57% 49.72% 70.08% 75.56%

0 103.08 180.70 402.98 449.33 563.90 68.98 62.64
29.85% 38.57% 51.98% 70.82% 73.86%

0.10 103.08 180.70 406.07 451.15 559.00 68.33 63.85
29.85% 38.57% 54.03% 71.51% 72.24%

0.30 103.08 180.70 411.53 454.62 550.06 67.57 66.32
29.85% 38.57% 57.62% 72.80% 69.17%

0.50 103.08 180.70 416.17 458.22 541.82 67.37 68.89
29.85% 38.57% 60.62% 74.11% 66.21%

2 are already funded at their lower bounds (with only 29.85 and 38.57% chance for the
projects to be completed within budget, respectively). Note that these two lower bounds
for Projects 1 and 2 may seem too low. Indeed they are. These two lower bounds are
assigned purely for illustrative purpose. The intention is to show the reader how a small
project may not be as competitive as a big project in terms of securing funding from a
project portfolio perspective. Therefore, setting an appropriate lower bound for a small
project is equivalent to protecting the project. Failing to do so may result in incompletion
and cost overruns.

Next, the case is tested with a nonzero correlation between Projects 3 and 4, i.e.,
ρ3,4 �= 0. Because of space limit, in Table 5 only the results with α = 0 and β = 1 are
displayed. Consider the case with ρ3,4 = 0 as the baseline. With a positive correlation, the
two smaller-sized Projects 3 and 4 can together “grab” some funding from the Project 5,
and may lose some funding to Project 5 if the correlation is negative. In the last 2
columns of Table 5, it can be seen that the variance of the portfolio COR increases as ρ3,4

increases, and vice versa. Also whenever the variance of the portfolio COR increases, its
mean decreases. This is due to their conflicting nature in this optimization problem. In all
cases summarized in Table 5 the funding of Projects 1 and 2 remain at their lower bounds.
Figures 3(a) and (b) depict the funding level changes of Projects 3 and 4, respectively,
at different risk preferences. It can be seen that as ρ3,4 increases, the funding levels of
both Projects 3 and 4 increases regardless of the risk preference. Apparently, Project 3 is
more sensitive to the change of ρ3,4 than Project 4 because it has a smaller variance and
is less risky.

Next we observe the effect of project size and project riskiness to the funding-level.
Consider a baseline case: µ3 = µ4 = 400 and σ3 = σ4 = 60, ρ3,4 = 0.3, and all other
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(a)

(b)

Figure 3. (a) Funding level of Project 3 vs. the value of ρ3,4, (b) Funding level of Project 4 vs. the value of
ρ3,4.

Figure 4. Funding levels of Projects 3 and 4 vs. the value of σ4.

projects are the same as in Table 3. That is, both Projects 3 and 4 are equivalent in terms
of project size and riskiness. With respect to the baseline, we first increase the riskiness
of Project 4, i.e. σ4, from 60 to 90 with other parameters fixed. The result is shown in
figure 4(a). It can be seen that Project 4 gains additional funding as it becomes riskier,
but Project 3 loses funding. In figure 4(a) it can be seen that the funding loss of Project 3
is always greater than the funding gain of Project 4, in terms of the probability of project
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Figure 5. Funding levels of Projects 3 and 4 vs. the value of µ4.

completion within budget. That is reasonable because as σ4 increases, the entire project
portfolio actually becomes riskier.

We next test the effect of project size. With respect to the same baseline above,
now we increase the size of Project 4, i.e. µ4, from 400 to 500, with other parameters
fixed. In figure 5, as µ4 increases, Project 4’s funding level w4 increases and Project 3’s
funding level w3 decreases. Both the increasing and decreasing rates for Projects 4 and
3 are linear. However, when µ4 = 500, Project 4’s size is the same as that of Project
5. Since Project 5 is riskier, it turns out that Project 4’s funding level decreases. This
result seems to suggest that when all projects have a different project size, project size
dominates the allocation of the funding. But when two or more projects are of the same
size, their riskiness will determine the funding level.

Figure 6. Frequency chart of the portfolio COR, with α = 0, β = 1, ρ3,4 = 0.
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Finally, it may seem that the mean value of the portfolio COR at the level of $60
to $70 K is not significant for a $1,700 K total budget. Note that the standard deviation
of the portfolio COR is also close to the mean value. The fact is that the shape of the
distribution function of the portfolio COR normally has a long tail in the upside, as
shown in figure 6, which displays the frequency chart of the portfolio COR, assuming
α = 0, β = 1, and ρ3,4 = 0. The following are the statistics corresponding to the case in
figure 6: mean: $68.98 K, standard deviation: $62.64 K, median: $51.13 K, skewness:
1.36, Kur-tosis: 5.18, and range maximum: $520 K. The result shows the high riskiness
of cost overrun.

Note that in Table 5 it can be seen that w4 is always greater than w3 because the
costs in Project 4 have a greater variance, although their mean values are the same. In
this problem, X3 and X4 are identical except that X4 has a greater variance. If both X3

and X4 are identical, w3 and w4 should always have the same value.

4. Conclusions

Projects normally have to compete for funding, given a budget limitation. Once a project
is funded, it then becomes the project manager’s responsibility to complete the project
within budget. Budgeting and cost control, which have been commonly treated as two
disjointed functions, are actually closely related: if a project is underfunded, it is exposed
to a higher COR. In this paper, the funding allocation problem is defined to be an
optimization problem that minimizes portfolio COR subject to a fixed budget. It has
been shown in this paper that with competition, the combination of a project’s size,
riskiness, its correlation with other projects, and DM’s preference ultimately decides its
funding level, from the perspective of portfolio optimization in the COR. Project selection
decisions are made in the concept phase of a project’s life cycle, where ability to influence
project parameters has the highest likelihood. We have demonstrated the feasibility for
integrating project selection and and project COR minimization. This integration during
the concept phase can add value to ability to influence the project and provide a basis for
more effective project control.
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Note

1. More precisely, it is the marginal reduction of some linear combination of the mean and variance of the
portfolio COR.
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