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Abstract: Infrastructure facilities are generally heavy, fixed, and normally irreversible once construction has been completed. As
existing facilities, they may confront economic competition of an increased space demand and the need for future expansion. Due ft
economic-based irreversibility, the expansion of a constructed facility requires the foundation and, to a lesser degree, columns to b
enhanced and options for expansion to be accounted for at the very beginning of construction. Enhancing the foundation and column
represents an up-front cost, but has a return in flexibility for future expansion. This trade-off can be viewed as an investment problem, ir
that a premium has to be paid first for an option that can be exercised later. A model of the foundations versus flexibility trade-off enables
the competing options to be optimized by balancing the expected profits that may arise from future expansion, i.e., the value of flexibility,
and the cost of enhancing the foundation. Use of the model is demonstrated for the construction of a public parking garage, with the
optimal foundation size determined. The evolution of parking demand is modeled with a trinomial lattice. Stochastic dynamic program-
ming is used to determine the optimal expansion process. A model that does not consider the value of flexibility is compared with two
value-flexible models. The value of flexibility in this case study is so significant that failure to account for flexibility is not economical.
Valuation modeling such as discounted cash flow analysis with uncertainty modeling is important to capitalize on the worth of flexibility.
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Introduction velop a valuation model for facility expansion that accounts for
. o _ _ ) the value of expandable flexibility.

A facility, such as a building, dam, bridge, or airport, is heavy, A flexiblesystem is one “characterized by a ready capability to

fixed, and normally irreversible once construction has been COM- 5dapt to new, different, or changing requirements,” according to

pleted. A facility may face economic competition because of an \wepster's DictionaryIn other words, it is a system that has the

increased space demand and the need for future expansion. Due tahapility to cope with uncertainties associated with changing

the economic-based irreversibility, the expansion ofaconstructedneeds Due to the massiveness of civil engineering facilities

facility requires the fogndatlon and, ‘9 a lesser degree, columns Osewer alternatives are available to provide expansion flexibility,
be enhanced and options for expansion to be accounted for at th%ompared to less costly mechanical systems

very beginning of construction. Enhancing the foundation beyond In this paper, the foundation of a facility is used as the struc-

immediate needs requires a higher initial cost. In return, the fa- tural component through which concepts related to flexibility are

cility increases its flexibility to expand whenever it is needed. . . . .
. N . R o introduced; however, the concepts can certainly be applied to any
This flexibility should be assigned a significant value. If it is not S .
component. A foundation is referred to herein as the structural

assigned value, then the cost of the additional enhancement of theI ts that t the struct o th 4 G I
foundation would not be marginally practical. Designers have in- elements that connect the structure 1o the ground. enerally, a

creasingly preferred to design a facility with features that facili- founclijatlon IS charzcterlzeg by the Céeptf_ll 0 WE'/Ch struli:tural Ioadsh
tate future expansion. Although the merits of flexibility are rec- €& be transmitted to underground soils and/or rocks. Strengt
ognized, an objective method of valuing flexibility in an enhanced requirements, serviceability, constructability, and economic value

foundation project has not been available. Recent literature in the@'® the major factors for designing the type and size of a founda-

field of option theory recognizes that traditional valuation meth- tion- If the foundation has been enhanced to support an expanded
ods such as discounted cash flow analyses may not be proper fotructure, the facility will have the flexibility to expan@erti-

valuing flexibility (Trigeorgis 1996 This paper intends to de-  cally) later.
Enhancing the foundation at the time of initial construction
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extent the enhancement should be done. To achieve optimal defrom analternative To gain an optiorfor flexibility), a price may
cision making for this trade-off problem, the expected profits that have to be paid up front. In reality, options may arise in varied
may arise from future expansiofisalled the value of flexibility applications and circumstances, and provide the ability to react to
must be balanced against the costs of enhancing the foundation.a changing environment. Examples of real options include the

Flexibility has value because of uncertainty. If a system were following.
steady and every future outcome could be fully predicted, then« Flexibility to deferallows the decision maker to delay taking
flexibility would not be needed. To value flexibility in engineering an action until uncertainties are favoralpéeg., one may gain
design, uncertainty modeling is necessary for optimum assess- some lease such as a right-of-way contract that grants him/her
ment. A rich body of literature that addresses decision making the right to defer; Dixit and Pindyck1993].
under uncertainty, such as the De Neufvi(llE990 source, is ¢ Volume flexibilityof a manufacturing system allows a firm to
available. A valuation method based on a trinomial lattice for change the production rate, depending on market conditions.
valuing the flexibility in construction expansion is presented, with ¢ Product flexibility allows a varying product mix in different
the construction of a public parking structure used to illustrate the  market conditiongFine and Freund 1990
methodology. Three demand model types are compared to de-» Flexibility to expand or contrachllows the decision maker to
scribe parking demand evolution over a 15-year study period. A increase or decrease the system capacity scale when a trend of
comparison of the three models clearly shows the value of flex-  higher or lower system demand is form@¢umar 1995.
ibility. In fact, the value of flexibility may be so significant thatit e« Flexibility to switch allows a system operator to switch to
would be very costly to exclude it from the design. different technologies or resourcésulatilaka 1993.

The major contribution of this paper is to identify the value of Other applications of real options can also be found in invest-
flexibility of an enhanced foundation in infrastructure expansion ments of intelligent transport systenfisevizkangas and [laes-
and to propose a complete method to value the flexibility. maa 2002 and construction projecté=ord et al. 2002 In gen-
Through a case study of the construction of a public parking eral, an option provides an opportunity for the decision maker to
garage, we also contribute to a better understanding of the bentake some actiomfter uncertainties are revealed. For example,
efits of applying flexibility in infrastructure design and construc- the owner of a call option will exercise the option only after
tion. learning that the stock pric®(T) is greater thark.

To value a real option, one should explore all possible sce-
narios under which exercising the option is favorable. This pro-
cess may become nontrivial when the problem involves multiple
options and multiple periods. In terms of the methodology for
valuing real options, two major approaches have been proposed—
the lattice approackHull and White 1993 and the Monte Carlo
(MC) simulation(Hull 1999). Both approaches differ in how un-
certainty evolution is handled. The lattice approach is, in general,
more computationally efficient than the MC method, while the
MC method has the flexibility to model multiple or complicated
uncertainty processes. A review of the lattice approach can be
found in Ho and Liu(2003.

In this paper, a systematic method based on stochastic dy-
namic programming will be presented, which falls into the cat-
egory of the lattice approach. The proposed approach handles
sequential decision making and variable outcomes over time. In
the multiperiod cases, net present valbdPV) is calculated by
repeating the single-period discounting for every period, starting
Expected option payoff Eg{ma>{S(T)—K,O]}(l+r)‘(T‘tZ ) from the final period and working backward toward the initial

1 time.

whereE[ - |=expectation operato&=some probability measure

at time t; and r=corresponding discount rate. If the expected

option payoff calculated by Eq.) is higher than the cost to  Modeling Demand Uncertainty

acquire the option, then the call option is favorasiete that risk

preference can be taken into account through either the discountFlexibility has value because of uncertainty associated with

rate or the probability measyre changes in future needs or conditions. If a system were steady and
Recently, the concept of options has been applied extensivelyevery future outcome could be fully predicted, then flexibility

in a variety of areas other than financial contracts. This subject iswould not be needed. Therefore, uncertainty modeling is impor-

known asreal optionsvaluation. Real options can be defined as tant for valuing flexibility.

the options embedded meal operational processes, activities, or Foundation design relies on assessments of the soil and rock

investment opportunities that are not financial instrumémnts conditions, as well as the load combination of the superstructure.

georgis 1998 For example, a real option gives the option holder These assessments always involve considerable uncertainty, such

the right but not the obligatiorto take an action(not merely as characteristics of soil and rock and the underground water

purchase somethingn the future. An enhanced foundation is one level. The owner may also face other operational uncertainties

immediate example of real options because it provides the flex- such as demand, labor costs, and rent. The type of uncertainty that

ibility for expansion. In other words, a real option gives the owner evolves over time can have tremendous impacts on operational

some flexibility. The two terms, option and flexibility, will be  economics. To demonstrate the method, demand will be the only

used interchangeably in this paper, and an option is distinguisheduncertainty modeled here.

Option and Flexibility

In finance, aroptionis defined as the right, but not the obligation,
to buy (or sel) an asset under specified terfbsienberger 1998;
Hull 1999). For example, an option that gives the right to pur-
chase something is calledcall option; an option that gives the
right to sell something is called put Normally an option has a
price (called apremium. Consider a call option that allows you to
buy a specified stock &(=%$50) at some future tim&. This
option will be valuable if the stock price a, denoted byS(T),
turns out to be higher thaK, say, $70. The call option can be
exercised by buying the stock at $50 and then reselling the stock
back to the market at a profit of $26=-¢ 70— $50). However, if
the stock price falls below $50 &, this call option is virtually
worthless and the owner loses the premium. Intuitively, at time
the expected payoff of such a call option is
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In this paper, we propose using stochastic diffusion processes
to describe uncertainty evolution. If data for the daily demand of
an infrastructure service can be obtained and displayed as a func-
tion of time, a trajectory fluctuating up and down, much like some
signal noise, would be evident. In theory, statistical techniques
can be used to summarize the data to reflect a stochastic diffusion
process. Indeed, diffusion processes have long been used to
model uncertainties in natural sciences, including population
growth (Bailey 1964; Newell 198R The uncertainty model to be
presented next can be viewed as a discrete approximate model for
one type of stochastic diffusion process. By modeling the demand
as a diffusion process, we are assuming that the demand does not
depend on the supply, such as the availability of a new parking
garage, which may not be the case in reality.

Given a demand uncertainty; which evolves over time, con-
sider the following multiplicative modd€Luenberger 1998, Chap-  Fig. 1. A trinomial lattice evolves over three time periotfsom t
ter 11): =0 tot=2).

d(t+1)=d(t)-z(t) )

fort=0,1,... T, wherez(t), t=0,1, ... T are random variables

that may be a function ad(t), and only take positive real values. . . . . .

For the multiplicative model in Eq2), once the demand process &t time periodt, and after one time period;+ 1, the uncertainty
starts with a positive value, it will remain positive. The multipli- D(t+1) will ‘have three possible valued(t)+(k+1)AD,
cative model has been commonly used in finance because stocl(t) +KAD, andD(t) +(k—1)AD, with probabilitiesp®, p™,
prices can never be negative ar(d)s can be interpreted as un- andp‘, respectively. The superscripts m, andd specify three
certain returns. If we take the natural logarithm of both sides of different branches, up, middle, and down. The demand increment
Eq. (2), the multiplicative model of Eq(2) is transformed to an ~ AD is obtained usingdD =60, where is a constant. The choice

=0 =1 =2

additive model, which is easier to optimize. L2{t) =In d(t) and of 6 will be shown later in this section. The branching fadtds

Z(t)=Inz(t); Eq. (2) is equivalent to an integer, and the value &fis chosen such th&AD can best
D(t+1)=D(t)+Z(t) 3) approximate the expected drjit(D,t)

fort=0,1, ... T. Next, we will develop a model fdD(t). Since _{ w(D,1) 1J .

d(t)=eP®>0, D(t) can be any real number, including a nega- =|"ap "3 @)

tive one. We also assume tha(t)s are normal random variables,

with the following relations: where| - |=so-called floor function, which maps a real number to

the nearest integer towargd .

EID(t+1)=DO]=E[2()]=p[DO).U ) To solve for the branching probabilitigs’, p™, and p¢, the
vafD(t+1)—D(t)]=vafZ(t)]=c? (5) following linear equations are formed:
_In Eqgs.(4) and(5),_ _p,(-) is ad_rift func_tion ofD(_t) andt, ando E[D(t+1)—D(t)]=p"(k+1)AD+p™kAD + pd(k—1)AD
is a constantolatility. The drift function describes the trend of
the uncertainty movements, in the sense of the expected value. =w(D,t) (8a)
From Eq.(3), we have
-1 E{[D(t+1)-D(1)]*%}
D(t):D(0)+;)Z(i) (6) =p”(k+1)2AD2+pmk2AD2+pd(kf1)2AD2
Therefore, we know thab(t) is normal, because the sum of =vaD(t+1)—D(t)]+E[D(t+1)—D(t)]?
normal random variables is itself a normal. In other words, all
demandsgd(t)s, are lognormal. =02+ p(D,t)? (8b)
While various approaches can be used to model uncertainties, g

uncertainty modeling should also be integrated with the solution pt+pT+pi=1 (8)

procedures. To better implement dynamic decision making, a tri-
nomial lattice model, which has been widely applied in the valu- ) .
ation of financial optiongLuenberger 1998 is used to approxi- agd varla}jnce oD(t+1)—D(t), respectively. Note that fop",
mate the uncertainty characterized by E@¥. and (5). For a p™, andp® to be between 0 and &,must be chosen between/2/
trinomial lattice, each demand node is designed to branch out into@"d 2. For details, see Hull and White993. . .
three demand nodes corresponding to the following time period ~ Repeating the foregoing process to the second period, third
(Fig. 1). To form a lattice, discrete demand valuesdes, with a period, and so on producegtanomial) lattice of the uncertainty.
constant incremenAD’ are formed for each time period, such An example of a lattice with two time periods is illustrated in Fig.
that branching is only allowed from nodes to nodes of the follow- 1. Note that the value df, and probabilitiegp", p™, andp® are
ing time period. How to select the three nodes to map, as well asdependent on both timeand stateD.
their correspondingconditiona) probabilities, is discussed next. As an example, the lattice in Fig. 1 implies nine 8°) pos-
Assume that the value of the uncertainty is known td{¢) sible paths for the evolution d(0)=D, fromt=0 tot=2

where Egs. (8) and (&) intend to match the conditional mean
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Path 1: {Dy,Do+AD,Dg+3AD} with probability p{ p4, Table 1. Summary of Construction Costs

Path 2: {Do,Do+AD,Do+2AD} with probability p! pJ, — —orometer Value
Site preparationC) $300,000
Path 3: {Dg,Do+AD,Do+AD} with probability pilpg,l Fixed cost for foundationG;) $1 million
. Variable cost for foundationc(,) $100,000/level
Superstructure and miscellaneous)( $800,000/level
Path 9: {Dg,Dy—AD,Dy—3AD} with probability p‘ilpg3 Construction cost for expansioid) $850,000/level

wherepﬁj represents the probability for branchibg {u,m,d} at
nodej e Q(t) in time periodte{1,2}. Note that(Q)(t) is some making is purely profit maximization. On the other hand, the
ordered set of indices for those nodes that are mapped into at timevalue ofa can be viewed as a weighting factor for the importance
t (from the top down, numbered starting from 1 in Fig; &.g., for meeting demands; the higher the value, the more important it
Q0)={1}, Q(1)={1,2,3, and Q(2)={12,...,%. The is. In the rest of this section, for simplicity, only the results of two
branching factok, obtained using Eq(7), may vary from node extreme casesy=0 anda =1, are specified. Full comparison of
to node and is given underneath each node that branches out inhe effect ofa is deferred to a later section for discussion. Other
Fig. 1. costs related to construction are summarized in Table 1. All costs
Embedded on an uncertainty lattice, decision making can be and revenues are subject to an annual increade=&% due to
performed at each node in the lattice. This is the basic idea of thefactors such as inflation.
stochastic dynamic programming approach. The differences be- For simplicity, the foundation sizéor strength of the facility
tween a lattice approach and a decision tree are as folldlys: is represented in terms of the maximum number of levels of su-
branches recombine with a lattice but not with a decision tree; and perstructure, denoted b, that the foundation can support
(2) a lattice node plays both roles—that of a chance node and thatsafely. Letn, be the number of levels of the facility in time period
of a decision node of a decision tree. Therefore, the stochastict. At time t, N—n, represents the “foundation reserve” that
dynamic programming approach using lattices can be viewed as avould be available for expansion in terms of additional levels.
generalized extension of the decision tree method. The unit of timet is in years, and the expansion decision is
reviewed at the beginning of each year. The problem is to deter-
mine the optimal foundation sizB and the initial number of
Valuing Foundation levels to construch, (np=<N) at time 0. Furthermore, an optimal
expansion plam;, t=1,, ... ,T—1 over the study period needs
As mentioned previously, an enhanced foundation can be viewedtg pe determined.

as a real option for expansion. In this section, the expected value  Assume that the demand for parking spaces over time period

of this real option is appraised. [t,t+1] is denoted by, , t=0, ... T—1. Given the initial foun-
dation sizeN and an expansion plan of the facility,, t
Constructing Public Parking Garage—Case Study =0, ...,T—1, a cash flow streamx{,xy, ... xr-,) for the net

) . . . ~ profit of the facility can be identified. The sequence of decision
This case study pertains to the construction of a public parking making is as follows. At timé=0, the foundation siz&l and the

garage by a county in the Washington, D.C. area. The cost dat@itial number of levelsn, are decided. Construction incurs the
were compiled from the feasibility study done by the county. A fo|iowing costs:

daily demand of 250 units of parking space at the location where ) ] ]
the garage is to be constructed is assumed. Assume that each Xo=—costs of site preparation, foundation,
parking space can generate revenue of $3,600 per year from park-
ing fees, denoted bR, but requires $100 of maintenance cost,
denoted byc,,. The site for the garage can accommodate 100 =—Cs—(Cs+c,N)—cyno (9)
parking spaces per level, denotedrhy and the garage will have o ] i
multiple levels. Assume that the life of the parking gara@ i6 The cost of the foundation is assumed to be a linear function of
15 years, and after that the facility will be obsolete, with no the foundation siz&l. Assume that the construction would take 1
salvage value. Note that the notations with an upper€asep- year to complete. At any time>0, the total net profit accumu-
resent fixed costs. In addition, this case study is designed based@ted over time periodt,t+1] is represented by, where

on a discount rate of 8%, which was suggested by the feasibility x = Revenue-maintenance cost

study report of that county. Detailed demand models over the

and superstructure

15-year planning period will be presented in the next section. —penalty for unmet demaneexpansion cost
Both profiting and providing satisfactory services are assumed )
to be important objectives for the public parking garage. For each ~ =[R-min(d;,n¢_ym)—cpniym—cp, max(0,d;—ne—,m)

unserviced demand, a penalty, may be applied. The penalty
can be viewed as either a Io)ég of revenupepor opportlE)nity, or a ~Ce(Ne=Ne-p) (14 )" (10)
potential cost for unsatisfied service, such as complaints that mayThe revenue, maintenance cost, and penalty over time period
aggravate and lead to other economic losses. We use the ternfit,t+1] are based on the capacity of the parking structure
“net profit” to represent the profit less penalty for unserviced n._;-m, determined one time peridglean earlier because of the
demands, and assume that the decision maker maximizes the neine-year construction lead time assumed. At tinhe expansion
profit when he/she makes expansion decisions. To be general, thelecision n, (=n,_,) is made. If n;>n,_,, that means If;
penalty is assumed to bg,,=a-R, Osa=<1, a fractiona of —n,_,) additional leve(s) of parking structure will be built dur-
revenueR generated by each parking space per year. When ing the year, which incurs an expansion costcgfn,—n,_;)(1

=0, it corresponds to the case without penalty and the decision+f)!, represented by the last term of Ef0). Again, any expan-
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Table 2. Ten-Year Historical Demand Data Table 3. Outlook of Future(Average Demand?:it

Year | df D]H =Ind :-' DJ'HH_ DJH Year Timet Average demand, (units)
0 164 5.0999 2 1 0 250.00
1 157 5.0562 —0.04362 5 1 262.66
2 181 5.1985 0.14225 3 5 275.97
3 175 5.1648 -0.03371 4 3 289.95
4 208 5.3375 0.17275 5 4 304.64
5 185 5.2204 —0.11718 6 5 320.07
6 174 5.1591 —0.06130 7 6 336.29
7 202 5.3083 0.14921 8 7 353.32
8 237 5.4681 0.15979 9 8 371.22
9 216 5.3753 —0.09278 10 9 390.02
10 250 5.5215 0.14618 11 10 409.78
Note: Meanu =0.04216; standard deviatian=0.12047. 12 11 430.54
ot applicable. 13 12 452.35
14 13 475.27
15 14 499.34
sion construction is assumed to take 1 year to complete. Note that
the expansion decisiom, is subject to the following nondecreas-
ing condition: t—1
np<n,<---<nr_;<N (11) E[D(D]=E[Ind(1)]=Do+ X, u=Do+tu  (14)
Once the cash flow streamx{x,, ... Xr-y) IS obta.med, its The expected annual parking demand of yedn the future,
NPV (of the net profits can be determined as follows: E[d(t)], is, however, not e[ D(t)]}=d, exptw), but
T

NPV= (12) d=E[d(t)]=doexptp+ 3to?) (15)

_ _ ) with some contribution from the variane€’. Note that Eq(15)
wherer =discount rate per time period. Note that tax should also s optained using the lognormal property dft). Given the
be included in practice, which may .reduce the NPV. known demand at=0, d,=d(0)=250, and the logarithm of

Note that the penalty term used in EG0O) may not represent demandD,=D(0)=1In 250, the values df,, t=0, . . .,14, using

a specific cash outflow. Using penalties is a common technique inEq (15), are obtained and are summarized in Table 3
decision making and economics to contrast alternative decisions. -The ’trinomial lattice introduced previously will be. used to

mere, )(Net.usﬁ the |cf>%r11alty t?tsfhtzw the valye cf)lf ﬂ?l;(.:p'"t_y ve:gus represent demand evolution. While the trinomial lattice model is
e potential loss of the profit if the expansion flexibility s not in capable of handling more general processes such as time and state

place. Including such an opportqnity coj_plenalty in a cash ﬂOW dependent drift functiong.(D,t), the demand uncertainty model
stream may raise concern. One immediate consequence is that th@onsidered in this case studpy setting it to be a constanis

NPV obtained in Eq(12) may not be 100% realizable. However, more simplistic due to lack of data. If data are sufficiently avail-

]Ehe term t(;]ash flowtstrfegm IS still usl(gd in trgs paper k;'[)e'c?use ;’r\:e able, statistical methods can be used to estimate the drift function
ocus on e aspect ol decision making under uncertainty, ra erp,(D,t), as well as its relations to the stddeand timet. Because

than cost accounting. If the reader prefers, the cash flow §trean\Ne assume the drift function to be a constant for all time peri-
(Xo.X1, ... Xr) may be termed a “sequence of the net profit.” ods, the three branching probabilitigs(p™,p®) and the branch-
ing factor k will be the same for every node. The parking de-
Three Demand Models mands in the lattice may no longer be integers. The computation
is still carried forward to maintain the integrity of the lattice.
Depending on the complexity of the available demand infor-
mation, three models can be applied to determine the foundation
size and the facility expansion plan. To produce a fair compari-
son, all three models are based on the same data source and are
consistent.
¢ Model 1—deterministic annual parking demands, identical for
every year over the entire study period. In this model, the

demand is assumed to be fixed and is denoted.bl is the

Xt
&b (141t

Assume that historical demand information is available for the
past 10 years, denoted by , j=1, ... ,10which is summarized

in Table 2. Assume that the logarithm of demab{l=Ind" is
subject to a process following Eq&d) and (5), whereZ(t), t
=1,2,...T are mutually independent, and the meag-) is
assumed to be a constantindependent of stat®!' and timej.
Using the following formulas, with the historical data in Table 2,
the best estimate qf is 0.04216 andr is 0.12047 units:

9 . . . ~ . .
1 simple arithmetic average of the annual demaddgiven in
— H H
h=152 (D]%1-D}) (133) Table 3
! 1Tt
9 ~ ~
1 d==> d=361.4 (16)
o’ =(qo-1) &, (P11 Of'-w)? (130) T

¢ Model 2—deterministic annual parking demands, with a trend

From Eg.(8), the expected logarithm of annual parking demand described byd, from Eq.(15), t=0, . . ., 14, agjiven in Table
of yeart in the future is 3. In this case, the demand trend is growing because.
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L+ X¢(N,n;_1)=[R-min(dy,n¢_1m) —cyn—ym
: : —Cpnmax0,d;—ng_;m)J(1+f)!
:/:4 L F— + max [(1+71) X 1(N,ny)
- e : : N1 =n=N

N=1,2, .. ng =1, ., N n =ng, o N ny =g, o N —Co(Ng— N 1) (1+F)1] (180)
(=0 =1 =14 with boundary conditions
Xr(N,n_1)=0; Vnr_; (1&)

Fig. 2. Deterministic decision tree for solving Models 1 and 2

Assumingd,=d=2361.4 for allt, the optimal solution obtained
for this model isN=ny,=4, regardless of the penalty factar
That is, a foundation reserve is not made, nor is an expansion
plan. The corresponding optimal NPV of the model is $9.5 mil-
lion. This optimal solution seems intuitive. Since the demand is
assumed to be 361.4 units every year, the optimal solution is to
build a parking structure with 400 parking spaces. As mentioned
previously, if every future outcome could be perfectly forecast, it
is unnecessary to reserve any flexibility. Detailed results for the
case with the penalty factor of=1 are given in Table 4.
In real options literature, a risk-free interest rate is usually
k:{iJr}J:{O-OA'ZlGJF 1 _ 17 used as the discount rate, which, however, only applies to the
AD 2] 10.2087 2 cases where real options can be hedged and all risks can be elimi-
and (pY,p™,p%) =(0.288,0.626,0.086), the same for each node nated. Since all risks are eliminated, under no arbitrage argument,
at each time period. Since the lattice covers 15 time periods the discount rate has to be the “risk-free” rate. In reality, there is
(years, from t=0,...,14, equivalently it accounts for3 nothing tradable in the market such that the risk of holding an
(=14.348907 million) demand scenarios. enhanced foundation can be hedged. Therefore, the discount rate
is determined based on the riskiness of the proj€xpeland
] ] - et al. 1990. To obtain a risk-adjusted discount rate, a pricing
Model 1—Annual Parking Demand is a Constantd  for model must be assumed. An example based on the capital asset
All Years pricing model(CAPM) can be found in Leviengas and Lizes-
This model assumes that the annual parking demand is a constaniaa(2002.
d for all years. Since uncertainty is not involved, a deterministic
decision tregDe Neufville 1990, as shown in Fig. 2, is used to  Model 2—Annual Parking Demands Are Constants, d ~[,
solve the problem. At the beginning of constructids; 0, the t=0,...,14
foundation sizeN and the number of levels of superstructugge
are decided. Assume that the construction will take 1 year to
complete. After the first year, expansion decisigris reviewed,
which is subject to Eq(11).

Mathematically, the decision-making process in Fig. 2 can be
summarized by a recursive relation. Extending from Efsand
(10), the cash flowx; is now written as a function of decision
variablesN andn,; i.e., x,(N,n,)

e Model 3—stochastic annual parking demands, described by
the trinomial lattice. In this model, at each node and at each
time t, the branching factok and branching probabilitieg",
p™, andp? are determined by using E¢7) and solving Egs.
(8a)—(8c), respectively. Let AD=60=v3Xx0.12047
=0.2087, wheré is set to bev3, as suggested by Hull and
White (1993. Using Eq.(7), in this case study, the branching
factor is

The same deterministic decision tree used in Fig. 2, or Egs.
(18a)—(1&), is used to solve this model, with the optimal de-
sign N=4, n,=3 obtained for the case without penaliy€0),
andN=5, ny=3 for the case with maximal penaltyeE&1). In

the optimal solution of the case without penalty, the foundation is
enhanced to support expansion for one additional level in the
future with an NPV of $8.9 million, and the expansion decision
will be made at the beginning of Year 44{=3). Since the de-

Xo=max — Cs—(Cs+c,N) —cyng+(1+1) " 1x;(N,ng)] mand exceeds 300 spaces in the 4th year, the structure is ex-
N.no panded one additional level &t 3, and the expansion construc-
(183) tion is completed at=4. A similar observation can be made for
and fort=1,... T—-1 the case with maximal penalty, in which the optimal NPV is $8.7

Table 4. NPV ($1,000 of Alternatives in Expansion Planning for Model & € 1)

Initial foundation reservélevelg, N—ng

Initial number of levela, 0 1 2 3 4 5 6

1 —8,943.1 —1,794.2 5,354.7 9,335.7 9,235.7 9,135.7 9,035.7
2 —1,744.2 5,404.7 9,385.7 9,285.7 9,185.7 9,085.7 8,985.7
3 5,454.7 9,435.7 9,335.7 9,235.7 9,135.7 9,035.7 8,935.7
4 9,485.7 9,385.7 9,285.7 9,185.7 9,085.7 8,985.7 8,885.7
5 8,471.6 8,371.6 8,271.6 8,171.6 8,071.6 7,971.6 7,871.6
6 7,457.5 7,357.5 7,257.5 7,157.5 7,057.5 6,957.5 6,857.5
7 6,443.5 6,343.5 6,243.5 6,143.5 6,043.5 5,943.5 5,843.5

94 / JOURNAL OF INFRASTRUCTURE SYSTEMS © ASCE / SEPTEMBER 2003



Table 5. NPV ($1,000 of Alternatives in Expansion Planning for Model & € 1)

Initial foundation reservélevels, N—ng

Initial number of levelsn, 0 1 2 3 4 5 6

1 —8,931.9 —2,449.7 3,802.5 7,009.4 7,555.2 7,455.2 7,355.2

2 -1,733.0 4,519.2 7,726.1 8,271.9 8,171.9 8,071.9 7,971.9
3 4,974.5 8,181.4 8,727.2 8,627.2 8,527.2 8,427.2 8,327.2

4 8,133.83 8,679.2 8,579.2 8,479.2 8,379.2 8,279.2 8,179.2

5 8,460.4 8,360.4 8,260.4 8,160.4 8,060.4 7,960.4 7,860.4
6 7,446.3 7,346.3 7,246.3 7,146.3 7,046.3 6,946.3 6,846.3
7 6,432.3 6,332.3 6,232.3 6,132.3 6,032.3 5,932.3 5,832.3

#Model 1 optimum.

million and one additional level is expandedtat3 andt=9, Xer 1NN, d ), xen(N,ng,d ), andxg, 1(N,ng,d &, ), as
respectively. Detailed results for the case with maximal penalty shown in Fig. 8b). Note that the cash flow functiox, now also

are given in Table 5. Note that directly comparing the optimal depends on the demand outcome. The recursive relation between
NPV in Model 2 with the optimal NPV obtained in Model 1 is the three cash flow functions in Fig(i8 is as follows:

meaningless, since they are obtained based on different demand
models. The optimal decisidd=ny=4 obtained in Model 1 now
corresponds to suboptimal solutions with an NPV equal to $8.8
million without penalty and $8.1 million with maximal penalty,

X((N,n—1,dp) =[Rmin(d;,ng—1m) = CuyNg— 1M

—Cpnmax0d;—n_ym)J(1+f )

respectively. One_can_attrlbute the dlffe_rence between both mod- + max (1+r) " p¥1(N,ng,d Yy
els to the overestimation of the net profit due to the crudeness of N 1=<ng=<N
Demand Model 1.
Since N—n, represents the foundation reserve at the begin- + M 1NN, d ) + X1 (NG d )
ning of construction, the column in Table 5 undér ng=0 cor- .
responds to the inflexible case. Consider the optimal expansion —Ce(Ng—N—1)(1+1)7] (19)

planN=5, no=3, with an NPV of $8.7 million, for the case with  yith houndary conditions
maximal penalty. Comparing this optimal solution with the corre-
sponding inflexible platN=ny=23, with an NPV of $4.97 million Xt(N,nr_1,dr)=0; Vnr_;, Vdy (1)
in Table 5, the difference, $3.75 million, can be viewed as the
value of flexibilityby reserving foundation sizs —ny=2, which
accounts for 43% of the optimal NPV in this case. This value
indicates the potential profit to be capitalized on if expansion is
possible. Givemg, it can be seen that the value of flexibility
increases adl—n, increases until some point is reached where
reserving too much flexibility becomes uneconomical. That is
with too much flexibility, the potential profit due to expansion
cannot offset the increased cost for laying a deeper foundation. x,=max —Cs—(C¢+c,N)—cyno+(1+r1) Y pgxa(N,ng,d §)
N,no

It is obvious that Eqgs. (18 and (1%) are directly extended from
Egs. (1&) and (1), respectively. The only difference is that
the recursive functiom, , ; is replaced by the discrete expectation
of X, 1, since now the three possible outcomexaf;, givenx;
andD,, are possible.

Running the recursive functions in a backward manner, from
' t=T to t=0, using Egs. (18) and (1%), at the last step

Model 3—Demand Evolution Follows Trinomial Lattice +pix1(N,ng,d )+ pgxl(N,no,d tli)]}_ (1%)

To incorporate decision making into a trinomial lattice, stochastic 11,4 optimal decision in Eq. (19 is N=6, ny=
dynamic programming is used. Since demand scenarios are use
at each time period, the cash flow function used in Model 1 will
be further extended to include the demand outcomes. Consider
demand branching in the trinomial lattice, as shown in Fig).3
Attimet, a logarithmic demand outconi®, branches int®}, ;,

3 in the case
Qithout penalty, andN=7, n,=3 in the case with maximal pen-
alty. The foundation is enhanced to support the expansion of three
&without penalty or four (with maximal penaltyadditional levels
during the initial construction, with optimal NPVs of $8.1 million
and $7.6 million, respectively. Detailed results for other design

d _ _
D{::, andD¢,,, where D?+d1—Dt+(k+1)AD_|nd?+dl' th alternatives are given in Table 6 for the case with maximal pen-
=D+kAD=Ind{},, andD{,,=D+(k—1)AD=Ind¢,, and alty.
the corresponding cash flow functions asg(N,n_,dy), Consider the value of flexibility in this model by taking the

optimal (expected NPV of $7.6 million N=7, ny=3 with maxi-

mal penalty, subtracting the NPV corresponding to the inflexible
X, (Nsn,dy) plan, $3.7 million N=ny=3). This value of flexibility by re-
serving the foundation sizd —ny=4 now accounts for 51.6% of
the optimal(expected NPV, higher than 43% obtained in Model
x,(N,n,d ) 2

41

x (N.n.d?)

@ x,(N,n,_.d)

Directly comparing Models 2 and 3, the optim@xpected

(@) ®) NPV obtained by Model 3 is 7.6%with maximal penalty, or
3.3% (without penalty higher than that obtained by Model 2.

' This difference of the expected NPV between Models 2 and 3 can
be interpreted as thealue of uncertainty modeling.e., a deter-

Fig. 3. Demand branching and corresponding cash flow functions
whered,=exp@,) andd P, ;=exp0?,,), be{u,m,d}
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Table 6. Expected NPM$1,000 of Alternatives in Expansion Planning for Model @ € 1)

Initial foundation reservélevely, N—n,

Initial number of levelsn, 0 1 2 3 4 5 6

1 —8,930.2 -2,516.7 2,525.8 4,919.2 5,913.3 6,317.2 6,452.0

2 —1,800.0 3,242.5 5,635.8 6,629.9 7,033.8 7,168.7 7,150.3
3 3,681.6 6,075.0 7,069.1 7,473.0 7,607.8 7,589.5 7,541.3

4 5,989.4 6,983.4 7,387.3 7,522.2 7,503.8 7,455.7 7,373.5

5 6,636.0 7,039.9 7,174.7 7,156.4 7,108.2 7,026.0 6,938.7
6 6,495.3 6,630.1 6,611.8 6,563.6 6,481.5 6,394.2 6,297.6
7 5,932.0 5,913.7 5,865.5 5,783.4 5,696.1 5,599.5 5,502.9

#Model 1 optimum.
®Model 2 optimum.

ministic demandi, for time t in Model 2 versus a set of demand  Year, the value of the flexibility may exceed 100% of the optimal
scenarios in Model 3. NPV. As mentioned previously, reserving flexibility in design can
be viewed as an investment. The additional cost for laying a
deeper foundation can be thought of as a premium for the pur-
Discussion chase of a real option. While an investment is not a guarantee of
success, a chance exists that the real option may never be exer-
The optimal decisions from all three models are summarized in cised and therefore may be worthless. For example, a structure
Table 7. The following observations can be made. with an enhanced foundation may never have a chance to expand,
First, from Table 7, it may seem that Model 3 obtained a €ven if the designer expects it to happen. This probably corre-
poorer optimal NPV than did Model 2, which is poorer than sponds to a bad scenario path of uncertainty realization, one of
Model 1. Because all three models are different, comparisonsthe many paths considered in a lattice. This bad scenario path may
among these models should be done with caution. Basically, abe associated with a small probability of occurrence, but it may
crude demand model, such as Model 1 versus Model 2, andstill prevail. For example, in the bad scenario that the demand
Model 2 versus Model 3, may overestimate profits or expected does not increase but decrease every year, the optimal NPV is
profits. In this case study, the overestimates seem very significant.— $16.5 million, which, however, only has a very small probabil-
Second, this case study justifies the claim in the literature of ity of occurrence (2.3810°'%). The proposed valuation proce-
real options that traditional NPV methods tend to underestimate dure, however, selects the optimal design based on the expected
the flexible alternatives. To see this, in Model 1 the design alter- value accounting foall possible scenario paths.
natives that reserve foundations are strongly discouraged. The
fact is that the value of flexibility generally increases as the vola-
tility of the uncertainty increases. A flexible design alternative can Implications to Infrastructure Development
increase the expected value of the profit. This reiterates the nature
of flexibility, which is the capability to cope with uncertainties. ~ The proposed model has broader implications to infrastructure
Third, it seems fair to say that if flexibility could be correctly —development. The benefits of an effective infrastructure system
valued, the optimal design tends to be more aggressive than thos@re undoubtedly significant for economic development, employ-
that do not consider flexibility. Overall, the aggressiveness of the ment, and competitiveness. Provision of these systems requires
design is proportional to the penalty facterconsidered in the  investments that are normally huge, irreversible, and highly risky,
objective function for each unfulfilled demand. In Fig. 4, the and have a very long economic return period. Planning infrastruc-
value of f|eX|b|||ty (in terms of percentage of optimaj NP\s ture systems to SatiSfy both present and future demands with ad-
displayed as the value of changes. Intuitively, the value of equate flexibility should be a primary consideration in making
f|ex|b|||ty increases ag increases for both Models 2 and 3, be- infrastructure decisions. Because that demand varies with time
cause(1) the need to satisfy increasing demand is more empha-and many other factors, planning infrastructure capacity in order
sized; and(2) the underservice of the inflexible counterpart is
more discouraged. In the worst case withk 0, the value of flex-

ibility accounts for at least 12% of the optimal NPV. In a good 60%

scenario path of the uncertainty, that the demand increases every  50% |
40% Model 3
30% |

Table 7. Summary of Results of Three Modgl$1,000

Model 1  Model 2 Model 3  Penalty
(N,ng) NPV NPV  E[NPV] factora 10% 1

Model 2

Model 1 optimum(4, 4  9,485.7  8,133.3  50989.4 a=1 0% ————

Model 2 optimum(s, 3 9,335.7 8,727.2 7,069.1 a=1 00 01 02 03 04 05 06 07 08 09 10
Model 3 optimum(7, 3 ~ 9,135.7  8527.2  7,607.8 =1 Penuity: Eactor @

Model 1 optimum(4, 4) 9,485.7 8,803.9 7,731.0 «=0

Model 2 optimum(4, 3)  9,435.7 8,866.9 7,858.7 «a=0 Fig. 4. Value of flexibility (in terms of percentage of optimal NPV
Model 3 optimum(6, 3) 9,235.7 8,666.9 8,1158 «=0 versuso
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to maintain sustainability should be an ongoing process, ratherwas supported in part by the National Science Foundation under
than a one-time effort. As discussed previously, every planning Grant No. 0100186, which is greatly appreciated.
decision has an option value, because the decision maker can
always elect to delay the decision. Therefore, the proposed model
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