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Abstract: Infrastructure facilities are generally heavy, fixed, and normally irreversible once construction has been comple
existing facilities, they may confront economic competition of an increased space demand and the need for future expansio
economic-based irreversibility, the expansion of a constructed facility requires the foundation and, to a lesser degree, colum
enhanced and options for expansion to be accounted for at the very beginning of construction. Enhancing the foundation and
represents an up-front cost, but has a return in flexibility for future expansion. This trade-off can be viewed as an investment pr
that a premium has to be paid first for an option that can be exercised later. A model of the foundations versus flexibility trade-of
the competing options to be optimized by balancing the expected profits that may arise from future expansion, i.e., the value of fl
and the cost of enhancing the foundation. Use of the model is demonstrated for the construction of a public parking garage
optimal foundation size determined. The evolution of parking demand is modeled with a trinomial lattice. Stochastic dynamic p
ming is used to determine the optimal expansion process. A model that does not consider the value of flexibility is compared
value-flexible models. The value of flexibility in this case study is so significant that failure to account for flexibility is not econo
Valuation modeling such as discounted cash flow analysis with uncertainty modeling is important to capitalize on the worth of fle
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Introduction

A facility, such as a building, dam, bridge, or airport, is hea
fixed, and normally irreversible once construction has been c
pleted. A facility may face economic competition because of
increased space demand and the need for future expansion. D
the economic-based irreversibility, the expansion of a constru
facility requires the foundation and, to a lesser degree, column
be enhanced and options for expansion to be accounted for a
very beginning of construction. Enhancing the foundation beyo
immediate needs requires a higher initial cost. In return, the
cility increases its flexibility to expand whenever it is neede
This flexibility should be assigned a significant value. If it is n
assigned value, then the cost of the additional enhancement o
foundation would not be marginally practical. Designers have
creasingly preferred to design a facility with features that fac
tate future expansion. Although the merits of flexibility are re
ognized, an objective method of valuing flexibility in an enhanc
foundation project has not been available. Recent literature in
field of option theory recognizes that traditional valuation me
ods such as discounted cash flow analyses may not be prope
valuing flexibility ~Trigeorgis 1996!. This paper intends to de
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velop a valuation model for facility expansion that accounts
the value of expandable flexibility.

A flexiblesystem is one ‘‘characterized by a ready capability
adapt to new, different, or changing requirements,’’ accordin
Webster’s Dictionary. In other words, it is a system that has t
capability to cope with uncertainties associated with chan
needs. Due to the massiveness of civil engineering facili
fewer alternatives are available to provide expansion flexibi
compared to less costly mechanical systems.

In this paper, the foundation of a facility is used as the st
tural component through which concepts related to flexibility
introduced; however, the concepts can certainly be applied to
component. A foundation is referred to herein as the struc
elements that connect the structure to the ground. Genera
foundation is characterized by the depth to which structural lo
can be transmitted to underground soils and/or rocks. Stre
requirements, serviceability, constructability, and economic v
are the major factors for designing the type and size of a fou
tion. If the foundation has been enhanced to support an expa
structure, the facility will have the flexibility to expand~verti-
cally! later.

Enhancing the foundation at the time of initial construct
involves a significant cost. However, the increased flexibility
future expansion may offset the initial cost of the extra enha
ment. If the foundation of a facility were not designed to supp
expansion, it would be either technically prohibitive or extrem
uneconomical to expand the facility. In fact, enhancing an orig
foundation normally takes place only when abnormal condit
of the foundation or structure, such as differential settlem
exist. Further, the purpose of this kind of enhancement is us
to remedy an anomaly, not to expand the structure. The fou
tion selection problem can be viewed as an investment prob
such that a premium has to be paid first for an option that ca
exercised later. A model is presented that determines whethe
hancing the foundation is favorable or not, and if so, to w
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extent the enhancement should be done. To achieve optima
cision making for this trade-off problem, the expected profits t
may arise from future expansions~called the value of flexibility!
must be balanced against the costs of enhancing the founda

Flexibility has value because of uncertainty. If a system w
steady and every future outcome could be fully predicted, t
flexibility would not be needed. To value flexibility in engineerin
design, uncertainty modeling is necessary for optimum ass
ment. A rich body of literature that addresses decision mak
under uncertainty, such as the De Neufville~1990! source, is
available. A valuation method based on a trinomial lattice
valuing the flexibility in construction expansion is presented, w
the construction of a public parking structure used to illustrate
methodology. Three demand model types are compared to
scribe parking demand evolution over a 15-year study period
comparison of the three models clearly shows the value of fl
ibility. In fact, the value of flexibility may be so significant that
would be very costly to exclude it from the design.

The major contribution of this paper is to identify the value
flexibility of an enhanced foundation in infrastructure expans
and to propose a complete method to value the flexibil
Through a case study of the construction of a public park
garage, we also contribute to a better understanding of the
efits of applying flexibility in infrastructure design and constru
tion.

Option and Flexibility

In finance, anoption is defined as the right, but not the obligatio
to buy ~or sell! an asset under specified terms~Luenberger 1998;
Hull 1999!. For example, an option that gives the right to pu
chase something is called acall option; an option that gives the
right to sell something is called aput. Normally an option has a
price~called apremium!. Consider a call option that allows you t
buy a specified stock atK(5$50) at some future timeT. This
option will be valuable if the stock price atT, denoted byS(T),
turns out to be higher thanK, say, $70. The call option can b
exercised by buying the stock at $50 and then reselling the s
back to the market at a profit of $20 (5$702$50). However, if
the stock price falls below $50 atT, this call option is virtually
worthless and the owner loses the premium. Intuitively, at timt
the expected payoff of such a call option is

Expected option payoff5Ej$max@S~T!2K,0#%~11r !2(T2t)

(1)

whereE@•#5expectation operator;j5some probability measure
at time t; and r 5corresponding discount rate. If the expect
option payoff calculated by Eq.~1! is higher than the cost to
acquire the option, then the call option is favorable~note that risk
preference can be taken into account through either the disc
rate or the probability measure!.

Recently, the concept of options has been applied extensi
in a variety of areas other than financial contracts. This subje
known asreal optionsvaluation. Real options can be defined
the options embedded inreal operational processes, activities,
investment opportunities that are not financial instruments~Tri-
georgis 1996!. For example, a real option gives the option hold
the right but not the obligationto take an action~not merely
purchase something! in the future. An enhanced foundation is on
immediate example of real options because it provides the fl
ibility for expansion. In other words, a real option gives the own
some flexibility. The two terms, option and flexibility, will be
used interchangeably in this paper, and an option is distinguis
90 / JOURNAL OF INFRASTRUCTURE SYSTEMS © ASCE / SEPTEMBER
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from analternative. To gain an option~or flexibility!, a price may
have to be paid up front. In reality, options may arise in vari
applications and circumstances, and provide the ability to reac
a changing environment. Examples of real options include
following.
• Flexibility to deferallows the decision maker to delay takin

an action until uncertainties are favorable@e.g., one may gain
some lease such as a right-of-way contract that grants him
the right to defer; Dixit and Pindyck~1993!#.

• Volume flexibilityof a manufacturing system allows a firm t
change the production rate, depending on market conditio

• Product flexibility allows a varying product mix in different
market conditions~Fine and Freund 1990!.

• Flexibility to expand or contractallows the decision maker to
increase or decrease the system capacity scale when a tre
higher or lower system demand is formed~Kumar 1995!.

• Flexibility to switch allows a system operator to switch t
different technologies or resources~Kulatilaka 1993!.

Other applications of real options can also be found in inve
ments of intelligent transport systems~Leviäkangas and La¨hes-
maa 2002! and construction projects~Ford et al. 2002!. In gen-
eral, an option provides an opportunity for the decision maker
take some actionafter uncertainties are revealed. For examp
the owner of a call option will exercise the option only aft
learning that the stock priceS(T) is greater thanK.

To value a real option, one should explore all possible s
narios under which exercising the option is favorable. This p
cess may become nontrivial when the problem involves multi
options and multiple periods. In terms of the methodology
valuing real options, two major approaches have been propose
the lattice approach~Hull and White 1993! and the Monte Carlo
~MC! simulation~Hull 1999!. Both approaches differ in how un
certainty evolution is handled. The lattice approach is, in gene
more computationally efficient than the MC method, while t
MC method has the flexibility to model multiple or complicate
uncertainty processes. A review of the lattice approach can
found in Ho and Liu~2003!.

In this paper, a systematic method based on stochastic
namic programming will be presented, which falls into the c
egory of the lattice approach. The proposed approach han
sequential decision making and variable outcomes over time
the multiperiod cases, net present value~NPV! is calculated by
repeating the single-period discounting for every period, start
from the final period and working backward toward the initi
time.

Modeling Demand Uncertainty

Flexibility has value because of uncertainty associated w
changes in future needs or conditions. If a system were steady
every future outcome could be fully predicted, then flexibili
would not be needed. Therefore, uncertainty modeling is imp
tant for valuing flexibility.

Foundation design relies on assessments of the soil and
conditions, as well as the load combination of the superstruct
These assessments always involve considerable uncertainty,
as characteristics of soil and rock and the underground w
level. The owner may also face other operational uncertain
such as demand, labor costs, and rent. The type of uncertainty
evolves over time can have tremendous impacts on operati
economics. To demonstrate the method, demand will be the o
uncertainty modeled here.
2003
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In this paper, we propose using stochastic diffusion proces
to describe uncertainty evolution. If data for the daily demand
an infrastructure service can be obtained and displayed as a
tion of time, a trajectory fluctuating up and down, much like so
signal noise, would be evident. In theory, statistical techniq
can be used to summarize the data to reflect a stochastic diffu
process. Indeed, diffusion processes have long been use
model uncertainties in natural sciences, including populat
growth ~Bailey 1964; Newell 1982!. The uncertainty model to be
presented next can be viewed as a discrete approximate mod
one type of stochastic diffusion process. By modeling the dem
as a diffusion process, we are assuming that the demand doe
depend on the supply, such as the availability of a new park
garage, which may not be the case in reality.

Given a demand uncertaintyd, which evolves over time, con
sider the following multiplicative model~Luenberger 1998, Chap
ter 11!:

d~ t11!5d~ t !•z~ t ! (2)

for t50,1, . . . ,T, wherez(t), t50,1, . . . ,T are random variables
that may be a function ofd(t), and only take positive real values
For the multiplicative model in Eq.~2!, once the demand proces
starts with a positive value, it will remain positive. The multip
cative model has been commonly used in finance because s
prices can never be negative andz(t)s can be interpreted as un
certain returns. If we take the natural logarithm of both sides
Eq. ~2!, the multiplicative model of Eq.~2! is transformed to an
additive model, which is easier to optimize. LetD(t)5 ln d(t) and
Z(t)5 ln z(t); Eq. ~2! is equivalent to

D~ t11!5D~ t !1Z~ t ! (3)

for t50,1, . . . ,T. Next, we will develop a model forD(t). Since
d(t)5eD(t).0, D(t) can be any real number, including a neg
tive one. We also assume thatZ(t)s are normal random variables
with the following relations:

E@D~ t11!2D~ t !#5E@Z~ t !#5m@D~ t !,t# (4)

var@D~ t11!2D~ t !#5var@Z~ t !#5s2 (5)

In Eqs.~4! and~5!, m(•) is a drift function of D(t) and t, ands
is a constantvolatility. The drift function describes the trend o
the uncertainty movements, in the sense of the expected v
From Eq.~3!, we have

D~ t !5D~0!1(
i 50

t21

Z~ i ! (6)

Therefore, we know thatD(t) is normal, because the sum o
normal random variables is itself a normal. In other words,
demands,d(t)s, are lognormal.

While various approaches can be used to model uncertain
uncertainty modeling should also be integrated with the solu
procedures. To better implement dynamic decision making, a
nomial lattice model, which has been widely applied in the va
ation of financial options~Luenberger 1998!, is used to approxi-
mate the uncertainty characterized by Eqs.~4! and ~5!. For a
trinomial lattice, each demand node is designed to branch out
three demand nodes corresponding to the following time pe
~Fig. 1!. To form a lattice, discrete demand values~nodes!, with a
constant incrementDD, are formed for each time period, suc
that branching is only allowed from nodes to nodes of the follo
ing time period. How to select the three nodes to map, as we
their corresponding~conditional! probabilities, is discussed nex

Assume that the value of the uncertainty is known to beD(t)
JOURNAL
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at time periodt, and after one time period,t11, the uncertainty
D(t11) will have three possible values,D(t)1(k11)DD,
D(t)1kDD, and D(t)1(k21)DD, with probabilitiespu, pm,
and pd, respectively. The superscriptsu, m, andd specify three
different branches, up, middle, and down. The demand increm
DD is obtained usingDD5us, whereu is a constant. The choice
of u will be shown later in this section. The branching factork is
an integer, and the value ofk is chosen such thatkDD can best
approximate the expected driftm(D,t)

k[ b m~D,t !

DD
1

1

2 c (7)

whereb• c5so-called floor function, which maps a real number
the nearest integer toward2`.

To solve for the branching probabilitiespu, pm, and pd, the
following linear equations are formed:

E@D~ t11!2D~ t !#5pu~k11!DD1pmkDD1pd~k21!DD

5m~D,t ! (8a)

E$@D~ t11!2D~ t !#2%

5pu~k11!2DD21pmk2DD21pd~k21!2DD2

5var@D~ t11!2D~ t !#1E@D~ t11!2D~ t !#2

5s21m~D,t !2 (8b)

pu1pm1pd51 (8c)

where Eqs. (8a) and (8b) intend to match the conditional mean
and variance ofD(t11)2D(t), respectively. Note that forpu,
pm, andpd to be between 0 and 1,u must be chosen between 2/)
and 2. For details, see Hull and White~1993!.

Repeating the foregoing process to the second period, th
period, and so on produces a~trinomial! lattice of the uncertainty.
An example of a lattice with two time periods is illustrated in Fig
1. Note that the value ofk, and probabilitiespu, pm, andpd are
dependent on both timet and stateD.

As an example, the lattice in Fig. 1 implies nine (532) pos-
sible paths for the evolution ofD(0)5D0 from t50 to t52
s

-

n
to

r

ot

Fig. 1. A trinomial lattice evolves over three time periods~from t
50 to t52).
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Path 1: $D0 ,D01DD,D013DD% with probability p1,1
u p2,1

u

Path 2: $D0 ,D01DD,D012DD% with probability p1,1
u p2,1

m

Path 3: $D0 ,D01DD,D01DD% with probability p1,1
u p2,1

d

]

Path 9: $D0 ,D02DD,D023DD% with probability p1,1
d p2,3

d

wherept, j
b represents the probability for branchingbP$u,m,d% at

node j PV(t) in time periodtP$1,2%. Note thatV(t) is some
ordered set of indices for those nodes that are mapped into at
t ~from the top down, numbered starting from 1 in Fig. 1!; e.g.,
V(0)5$1%, V(1)5$1,2,3%, and V(2)5$1,2, . . . ,7%. The
branching factork, obtained using Eq.~7!, may vary from node
to node and is given underneath each node that branches o
Fig. 1.

Embedded on an uncertainty lattice, decision making can
performed at each node in the lattice. This is the basic idea o
stochastic dynamic programming approach. The differences
tween a lattice approach and a decision tree are as follows~1!
branches recombine with a lattice but not with a decision tree;
~2! a lattice node plays both roles—that of a chance node and
of a decision node of a decision tree. Therefore, the stoch
dynamic programming approach using lattices can be viewed
generalized extension of the decision tree method.

Valuing Foundation

As mentioned previously, an enhanced foundation can be vie
as a real option for expansion. In this section, the expected v
of this real option is appraised.

Constructing Public Parking Garage—Case Study

This case study pertains to the construction of a public park
garage by a county in the Washington, D.C. area. The cost
were compiled from the feasibility study done by the county
daily demand of 250 units of parking space at the location wh
the garage is to be constructed is assumed. Assume that
parking space can generate revenue of $3,600 per year from
ing fees, denoted byR, but requires $100 of maintenance co
denoted bycm . The site for the garage can accommodate
parking spaces per level, denoted bym, and the garage will hav
multiple levels. Assume that the life of the parking garage (T) is
15 years, and after that the facility will be obsolete, with
salvage value. Note that the notations with an uppercaseC rep-
resent fixed costs. In addition, this case study is designed b
on a discount rate of 8%, which was suggested by the feasib
study report of that county. Detailed demand models over
15-year planning period will be presented in the next section

Both profiting and providing satisfactory services are assum
to be important objectives for the public parking garage. For e
unserviced demand, a penaltycpn may be applied. The penalt
can be viewed as either a loss of revenue or opportunity,
potential cost for unsatisfied service, such as complaints that
aggravate and lead to other economic losses. We use the
‘‘net profit’’ to represent the profit less penalty for unservic
demands, and assume that the decision maker maximizes th
profit when he/she makes expansion decisions. To be genera
penalty is assumed to becpn5a•R, 0<a<1, a fractiona of
revenueR generated by each parking space per year. Whea
50, it corresponds to the case without penalty and the deci
92 / JOURNAL OF INFRASTRUCTURE SYSTEMS © ASCE / SEPTEMBER
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making is purely profit maximization. On the other hand, t
value ofa can be viewed as a weighting factor for the importan
for meeting demands; the higher the value, the more importa
is. In the rest of this section, for simplicity, only the results of tw
extreme cases,a50 anda51, are specified. Full comparison o
the effect ofa is deferred to a later section for discussion. Oth
costs related to construction are summarized in Table 1. All c
and revenues are subject to an annual increase off 55% due to
factors such as inflation.

For simplicity, the foundation size~or strength! of the facility
is represented in terms of the maximum number of levels of
perstructure, denoted byN, that the foundation can suppo
safely. Letnt be the number of levels of the facility in time perio
t. At time t, N2nt represents the ‘‘foundation reserve’’ tha
would be available for expansion in terms of additional leve
The unit of time t is in years, and the expansion decision
reviewed at the beginning of each year. The problem is to de
mine the optimal foundation sizeN and the initial number of
levels to constructn0 (n0<N) at time 0. Furthermore, an optima
expansion plannt , t51,, . . . ,T21 over the study period need
to be determined.

Assume that the demand for parking spaces over time pe
@ t,t11# is denoted bydt , t50, . . . ,T21. Given the initial foun-
dation size N and an expansion plan of the facilitynt , t
50, . . . ,T21, a cash flow stream (x0 ,x1 , . . . ,xT21) for the net
profit of the facility can be identified. The sequence of decis
making is as follows. At timet50, the foundation sizeN and the
initial number of levelsn0 are decided. Construction incurs th
following costs:

x052costs of site preparation, foundation,

and superstructure

52Cs2~Cf1cnN!2cun0 (9)

The cost of the foundation is assumed to be a linear function
the foundation sizeN. Assume that the construction would take
year to complete. At any timet.0, the total net profit accumu
lated over time period@ t,t11# is represented byxt , where

xt5Revenue2maintenance cost

2penalty for unmet demand2expansion cost

5@R•min~dt ,nt21m!2cmnt21m2cpn max~0,dt2nt21m!

2ce~nt2nt21!#~11 f ! t (10)

The revenue, maintenance cost, and penalty over time pe
@ t,t11# are based on the capacity of the parking struct
nt21•m, determined one time period~year! earlier because of the
one-year construction lead time assumed. At timet, the expansion
decision nt (>nt21) is made. If nt.nt21 , that means (nt

2nt21) additional level~s! of parking structure will be built dur-
ing the year, which incurs an expansion cost ofce(nt2nt21)(1
1 f ) t, represented by the last term of Eq.~10!. Again, any expan-
Table 1. Summary of Construction Costs

Parameter Value

Site preparation (Cs) $300,000
Fixed cost for foundation (Cf) $1 million
Variable cost for foundation (cn) $100,000/level
Superstructure and miscellaneous (cu) $800,000/level
Construction cost for expansion (ce) $850,000/level
2003



Table 2. Ten-Year Historical Demand Data

Year j dj
H D j

H5 ln d j
H D j 11

H 2D j
H

0 164 5.0999 —a

1 157 5.0562 20.04362
2 181 5.1985 0.14225
3 175 5.1648 20.03371
4 208 5.3375 0.17275
5 185 5.2204 20.11718
6 174 5.1591 20.06130
7 202 5.3083 0.14921
8 237 5.4681 0.15979
9 216 5.3753 20.09278
10 250 5.5215 0.14618

Note: Meanm50.04216; standard deviations50.12047.
aNot applicable.
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Table 3. Outlook of Future~Average! Demandd̃t

Year Timet Average demandd̃t ~units!

1 0 250.00
2 1 262.66
3 2 275.97
4 3 289.95
5 4 304.64
6 5 320.07
7 6 336.29
8 7 353.32
9 8 371.22
10 9 390.02
11 10 409.78
12 11 430.54
13 12 452.35
14 13 475.27
15 14 499.34
at

s
tate

-
on

n

-
on
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sion construction is assumed to take 1 year to complete. Note
the expansion decisionnt is subject to the following nondecrea
ing condition:

n0<n1<¯<nT21<N (11)

Once the cash flow stream (x0 ,x1 , . . . ,xT21) is obtained, its
NPV ~of the net profits! can be determined as follows:

NPV5(
t50

T
xt

~11r ! t (12)

wherer 5discount rate per time period. Note that tax should a
be included in practice, which may reduce the NPV.

Note that the penalty term used in Eq.~10! may not represen
a specific cash outflow. Using penalties is a common techniqu
decision making and economics to contrast alternative decis
Here, we use the penalty to show the value of flexibility ver
the potential loss of the profit if the expansion flexibility is not
place. Including such an opportunity cost~penalty! in a cash flow
stream may raise concern. One immediate consequence is th
NPV obtained in Eq.~12! may not be 100% realizable. Howeve
the term ‘‘cash flow stream’’ is still used in this paper because
focus on the aspect of decision making under uncertainty, ra
than cost accounting. If the reader prefers, the cash flow st
(x0 ,x1 , . . . ,xT) may be termed a ‘‘sequence of the net profit.

Three Demand Models

Assume that historical demand information is available for
past 10 years, denoted bydj

H , j 51, . . . ,10,which is summarized
in Table 2. Assume that the logarithm of demandD j

H5 ln dj
H is

subject to a process following Eqs.~4! and ~5!, whereZ(t), t
51,2, . . . ,T are mutually independent, and the meanm(•) is
assumed to be a constantm, independent of stateD j

H and timej .
Using the following formulas, with the historical data in Table
the best estimate ofm is 0.04216 ands is 0.12047 units:

m5
1

10(
j 50

9

~D j 11
H 2D j

H! (13a)

s25
1

~1021! (j 50

9

~D j 11
H 2D j

H2m!2 (13b)

From Eq.~8!, the expected logarithm of annual parking dema
of year t in the future is
o

in
s.

s

the

e
er
m

E@D~ t !#5E@ ln d~ t !#5D01(
i 50

t21

u5D01tm (14)

The expected annual parking demand of yeart in the future,
E@d(t)#, is, however, not exp$E@D(t)#%5d0 exp(tm), but

d̃t[E@d~ t !#5d0 exp~ tm1 1
2 ts2! (15)

with some contribution from the variances2. Note that Eq.~15!
is obtained using the lognormal property ofd(t). Given the
known demand att50, d05d(0)5250, and the logarithm of
demandD05D(0)5 ln 250, the values ofd̃t , t50, . . .,14, using
Eq. ~15!, are obtained and are summarized in Table 3.

The trinomial lattice introduced previously will be used to
represent demand evolution. While the trinomial lattice model i
capable of handling more general processes such as time and s
dependent drift functionsm(D,t), the demand uncertainty model
considered in this case study~by setting it to be a constant! is
more simplistic due to lack of data. If data are sufficiently avail
able, statistical methods can be used to estimate the drift functi
m(D,t), as well as its relations to the stateD and timet. Because
we assume the drift functionm to be a constant for all time peri-
ods, the three branching probabilities (pu,pm,pd) and the branch-
ing factor k will be the same for every node. The parking de-
mands in the lattice may no longer be integers. The computatio
is still carried forward to maintain the integrity of the lattice.

Depending on the complexity of the available demand infor
mation, three models can be applied to determine the foundati
size and the facility expansion plan. To produce a fair compar
son, all three models are based on the same data source and
consistent.
• Model 1—deterministic annual parking demands, identical fo

every year over the entire study period. In this model, th
demand is assumed to be fixed and is denoted byd̃. It is the
simple arithmetic average of the annual demandsd̃t given in
Table 3

d̃5
1

T (
t50

T21

d̃t5361.4 (16)

• Model 2—deterministic annual parking demands, with a trend
described byd̃t from Eq. ~15!, t50, . . . ,14, asgiven in Table
3. In this case, the demand trend is growing becausem.0.
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Fig. 2. Deterministic decision tree for solving Models 1 and 2
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Table 4. NPV ~$1,000! of Alternatives in Expansion Planning for Model 1 (a51)

Initial number of levelsn0

Initial foundation reserve~levels!, N2n0

0 1 2 3 4 5 6

1 28,943.1 21,794.2 5,354.7 9,335.7 9,235.7 9,135.7 9,035.7
2 21,744.2 5,404.7 9,385.7 9,285.7 9,185.7 9,085.7 8,985.7
3 5,454.7 9,435.7 9,335.7 9,235.7 9,135.7 9,035.7 8,935.7
4 9,485.7 9,385.7 9,285.7 9,185.7 9,085.7 8,985.7 8,885.7

5 8,471.6 8,371.6 8,271.6 8,171.6 8,071.6 7,971.6 7,871.6
6 7,457.5 7,357.5 7,257.5 7,157.5 7,057.5 6,957.5 6,857.5
7 6,443.5 6,343.5 6,243.5 6,143.5 6,043.5 5,943.5 5,843.5
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• Model 3—stochastic annual parking demands, described b
the trinomial lattice. In this model, at each node and at eac
time t, the branching factork and branching probabilitiespu,
pm, andpd are determined by using Eq.~7! and solving Eqs.
(8a) – (8c), respectively. Let DD5us5)30.12047
50.2087, whereu is set to be), as suggested by Hull and
White ~1993!. Using Eq.~7!, in this case study, the branching
factor is

k5b m

DD
1

1

2 c5b 0.04216

0.2087
1

1

2 c50 (17)

and (pu,pm,pd)5(0.288,0.626,0.086), the same for each nod
at each time period. Since the lattice covers 15 time perio
~years!, from t50, . . .,14, equivalently it accounts for 315

(514.348907 million) demand scenarios.

Model 1—Annual Parking Demand is a Constant d ˜ for
All Years

This model assumes that the annual parking demand is a cons
d̃ for all years. Since uncertainty is not involved, a deterministi
decision tree~De Neufville 1990!, as shown in Fig. 2, is used to
solve the problem. At the beginning of construction,t50, the
foundation sizeN and the number of levels of superstructuren0

are decided. Assume that the construction will take 1 year
complete. After the first year, expansion decisionnt is reviewed,
which is subject to Eq.~11!.

Mathematically, the decision-making process in Fig. 2 can b
summarized by a recursive relation. Extending from Eqs.~9! and
~10!, the cash flowxt is now written as a function of decision
variablesN andnt ; i.e., xt(N,nt)

x05max
N,n0

@2Cs2~Cf1cnN!2cun01~11r !21x1~N,n0!#

(18a)

and for t51, . . . ,T21
nt

xt~N,nt21!5@R•min~dt ,nt21m!2cmnt21m

2cpn max~0,dt2nt21m!#~11 f ! t

1 max
nt21<nt<N

@~11r !21xt11~N,nt!

2ce~nt2nt21!~11 f ! t# (18b)

with boundary conditions

xT~N,nT21!50; ;nT21 (18c)

Assumingdt5d̃5361.4 for all t, the optimal solution obtained
for this model isN5n054, regardless of the penalty factora.
That is, a foundation reserve is not made, nor is an expans
plan. The corresponding optimal NPV of the model is $9.5 m
lion. This optimal solution seems intuitive. Since the demand
assumed to be 361.4 units every year, the optimal solution is
build a parking structure with 400 parking spaces. As mention
previously, if every future outcome could be perfectly forecast
is unnecessary to reserve any flexibility. Detailed results for
case with the penalty factor ofa51 are given in Table 4.

In real options literature, a risk-free interest rate is usua
used as the discount rate, which, however, only applies to
cases where real options can be hedged and all risks can be e
nated. Since all risks are eliminated, under no arbitrage argum
the discount rate has to be the ‘‘risk-free’’ rate. In reality, there
nothing tradable in the market such that the risk of holding
enhanced foundation can be hedged. Therefore, the discount
is determined based on the riskiness of the project~Copeland
et al. 1990!. To obtain a risk-adjusted discount rate, a pricin
model must be assumed. An example based on the capital a
pricing model~CAPM! can be found in Levia¨kangas and La¨hes-
maa~2002!.

Model 2—Annual Parking Demands Are Constants, d ˜
t ,

tÄ0, . . . ,14

The same deterministic decision tree used in Fig. 2, or E
(18a) – (18c), is used to solve this model, with the optimal de
sign N54, n053 obtained for the case without penalty (a50),
and N55, n053 for the case with maximal penalty (a51). In
the optimal solution of the case without penalty, the foundation
enhanced to support expansion for one additional level in
future with an NPV of $8.9 million, and the expansion decisio
will be made at the beginning of Year 4 (n353). Since the de-
mand exceeds 300 spaces in the 4th year, the structure is
panded one additional level att53, and the expansion construc
tion is completed att54. A similar observation can be made fo
the case with maximal penalty, in which the optimal NPV is $8
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Table 5. NPV ~$1,000! of Alternatives in Expansion Planning for Model 2 (a51)

Initial number of levelsn0

Initial foundation reserve~levels!, N2n0

0 1 2 3 4 5 6

1 28,931.9 22,449.7 3,802.5 7,009.4 7,555.2 7,455.2 7,355
2 21,733.0 4,519.2 7,726.1 8,271.9 8,171.9 8,071.9 7,971
3 4,974.5 8,181.4 8,727.2 8,627.2 8,527.2 8,427.2 8,327.2

4 8,133.3a 8,679.2 8,579.2 8,479.2 8,379.2 8,279.2 8,179
5 8,460.4 8,360.4 8,260.4 8,160.4 8,060.4 7,960.4 7,860
6 7,446.3 7,346.3 7,246.3 7,146.3 7,046.3 6,946.3 6,846
7 6,432.3 6,332.3 6,232.3 6,132.3 6,032.3 5,932.3 5,832
aModel 1 optimum.
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Fig. 3. Demand branching and corresponding cash flow function
wheredt5exp(Dt) andd t11

b 5exp(Dt11
b ), bP$u,m,d%
million and one additional level is expanded att53 and t59,
respectively. Detailed results for the case with maximal penal
are given in Table 5. Note that directly comparing the optima
NPV in Model 2 with the optimal NPV obtained in Model 1 is
meaningless, since they are obtained based on different dem
models. The optimal decisionN5n054 obtained in Model 1 now
corresponds to suboptimal solutions with an NPV equal to $8
million without penalty and $8.1 million with maximal penalty,
respectively. One can attribute the difference between both mo
els to the overestimation of the net profit due to the crudeness
Demand Model 1.

Since N2n0 represents the foundation reserve at the begi
ning of construction, the column in Table 5 underN2n050 cor-
responds to the inflexible case. Consider the optimal expans
planN55, n053, with an NPV of $8.7 million, for the case with
maximal penalty. Comparing this optimal solution with the corre
sponding inflexible planN5n053, with an NPV of $4.97 million
in Table 5, the difference, $3.75 million, can be viewed as th
value of flexibilityby reserving foundation sizeN2n052, which
accounts for 43% of the optimal NPV in this case. This valu
indicates the potential profit to be capitalized on if expansion
possible. Givenn0 , it can be seen that the value of flexibility
increases asN2n0 increases until some point is reached wher
reserving too much flexibility becomes uneconomical. That i
with too much flexibility, the potential profit due to expansion
cannot offset the increased cost for laying a deeper foundation

Model 3—Demand Evolution Follows Trinomial Lattice

To incorporate decision making into a trinomial lattice, stochast
dynamic programming is used. Since demand scenarios are u
at each time period, the cash flow function used in Model 1 wi
be further extended to include the demand outcomes. Conside
demand branching in the trinomial lattice, as shown in Fig. 3~a!.
At time t, a logarithmic demand outcomeDt branches intoDt11

u ,
Dt11

m , and Dt11
d , whereDt11

u 5Dt1(k11)DD5 ln d t11
u , Dt11

m

5Dt1kDD5 ln d t11
m , and Dt11

d 5Dt1(k21)DD5 ln d t11
d , and

the corresponding cash flow functions arext(N,nt21 ,dt),
JOURNAL
d

-
f

n

ed

a

xt11(N,nt ,d t11
u ), xt11(N,nt ,d t11

m ), and xt11(N,nt ,d t11
d ), as

shown in Fig. 3~b!. Note that the cash flow functionxt now also
depends on the demand outcome. The recursive relation between
the three cash flow functions in Fig. 3~b! is as follows:

xt~N,nt21 ,dt!5@R min~dt ,nt21m!2cmnt21m

2cpn max~0,dt2nt21m!#~11 f ! t

1 max
nt21<nt<N

~11r !21@pt
uxt11~N,nt ,d t11

u !

1pt
mxt11~N,nt ,d t11

m !1pt
dxt11~N,nt ,d t11

d !

2ce~nt2nt21!~11 f ! t# (19a)

with boundary conditions

xT~N,nT21 ,dT!50; ;nT21 , ;dT (19b)

It is obvious that Eqs. (19a) and (19b) are directly extended from
Eqs. (18b) and (18c), respectively. The only difference is that
the recursive functionxt11 is replaced by the discrete expectation
of xt11 , since now the three possible outcomes ofxt11 , givenxt

andDt , are possible.
Running the recursive functions in a backward manner, from

t5T to t50, using Eqs. (19a) and (19b), at the last step

x05max
N,n0

$2Cs2~Cf1cnN!2cun01~11r !21@p0
ux1~N,n0 ,d 1

u!

1p0
mx1~N,n0 ,d 1

m!1p0
dx1~N,n0 ,d 1

d!#%. (19c)

The optimal decision in Eq. (19c) is N56, n053 in the case
without penalty, andN57, n053 in the case with maximal pen-
alty. The foundation is enhanced to support the expansion of three
~without penalty! or four ~with maximal penalty! additional levels
during the initial construction, with optimal NPVs of $8.1 million
and $7.6 million, respectively. Detailed results for other design
alternatives are given in Table 6 for the case with maximal pen-
alty.

Consider the value of flexibility in this model by taking the
optimal~expected! NPV of $7.6 million (N57, n053 with maxi-
mal penalty!, subtracting the NPV corresponding to the inflexible
plan, $3.7 million (N5n053). This value of flexibility by re-
serving the foundation sizeN2n054 now accounts for 51.6% of
the optimal~expected! NPV, higher than 43% obtained in Model
2.

Directly comparing Models 2 and 3, the optimal~expected!
NPV obtained by Model 3 is 7.6%~with maximal penalty!, or
3.3% ~without penalty! higher than that obtained by Model 2.
This difference of the expected NPV between Models 2 and 3 can
be interpreted as thevalue of uncertainty modeling, i.e., a deter-

,
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Table 6. Expected NPV~$1,000! of Alternatives in Expansion Planning for Model 3 (a51)

Initial number of levelsn0

Initial foundation reserve~levels!, N2n0

0 1 2 3 4 5 6

1 28,930.2 22,516.7 2,525.8 4,919.2 5,913.3 6,317.2 6,452.0
2 21,800.0 3,242.5 5,635.8 6,629.9 7,033.8 7,168.7 7,150.3
3 3,681.6 6,075.0 7,069.1b 7,473.0 7,607.8 7,589.5 7,541.3

4 5,989.4a 6,983.4 7,387.3 7,522.2 7,503.8 7,455.7 7,373.5
5 6,636.0 7,039.9 7,174.7 7,156.4 7,108.2 7,026.0 6,938.7
6 6,495.3 6,630.1 6,611.8 6,563.6 6,481.5 6,394.2 6,297.6
7 5,932.0 5,913.7 5,865.5 5,783.4 5,696.1 5,599.5 5,502.9
aModel 1 optimum.
bModel 2 optimum.
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Table 7. Summary of Results of Three Models~$1,000!

(N,n0)
Model 1

NPV
Model 2

NPV
Model 3
E@NPV#

Penalty
factor a

Model 1 optimum~4, 4! 9,485.7 8,133.3 5,989.4 a51
Model 2 optimum~5, 3! 9,335.7 8,727.2 7,069.1 a51
Model 3 optimum~7, 3! 9,135.7 8,527.2 7,607.8 a51
Model 1 optimum~4, 4! 9,485.7 8,803.9 7,731.0 a50
Model 2 optimum~4, 3! 9,435.7 8,866.9 7,858.7 a50
Model 3 optimum~6, 3! 9,235.7 8,666.9 8,115.8 a50
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Fig. 4. Value of flexibility ~in terms of percentage of optimal NPV!
versusa
ministic demandd̃t for time t in Model 2 versus a set of demand
scenarios in Model 3.

Discussion

The optimal decisions from all three models are summarized
Table 7. The following observations can be made.

First, from Table 7, it may seem that Model 3 obtained
poorer optimal NPV than did Model 2, which is poorer tha
Model 1. Because all three models are different, compariso
among these models should be done with caution. Basically
crude demand model, such as Model 1 versus Model 2, a
Model 2 versus Model 3, may overestimate profits or expec
profits. In this case study, the overestimates seem very signific

Second, this case study justifies the claim in the literature
real options that traditional NPV methods tend to underestim
the flexible alternatives. To see this, in Model 1 the design alt
natives that reserve foundations are strongly discouraged.
fact is that the value of flexibility generally increases as the vo
tility of the uncertainty increases. A flexible design alternative c
increase the expected value of the profit. This reiterates the na
of flexibility, which is the capability to cope with uncertainties.

Third, it seems fair to say that if flexibility could be correctl
valued, the optimal design tends to be more aggressive than th
that do not consider flexibility. Overall, the aggressiveness of
design is proportional to the penalty factora considered in the
objective function for each unfulfilled demand. In Fig. 4, th
value of flexibility ~in terms of percentage of optimal NPV! is
displayed as the value ofa changes. Intuitively, the value of
flexibility increases asa increases for both Models 2 and 3, be
cause~1! the need to satisfy increasing demand is more emp
sized; and~2! the underservice of the inflexible counterpart
more discouraged. In the worst case witha50, the value of flex-
ibility accounts for at least 12% of the optimal NPV. In a goo
scenario path of the uncertainty, that the demand increases e
n

s
a
d
d
t.
f
e
-
e

-

re
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year, the value of the flexibility may exceed 100% of the optimal
NPV. As mentioned previously, reserving flexibility in design can
be viewed as an investment. The additional cost for laying a
deeper foundation can be thought of as a premium for the pur
chase of a real option. While an investment is not a guarantee o
success, a chance exists that the real option may never be exe
cised and therefore may be worthless. For example, a structur
with an enhanced foundation may never have a chance to expan
even if the designer expects it to happen. This probably corre
sponds to a bad scenario path of uncertainty realization, one o
the many paths considered in a lattice. This bad scenario path ma
be associated with a small probability of occurrence, but it may
still prevail. For example, in the bad scenario that the demand
does not increase but decrease every year, the optimal NPV
2$16.5 million, which, however, only has a very small probabil-
ity of occurrence (2.36310216). The proposed valuation proce-
dure, however, selects the optimal design based on the expect
value accounting forall possible scenario paths.

Implications to Infrastructure Development

The proposed model has broader implications to infrastructure
development. The benefits of an effective infrastructure system
are undoubtedly significant for economic development, employ-
ment, and competitiveness. Provision of these systems require
investments that are normally huge, irreversible, and highly risky
and have a very long economic return period. Planning infrastruc
ture systems to satisfy both present and future demands with ad
equate flexibility should be a primary consideration in making
infrastructure decisions. Because that demand varies with tim
and many other factors, planning infrastructure capacity in orde
2003
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to maintain sustainability should be an ongoing process, rat
than a one-time effort. As discussed previously, every planni
decision has an option value, because the decision maker
always elect to delay the decision. Therefore, the proposed mo
obtains the optimaloption valueof each expansion decision. In
this model, since the decision is constantly reviewed at each ti
period, once a decision~or an alternative! is selected, it must be
the optimal decision~alternative!, taken at the optimal timing.
That also means the option~flexibility ! value of decision making
is fully captured. When applying the proposed approach, the u
certainty model should be updated constantly, taking new inf
mation into account. That is, the proposed multistage mod
should be applied repeatedly with a rolling planning horizon a
up-to-date outlook for uncertainty. While the planning of man
infrastructure projects focuses more on short-term considerat
than long-term demand evolution, the proposed model clearly
dresses both perspectives.

In a complex infrastructure system, multiple uncertainties m
exist. In this situation, the proposed stochastic dynamic progra
ming approach can still be integrated with either multifactor la
tices @see Tseng~2001! for an application using a two-factor lat-
tice# or Monte Carlo simulation~Longstaff and Schwartz 2001;
Tseng and Barz 2002! to value flexibility. In fact, how to properly
model the evolution of the underlying uncertainties remains
important and challenging task in real options valuation.

Conclusions

Flexibility has value, which has long been understood but rare
used. If a design alternative can provide flexibility, the value
flexibility should be incorporated into the design process and d
cisions. In this paper, it has been demonstrated how to select
foundation size in order to maximize the expected profits fro
potential expansions. Through a case study, numerical res
show that the omission of the value of flexibility from an analys
may result in the rejection of alternatives and opportunities th
should not have occurred otherwise. The value of flexibility
this case study is so significant that failure to account for flexib
ity is not economical. Test results also suggest a need to integ
common valuation techniques such as the discounted cash fl
analysis with uncertainty modeling so as to capitalize on the va
of flexibility.
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