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In this paper, we use a real-options framework to value a power plant. The real option to commit or decommit a generating unit
may be exercised on an hourly basis to maximize expected profit while subject to intertemporal operational constraints. The
option-exercising process is modeled as a multistage stochastic problem. We develop a framework for generating discrete-
time price lattices for two correlated Ito processes for electricity and fuel prices. We show that the proposed framework
exceeds existing approaches in both lattice feasibility and computational efficiency. We prove that this framework guarantees
existence of branching probabilities at all nodes and all stages of the lattice if the correlation between the two Ito processes
is no greater than 4/

√
35 ≈ 0�676. With price evolution represented by a lattice, the valuation problem is solved using

stochastic dynamic programming. We show how the obtained power plant value converges to the true expected value by
refining the price lattice. Sensitivity analysis for the power plant value to changes of price parameters is also presented.
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1. Introduction
Recently there have been substantial research activities in-
volving real-options implementations for valuation in a
variety of areas (Trigeorgis 1996). Formally, real options
can be defined as the options embedded in real operational
processes, activities, or investment opportunities that are
not financial instruments. Given the popularity of the real-
options approach, the core flexibility of a power plant, such
as committing or decommitting a unit, has also been valued
using such a “financial” methodology in the deregulated
environment (Tseng and Barz 2002). The traditional unit-
commitment problem (e.g., Sheble and Fahd 1994, Tseng
1996) can be viewed as an example of optimally exercising
these operational real options to achieve cost minimiza-
tion in the regulated environment, although in the “cost-
of-service” world, savings from efficient dispatch typically
accrue to the ratepayers. With deregulation and the intro-
duction of spot markets for both electricity output and the
fuel input, generation asset owners, whether they are a util-
ity or a merchant operator, must reassess the value of their
units, accounting for the market opportunity costs. Price
information must be incorporated into the unit-commitment
problems to capitalize on the profitable opportunities aris-
ing in the market. In doing so, utilities and power genera-
tors not only optimize their commitment decisions, taking
into account price stochastics, but also maximize the mar-
ket value of their power plants over the operating period.
In Deng et al. (1998) and Hsu (1998a, b), a power plant’s

valuation is appraised using real-option theory. The idea

of these approaches is as follows: A power plant, with its
associated heat rate, converts a particular fuel to electricity.
This conversion involves two commodities with different
market prices. When the electricity price is high, but the
fuel price is low, the power plant should run to capitalize on
the positive and profitable price spread between the price
for power and the unit’s cost of generation. If the price
spread is negative, then the optimal decision is not to run
the unit. Therefore, owning a power plant can be regarded
as holding a series of call options of spark spreads, defined
as the electricity price less the product of the heat rate
associated with the generator and the fuel price. Analyti-
cal solutions using financial option theory can date back to
Margrabe (1978) and Deng et al. (1998), who specifically
applied them in the context of generation asset valuation.
Although using real-option theory to value a power plant is
a novel approach, most implementations have overlooked
the power plant’s operational constraints. Without consid-
ering the operational constraints, the power plant may be
overvalued.
In this paper, we assume that there are hourly spot mar-

kets for both electricity and the fuel used by the generator,
and that their prices follow some Ito processes. At each
hour, the power plant operator must decide whether or not
to exercise the option for running the unit. The unit opera-
tion is subject to decision lead times and minimum uptime
and downtime constraints, so the commitment decision
must take into account intertemporal effects. This option-
exercising process is modeled as a multistage stochastic
problem.
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In Tseng and Barz (1999, 2002), the generation asset
valuation problem with physical constraints was tackled
using Monte Carlo (MC) simulation. That approach, simi-
lar to backward dynamic programming (DP) steps, applies
MC simulation to determine optimal decision policies start-
ing from the last period. The process is then repeated
and moved backward: Having obtained all optimal decision
policies for the subsequent time periods, MC simulation
is applied to the current period. The advantage of this ap-
proach is its flexibility: MC simulation can easily adopt
different kinds of price processes. It can also incorporate
heuristics and simulate difficult constraints, such as unit
ramp constraints. The major disadvantage is the computa-
tional speed. Because in the approach in Tseng and Barz
(1999, 2002) the steps involve repeated backward-moving
DP recursion and forward-moving MC simulation, the com-
putation is massive and slow.
As opposed to the MC simulation, advantages of another

approach using lattices for modeling uncertainty evolu-
tion have long been recognized. These advantages include
its computational efficiency and its capability of handling
exercise of American-type options. In our opinion, some
important mathematical properties, such as existence of
the price lattice and computational complexity, have been
overlooked, which limits the applicability of the lattice ap-
proach. We show that traditional approaches, such as using
decoupling techniques and the approach of Hull and White
(1994), all have drawbacks. In this paper, we develop a
framework for generating discrete-time trinomial price lat-
tices for two general correlated Ito processes for electricity
and fuel prices. Existence and convergence properties of
the price lattice are analyzed. We derive a sufficient con-
dition for guaranteeing existence of branching probabilities
at all nodes and all stages of the lattice, that may not nec-
essarily be met by the traditional approaches. We show that
the proposed framework can satisfy the sufficient condi-
tion if the correlation between the two Ito processes is no
greater than 4/

√
35≈ 0�676, which is much higher than the

correlation between the electricity and natural gas prices
observed in the markets (e.g., Herbert 2001). Overall, the
proposed framework exceeds existing approaches in both
lattice feasibility and computational complexity. With price
evolution represented by a lattice, the valuation problem is
solved using stochastic DP.
To approximate an Ito process via a trinomial price lat-

tice, we first divide the time horizon into small intervals.
We then, in each time interval, use a three-point discrete-
distribution approximation that matches the first and the
second moment of the underlying Ito process. We further
show that the proposed price lattice converges to the under-
lying Ito processes as the length of interval tends to zero.
Therefore, the estimated power plant value in the price lat-
tice will converge to the true expected value if we endure
more computational effort. Our approach not only provides
a better understanding of two-factor uncertainty lattices, but

also has broad applications in valuation of various financial
instruments.
This paper contributes to better understanding of mathe-

matical properties of the two-factor lattices in the following
three notions: (i) lattice compactness (boundedness of the
size), (ii) lattice feasibility (existence of branching prob-
abilities for any node at any stage), and (iii) lattice con-
vergence to the underlying continuous correlated process.
We show that for a class of mean reverting processes, the
lattice size can be bounded. It is further shown that a lat-
tice may be “optimized” by adjusting its cell sizes so as to
achieve the feasibility and improve the convergence.
Deng and Oren (2003) proposed another approach for

modeling a two-factor lattice, which has a different branch-
ing pattern such that branches are from one node to three
other nodes, like a triangular pyramid. Their lattice, how-
ever, does not have the lattice compactness property, and
its size grows as the time horizon increases.
The proposed generation asset valuation framework is

intended to be applicable for general situations, which may
include valuation over a long life cycle and/or subject to
transmission constraints. Although we present the valuation
framework with hourly time increments to capture physical
constraints, we will also discuss how longer-term market
information, such as forward curves, can be incorporated
into the framework in the online appendix. How to con-
sider transmission constraints, which are not formulated in
the proposed model, will also be discussed in the online
appendix.
In numerical tests, we apply the proposed lattice frame-

work to two correlated geometric mean-reverting processes
corresponding to electricity and fuel prices. The conver-
gence property of the joint distribution, represented by
the lattice, will be presented. The valuation model is then
applied to a natural gas-fueled power plant. We demon-
strate that the proposed method can converge to the theo-
retically true power plant expected value within acceptable
CPU times. Sensitivity analysis for the power plant value
to changes of price parameters is also presented.
This paper is organized as follows. In §2, we model the

generation asset valuation problem as a multistage stochas-
tic problem. The framework for modeling two correlated
processes by a two-factor lattice is discussed in §3. We
present numerical results in §4 and conclude this paper
in §5. For brevity, all mathematical proofs are placed in
the appendix of this paper, which is available in the online
companion at http://or.pubs.informs.org/Pages/collect.html.
Some implementation issues and potential extensions,
such as considering ramp constraints, long-term valuation,
and network constraints are also discussed in the online
appendix.

2. Short-Term Generation Asset
Valuation

A power plant consumes a particular fuel and then con-
verts the fuel into electricity. This conversion involves two
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commodities with different market prices. The operational
constraints of a power plant considered in this paper include
decision lead times, intertemporal constraints, variable heat
rate, and startup costs, all of which complicate the optimal
commitment decision making, especially under price uncer-
tainties. The interested reader is referred to Tseng and Barz
(2002) for an overview of these operational constraints.

2.1. The Mathematical Model for Power
Plant Operation

This section presents a mathematical model of the charac-
teristics of power plant operations. We first introduce the
following standard notation. Additional symbols will be
introduced when necessary.

t: index for time (in hours) �t = 0� � � � � T �.
� : unit startup time, i.e., commitment decision lead time

(� � 1, � ∈Z, the set of all integers).

: unit shutdown time, i.e., decommitment decision lead

time (
 � 1, 
 ∈Z).
xt: state variable indicating the commitment status of the

unit in time period t (xt ∈Z, xt �= 0).
ut: zero-one generation unit commitment decision vari-

able to be made at state xt in time period t.
ton: the minimum number of periods the unit must remain

on after it has been turned on (ton � 1, ton ∈Z).
toff : the minimum number of periods the unit must

remain off after it has been turned off (toff � 1, toff ∈Z).
tcold: the minimum number of periods required to cool

down the boiler of a unit after it has been turned off
(tcold � toff , tcold ∈Z).

qt: decision variable indicating the amount of power the
unit is generating in time period t.

qmin: minimum rated capacity of the unit.
qmax: maximum rated capacity of the unit.
R: ramp rate of the unit.
PE

t : electricity price ($/MWh) in time period t.
PF

t : fuel price ($/MMBtu) in time period t.
H�q�: heat requirement (MMBtu/MWh) of the unit at

output level q (MWh).
Su�xt�: startup cost associated with turning on the unit

at state xt in time period t.
Sd: shutdown cost associated with turning off the unit.
Next, we present major assumptions made in this paper

on unit operations, A1 to A4, and price models, A5 to A6.
Further justification for some assumptions will be given
later when they are cited.

Assumptions

A1. The unit operation is not subject to ramp constraints.
We, however, will discuss the impact of this assumption in
the online appendix.

A2. An online (spinning) unit can be dispatched instanta-
neously and optimally.

A3. The unit commitment decisions are made on an hourly
basis.

A4. The operator is a price taker, i.e., he has no mar-
ket power to influence market prices by his unit commit-
ment decisions. Therefore, the electricity and fuel prices are
exogenous to the unit commitment decision models. Fur-
thermore, the operator is risk neutral.

A5. There are hourly spot markets for both electricity and
fuel used by the generator, and their prices PE

t and PF
t ,

respectively, follow some continuous correlated diffusion
processes. However, in conjunction with A3, the prices are
taken at discrete time periods in our implementation.

A6. Both PE
t and PF

t are actual price models, instead of
risk-neutral price models.

Let � be the set of states for unit commitment. � is com-
posed of four subsets of states: �1 for the startup period,
�2 for the normal online period,�3 for the shutdown period,
and �4 for the normal offline period.

xt ∈� =�1 ∪�2 ∪�3 ∪�4� where (1)

�1 ≡ �1�2� � � � � ��� (2a)

�2 ≡ �� + 1� � + 2� � � � � � + ton�� (2b)

�3 ≡ �−1�−2� � � � �−
�� (2c)

�4 ≡ �−
 − 1� � � � �−
 − toff� � � � �−
 − tcold�� (2d)

Basically, unit startup time and shutdown time are captured
in �1 and �3, respectively; and the unit minimum uptime
and downtime are captured in �2 and �4, respectively. This
model is consistent with the one proposed in Svoboda et al.
(1997).

Decision Variables. At each state xt at time t, a com-
mitment decision, denoted by ut ∈ �0�1�, must be made
to transition xt to some state xt+1 at time t + 1. Note that
in this paper, the commitment ut is a decision to be made
at state xt , which is somewhat different from the tradi-
tional unit commitment formulation in which ut and xt have
some correspondence and are determined simultaneously.
This change reflects the dynamics of decision making under
uncertainty. The commitment decision ut must be made in
compliance with the so-called minimum uptime/downtime
constraints, that are described in the following equation:

ut =



1 if 1� xt < � + ton�

0 if − 
 − toff < xt �−1�
0 or 1 otherwise�

(3)

Equation (3) describes that the unit must remain online if
it has not been online for more than ton hours, and must
remain offline if it has not been offline for at least toff hours.
In other cases, i.e., xt ∈ �� + ton� ∪ �x ∈ Z � −
 − tcold �
x �−
 − toff�, turning the unit on or off is an option. The
commitment decision ut , once it has been made, will yield
the following state transitions.
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State Transition Constraints

xt+1 =




min�� + ton� xt + 1�
ifxt ∈�1 ∪�2 and ut = 1�

−1 ifxt = � + ton and ut = 0�
max�−
 − tcold� xt − 1�

ifxt ∈�3 ∪�4 and ut = 0�
1 ifxt �−
 − toff and ut = 1�

(4)

Dispatch Constraints

If xt ∈�1,

qt = qminxt/�� (5)

If xt ∈�2,

�qt − qt−1��R� (6)

qmin � qt � qmax� (7)

If xt ∈�3,

qt = qmin�1+ xt/
�� (8)

If xt ∈�4,

qt = 0� (9)

Note that (5) implies that when the unit is turned on,
it takes � hours with fixed increasing rate in generation
qmin/� to reach the minimum rated capacity of the unit.
Therefore, qt = qmin when xt = � . Similarly, (8) implies
that qt = 0 when xt =−
. That means when an online unit
is turned off, its generation level has to be reduced to qmin,
then from qmin it takes 
 hours with fixed decreasing rate in
generation qmin/
 to reduce to zero. To sum up, during the
startup and shutdown periods, the unit continues to generate
power, but not as much as in the normal online period �2.
To distinguish the difference, we refer to the online period
the states in �3 only.
The constraints specified in (6) are the so-called (operat-

ing) ramp constraints, which limit the capacity changes of
a generation from one hour to the next. Because the ramp
constraints can be handled by the approach to be proposed
in the paper, with the state space expanded from �xt� to
include the (discrete) generation levels �qt�, we will not
specifically include the ramp constraints in the develop-
ment (A1). Certainly, the ramp constraints increase com-
putational effort (Tseng and Barz 2002). Because the ramp
constraints will not be imposed, they may be violated. We
will discuss how to relieve the impact due to the violation
of the ramp constraints in the online appendix.

Initial Conditions. The unit operation is subject to
some initial condition on xt at t = 0. This initial value is
denoted by x̃0.
There are costs (or profits) associated with state transi-

tion and state visit. Let S�·� denote the transition costs and
��·� denote the profit collected from visiting states. Tran-
sition costs S include startup cost and shutdown cost, and
can be represented as

S�xt� ut�=




Su�xt� if xt < 0 and ut = 1�
Sd if xt > 0 and ut = 0�
0 otherwise,

(10)

which captures the transition cost due to the commitment
decision ut made at state xt . The profit associated with a
state xt is

��xt� qt� PE
t � P F

t �=



PE
t qt −H�qt�P

F
t if xt > 0�

0 if xt < 0�
(11)

where qt is the generation level at time t. In this paper, it
is assumed that the dispatch problem can be solved instan-
taneously and optimally after the prices are revealed (A2).
When a unit is in the normal online period at time t, i.e.,
xt ∈�2, its optimal dispatch gt is defined as follows:

gt ≡ argmax�PE
t qt −H�qt�P

F
t � qmin � qt � qmax�

∀xt ∈�2� (12)

Below, the dispatch qt in the profit function � will be re-
placed by its optimal value gt .
Let Ft�xt� PE

t � P F
t � be the power plant value at time t and

state xt with observed electricity and fuel prices �PE
t � PF

t �.
According to A4, the operator is risk neutral and the recur-
rence equations can be formulated as follows:

Ft�xt� PE
t � P F

t �

=��xt� gt� PE
t � P F

t �

+max
ut

�Et�e
−rFt+1�xt+1�PE

t+1� P
F
t+1� − S�xt� ut��� (13)

where Et denotes the expectation operator, the subscript t
indicates the expectation is conditioned on the price infor-
mation available at time t, and r is the discount rate. Equa-
tion (13) is subject to the state transition constraints (3)
and (4), and the dispatch constraints (5) to (9). The bound-
ary conditions are

FT �xT �PE
T �PF

T �=��xT � gT �PE
T �PF

T �� (14)

The optimal value J ∗ representing the power plant value
over the period [0� T ] can be obtained from the last step of
the recursive relation as

J ∗ = F0�x̃0�PE
0 � PF

0 �� (15)
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In this paper, we propose using stochastic dynamic pro-
gramming (SDP) to solve (15). To do so, we need to model
price uncertainties on the discrete-time space. This will be
detailed in the following sections.
In (13), the expectation is taken based on actual price

processes instead of risk-neutral ones, and r is a discount
rate that reflects the risk preference of the decision maker.
In general, the risk-neutral measure of an uncertainty is
obtained by referring to some “twin portfolio” implied by
existing derivative securities that has equivalent riskiness.
In this paper, based on A6, we utilize actual price pro-
cesses instead of risk-neutral price processes because we
suppose that the model will be mostly applied to determine
the impact of operational constraints over a shorter term
(such as days to weeks) rather than the monthly averages
upon which derivative contracts are typically based. If a
much longer term (such as months or years) will be con-
sidered, one can apply a constant adjustment to the com-
modity price process mean to obtain the risk-neutral price
process, with the magnitude of the adjustment determined
from the appropriate commodity derivatives (e.g., futures).
In that situation, the discount rate will be the risk-free rate.

2.2. The SDP Approach

Consider using a price tree to represent the evolution of
prices (PE

t � PF
t ), t ∈ �0� T  . We will refer to each node in

the tree as a leaf node, or simply, a leaf. Suppose that all
the leaf nodes belonging to each time t are arranged by
some ordered index set I�t�. Each leaf is denoted using a
superscript index by (PE� i

t � P F � i
t ), i ∈ I�t�. Let At�i� be the

index set of descendants for a leaf (PE� i
t � P F � i

t ), i ∈ I�t�,
such that At�i�⊂ I�t+1�. For each price branch (arc) con-
necting (PE� i

t � P F � i
t ), i ∈ I�t�, and (PE� j

t+1 � P
F � j
t+1 ), j ∈ At�i�,

there is an associated probability p
i� j
t � 0, indicating the

chance that the transition of prices represented by this arc
will occur, given the leaf (PE� i

t � P F � i
t ) is visited. Therefore,∑

j∈At�i�

pi� j
t = 1 ∀ i ∈ I�t�� ∀ t� (16)

With the price tree, (15) can be solved using standard
SDP backward steps. For every state xt ∈ � at each leaf
node (PE� i

t � P F � i
t ) in the price tree, (13) can be rewritten as

Ft�xt� PE� i
t � P F � i

t �

=��xt�gt�P
E�i
t �P F �i

t �+max
ut

e−r

[ ∑
j∈At�i�

pi�j
t Ft+1�xt+1�P

E�j
t+1 �P

F �j
t+1�

− S�xt� ut�

]
� (17)

subject to state transition constraints (3) and (4) and the
dispatch constraints (5) to (9).
Thus far, we have assumed that the time step of the price

tree is in hours, and there is a commitment decision to
make at each node and each stage in the SDP formula-
tion (17). However, sometimes it may be desirable to have

the time step of a tree shorter than an hour, say 10 min-
utes, to better capture price movements. To do so, we intro-
duce a new index k = 1� � � � �K for K subintervals in every
hourly time period �t� t + 1 such that the kth subinterval
corresponds to time period �t + �k− 1�)t� t + k)t , where
)t = 1/K (hour). Accordingly, the SDP formulation given
in (17) requires some modification because now a commit-
ment decision is not made at every price node of the tree,
but only at those subintervals corresponding to the begin-
ning of an hour, i.e., k = 1. To indicate the corresponding
subperiod of a node, we use an additional subscript k to
variables whenever necessary. Note that the state of the
unit at each time t is held constant for all k, but k = 1.
For each leaf node (PE� i

t� k � P F � i
t� k ) in the price tree, the refined

SDP recursive relations are summarized as follows.
If k = 1,

Ft�k�xt� PE� i
t� k � P F � i

t� k �

=��xt� gt� k� PE� i
t� k � P F � i

t� k �

+max
ut

e−r/K

[ ∑
j∈At�k�i�

p
i� j
t� kFt� k+1�x̃t� P

E�j
t� k+1� P

F �j
t� k+1�

− S�xt� ut�

]
� (18a)

if 1< k < K,

Ft�k�xt� PE� i
t� k � P F � i

t� k �

= e−r/K
∑

j∈At�k�i�

p
i� j
t� kFt� k+1�xt� P

E�j
t� k+1� P

F �j
t� k+1�� (18b)

and if k =K,

Ft�k�xt� PE� i
t� k � P F � i

t� k �

= e−r/K
∑

j∈At�k�i�

p
i� j
t� kFt+1�1�xt+1�P

E� j
t+1�1� P

F � j
t+1�1�� (18c)

Note that the maximization in (18a) is subject to state
transition constraints (3) and (4) with xt+1 replaced by x̃t ,
and the dispatch constraints (5) to (9). That is, in (18a),
x̃t is the state of the unit at time t + 1. It is obvious that
(18a) is the direct extension of (17) because a commitment
decision is only considered at the beginning of each hour
(k = 1). For the other subperiods 1 < k � K, (18b) and
(18c) only perform recursive discounting.
The SDP approach with refined subintervals proposed in

this section can be viewed as a means to better approxi-
mate the discrete-time probability distribution of the next
hour’s price. It can be verified that within each subperiod
1< k �K, no profit is collected and (18b) and (18c) only
perform recursive discounting. However, a refined time step
may also be used to capture real-time price movements. In
reality, the power plant may be compensated ex post based
on some real-time prices. This situation can be handled in
the proposed model by simply including profit collection in
the recursive formulation, (18b) and (18c), for the subin-
tervals.
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3. Modeling Two-Factor Price Lattices
In this paper, we assume that the prices of electricity PE

t

and fuel consumed by the generator PF
t are some smooth

functions of y1 and y2, respectively, which are governed by
the following stochastic differential equations:

dy1 =+1�y1�dt +,1dB1 (19)

and

dy2 =+2�y2�dt +,2dB2� (20)

where +1 and +2 are drift functions, ,1 and ,2 are con-
stant volatilities, and B1 and B2 are two Wiener processes
with instantaneous correlation .. For example, setting PE

t =
exp�y1� and PF

t = exp�y2� is a common approach to avoid
getting negative prices. In the online appendix we will
extend the proposed valuation model to accommodate the
volatilities ,1 and ,2 in (19) and (20) that are time depen-
dent.
While we will develop two-factor price lattices that can

be applied to general processes of the forms in (19) and
(20), special attention will be paid to mean-reverting (MR)
processes because they have been commonly used to rep-
resent energy price movements (e.g., Barz 1999). An MR
process is defined below.

Mean-Reverting (MR) Process. The stochastic pro-
cess y is an MR process if the drift function +�y� is Lips-
chitz continuous and monotonically decreasing in y, and

+�y�→� as y →−� ∀ t� (21a)

+�y�→−� as y →� ∀ t� (21b)

The main task in this section is to represent the con-
tinuous price processes in (19) and (20) by an equivalent
discrete-time price tree defined in §2.2. One property of
such a general tree is that there exists a unique, simple
path between every pair of distinct nodes in a tree, i.e.,
branches (arcs) do not recombine. This property implies
that the number of branches may easily increase exponen-
tially as the number of stages increases. Even for a simple
24-hour case in our application, the corresponding price
tree would become too bushy to be manageable. Therefore,
we focus on lattices, which are basically the same as trees
except that branches are allowed to recombine. This will
greatly reduce computational complexity. It can be verified
that the notations for a tree defined in §2.2 are independent
of the fact whether or not the branches would recombine,
and hence all the SDP formulations in the same section
remain valid. In the remainder of this paper, we thus use
the term lattice(s) instead of tree(s).
Before we proceed to model the two-factor lattices, we

review the one-factor case first.

3.1. One-Factor Trinomial Price Lattices

Consider the following Ito process:

dy =+�y�dt +,dB� (22)

where B is a Wiener process. While this process is a
continuous-time model, it is desirable to derive a discrete-
time model that can be used to approximate the evolu-
tion of y�t�. The trinomial lattice, initially proposed in
Hull and White (1993) to model MR processes, can be
applied to represent a general process of the form in (22).
With the time horizon being divided into intervals of equal
length )t, the process can only take on values that are
multiples of h, where h= c,

√
)t. Hull and White (1993)

suggested the constant c to be
√
3 for an MR process. In

§§3.3–3.5, we shall show that the choice of c may affect
the feasibility and convergence properties of a price lattice.
In a trinomial lattice, a price node y branches into nodes

y+�1+1�h, y+1h, and y+�1−1�h at the next stage with
respective branching probabilities pu, pm, and pd, where 1
is an integer. The value of 1 is chosen such that 1h is
closest to the expected drift +�y�)t. That is,

1≡
⌊

+�y�)t

h
+ 1
2

⌋
� (23)

where �·� is the so-called floor function, which maps a real
number to the nearest integer toward −�. The branching
patterns corresponding to 1= 1, 0, −1, and −2 are depicted
in Figure 1.
To solve the branching probabilities pu, pm, and pd, we

consider the following linear equations:

pu�1+ 1�h+pm1h+pd�1− 1�h=+�y�)t� (24a)

pu�1+ 1�2h2+pm12h2+pd�1− 1�2h2
= ,2)t ++�y�2)t2� (24b)

pu+pm +pd = 1� (24c)

Figure 1. Alternative branching in a trinomial model.

κ = 1 κ = 0 κ = –1 κ = –2
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Equations (24a) and (24b) intend to match the local mean
and variance of the Ito process, respectively. The solution
of the system of equations is

pu =
1
2

(
1
c2

+ 2+ 22
)

� (25a)

pd =
1
2

(
1
c2

− 2+ 22
)

� (25b)

pm = 1− 1
c2

− 22� (25c)

where we define

2 ≡ +�y�)t

h
−1� (26)

From (23), it is obvious that

�2�� 1
2
� (27)

Note that 2 is a function of y and t. Furthermore, it can be
shown that the branching probabilities in (25a) to (25c) are
always legitimate (between zero and one) if

1
4
�
1
c2

�
3
4

(28)

or 2/
√
3� c � 2.

To approximate the continuous stochastic process �y�t� �
0� t � T �, consider an N -stage trinomial lattice �Yn � n =
0� � � � �N � with the initial condition Y0 = y�0�. Let )t =
T /N and h= c,

√
)t, where c is a constant satisfying (28).

Using (23) to determine the branching factor at each node,
and (25a) to (25c) to compute the branching probabilities,
the weak convergence theorem (Kushner 1984) guarantees
that the approximation becomes exact as N →�.
When price +�y� satisfies the MR properties, the size of

the trinomial lattice �Yn � n= 0� � � � �N � will not grow indef-
initely, i.e., the lattice size maxn=0�����N �Yn� is capped by a
finite number. That is, a finite interval for y exists for each
time period n, say �yminn � ymaxn  , such that any lattice node
within this interval only branches into nodes in the same
interval corresponding to the following time period. There-
fore, if at time 0, the initial price y�0� ∈⋃N

n=0�y
min
n � ymaxn  ,

the lattice size will be capped. This is because of the
reverting property: For each n, when y approaches ymaxn

(from below), y will revert down, and vice versa. Finally,
note that even if y�0� � ⋃N

n=0�y
min
n � ymaxn  , the lattice size

can still be shown to be capped in
⋃N

n=0�min�y�0�� yminn ��
max�y�0�� ymaxn � .
Note that although the lattice size can be capped, it does

not mean that the price is necessarily bounded. It simply
implies that the probability that the price is outside the
bounds is negligible due to the discretization nature. Fur-
thermore, the (discretized) price upper and lower bounds
approach � and −�, respectively, as N →�. That is, the
discrete distribution represented by the lattice approaches
its real, underlying continuous distribution.

3.2. Two-Factor Price Lattices Using Decoupling

Consider the following linear transformation:

w1 = ,2y1−,1y2� (29a)

w2 = ,2y1+,1y2� (29b)

We have

dw1 = ,2dy1−,1dy2

= �,2+1�y1�−,1+2�y2��dt +,1,2�dB1−dB2�� (30)

Using the fact that

y1 =
w1+w2

2,2
and y2 =

w2−w1

2,1
� (31)

(30) is reduced to

dw1 = �+1�w1�w2�dt +,1,2
√
2�1−.�dB3� (32)

where the drift term �+1 is a function of w1, w2, and t, and
�dB1− dB2� has been normalized and denoted in terms of
another Wiener process dB3. Similarly, we have

dw2 = ,2dy1+,1dy2

= �,2+1�y1�+,1+2�y2��dt +,1,2�dB1+dB2�

= �+2�w1�w2�dt +,1,2
√
2�1+.�dB4� (33)

It can be shown that B3 and B4 are uncorrelated Wiener
processes. Note that we apply a hat to some notations to
indicate that these notations are defined in the transformed
�w1�w2� domain, as opposed to their counterparts defined
in the �y1� y2� domain.
To create a two-factor price lattice, one can directly

extend the one-factor model such that each two-factor price
node branches into 3 × 3 = 9 nodes in a predetermined
price lattice of the next time period. A sample branch-
ing is given in Figure 2. In this two-factor lattice, ĥ1 =
c1,1,2

√
2�1−.�)t and ĥ2 = c2,1,2

√
2�1+.�)t and

2/
√
3� c1� c2 � 2. Given a node (w1�w2), one can first use

(23) to obtain a 1̂1 for w1, then use (25a) to (25c) to deter-
mine the branching probabilities � �p1u� �p1m� �p1d�, and, simi-
larly, obtain 1̂2 and � �p2u� �p2m� �p2d�. Because both B3 and B4
are uncorrelated, the nine combinations of the product of
� �p1u� �p1m� �p1d� and � �p2u� �p2m� �p2d�, together with 1̂1 and 1̂2,
identify the nine nodes that are branched into in the next
time period, and the corresponding branching probabilities.
Note that even though B3 and B4 are independent, w1 and
w2 may not be independent because of the MR compo-
nents. In Figure 2, the example branching corresponds to
1̂1 = 0 and 1̂2 = 1.
At each node of the two-factor lattice in the �w1�w2�

domain, one can obtain the corresponding �y1� y2� using
(31), and based on this, one can value the power plant as
if it were in the �y1� y2� domain.
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Figure 2. A sample two-factor trinomial branching
with 1̂1 = 0, 1̂2 = 1.

(w1, w2)

t + ∆tth1

h2
ˆ

ˆ

The decoupling method is generally applicable for gener-
ating two-factor lattices. However, when both y1 and y2 are
MR, the lattice generated in the �w1�w2� domain will not
be capped as in the one-factor case. To show this, consider
the branching factor 1̂1 for w1 such that

1̂1 =
⌊

�,2+1�y1�−,1+2�y2��)t

ĥ1
+ 1
2

⌋
� (34)

Because both +1�y1� and +2�y2� are continuous and mono-
tonically decreasing, it can be shown that at any time t, for
any y1, there exists a y2 such that

,2+1�y1�= ,1+2�y2�� (35)

i.e., 1̂1 = 0. Because �w1�w2� is merely a linear transforma-
tion of �y1� y2�, for any w1, there exists a w2 such that the
branching factor 1̂1 = 0 at that point. That is, for each w1,
there exists a w2 at which the lattice is expanding. There-
fore, at any given time t, there does not exist a closed and
bounded region in the transformed �w1�w2� domain, such
that any lattice node inside the region only branches into
nodes in the same region corresponding to the following
time period.
For any two correlated MR processes, the lattice gen-

erated using transformation will not be computationally
efficient if the problem involves a large number of time
periods. The number of nodes increases at least quadrati-
cally, as the number of time periods increases. For a valua-
tion problem involving one week (168 hourly time periods),
computation and memory requirement will be intense. In
the next section, we will propose a new approach for gen-
erating two-factor price lattices, which is computationally
efficient for generating branching probabilities, and whose
lattice size is capped under the assumption of correlated
MR processes.

3.3. A New Approach for Two-Factor Price
Lattices

To have a two-factor price lattice capped in size for two
correlated MR processes, we build the lattice in the �y1� y2�
domain directly because the size of each one-factor lattice
in the price domain can be capped. Similar to what is per-
formed for creating a two-factor lattice in §3.2, each price
node branches into 3 × 3 = 9 nodes in a predetermined
price lattice of the next time period. Denote the two-factor
N -stage trinomial lattice as ��Y1� n� Y2� n� � n= 0�1� � � � �N �,
which approximates the continuous stochastic processes
��y1�t�� y2�t�� � 0� t � T � over a given time period �0� T  
with an initial condition �Y1�0� Y2�0�= �y1�0�� y2�0��.
Let )t = T /N , h1 = c1,1

√
)t, and h2 = c2,2

√
)t,

where both c1 and c2 are constants satisfying (28). That is,

2/
√
3� c1� c2 � 2� (36)

Given any node �y1� y2� at stage n, we first use (23) to
obtain 11 for Y1, then (25a) to (25c) to obtain the one-
factor branching probabilities �p̃1u� p̃1m� p̃1d�, and similarly
obtain 12 and �p̃2u� p̃2m� p̃2d� for Y2. Note that the tilde
associated with each of these (one-factor) branching proba-
bilities denotes the realization of (25a) to (25c) and is used
to distinguish them from the variables of branching proba-
bilities to be determined next. To simplify the notation, let
7 ≡ �u�m�d� be the index set of (text) subscripts, repre-
senting upward, middle, and downward branching, respec-
tively. Let 11u = 11 + 1, 11m = 11, and 11d = 11 − 1, and
define 12u, 12m, and 12d similarly. Denote the following
system of linear equations (with nonnegativity constraints)
by �Q� for the node �y1� y2�:

�Q�
∑
j∈7

puj = p̃1u� (37a)

∑
j∈7

pmj = p̃1m� (37b)

∑
j∈7

pju = p̃2u� (37c)

∑
j∈7

pjm = p̃2m� (37d)

∑
i� j∈7

pij11i12jh1h2 = .,1,2)t ++1+2)t2� (37e)

∑
i� j∈7

pij = 1� pij � 0 ∀ i� j ∈7� (37f)

In �Q�, (37a) and (37b) intend to match the mean and
variance for y1�t +)t� conditioned on the value of y1�t�,
respectively. Because the one-factor branching probabili-
ties �p̃1u� p̃1m� p̃1d� have already matched the conditional
mean and variance for y1, (37a) and (37b) is an equivalent
representation, as are (37c) and (37d). Note that �Q� has
nine variables, but only six linear equations; hence, it has
infinitely many solutions if it is feasible. Next, we show that
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to guarantee the feasibility of �Q�, some relation between .
and c1 and c2 must be satisfied.
By rearranging terms and using the results from (25a) to

(25c), (37e) can be reduced to the following equation:

puu+pdd−pud−pdu =
.

c1c2
+
(
+1)t

h1
−11

)(
+2)t

h2
−12

)

= .

c1c2
+ 2122� (38)

where 21 ≡ �+1�y1�)t/h1 − 11� and 22 ≡ �+2�y2�)t/
h2 − 12�, definitions directly extended from (26). Recall
from (27) that �21�� 1/2 and �22�� 1/2. Now consider the
following LP, denoted by �P1�:

�P1� optimize X ≡ puu+pdd−pud−pdu (39a)

s.t.
∑
j∈7

pij = p̃1i ∀ i ∈7� (39b)

∑
i∈7

pij = p̃2j ∀ j ∈7� (39c)

pij � 0 ∀ i� j ∈7� (39d)

Note that (39b) implies
∑

i� j∈7 pij = 1, and so does (39c).
Let Xmin (or Xmax) be the optimal objective value of �P1� if
it is a minimization (or maximization) problem. We have
the following lemma.

Lemma 1. �Q� is feasible if the following inequality holds:

Xmin �
.

c1c2
+ 2122 �Xmax (40)

for all �21�� �22�� 1/2.
Proof. See the online appendix.

Lemma 2. Pertaining to �P1�, the following statements are
true:

(i) If p̃1u � p̃2u and p̃1d � p̃2d, Xmax = p̃1u+ p̃1d.
(ii) If p̃1u > p̃2u and p̃1d > p̃2d, Xmax = p̃2u+ p̃2d.
(iii) If p̃1u � p̃2u and p̃1d > p̃2d, Xmax = min�p̃1u + p̃2d�

1− �p̃1d− p̃2d�− �p̃2u− p̃1u��.
(iv) If p̃1u > p̃2u and p̃1d � p̃2d, Xmax = min�p̃2u + p̃1d�

1− �p̃2d− p̃1d�− �p̃1u− p̃2u��.

Proof. See the online appendix.

The values of Xmax and Xmin in Lemmas 1 and 2 may
vary from node to node. Next, we will show a (tightest)
sufficient condition that guarantees existence of branching
probabilities for any node at any stage. That is, this con-
dition ensures feasibility of an entire lattice, regardless of
the size of the lattice.

Definition. A lattice ��Y1� n� Y2� n� � n = 0�1� � � � �N � is
said to be feasible if �Q� is feasible at all price nodes at
all stages.

For simplicity, in the sequel we refer to a lattice
��Y1� n� Y2� n� � n = 0�1� � � � �N � as one whose branching
probabilities are generated by solving �Q�.

Figure 3. The constant contours of .max versus the val-
ues of c1 and c2.
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Theorem 3. A lattice ��Y1� n� Y2� n� � n = 0�1� � � � �N � is
feasible if

�.�� .max�c1� c2�≡min
{

c2
c1

− c1c2
16

�
c1
c2

− c1c2
16

�

1
2

(
c2
c1

+ c1
c2

)
− c1c2

8
�
c1c2
4

}
� (41)

Proof. See the online appendix.

In Figure 3, the constant contours of .max are plotted
versus the values of c1 and c2. The four regions, num-
bered from (I) to (IV) in Figure 3, correspond to the four
functions in the braces of (41), in order of their appear-
ance. Each region shows where the corresponding function
prevails in the minimum operator in (41). The function
.max has two small and symmetric humps, and achieves
the maximum 4/

√
35≈ 0�676 at �c1� c2� = �4/

√
5�4/

√
7�

and �4/
√
7�4/

√
5�. Therefore, this two-factor trinomial lat-

tice can be a good approximation of the continuous-time
model, as long as the correlation . between two Wiener
processes is less than 0.676, and c1, c2 are chosen such that
.max�c1� c2�� ..

Remark 1. Based on our tests over historical price data,
the correlation between electricity and natural gas prices
has constantly been observed to be between 0.2 and 0.3,
which is much smaller than 0.676. Our observations are
consistent with Herbert (2001), who reports a correlation
of approximately 0.2. However, it should be noted that the
variety of methods for accommodating seasonality, as well
as the variety of data sets and methods for assessing the
correlation itself (e.g., fixed window or exponential mov-
ing averages), will result in a range of observed correla-
tion values. Therefore, the proposed framework is not only
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well suited for generation asset valuation, but also for many
other asset valuations involving two correlated Wiener pro-
cesses.

Remark 2. Until now, choosing the values of c1 and c2 has
only been known to affect the “quality” of fitting probabil-
ity distributions in terms of matching moments under some
restricted conditions. Theorem 3 extends the knowledge of
the quality measures of fitting probability distributions to
include fitting feasibility, which is a prerequisite to other
quality measures.

Remark 3. If +�y� is bounded for all y and t, a lattice
can be made feasible by merely reducing )t → 0 for all
�.�< 1. This is the approach suggested by Hull and White
(1994), which, however, does not work for an MR process
because its +�y� is unbounded.

Remark 4. It is possible that �Q� may still be feasible
for some nodes in a lattice (possibly small) even when
�.�> .max. Theorem 3 presents a sufficient condition that
guarantees the feasibility of any lattice of any size. There-
fore, .max can be interpreted as the worst-case (or the most
strict case) result because the theorem accommodates all
possible correlated price processes of the forms in (19)
and (20). On the other hand, .max in (41) is the maximum
possible . that can guarantee lattice feasibility. Therefore,
Theorem 3 presents the tightest possible sufficient condi-
tion.

Remark 5. Apparently, the size of the lattice generated by
the proposed method is capped for two correlated underly-
ing MR processes. Compared with the method using decou-
pling, which has no restriction on the correlation value,
this improvement in computational complexity comes with
a price of reducing .max from 1 to 0.676. This trade-off is
worthwhile for our application.

For each price node in the lattice, its branching prob-
abilities are selected by any arbitrary feasible solution of
the corresponding �Q�. Two questions remain: whether the
lattice converges and, if so, how to achieve a good con-
vergence. By convergence of the lattice, we mean that the
approximation of the joint distribution at time T would
become exact as N →�. The proof of the convergence is
established in the online appendix.
The next issue is to measure the convergence. Consider

a discrete random variable Z ∈ R2 with probability mass
function p�zl�, where zl ∈ R2, l = 1� � � � �L, and L is the
total number of the sample points. Suppose the continuous
random variable that Z intends to approximate is �Z ∈ R2

with density function f �ẑ�. For each sample point zl, an
area surrounding zl, denoted by =�zl�, can be assigned such
that (i) all =�zl�, l = 1� � � � �L, are mutually exclusive; and
(ii)

⋃L
l=1=�zl�=R2. Define the metric d�p� f � as follows:

d�p� f �≡
L∑

l=1

(
p�zl�−

∫
=�zl�

f �w�dw
)2

� (42)

Figure 4. An example of allocating =�zij �.
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In the proposed lattice in this paper, each node branches
into nine nodes, denoted by zij , i� j ∈ 7. An intuitive way
for assigning surrounding area =�zij � for each node zij is
depicted in Figure 4. Two vertical lines and two horizontal
lines are marked in the middle of two adjacent columns and
rows, respectively. Three nodes (zdd, zmm, and zuu) and their
corresponding =�zij � are highlighted. Note that except for
the “interior” node zmm, every other node has an unbounded
=�zij �.
Two issues will be shown to affect the convergence: the

determination of the branching probabilities for each lattice
node and the lattice cell size (i.e., the values of c1 and c2).
Note that from the proof given in the online appendix, the
convergence of the lattice rests on the feasibility of �Q� at
each lattice node, regardless of the selection of the solu-
tion of �Q�, which typically has infinitely many feasible
solutions. On the other hand, the feasibility of �Q� depends
on the selection of c1 and c2. Intuitively, there are “good”
feasible solutions of �Q� that, in combination with “good”
sections of c1 and c2, can result in good convergence. These
two issues will be discussed in the following sections.

3.4. Selecting Branching Probabilities

To determine a good, feasible solution of �Q� for good
convergence, first consider a special case when y1 and y2
are independent (i.e., .= 0). The solution for �Q� is

pij = p̃1ip̃2j ∀ i� j ∈7� (43)

Substituting (43) into (38) and applying (25a)–(25c) yields

puu−pud−pdu+pdd

= p̃1up̃2u− p̃1up̃2d− p̃1dp̃2u+ p̃1dp̃2d = 2122� (44)

We can now rewrite �Q� for the case of a general . in the
following equivalent form in terms of rij denoted by � �Q�,
where

rij ≡ pij − p̃1ip̃2j ∀ i� j ∈7� (45)
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� �Q�
∑
i∈7

rij = 0 ∀ j ∈7� (46a)

∑
j∈7

rij = 0 ∀ i ∈7� (46b)

ruu− rud− rdu+ rdd =
.

c1c2
� (46c)

0� rij + p̃1ip̃2j � 1 ∀ i� j ∈7� (46d)

where (46c) is obtained by subtracting (44) from (38). In
� �Q�, rij can be considered as an adjustment term added
to the probability p̃1ip̃2j from the uncorrelated case to
represent the correlation.
Next, we discuss three methods for selecting a feasible

solution from � �Q� (or equivalently from �Q�). The first
two methods for selecting branching probabilities are com-
monly used by finance professionals. They are the method
presented by Hull and White (1994) and the method of fit-
ting higher moments. The shortcoming of these two meth-
ods will also be discussed. We will then propose our
optimization-based approach.

3.4.1. Hull and White’s (1994) Method. In Hull and
White (1994), the authors proposed the use of the following
adjustment matrix when . > 0:


rdu rmu ruu

rdm rmm rum

rdd rmd rud


=




−> −4> +5>
−4> +8> −4>
+5> −4> −>


 � (47)

It can be easily verified that this matrix satisfies (46a) and
(46b). Plugging (47) into (46c) introduces a correlation
equal to 12c1c2>. By choosing c1 = c2 =

√
3, the authors

suggest setting > equal to ./36. Similarly, when . < 0,


rdu rmu ruu

rdm rmm rum

rdd rmd rud


=



+5> −4> −>

−4> +8> −4>
−> −4> +5>


 � (48)

The advantage of this approach is its computational effi-
ciency. There is, however, a feasibility problem because
such �rij  , i� j ∈7, obtained from (47) or (48), may violate
(46d). Precisely, this approach works if

.�12c1c2 ·max�> �0�rij �>�+p̃1ip̃2j �1 ∀i�j ∈7�� (49)

where rij �>� are in (47). With p̃ij , i� j ∈ 7, expressed in
terms of 21 and 22, and taking into account all their possi-
ble values (�21�� �22�� 1/2), the upper bound given in (49)
is only 0.0625, if c1 = c2 =

√
3 as suggested by Hull and

White (1994). The right-hand side of (49) can be maximized
over the values of c1 and c2. The maximum is achieved when
c1 = c2 ≈ 1�53, with a maximized value equal to 0.201. This
number is still significantly smaller than 0.676, up to which
the lattice feasibility can be guaranteed.

3.4.2. Fitting Higher Moments. The reason that �Q�
has infinitely many solutions is that it has more vari-
ables (nine) than equality constraints (six). One intuitive
approach to deliver a unique solution is to make the sys-
tem more constrained by adding three additional equations.
A reasonable choice for these three constraints is to match
higher moments of the joint probability density function
of y1 and y2. While there are many alternatives for choosing
the three moments, we consider those immediately higher
than what we have matched. They are

E��y1�t + 1�− y1�t��
2�y2�t + 1�− y2�t�� � y1�t�� y2�t� 

= ∑
i� j∈7

pij1
2
1i12jh

2
1h2� (50a)

E��y1�t + 1�− y1�t���y2�t + 1�− y2�t��
2 � y1�t�� y2�t� 

= ∑
i� j∈7

pij11i1
2
2jh1h

2
2� (50b)

E��y1�t + 1�− y1�t��
2�y2�t + 1�− y2�t��

2 � y1�t�� y2�t� 
= ∑

i� j∈7

pij1
2
1i1

2
2jh

2
1h

2
2� (50c)

The exact expression of these three moments can be derived
by observing that y1�t + )t� and y2�t + )t�, conditional
on the values of y1�t� and y2�t�, have a bivariate normal
distribution. Equations (37a) to (37f), along with (50a) to
(50c), form the new system of linear equations.
By assuming that both y1 and y2 follow some MR pro-

cesses, we tested the feasibility of each given correlation
value associated with a given �c1� c2� by simulating all pos-
sible values and combinations of �21� 22� and �11� 12�. We
found that the maximal correlation for which this approach
can guarantee a feasible solution for all simulated instances
is around 0.267. This number is, again, significantly lower
than the theoretical upper bound 0.676.

3.4.3. Optimization-Based Approach. One natural
way to identify a “good” solution from � �Q� is to include an
objective function and turn � �Q� into an optimization prob-
lem. Intuitively, we seek a solution of � �Q� that minimizes
the metric d�p� f � defined in §3.3. Consider a specific node
that branches into nine nodes, each of which is denoted
by zij , i� j ∈7, as shown in Figure 4. The surrounding area
=�zij � for each node zij is defined as in §3.3. Consider the
following optimization problem, denoted by �QP0�:

�QP0� min
∑

i� j∈7

�pij − f̃ij �
2

s.t. (46a) to (46d)�
(51)

where

f̃ij ≡
∫
=�zij �

f �w�dw (52)

and f is the p.d.f. of the underlying processes at this
given node. Because f is a bivariate normal distribution, f̃ij
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can be evaluated by approximation methods, such as
Drezner (1978). However, f̃ij will be different from node
to node, and solving the exact version of �QP0� will not
be efficient. We seek to approximate �QP0�. Define s̃ij ≡
f̃ij − p̃1ip̃2j and consider the objective function of �QP0� as
follows:∑
i� j∈7

�pij − f̃ij �
2 = ∑

i� j∈7

�pij − p̃1ip̃2j + p̃1ip̃2j − f̃ij �
2 (53a)

= ∑
i� j∈7

�rij − s̃ij �
2 (53b)

= ∑
i� j∈7

�r2ij − 2rij s̃ij + s̃2ij �� (53c)

Note that s̃ij captures the change of the area =�zij � under
the p.d.f. of a bivariate normal distribution from having no
correlation to having a correlation .. A closer look indi-
cates that major change of the areas occurs at the four
corner nodes, corresponding to s̃uu, s̃du, s̃ud, and s̃dd (see
Figure 4), and little change at the others. The observations
are summarized below.

Assumptions on s̃ij

S1. s̃ij ≈ 0 ∀ ij ∈ �um�mu�mm�md�dm�.
S2. If . > 0, then s̃uu > 0, s̃dd > 0, s̃ud < 0, and s̃du < 0.

Likewise, if . < 0, then s̃uu < 0, s̃dd < 0, s̃ud > 0, and
s̃du > 0.
S3. �s̃ij � is roughly a constant, denoted by ks > 0 for

ij ∈ �uu�ud�du�dd�.

Using the approximations S1 to S3, if . > 0, we have∑
i� j∈7

�pij − f̃ij �
2

≈ ∑
i� j∈7

r2ij − 2�ruu− rud− rdu+ rdd�ks +
∑

i� j∈7

s̃2ij (54a)

= ∑
i� j∈7

r2ij −
2.ks

c1c2
+ ∑

i� j∈7

s̃2ij � (54b)

In (54b), (46c) is plugged, which is an equality constraint
of �QP0�. If . < 0, the negative sign of the second term in
(54b) is reversed. Because the last two terms of (54b) are
constant, they can be left aside in the objective function.
Consequently, we have the following optimization problem
denoted by �QP�, which is an approximate optimization
problem of �QP0�:

�QP� min
∑

i� j∈7

r2ij

s.t. (46a) to (46d)�
(55)

�QP� appears to be an easier problem than �QP0� and
has the following characteristics. First, when . = 0, the
optimal solution is rij = 0 ∀ i� j ∈7. That is, this objective
selects the branching probabilities for the uncorrelated case
pij = p̃1ip̃2j ∀ i� j ∈ 7. Second, when . �= 0, while there

are infinitely many solutions, this problem selects the one
that is closest to the probability set for the uncorrelated
case in Euclidean norm. As shown above, such an efficient
way—in terms of minimal deviation—for constructing a
probability set that shows correlation between y1 and y2
also approximately minimizes the defined metric d�p� f �
in §3.3.

�QP� is a standard quadratic program with nine vari-
ables, subject to seven linear constraints not including the
bounds of variables. Equations (46a) and (46b) describe a
3 × 3 matrix �rij  , i� j ∈ 7, such that the components in
each column and row sum up to zero. We can substitute the
matrix components in terms of only the four components
at the corners as follows:


rdu rmu ruu

rdm rmm rum

rdd rmd rud




=




rdu −rdu− ruu ruu

−rdu− rdd rdu+ rdd+ ruu+ rud −ruu− rud

rdd −rdd− rud rud


 �

Putting (46d) aside for the time being, �QP� is reduced to
the following problem, which is much easier to handle:

�Q̂P� min fQ = r2du+ �rdu+ ruu�
2+ r2uu+ �rdu+ rdd�

2

+ �rdu+ rdd+ ruu+ rud�
2+ �ruu+ rud�

2

+ r2dd+ �rdd+ rud�
2+ r2ud

s.t. ruu− rud− rdu+ rdd =
.

c1c2
�

Define the Lagrangian ��ruu� rud� rdu� rdd�@� as

��ruu� rud� rdu� rdd�@�

= fQ +@

(
ruu− rud− rdu+ rdd−

.

c1c2

)
� (56)

where @ > 0 is the Lagrange multiplier of the constraint.
With some algebra, the optimality condition is




A�

Aruu

A�

Arud

A�

Ardu

A�

Ardd

A�

A@




=




8 4 4 2 1

4 8 2 4 −1
4 2 8 4 −1
2 4 4 8 1

1 −1 −1 1 0
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rdu

rdd

@



−




0

0

0

0
.

c1c2



=




0

0

0

0

0




� (57)

At the optimal solution �r∗uu� r
∗
ud� r

∗
du� r

∗
dd�@

∗�, we have




r∗uu

r∗ud

r∗du

r∗dd

@∗



=




8 4 4 2 1

4 8 2 4 −1
4 2 8 4 −1
2 4 4 8 1

1 −1 −1 1 0




−1

0

0

0

0
.

c1c2




= .

4c1c2




1

−1
−1
1

2




� (58)

That is, the proposed method suggests the following adjust-
ment matrix �rij  , i� j ∈7:


rdu rmu ruu

rdm rmm rum

rdd rmd rud


= .

4c1c2



−1 0 1

0 0 0

1 0 −1


 � (59)

Compared with (47) and (48), (59) shows the efficiency
that we defined earlier in this section for constructing the
probability set from the uncorrelated case: All entries are
zeros except the four corner ones that are involved in the
constraint. This result also coincides with the approxima-
tions S1 to S3.
Unfortunately, the solution in (59) may violate (46d).

That means some component(s) rij + p̃1ip̃2j , i� j ∈ 7, may
be outside of �0�1 . Note that pij = rij + p̃1ip̃2j will not
be greater than one, because if it is, pij will be adjusted
back to one, implying that all other branching probabili-
ties are zero, which corresponds to a case with certainty.
Therefore, we can focus on the case that pij may be neg-
ative. If pij becomes negative, it will be adjusted back to
zero to satisfy (46d). This implies that the corresponding
constraint will become binding, associated with a nonzero
Lagrange multiplier. When this happens, the optimality
condition (57) requires some minor modification. If the
binding constraints (i.e., the pij that are zeros at optimal-
ity) can be known a priori, the optimal solution, along
with the Lagrange multipliers, can be obtained by solv-
ing a system of linear equations. Because there are only

few possible combinations for pij to be zero, a method that
seeks to identify the correct binding constraints by itera-
tions can be constructed. Because the problem is a (strictly
convex) quadratic optimization subject to linear constraints,
the solution is unique. Any solution sought (associated with
the Lagrange multipliers) satisfying the optimality condi-
tion must be the optimal solution.
We have implemented an efficient algorithm based on

such a strategy. By setting up a test bed on MATLAB for
solving random instances of �QP�, we have found that our
algorithm takes as little as 8% of the CPU time required
by MATLAB’s embedded quadratic programming solver
(qp.m) to solve the same problem on average.
Given a set of branching probabilities that fits the under-

lying processes well in the sense that the branching proba-
bility of each node matches the area of its surrounding =�·�
under the corresponding probability density function, as the
lattice expands over more time periods, more nodes are
generated. That means that the surrounding area =�·� of
each node (at a later time period) is refined and becomes
smaller. The discrete branching probabilities will continue
to fit the continuous counterpart well for the later period. In
addition, the overall fitting generally improves as the total
number of nodes increases.

3.5. Selecting the Lattice Cell Size

The size of the lattice cells can also affect the convergence
of the lattice to the underlying continuous process. Using
the one-factor model as an example, if c is small, 2 in
(26) tends to be small so that the middle branch can match
the conditional mean better. However, if c is too small, the
three-point pattern will be too narrow to capture the width
of the normal distribution. Therefore, the optimal value of c
that yields good convergence exists.
Hull and White (1993) suggested choosing c =√

3 in the
one-factor model, which can match the first five moments
of a normal probability density function (Keefer 1994). The
authors also suggested using c1 = c2 =

√
3 for the two-

factor lattices in their subsequent paper (Hull and White
1994). Choosing c1 = c2 =

√
3 yields a .max of 0.625,

which is quite close to the maximum value 0.676. How-
ever, due to the correlation, choosing c1 = c2 =

√
3 does not

necessarily match the higher moments as it does in the one-
factor case. Therefore, choosing c1 = c2 =

√
3 is merely a

heuristic, lacking theoretical support. Next, we propose a
more general approach, such that the values of c1 and c2
can be customized, depending on actual problem data.
Let pT �Y1�N � Y2�N � denote the joint probability distribu-

tion function of (Y1�N � Y2�N ) at time T , and fT �y1�T �� y2�T ��
the joint c.d.f. of �y1�T �� y2�T �� at time T . We propose to
select c1 and c2 by solving the following optimization prob-
lem:

�P2� min
c1� c2

d�pT � fT �

s�t� �36� and �41��
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�P2� can be solved using optimization methods that do
not require derivatives (see, for example, Nelder and Mead
1965). For each N , let �c�N�

1 � c
�N�
2 � denote the optimal solu-

tion for �P2�. Our experience shows that �c
�N�
1 � c

�N�
2 � con-

verges quickly as N increases. In general, solving c1 and c2
using N = 5 gives satisfactory results. An example will be
given in §4 for numerical results, which indicates that the
optimal value of �c1� c2� is far from �

√
3�
√
3�, suggested

by Hull and White (1994). To obtain the exact continuous
distribution fT , note that fT is a bivariate normal distribu-
tion, which can be uniquely identified by the means and
covariance matrix of y1�T � and y2�T �. It has been observed
that as N increases, the moments of pT converge much
faster than the metric defined in (42), which motivated us
to solve �P2� for selecting �c1� c2�. Note that the solution
of �P2� may vary with changes of data such as the initial
prices, price process parameters, and price correlation.

4. Numerical Results

4.1. Modeling Price Uncertainty

As a practice, we assume that the prices of electricity and
fuel consumed by the generator follow some correlated
geometric mean reversion (GMR) processes advocated by
Barz (1999). Assume that the evolutions of both PE

t and
PF

t can be captured by the following processes:

d ln�PE
t �=−+E

t �ln�PE
t �−mE

t �dt +,E
t dBE (60)

and

d ln�PF
t �=−+F

t �ln�PF
t �−mF

t �dt +,F
t dBF � (61)

where BE and BF are two Wiener processes with instanta-
neous correlation ..
The GMR price models in (60) and (61) are character-

ized by mean reversion and lognormally distributed sea-
sonal prices. The mean reversion parameter +t , in some
sense, represents the storability of the commodity. For elec-
tricity, which is quite difficult to store, this parameter is
large, implying little autocorrelation between today’s price
and tomorrow’s price of the same hour. Furthermore, this
parameter, in conjunction with the volatility ,t , captures
the short-term and long-term price fluctuations and charac-
terizes the variance of the lognormal price distribution. The
mean reversion parameter +t and the volatility ,t may be
time dependent, as indicated by a subscript t. Finally, mt

is a periodic function capturing the cyclical nature of the
long-term expected prices. mt is thus a function of the inter-
play between the cost of production and consumer demand
for the commodity.
To obtain the parameters of the price processes, we

examined the historical price data series of Nymex natural
gas prices and electricity prices from the PJM (Pennsylva-
nia, New Jersey, and Maryland) in the year 2002, taking the
logarithm of these prices as our basic data series. Because

there is no hourly market for natural gas, +t , ,t , and mF
t

are assumed to be constant within a given day and we fit
the price process to daily data. Because the model time
step is hourly, however, we adjust these parameters accord-
ingly. Specifically, because the model is a continuous-time
model, we can estimate the hourly fluctuations from the
daily parameters.
It may seem that by assuming that the gas prices vary

over the day (A5), we obfuscate the problem. We argue
that even though there is only one price for gas each day,
purchases of gas at that price may not be available at every
hour of the day. Besides, the prices of gas futures do vary
throughout the day, and it seems reasonable to assume
that spot prices likewise show such variability in actual
purchases hour by hour. Furthermore, the price variability
within a day may be viewed as some random opportunity
cost associated with gas that reflects updates in informa-
tion throughout the day. Our approach can be viewed as an
approximation of the actual hourly prices for gas purchases.
For electricity, we used historical daily data from the

PJM day-ahead market, taking the logarithm of these prices
as our basic data series. However, to incorporate a daily
price pattern, we then adjust mE

t by overlaying the daily
electricity price pattern (in terms of percentage changes).
Using the method of maximum likelihood, we obtain +F

t =
6�95 × 10−4 and ,F

t = 0�019 independent of t. For elec-
tricity, we obtain +E

t = 0�062, ,E
t = 0�137 for peak hours

(6 a.m. to 10 p.m.), and +E
t = 0�044, ,E

t = 0�123 for
off-peak hours. Note that 1/+E

t and 1/+F
t are in units

of hours and ,E
t and ,F

t are in units of $/MWh and
$/MMBtu, respectively. As mentioned previously, mE

t cap-
tures the cyclical nature of the expected electricity prices.
Detailed mE

t values are summarized in Table 1. At time
t = 0, suppose that prices PE

0 = 20 ($/MWh), and PF
0 = 2�2

($/MMBtu) are observed. We set the instantaneous corre-
lation coefficient between the logarithms of the electricity
and natural gas prices to be .= 0�3, as observed in the mar-
ket. This is close to the correlation between the electricity
and natural gas prices.
The two-factor lattice that represents the two processes

(60) and (61) can be obtained by following the steps pre-
sented in §3.3. Letting y1�t� = ln�PE

t � and y2�t� = ln�PF
t �,

(60) and (61) are reduced to

dy1�t�=−+E
t �y1�t�−mE

t �dt +,E
t dBE (62)

Table 1. Values of hourly mE
t .

t mE
t t mE

t t mE
t

1 2�88 9 3�27 17 3�58
2 2�74 10 3�36 18 3�63
3 2�68 11 3�45 19 3�58
4 2�65 12 3�45 20 3�51
5 2�69 13 3�46 21 3�49
6 2�85 14 3�51 22 3�34
7 3�17 15 3�53 23 3�10
8 3�23 16 3�56 24 2�96
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and

dy2�t�=−+F
t �y2�t�−mF

t �dt +,F
t dBF � (63)

which belong to the category of (19) and (20) (except that
the volatility is time dependent, which is addressed in the
online appendix). The lattice is generated in the �y1� y2�
domain. At any given node of the lattice �y1� y2�, the profit
function (11) is evaluated with respect to the corresponding
price set �PE

t � PF
t �= �exp�y1�� exp�y2��. It can be seen that

both (62) and (63) satisfy the MR property in (21a) and
(21b). Therefore, the lattice size for the GMR processes
will be capped.

4.2. Convergence Analysis

Let y1�0� = ln�PE
0 � and y2�0� = ln�PF

0 �. Using the opti-
mization-based approach presented in §3.4.3, we gen-
erate the corresponding two-factor lattice ��Y1� n� Y2� n� �
n = 0�1� � � � �N �, with an initial condition �Y1�0� Y2�0� =
�ln�20�� ln�2�2��. First, we show the approximated joint
distribution at time T = 1 by varying N in Figure 5. The
three contours in Figure 5 are generated by the contour
function in MATLAB, which performs some level of data
interpolation and extrapolation. As can be seen in Figure 5,
as N increases, more price nodes are generated at time T
and a better approximation of the distribution is yielded.
Intuitively, the metric d�pT � fT � defined in §3.3 will con-
verge to zero as N increases.
Next, we solve �P2� defined in §3.5 using the Nelder-

Mead method, which uses a sequence of polytopes (sim-
plices) to close in and eventually locate the optimal values
of c1 and c2. The initial polytope is located in the feasi-
ble region of �c1� c2� corresponding to a .max � 0�3. The
optimal values of c1 and c2 versus N are summarized in
Table 2. It can be seen in Table 2 that when N > 5, the min-
imum is achieved consistently at �c1� c2� = �1�50�1�49�,
where the best fit of the continuous density function is
obtained, implying the best convergence. The correspond-
ing least-square error of the metric d�f �p� defined in §3.3
is small, indicating a good fit of the entire density func-
tion. At this point, from (41) the corresponding .max is
0.56, which is sufficient for our application. In this test,
the branching probabilities are obtained using the proposed
optimization-based method in §3.4.3.
Next, we test the convergence using the other two meth-

ods for generating the branching probabilities—by Hull
and White (1994) (§3.4.1) and fitting higher moments
(§3.4.2)—compared with our proposed one. For Hull and
White’s method, c1 = c2 =

√
3 as proposed by the authors.

The optimal values for �c1� c2� = �1�50�1�49� obtained in
the previous test are adopted for the methods for fitting
higher moments and using optimization. The convergence
information, in terms of the least-square error of the met-
ric, is summarized in Table 3 and is depicted in Figure 6. It
can be seen that the proposed optimization-based method

Figure 5. (a) N = 1 (3 × 3 nodes); (b) N = 3 (7 × 7
nodes); (c) N = 10 (21× 21 nodes).
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Table 2. Optimal lattice cell size �c1� c2� vs. N .

N c1 c2 d�p� f �

1 1�56 1�52 0�01300
2 1�50 1�48 0�00770
3 1�51 1�50 0�00470
4 1�51 1�50 0�00300
5 1�51 1�50 0�00220
6 1�50 1�49 0�00167
7 1�50 1�49 0�00133
8 1�50 1�49 0�00109
9 1�50 1�49 0�00092
10 1�50 1�49 0�00079

has the best convergence, followed by the method of fit-
ting higher moments, then by Hull and White’s method.
The convergence of the methods of optimization and higher
moments is one order of magnitude better than that of Hull
and White’s method.

4.3. Short-Term Generation Asset Valuation

We have implemented the proposed optimization-based
method for valuing a power plant using FORTRAN in a
Pentium 4 PC and applied to a natural gas-fueled generat-
ing unit with the following input-output characteristics:

H�qt�= 540+ 9�223qt + 0�00234q2t � (64)

with qmin = 225 MW, qmax = 700 MW. We let � = 
 = 2,
ton = 5, toff = 10 to fully capture the influence of the phys-
ical constraints. In the following numerical tests, we use
�c1� c2�= �2/

√
3�2/

√
3� for the lattice, obtained from §4.2.

Because of the short duration (one day to one week) of the
test problems considered here, we do not apply a discount
rate.
As stated previously, as the number of stages K in-

creases, the joint distribution approximated by the lattice
converges to the exact one. Consider T = 24 (hours) and let
N = T ×K, where K is the number of subintervals for each

Table 3. Comparison of convergence �d�p� f �� by
three different methods for obtaining
branching probabilities.

Hull and Higher
N White (1994) moments Optimization-based

1 0�13503 0�04042 0�01612
2 0�07878 0�01185 0�00768
3 0�04018 0�00683 0�00471
4 0�02241 0�00442 0�00304
5 0�01436 0�00315 0�00218
6 0�01028 0�00240 0�00167
7 0�00788 0�00190 0�00133
8 0�00631 0�00156 0�00109
9 0�00521 0�00131 0�00092
10 0�00440 0�00112 0�00079

Figure 6. Comparison of lattice convergence of three
methods (logarithmic scale).
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hour, the same as in §2.2. As K increases, the power plant
value should converge to its true expected value. In Table 4,
we show the power plant value in relationship to K, also
depicted in Figure 7. It can be seen that the power plant
value eventually converges to a value around $25,050. The
error due to discretization is estimated to be around 2.7%
if K = 1 is selected. In the last column of Table 4, the CPU
time increases polynomially (order ≈ 2�8) with respect to
the number of subintervals K.
Next, we compare the proposed lattice approach with

the simulation-based approach in Tseng and Barz (2002).
Using their method to solve the 24-hour case above
(K = 1), the CPU time required is around 13 minutes. Their
method obtains $24,566, quite close to that obtained by the
lattice model ($24,400). Apparently, the proposed method
is much more computationally efficient than the simulation-
based approach.
By repeatedly running the program with different param-

eters, we obtain the following sensitivity analysis results for
the one-week case (T = 168). These are: the power plant
value versus T (in Table 5a and Figure 8a), the power plant
value versus parallel shift of the vector of �E ≡ �+E

t �T
t=1

(in Table 5b and Figure 8b), the power plant value versus
parallel shift of the vector of �E ≡ �,E

t �T
t=1 (in Table 5c

and Figure 8c), and the power plant value versus . (in
Table 5d).

Figure 7. The power plant value vs. K, the number of
subintervals in each hour.

25.20

25.00

24.80

24.60

24.40

24.20

V
al

ue
 (

$1
,0

00
)

1 2 3 4 5 6 7 8 9
K



Tseng and Lin: Framework Using Two-Factor Price Lattices for Generation Asset Valuation
250 Operations Research 55(2), pp. 234–251, © 2007 INFORMS

Table 4. Power plant value ($×103) vs. K, the
number of subintervals in each hour.

Power plant No. of nodes CPU time
K value at final stage (sec.)

1 24�40 43× 48 0�28
2 24�80 83× 96 2�43
3 24�90 124× 144 6�53
4 24�96 163× 192 13�97
5 25�00 203× 242 25�94
6 25�02 243× 290 43�37
7 25�04 284× 338 66�82
8 25�05 323× 384 96�52
9 25�05 363× 434 166�33

As seen in Figure 8a, the power plant value increases
approximately linearly as the length of the planning hori-
zon T increases, especially when T � 48. From T =
24 to 48, the power plant value quadruples because this
increase makes T much larger than the minimum uptime
�ton = 5) and downtime (toff = 10) and therefore lowers
their impact to the power plant value. Note that this rela-
tionship will become more concave as the discount rates
increase. Table 5a also displays the number of lattice nodes
in the final stage, which indicates memory requirement
of the computer. In this case, PF

t dominates the memory
usage due to its much smaller reversion parameter than that
of PE

t . A higher reversion parameter implies stronger rever-
sion. Namely, the price upper bound of the lattice becomes

Table 5a. Power plant value ($× 103) vs. time T .

T 24 48 72 96 120 144 168
Value 24�4 99�2 186�2 277�0 369�1 462�2 556�0
CPU (sec.) 0�28 1�80 4�73 8�61 13�68 20�18 27�69
No. of nodes 43× 48 59× 96 59× 146 59× 192 59× 240 59× 290 59× 338
at final stage

Table 5b. Power plant value ($× 103� vs. parallel shift
of �E .

Shift −0�02 0 0�04 0�08 0�12 0�16 0�20 0�24 0�28
Value 733�6 556�0 423�0 387�0 383�6 391�8 403�0 413�9 423�8
CPU time (sec.) 45�87 27�65 16�52 12�50 10�59 9�67 8�58 8�09 7�64

Table 5c. Power plant value ($× 103� vs. parallel shift
of �E .

Shift −0�08 −0�04 −0�02 0 0�02 0�04 0�08
Value 253�7 378�2 461�0 556�0 663�4 785�5 1�073�8

Table 5d. Relative power plant value ($×103) vs.
correlation coefficient ..

. 0 0�1 0�2 0�3 0�4 0�5
High 1�599�9 1�577�2 1�553�9 1�530�0 1�505�5 1�480�2
Medium 588�5 577�9 567�1 556�0 544�6 532�9
Low 276�7 271�7 266�6 261�3 256�0 250�5

Figure 8a. The power plant value vs. T .
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Figure 8b. The power plant value vs. parallel shift of
�E .
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Figure 8c. The power plant value vs. parallel shift of
�E .
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lower and the price lower bound becomes higher. There-
fore, fewer lattice nodes need to be evaluated. In Table 5a,
as T exceeds 48 (hours), the number of nodes to repre-
sent price distribution for PE

t stops increasing because its
one-factor lattice size has been capped.
From Figure 8b, it can be seen that the power plant value

initially decreases and then increases as the parallel shift
of �E increases. To interpret the result, in general, with
bigger �E any price deviation from the mean does not last
long; thus, there are fewer “lasting” profitable opportuni-
ties. On the other hand, the physical constraints of the unit
place restrictions against the unit to react to these profitable
opportunities of short durations. Both effects need to bal-
ance. This explains the initial decrease of the power plant
value. When �E continues to increase, the price reverts
to the mean value more quickly, implying less price risk.
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Because it becomes easier to predict prices, the power plant
value increases. In this case, the power plant value reaches
a minimum when the parallel shift of �E is around 0.1.
Also note that the CPU time decreases as the parallel shift
of �E decreases.
In Figure 8c, we see that the plant value increases as

the parallel shift of �E increases. Moreover, the plant value
is extremely sensitive to the price volatility. It can be esti-
mated that a 1% increase (decrease) in the average hourly
volatility would result in roughly a 1.4% increase (decrease)
of the power plant value. This result implies that the unit
is more profitable in a market place with more volatile
prices.
Finally, we test the relation of the power plant value ver-

sus the correlation . between the electricity and fuel prices.
Three cases, corresponding to high volatility, medium
volatility, and low volatility, are tested. The case with
medium volatility is the baseline case given in §4.1 (i.e.,
,E

t = 0�137 for peak hours, 0.123 for off-peak hours; and
,F

t = 0�019). The high-volatility and low-volatility cases
have their hourly volatility value twice and half of the
hourly value in the medium-volatility case, respectively.
Basically, the power plant value decreases as the value
of . increases, meaning less-profitable opportunities with
big price spreads. Their relation is approximately linear
(slightly concave) in all three cases, as shown in Table 5d.
Two observations can be made: (1) The power plant value
in the high-volatility case is approximately 2.8 times the
value in the medium-volatility case; more than the increase
of the volatilities. Similarly, when the hourly volatilities
are reduced by half, the power plant value is reduced by
more than a half (approximately 0.47 times). This reiter-
ates the high sensitivity of the power plant value versus
the volatility, as previously discussed. (2) The power plant
value in the high-volatility case is more sensitive to . than
in the medium-volatility case, which is more sensitive than
in the low-volatility case. The sensitivity (slope) increases
(or decreases) by roughly the same factor of the increase
(or decrease) of the volatility in the high-volatility (or low-
volatility) case.

5. Conclusion
In this paper, we present a method for valuing a power plant
using discrete-time price lattices. A framework that gener-
ates lattices for two correlated Ito processes is developed.
Numerical tests show that the proposed model has at least
two advantages: flexible modeling and efficient computa-
tion. In terms of flexible modeling, we incorporate opera-
tional constraints into the decision-making process, and the
lattice framework can handle general price processes. In
computation, our method provides a much more efficient
approach to calculating the power plant value than the MC
simulation.

6. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/ecompanion.html.
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Online Appendix
Appendix A. Proofs
Proof of Lemma 1. Replacing (37e) by (38) in �Q�, �P1� is a problem that optimizes the left-hand side of

(38) subject to all other constraints (37a)–(37d), (37f) in �Q�. Obviously, �Xmin�Xmax� provides the exact interval
to bound the right-hand side of (38), 	/�c1c2�+ �1�2, such that �Q� is feasible. �

Proof of Lemma 2. (1) In this case, because puu � �p1u, pdd � �p1d, pud � 0, pdu � 0, it is clear that �p1u + �p1d
is an upper bound for X. We can conclude that Xmax = �p1u + �p1d by presenting the following feasible solution
that achieves this upper bound:


pdu pmu puu

pdm pmm pum

pdd pmd pud


=




0 �p2u − �p1u �p1u
0 �p2m 0

�p1d �p2d − �p1d 0


 � (EC.A1)

(2) Similar to (i).
(3) First, note that

puu � �p1u� pdd � �p2d� pud � 0�

On the other hand,

pdu = �p2u −puu −pmu �max�0� �p2u − �p1u − �p1m�= � �p2u + �p1d − 1�+�

where x+ ≡max�0� x�. Hence,

X = puu +pdd −pud −pdu
� �p1u + �p2d − � �p2u + �p1d − 1�+

= min� �p1u + �p2d�1− � �p1d − �p2d�− � �p2u − �p1u���
We can conclude that Xmax =min� �p1u + �p2d�1− � �p1d − �p2d�− � �p2u − �p1u�� by presenting the following feasible
solution that achieves this upper bound:


pdu pmu puu

pdm pmm pum

pdd pmd pud


=



� �p1d − �p2d − �p2m�+ �p2u − �p1u − � �p1d − �p2d − �p2m�+ �p1u
min� �p2m� �p1d − �p2d� � �p2m − � �p1d − �p2d��+ 0

�p2d 0 0


 � (EC.A2)

(4) Similar to (iii). �

Proof of Theorem 3. From Lemma 1, a lattice is feasible if the following inequality holds for all ��1�� ��2��
1/2:

c1c2�Xmin − �1�2�� 	� c1c2�Xmax − �1�2�� (EC.A3)

ec1
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One can guarantee feasibility of the entire lattice if 	min�c1� c2�� 	� 	
max�c1� c2�, where

	max�c1� c2�≡ min
−1/2��1� �2�1/2

c1c2�Xmax − �1�2��

	min�c1� c2�≡ max
−1/2��1� �2�1/2

c1c2�Xmin − �1�2��
To determine 	min�c1� c2� and 	

max�c1� c2�, consider the four cases discussed in Lemma 2.
(1) If �p1u � �p2u and �p1d � �p2d, from Lemma 2(i) and (27) for ��1�� ��2�� 1/2,

Xmax − �1�2 = �p1u + �p1d − �1�2 =
1
c21

+ �21 − �1�2 �
1
c21

− 1
16
�

where we use the fact that the global minimum for �21 − �1�2 subject to ��1�� ��2�� 1/2 is −1/16, achieved at
��1� �2�= �−1/4�−1/2�.

(2) If �p1u > �p2u and �p1d > �p2d, similar to (i) one can obtain

Xmax − �1�2 = �p2u + �p2d − �1�2 =
1
c22

+ �22 − �1�2 �
1
c22

− 1
16
�

(3) If �p1u � �p2u and �p1d > �p2d, from Lemma 2(iii) and (27), we have

Xmax − �1�2 =min




1
2

(
1
c21

+ �21 + �1
)
+ 1

2

(
1
c22

+ �22 − �2
)
− �1�2 �

1
2

(
1
c21

+ 1
c22

)
− 1

8
�

1+ �1 − �2 − �1�2 �
1
4
�

where we use the fact that −1/8 and −3/4 are the global minima for 0�5��21 + �1 + �22 − �2� − �1�2 and
�1 − �2 − �1�2, respectively, subject to ��1�� ��2�� 1/2.

(4) Same as case (iii), which obtains the same lower bound for Xmax.
Summarizing all four possible cases above, we conclude that

	max = c1c2 ·min
{

1
c21

− 1
16
�
1
c22

− 1
16
�
1
2

(
1
c21

+ 1
c22

)
− 1

8
�
1
4

}

= min
{
c2
c1

− c1c2
16
�
c1
c2

− c1c2
16
�
1
2

(
c2
c1

+ c1
c2

)
− c1c2

8
�
c1c2
4

}
� (EC.A4)

Similarly, we can show that
	min =−	max�

The proof is completed. �

Appendix B. Convergence Analysis
In this section, we shall show that the proposed two-factor lattice converges to the diffusion processes that it
approximates as the number of periods N →	.

Let ��y1�t�� y2�t�� � 0 � t � T � denote the solution to (19) and (20) with initial values �y1�t�� y2�t�� =
�y1�0�� y2�0�� at t = 0. Consider a Markov chain �� 
Y1� n� 
Y2� n� � n = 0�1� � � � �N � that approximates
��y1�t�� y2�t�� � 0 � t � T �, and let �t = T /N . Deng and Oren (2003) in Proposition 3.1 provides a sufficient
condition such that �� 
Y1� n� 
Y2� n�� converges to ��y1�t�� y2�t��� if the following four conditions hold:

Condition 1. The local expectations of the discrete lattice match those of the diffusion process to the dom-
inant term:

E� 
Yi�n+1 � 
Yi�n = �y�=�i��y��t+ o��t� ∀n� i= 1�2� (EC.B1)

Condition 2. The local variances and covariances of the discrete lattice match those of the diffusions pro-
cesses to the dominant term. That is,

Var� 
Yi�n+1 � 
Yi�n�= �2
i �t+ o��t� ∀n� i= 1�2 (EC.B2)

and
Cov� 
Y1� n+1� 
Y2� n+1 � 
Y1� n� 
Y2� n�= 	�1�2�t+ o��t� ∀n� (EC.B3)

Condition 3. There exists a function z��t� such that with probability 1,

� 
Yi�n+1 − 
Yi�n�� z��t� ∀n� i= 1�2� (EC.B4)

In addition, lim�t→0 z��t�= 0.
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Condition 4. The initial condition is satisfied:

� 
Y1�0� 
Y2�0�= �y1�0�� y2�0��� (EC.B5)

Next, we state the following proposition of convergence by showing that the setup of our lattice satisfies the
four conditions (EC.B1)–(EC.B4).

Proposition 1. Let ��y1�t�� y2�t�� � 0 � t � T � denote the solution to (19) and (20) with initial values
�y1�t�� y2�t�� = �y1�0�� y2�0�� at t = 0. The Markov chain ��Y1� n� Y2� n� � n = 0�1� � � � �N � constructed by solv-
ing �Q�, (37a)–(37f) in §3.3, with initial values �Y1�0� Y2�0� = �y1�0�� y2�0��, converges in distribution to
��y1�t�� y2�t�� � 0� t � T � as �t→ 0, if yi�t�, i= 1�2, satisfies one of the following conditions:

(1) �i�y� is bounded.
(2) yi�t� is an MR process.
(3) �i�y� is Lipschitz continuous and there exist two constants ȳi > �yi, such that �i�y� < 0 and decreases

in y for y > ȳi, and �i�y� > 0 and decreases in y for y < �yi.
Proof. To prove this proposition, we need to verify Conditions (1)–(4). First, Conditions (1) and (2) are satis-

fied because �Q� ensures that the branch probabilities of ��Y1� n� Y2� n�� match the local mean, local variance, and
local covariance of the Markov chain to the dominant terms of those in the diffusion process ��y1�t�� y2�t��� by
(24a), (24b), and (37e), respectively. Condition (EC.B4) is satisfied because of the initial condition �Y1�0� Y2�0�=
�y1�0�� y2�0��.

To show that Condition (3) is satisfied, we need to show that the random variable �Yi�n+1 − Yi�n� is uniformly
bounded by a function that tends to zero as �t→ 0. Because Condition (3) concerns each process individually
rather than by the joint process, we omit the subscript i to simplify the notation in the following. Consider each
case separately.

(1) Because ��y� is bounded, suppose that there exists a constant M such that ���y��<M . From (23), we
have that

��y��t

h
− 1

2
<"�

��y��t

h
+ 1

2
�

Therefore,

�"��
∣∣∣∣��y��th

∣∣∣∣+ 1
2
<
M�t

c�
√
�t

+ 1
2
= M

c�

√
�t+ 1

2
�

Because " is an integer, the preceding implies that if

�t <

(
c�

2M

)2

� (EC.B6)

then "= 0. Hence, as �t→ 0, the random variable �Yn+1−Yn�� h= c�
√
�t, so Condition (EC.B3) is satisfied.

(2) Suppose that y is an MR process and by definition ��y� is Lipschitz continuous. There exists a constant L
such that for any �y > 0,

���y+�y�−��y��� L��y�� (EC.B7)

Suppose that at some node Yn = ȳ, its corresponding " is equal to zero, or equivalently,

−1
2
�
��ȳ��t

h
<

1
2
� (EC.B8)

Then, in the next time period Yn+1 can take on three possible values: ȳ+h, ȳ, and ȳ−h.
Consider the following three cases:
(a) Yn+1 = ȳ + h: Because ��y� decreases in y (by the definition of an MR process) and ��y� is Lipschitz

continuous, using (EC.B7) we have that

��ȳ�−Lh���ȳ+h����ȳ��
Multiplying the preceding by �t/h and applying (EC.B8), we then have

−L�t− 1
2
�
��ȳ+h��t

h
<

1
2
�

Therefore, if −L�t >−1, or equivalently,

�t <
1
L
� (EC.B9)

the corresponding " for Yn+1 = ȳ+h is either 0 or −1.
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(b) Yn+1 = ȳ: In this case, the corresponding " for Yn+1 = 
Y is 0.
(c) Yn+1 = ȳ−h: Similar to (a). If �t satisfies (EC.B9), the corresponding " for Yn+1 = ȳ−h is either 0 or 1.
Summarizing from these three cases, for �t satisfying (EC.B9), if "= 0 in one time period, then in the next

time period there will be only three possible values for ", namely, −1, 0, and 1. By defining

ru��t�≡ inf
{
y

∣∣∣∣ ��y��th
�−1

2

}
and

rl��t�≡ sup
{
y

∣∣∣∣ ��y��th
�

1
2

}
�

we can assert that if Y0 = y�0� ∈ �rl��t�− h� ru��t�+ h�, then the whole process �Yn � n = 0�1� � � � �N � will
always lie in �rl��t�−h� ru��t�+h�. Consequently, in the whole lattice there are only three possible values for ",
namely, −1, 0, and 1. Hence, for �t satisfying (EC.B9), �Yn+1 − Yn� is uniformly bounded by 2h= 2c�

√
�t,

which tends to 0 as �t→ 0.
To complete the proof, note that ru��t�→	 and rl��t�→−	 as �t→ 0. Therefore, we can always find a

small enough �t to ensure that y�0� ∈ �rl��t�−h� ru��t�+h�.
(3) We can prove this case by combining the results from the previous two cases. Because ��y� is continuous,

the set ����y�� � �y � y � ȳ� is compact and therefore bounded. Let M ≡max����y�� � �y � y � ȳ� and let L denote
the constant so that ��y� satisfies the Lipschitz continuity in (EC.B7). According to (EC.B6) and (EC.B9), we
can conclude that for

�t <min
{(
c�

2M

)2

�
1
L

}
�

if "= 0 in one time period, in the next time period there will be only three possible values for ", namely, −1,
0, and 1. The rest of the proof follows that in case 2. �

Proposition 1 shows that the convergence of the lattice relies on the property of the drift function. The lattice
can converge for at least three types of drift function ��y� given in the proposition, including that for an MR
process. Note that ��y� determines the branching factor " (23). An intuitive interpretation is that if ��y� changes
too quickly over a small interval of y (e.g., not Lipschitz continuous), the movements of branches might become
very large over a small time interval and cause the discrete distribution not to converge to the underlying,
continuous one.

Appendix C. Relieving the Impact of the Ramp Constraints
It is well known that the SDP (lattice) approach can only handle problems with constraints that are path-
independent on the network of the state space. That is, each state should be independent of the paths that lead
to it. The ramp constraints (6) are path-dependent unless we expand the state space of �xt� to include discrete
levels of the generation qt . Recall that in the proposed lattice model at each node �y1� y2� at time t, there is
an associated optimal generating level g�y1� y2� (a special case with y1 = PEt and y2 = PFt is given in (12)). So,
when a branch (an arc) moves from one node to another in the next time period, the difference between the
two optimal generation levels associated with these two nodes determines the satisfaction of the corresponding
ramp constraint. If this movement violates the ramp constraint, it means that the change of the prices over this
time period (or equivalently, the time step �t) is too big. Therefore, one may want to reduce the value of �t
to reduce the price change over each time period. It can also be expected that reducing the value of �t can
decrease the number of branches that violate the ramp constraints, although it may not be able to eliminate the
violation of the ramp constraints completely. To model this effect, we present a continuous version of the ramp
constraint (6) when the time step �t � 1:

�qt − qt−�t��R�t� (EC.C10)

where we assume that the ramp rate is a linear function of �t for simplicity. Given a node �y1� y2� at time t and
a branch incident from this node, if reducing �t can eventually satisfy the ramp constraint for this branch, that
means

�g�y1� y2�− g�y1 + �"1 + 1�h1� y2 + �"2 − 1�h2���R�t (EC.C11)

holds for some small �t. Note that in (EC.C11), because we try to bound the change of the generation levels
from above, we consider the transition that yields the largest change in g (with high electricity price �"1 + 1�
and low fuel price �"2 − 1�). Dividing �t on both sides of (EC.C11) and letting �t→ 0, we have∣∣∣∣ ,g,y1�1�y1�+

,g

,y2
�2�y2�

∣∣∣∣�R� (EC.C12)
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FIGURE EC.1. The percentage of branches violating the ramp constraint at each time period.
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if the above partial derivatives exist at the node. (Note that g is continuous but may not be differentiable at all
points.) In general, if the partial derivatives exist, ,g/,y1 � 0 and ,g/,y2 � 0. It is clear that (EC.C12) compares
the increasing rate (or the total differential) of g and the constant ramp rate R. Equation (EC.C12) may be
viewed as a (necessary and sufficient) condition to verify whether reducing �t can eventually meet the ramp
constraints.

It is worth noting that (EC.C12) may hold for all nodes under some special price processes. That means
all the ramp constraints can be automatically satisfied by setting a �t small enough. Equivalently, the ramp
constraints can be eliminated. This, unfortunately, is not the case for the MR processes used in our numerical
tests. However, numerical tests indicate that by slightly reducing the value of �t, the majority of the branches
indeed satisfy the ramp constraints. Furthermore, the impact due to the branches that violate the ramp constraints
is estimated to be insignificant. Therefore, reducing �t is an effective strategy to relieve the impact of the ramp
constraints. Details of the numerical tests are presented next.

Consider the operation of the same unit used in §4.3 over a 24-hour period. Three different values of �t are
tested: �t = 1 �K = 1�, �t = 0�5 �K = 2�, and �t = 0�25 �K = 4�. The number of branches that violate the
ramp constraint are counted in each time period, and are then divided by the total number of branches in the
same time period to yield a ratio, which is depicted in Figure EC.1. For example, when �t = 1, there are nine
branches incident from the initial node at t = 0, one-third (0.33) of them violate the ramp constraint. This ratio
is reduced to 0.24 and 0.27 when �t = 0�5 and 0.25, respectively. Note that when the value of �t is reduced to
0.5 and 0.25 from 1, the total number of the branches also increases from 9 to 90 and 756 within the first time
period (t = 0), respectively. In general, the percentage of the branches that violate the ramp constraint is very
low and decreases as �t decreases, except at t = 0.

If the corresponding branching probability of each branch that violates the ramp constraint is also considered,
the violation of the ramp constraint overall accounts for 4.4% of the branching probability when �t = 1. This
probability is reduced to 2.75% and 2.0% when �t is reduced to 0.5 and 0.25, respectively. On the other hand,
from Table 2, when �t = 1 is reduced to 0.5 and 0.25, the plant value increases 1.6% and 2.3%, respectively.
Roughly, every 1% of improvement of the branching probability that violates the ramp constraint is associated
with a 1% increase in power plant value.

While indeed the ramp constraint may not be satisfied at all branches in the proposed lattice model, this test
result suggests that its impact is very limited, which can be further relieved by reducing �t.

Appendix D. Extensions of the Proposed Valuation Model
This section discusses potential extensions of the proposed valuation model, including time-dependent drift and
volatility, long-term valuation, and incorporation of network constraints.

EC.D1. Time-Dependent Drift and Volatility
Drift function and volatility may be time dependent. For example, the mean level of the electricity price at each
hour may be different following some hourly pattern, such as peak hours and off-peaks hours. The volatility in
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FIGURE EC.2. A one-factor lattice with time-dependent volatility.
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the peak hours may be different from that in the off-peak hours. The lattice model developed in the preceding
sections can be easily extended to accommodate time-dependent drift and volatility.

Recall the definition of branching factor " in (23). If the drift function ��y� is now time-dependent, say
�t�y�, one can simply replace ��y� in (23) by �t�y� for determining ". Given a lattice node yt at time t, (23)
also implies that

yt +��yt��t ∈
[
yt +

(
"− 1

2

)
h�yt +

(
"+ 1

2

)
h
)
� (EC.D13)

Because yt is also a lattice node at t + 1, the branching factor ", defined by (EC.D13), shows the relative
positions of the three nodes to be branched into with respect to (w.r.t.) yt .

Consider the following one-factor process with time-dependent drift and volatility:

dy =�t�y�dt+�tdB� (EC.D14)

Because the volatility determines the (discrete) price increment h of the lattice, with a time-dependent volatil-
ity �t the price increment may be different from hour to hour (see Figure EC.2).

Define the price increment at hour t as

ht = c�t
√
�t� (EC.D15)

A superscript t is used to distinguish ht from h1 and h2 previously defined in the two-factor lattice. Because
now a lattice node yt at time t may not be a lattice node at time t + 1, it is better to change the notion of "
from a relative position w.r.t. yt to an absolute position w.r.t. a common reference point such as zero. We thus
define the time-dependent branching factor "t+1 as follows:

"t+1 ≡
⌊
yt +�t�yt��t

ht+1
+ 1

2

⌋
� (EC.D16)

With (EC.D16), a lattice node yt at time t now branches into three nodes �"t+1 − 1�ht+1, "t+1h
t+1, and

�"t+1 + 1�ht+1 at time t+ 1. Accordingly, the definition of � in (26) is modified by

�t+1 ≡
yt +�t�yt��t

ht+1
−"t+1 (EC.D17)

and the following property of �t remains valid:

��t�� 1
2 ∀ t� (EC.D18)

Therefore, all properties of the lattice (both one-factor and two-factor) derived previously follow.
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EC.D2. Long-Term Valuation Model
There is no doubt that the generation asset valuation must account for the operational constraints, whether it
be short term (weeks) or long term (years). However, because the operational constraints, such as the minimum
uptime and downtime constraints, can only be modeled via hour-by-hour unit commitment (UC), it is not a trivial
task to integrate a long-term valuation model with physical constraints. We believe that the proposed model can
be directly applied to long-term asset valuation, say over a 10-year period. The only concern is that whether the
underlying price model can capture longer term price signals (such as those provided by forward price curve).
This can be handled by converting the price information observed in the forward curves to the “mean” price
levels of the MR process. For example, if the MR process follows the standard Ornstein-Uhlenbeck process:

�i�yi�= 0i�mit − yi�� i= 1�2� (EC.D19)

where 0i is the speed of reversion and mit is the mean level of yi at time t, one can set the (hourly) profile of
the mean level �mit� such that it reflects the forward curve. Note that a monthly forward price can be viewed
as an average of all hourly prices over a month. Therefore, some scaling may be necessary to convert forward
prices to hourly prices. In addition to setting the drift function of the price model, one can also set the volatility
that varies from time to time over the entire planning period, which has been covered in §EC.D1. Because we
have shown that the size of the proposed two-factor lattice will be capped for the MR underlying processes, the
computational complexity for the version of long-term valuation will only increase linearly, as does the CPU
time. Therefore, directly applying the proposed valuation to a long-term period is technically feasible.

EC.D3. Incorporating Network Constraints
In Valenzuela and Mazumdar (2003), the authors showed that with the existence of a competitive spot market,
the UC problem may become decomposable if the spot market has an infinite capacity and can trade (includ-
ing buying and selling) electricity instantaneously. In this situation, the UC problem can be decomposed to
independent unit subproblems. An intuitive explanation is that the power imbalance of the demand constraint
can be offset by the market through trading instantaneously. This coincides with our rationale to discuss single
unit asset valuation in a competitive market with spot markets. When the network constraints exist, one can no
longer assume that the spot market (presumably near the power plant of interest) has an infinite capacity due
to transmission constraints. In this case, it makes better sense to consider the valuation of multiple generating
units over various locations as a portfolio, which is beyond the scope of this paper. However, to consider the
impact of the network constraints on a specific unit at a specific location, one can model the network congestion
in terms of the capacity of the unit. For example, the maximal and minimal capacities of the unit may be time
dependent and/or even random:

qmin
t � qt � q

max
t � (EC.D20)

This can be easily incorporated in the proposed lattice model.
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