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Abstract

Obtaining consistent estimates of spillovers in an educational context is hampered by at

least two issues: selection into peer groups and peer effects emanating from unobservable

characteristics. We develop an algorithm for estimating spillovers using panel data that

addresses both of these problems. The key innovation is to allow the spillover to operate

through the fixed effects of a student’s peers. The only data requirements are multiple

outcomes per student and heterogeneity in the peer group over time. We first show that the

non-linear least squares estimate of the spillover parameter is consistent and asymptotically

normal as N →∞ with T fixed. We then provide an iterative estimation algorithm that is

easy to implement and converges to the non-linear least squares solution. Using University

of Maryland transcript data, we find statistically significant peer effects on course grades,

particularly in courses of a collaborative nature. We compare our method with traditional

approaches to the estimation of peer effects, and quantify separately the biases associated

with selection and spillovers through peer unobservables.
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1 Introduction

The question of how peers affect student achievement underlies many debates in applied

economics. Peer effects are relevant to the estimation of the impact of affirmative action,

school quality, and public school improvement initiatives such as school vouchers, and are

central to more immediate concerns such as how best to group students to maximize learning.

However, despite this wide field of potential relevance, the empirical estimation of spillovers—

whether in the education context or elsewhere— is not straightforward.

There are at least two barriers that must be overcome when estimating spillovers on stu-

dent achievement. The first is the selection problem. When individuals choose their peer

groups, high ability1 students may sort themselves into peer groups with other high ability

students. With ability only partially observable, positive estimates of peer effects may result

even when no peer effects are present because of a positive correlation between the student’s

unobserved ability and the observed ability of his peers. Researchers have undertaken a variety

of estimation strategies to try to overcome the selection problem,2 but significant empirical

problems linger, both because researchers only have access to incomplete measures of ability

and because peer effects may operate differently when peers are chosen rather than assigned.

A second barrier is that spillovers may work in part through characteristics or actions that

are not observed by the econometrician. The importance of peer effects may be significantly

understated if the primary channel through which they operate is unobserved. Peer effects

through unobservables has received little attention outside of Altonji et al. (2004). Random

assignment is able to circumvent the selection problem but the obstacle to estimation posed

by peer effects through unobservables remains.

We introduce a new algorithm for estimating spillovers using panel data that overcomes

both these obstacles. Our key innovation is that the peer effects are captured through a linear

combination of individual fixed effects. Constructing the spillover as a linear combination of
1For ease of exposition we refer to the bundle of individuals’ performance-relevant characteristics as ‘ability.’
2One set of papers uses proxy variables to break the link between unobserved and peer ability (Arcidiacono

and Nicholson (2005), Hanushek et al. (2003), and Betts and Morell (1999)). Another set of papers relies on

some form of random assignment (Sacerdote (2001), Zimmerman (2003), Winston and Zimmerman (2003),

Foster (2006), Lehrer and Ding (2007), and Hoxby (2001)). Finally, researchers have tried to circumvent the

endogeneity problem with instrumental variables (Evans et al. (1992)).
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individual fixed effects results in a non-linear optimization problem. Estimating individual

unobserved heterogeneity in non-linear panel data models often results in biased estimates of

the key parameters of interest—the incidental parameters problem.3 As N goes to infinity for

a fixed T , the estimation error for the fixed effects often does not vanish as the sample size

grows, contaminating the estimates of the parameters of interest.4 We show, however, that

the nonlinear least squares estimate of the spillover parameter is consistent and asymptotically

normal as N →∞ with T fixed, even though the fixed effects themselves are not consistent.5

While nonlinear least squares yields consistent estimates of the spillover parameters, the

dimensionality of the problem renders nonlinear least squares infeasible. We develop an it-

erative algorithm that, under certain conditions, produces the same estimates as nonlinear

least squares. The algorithm toggles between estimating the individual fixed effects and the

spillover parameters. Each iteration lowers the sum of squared errors, with a fixed point

reached at the nonlinear least squares solution to the full problem.

The original framing of the model is one where only exogenous effects are present: it

is only the characteristics of the individual and their peers that matter, not their shared

environment (correlated effects) or their choices (endogenous effects). We show that the

model and estimation algorithm can easily be adapted to include correlated effects, and that

estimating the model can often be viewed as solving the reduced form of a structural model

that has both exogenous and endogenous effects. In a wide class of cases, the methods used in

previous research to disentangle endogenous effects from exogenous effects6 can also be applied

here. Further, our model allows for spillovers to be heterogeneous, with some individuals being

more susceptible to peer influence or more susceptible to influence from those with similar

characteristics to their own.

We customize the model for application to peer effects in education, using student-level

data from the University of Maryland. Six semesters of transcript data are available covering
3Neyman and Scott (1948) were the first to document the incidental parameters problem.
4Hahn and Newey (2004) provide two methods of bias correction: a panel jackknife and an analytical

correction. Woutersen (2002) and Fernandez-Val (forthcoming) consider estimators from bias-corrected moment

conditions. In a similar vein, Arellano and Hahn (2006) and Bester and Hansen (forthcoming) consider bias-

correcting the initial objective function.
5Other special cases where the incidental parameters problem does not require a bias correction are Manski

(1987), Honore (1992), and Horowitz and Lee (2004).
6See Cooley (2009a) for a discussion.
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the semesters from the spring of 1999 to the fall of 2001. We observe grades for every class

each student took over the course of this period as long as the student lived on campus during

any one of the six semesters.

We estimate the model separately for each of three types of courses, finding significant peer

effects which vary by course type. A one standard deviation increase in peer ability yields

average returns similar to those from between a 3 percent and a 11 percent of a standard

deviation increase in own ability, depending upon the course type and specification. The

lowest returns are found in math and science with the highest returns found in the social

sciences.

Our model allows us to quantify selection both within and across course types. Within

course types, we compare the amount of selection with respect to observed and unobserved

student ability. To arrive at these measures, we decompose each of the estimated student fixed

effects, or what we label total ability, into an observed and an unobserved component using

typical observed ability measures, such as SAT scores and high school performance. For all

course types we find greater selection on unobserved ability than observed ability. However,

selection is highest when measured using total ability, a reflection of the significant correlation

between peer observed and unobserved ability within a section.7 Because we estimate our

model separately for each course type, we can compare student ability in their primary course

of study to their ability in other fields, thereby quantifying selection across course types. We

find strong evidence of both comparative and absolute advantage. On average students select

course types for which they are best suited. However, math and science students show greater

aptitude overall in every course type.

Finally, we compare our peer effect estimates to those that would be obtained using more

conventional methods. In particular, we examine separately the two obstacles present in

traditional peer effects estimation: selection into peer groups and the effect of peer unobserv-

ables. Controlling for selection only, which is what is accomplished using random assignment,

we show that the estimated peer effects are lower than the peer effects obtained using our

method. This is because random assignment techniques rely on incomplete measures of peer

ability. We then re-introduce selection into the model and show that the bias in the peer

effect estimate can be either positive or negative when both issues are present. For humanities
7By construction, observed and unobserved ability are orthogonal in the population.
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courses, the peer effect estimate continues to be biased downwards since the peer unobserv-

ables problem dominates the selection problem. The opposite is true for math and science

courses where the peer effect estimate using conventional methods is more than four times our

original estimate. The differences across course types is due in part to the much higher cor-

relation between individual observed ability and peer unobserved ability in math and science

relative to the humanities.

The remainder of the paper proceeds as follows. Section 2 presents the baseline model, the

identification result, and the solution algorithm. Section 3 extends the model to incorporate

correlated effects, endogenous effects, and heterogeneity in peer spillovers. Monte Carlo evi-

dence on the performance of the algorithm is presented in Section 4. Section 5 describes the

University of Maryland data, and Section 6 presents the results. Section 7 explores selection

within and across course types and Section 8 illustrates the biases associated with traditional

peer effect measures. Section 9 concludes.

2 Estimating Spillovers with Panel Data

In this section we present a model and estimation strategy for measuring achievement spillovers

using student fixed effects. The model is constructed keeping in mind that our application

will be measuring peer effects in college, where we are interested in the interactions that occur

within discussion sections in large classes.

We first consider a case where one’s outcome depends only on one’s own fixed effect and the

fixed effects of the other individuals in a pre-defined peer group. We show that it is possible

to obtain consistent estimates of the spillover and that there is a computationally cheap way

of obtaining the solution. All proofs appear in the appendix.

2.1 Identifying Spillovers Using Panel Data

Our baseline model has individual i’s outcome at time t in peer group n, Yitn, depending

upon his own observed and unobserved permanent characteristics, Xi and ui, the unobserved

permanent characteristics of each of the other students in his peer group, and a transitory

error, εitn. Denote as Mtn + 1 the total number of individuals in peer group n at time

t. Each member of peer group n at time t then has Mtn peers. Denote as Mtn∼i the set
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of individuals (numbering Mtn) in peer group n at time t with individual i removed. Our

baseline specification can then be written:

Yitn = Xiβ1 + uiβ2 +
1
Mtn

∑
j∈Mtn∼i

(Xjγ1 + ujγ2) + εitn (1)

The specification in (1) is restrictive along a number of dimensions. There are no endoge-

nous effects, as peer choices do not enter the outcome equation. There are also no correlated

effects, as there are no variables to capture the commonality of the environment faced by

all members of student i’s time-t peer group. Finally, this specification does not allow for

heterogeneity in the susceptibility to peer influence.

While each of these restrictions is relaxed in the next section, even in this special case

estimation is problematic when peer groups are chosen. In particular, there may be correlation

between ui and the sum of observed peer characteristics, leading to biased estimates of γ1.

Also, we will not be able to capture the peer influence through unobservables, meaning that

γ2 is inestimable without further assumptions. While random assignment can remove the

correlation between ui and observed peer characteristics, the inability to capture spillovers

through unobservables remains.8

We next make one additional assumption: the relevance to outcomes of peer characteristics

is proportional to that of own characteristics, meaning that we can write γ1 and γ2 as9

γ1 = γoβ1

γ2 = γoβ2

This implies, for example, that if two dimensions of an individual’s ability are equally im-

portant in their effect on Yitn, then those two dimensions of peer ability will also be equally

important in determining Yitn. This same assumption is used in Altonji et al. (2004).

Now define αio as:

αio = Xiβ1 + uiβ2

8Using random assignment to identify the spillover also disregards the possibility that spillovers operate

differently in selected versus randomized contexts.
9For the remainder of the paper, we designate population parameters with an ‘o’ subscript (γo) and estimates

of the population parameters with a hat (γ̂).
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We can then rewrite equation (1) as:

Yitn = αio +
γo
Mtn

∑
j∈Mtn∼i

αjo + εitn (2)

An individual’s outcome is then a function of the individual’s fixed effect plus the mean of

the fixed effects of the other students in the peer group. Using fixed effects in this way

allows us to abstract from many other covariates that may affect student outcomes. All of

the heterogeneity in fixed student characteristics that might affect student outcomes, such as

birth cohort, sex, IQ, or race is captured with this one measure.

Our goal is then to show the properties of the solution to the non-linear least squares

problem:

min
α,γ

N∑
i=1

T∑
t=1

Yitn − αi − γ

Mtn

∑
j∈Mtn∼i

αj

2

(3)

Given the non-linearities present in the problem, one may suspect that for fixed T , the estimate

of γo that solves the above least squares problem, γ̂, will be biased as a result of the incidental

parameters problem. However, we show that under mild assumptions this is not the case as

long as the peer group changes over time.

Theorem 1. Let N denote the number of individuals that a) are observed at least two times

and b) satisfy
∑

j∈Mtn∼i
( αjo

Mtn
) 6=

∑
j∈Mt′n∼i

( αjo

Mt′n
) for some t, t′ and for all i ∈ {1, ...,N}. If:

1. Mtn is a discrete random variable defined on the interval [M,M ] where M ≥ 1 and

M <∞

2. εitn⊥Mtn ∀ i, t, n

3. E (εitnεjsk) = 0 ∀ j 6= i, t 6= s, n 6= k

4. E (εitnαjo) = 0 ∀ i, j, t, n

5. E(α4
io |Mtn) <∞ ∀ i, t, n

6. E(εitn) = 0 and E(ε4itn) <∞ ∀ i, t n

7. E(ε2itn) = E(ε2jtn) ∀ i, j, t, n

8. γo lies in the interior of a compact parameter space Γ, where the largest element of Γ is

given by γ. Further, γ < M
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then γ̂ is
√
N consistent and asymptotically normal estimator of γo for fixed T .

While most of the above assumptions are standard, a few non-standard assumptions de-

serve closer inspection. Assumption 7 requires that the residuals within a peer-group have

equal variance.10 Thus, only heteroscedasticity across peer groups can be accommodated. As-

sumption 2 requires that the residuals are independent of the size of the peer group, ensuring

that the variance of the residuals does not grow with group size. Finally, Assumption 3 re-

quires that the residuals across any two observations are uncorrelated. Any correlation across

outcomes for the same individual is captured by the individual fixed effect, while correlation

in outcomes across individuals in the same peer group is entirely captured by the peer effect.11

The structure of the proof relies on solving for each of the α’s as a function of the data

and γ and then substituting these functions in for the α’s in (3). Minimizing with respect to

γ alone then yields the result.

Because the estimator of the αo’s is inconsistent for fixed T , one would expect the estimator

of γo to be downward biased as a result of measurement error. To provide some intuition

for why this does not happen, we simplify the model here and assume that there exist N

independent blocks of individuals, each containing three students. Within a block, individual

1 is observed twice, first paired with individual 2 in period one, and then paired with individual

3 in period two. Individuals 2 and 3 are only observed when paired with individual 1. Given

the simple outcome generation process just described, we then have:

Y11n = α1on + γoα2on + ε11n

Y21n = α2on + γoα1on + ε21n

and

Y12n = α1on + γoα3on + ε12n

Y32n = α3on + γoα1on + ε32n

where the n subscript denotes a particular block of three students.
10An alternative to assumption 7 that would also ensure that the least squares estimator yields a consistent

estimate of γ̂ would be to assume that the individual residuals are independent of the number of observations

per individual.
11We introduce a procedure for capturing correlated effects that do not work through the peer effect in the

next section.

8



The parameter of interest is γo, for which we might try to recover an estimate using a

conventional panel-data strategy. Differencing the outcomes of individual 1 across the two

time periods yields

Y12n − Y11n = γo(α3on − α2on) + ε12n − ε11n

If α3on−α2on were observable, estimating the above equation by ordinary least squares would

yield a consistent estimate of γo. When α3on − α2on is not observed, a natural, albeit noisy,

proxy for α3on−α2on is available since the difference in outcomes between students 2 and 3 is

given by

Y32n − Y21n = α3on − α2on + ε32n − ε21n

Hence, we could regress Y12n − Y11n on Y32n − Y21n to obtain an estimate of γo. However,

as N goes to infinity with T set at 2, the γ̂ resulting from the regression of Y12n − Y11n on

Y32n − Y21n suffers from the standard measurement error problem:

plim γ̂ = γo

(
E[(α3o − α2o)2]

E[(α3o − α2o)2] + E[ε232 + ε221]

)
Since E[ε221 + ε232] > 0, γ̂ will be inconsistent with a downward bias for fixed T , a standard

result when a regressor is measured with error.

Our estimator differs from the above approach in that when we concentrate the α’s out

of the least squares problem, we use all available information. In particular, when taking the

first order condition with respect to any αi, there is an effect on i’s outcomes, but there is also

an effect on all individuals who happen to be paired with i. Ignoring this latter effect in the

first-order condition would essentially be identical to the exercise just completed. However,

when the full first-order condition is written down, the estimated difference between α3on and

α2on is not proxied by Y32n−Y21n, but is written as a function of γ and all observed outcomes:

α3n − α2n =
Y32n − Y21n + γ(Y12n − Y11n)

1 + γ2

where the above equation can be derived using Lemma 1 in the appendix. This difference in

α’s is a function of Y12n − Y11n, which when used to predict Y12n − Y11n induces a mechanical

positive correlation between the regressor and the error term. This correlation exactly offsets

the measurement error bias highlighted in the conventional differencing strategy discussed

above, allowing us to achieve a consistent estimator of our target, γo.
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While concentrating out the α’s is useful for proving consistency, the formulas are quite

cumbersome and difficult to calculate. Directly solving (3) is also generally not possible

because of the dimensionality of the problem. Instead, we consider an iterative estimation

strategy that both circumvents the dimensionality problem and yields the same solution as

direct maximization. The next section introduces the computational procedure and discusses

how it relates to the broader literature regarding estimation of high-dimensional problems.

2.2 Computing Spillovers with Panel Data

Before moving directly to the computation of the spillover model outlined in the previous

section, we illustrate how our proposed procedure can ameliorate a somewhat simpler compu-

tational problem prominently discussed in the literature. An outstanding problem in applied

microeconomics is how to estimate models containing multiple types of fixed effects where

each set of fixed effects is of a large dimension. We begin with this econometric problem since

the iterative method we employ solves the issue of multiple fixed effects en route to estimating

spillovers. We focus on two papers in particular: Rivkin et al. (2005) and Abowd et al. (1999),

to illustrate the difficulties in estimating large numbers of fixed effects.

Rivkin et al. (2005) model gains in test scores as a function of the observed characteristics

of the students, Xi, and teacher fixed effects, πjo, where i indexes individuals and j indexes

teachers.12 The change in test scores from time t−1 to t given that the individual has teacher

j at time t, ∆Y, is then modeled as:

∆Y = βoXi + πjo + εit (4)

Note that Xi includes characteristics of the students that do not vary over time. However,

Xi may not include the full set of individual characteristics that are relevant for achievement

gains, and the omitted variables may be correlated with the πjo’s due to streaming of students

and/or systematic selection of certain teachers into classrooms with higher- or lower-ability
12Our model is presented in levels since we will be working with collegiate data, where defining a baseline

of achievement is somewhat difficult. However, the model can be applied exactly as written if gains are the

outcome of interest. The key differences will be that the outcome is now a gain and that the individual

fixed effects reflect heterogeneity in ability to improve. Peer effects in this case would also work through an

individual’s ability to improve. To the extent that gains are employed to eliminate time invariant unobserved

heterogeneity, our model can handle this directly by estimating fixed effects at multiple levels.
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students. As an alternative, we could estimate the model with both student and teacher fixed

effects:

∆Y = θio + πjo + εit (5)

However, estimating both sets of fixed effects simultaneously would be infeasible given the

large number of students and teachers in their data.

Abowd et al. (1999) are interested in modeling wages as a function of both firm and worker

fixed effects. The most basic model they are interested in estimating contains just individual

and firm-specific effects in a regression of log earnings. A more interesting case occurs when

there are tenure effects that vary across firms. For simplicity, assume that the effects of tenure

are linear. Labeling Xijt as the amount of tenure individual i has in firm j at time t, the

outcome equation is:

Yijt = θio + πjo + φjoXijt + εijt (6)

where φjo is the firm-specific return to tenure. Abowd and Kramarz (1999) recognize that with

over 1 million workers and 500,000 firms, they cannot estimate the above equation directly.

Instead, they consider a number of estimation techniques, none of which results in least squares

estimates of the firm and worker fixed effects without imposing additional assumptions on the

data generating process.13

Our approach yields least squares estimates of both firm and worker effects in a computa-

tionally feasible way without imposing any extraneous orthogonality conditions. Estimating

the firm-worker model by OLS solves:

min
θ,π,φ

N∑
i=1

T∑
t=1

(Yijt − θi − πj − φjXijt)
2 (7)

Minimizing this function in one step remains infeasible as a result of the large number of

firms and workers. Instead, we propose an iterative method that yields OLS estimates of the

parameters of interest while circumventing the dimensionality problem. Given starting values

for the θ’s the algorithm iterates on two steps with the qth iteration following:
13Abowd et al. (2002) provide one way to recover the exact least squares estimates of the firm and worker

effects when both vectors are of a high dimension. Using the code provided on the authors’ website, we compared

the performance of our estimator to the new estimator in Abowd et al. (2002). With 500,000 firms, 1,000,000

workers, and a linear returns-to-tenure parameter, our algorithm produced the same parameter estimate and

reduced the required computational time by 25%.
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• Step 1: Conditional on θq−1, estimate πq and φq by OLS.

• Step 2: Conditional on πq and φq, estimate θq by OLS.

The process continues until the parameters converge. Because the sum of squared errors is

decreased at each step, we will eventually converge to the parameter values that minimize the

least squares problem in (7), regardless of which pair of parameters we guess first to start

the algorithm. The primary advantage of our method in applications such as those described

above is that it is capable of estimating extremely large sets of fixed effects in a reasonable

amount of time.

The model becomes slightly more complicated when the outcomes are allowed to depend on

functions of the fixed effects themselves. The iterative estimation strategy we employ involves

toggling between estimating the spillover parameter by OLS and estimating the individual

fixed effects. The additional complexity arises in the second step. In the firm-worker example,

the qth iteration estimate for θi does not depend on the qth iteration estimate of θj . However,

in the spillover model, i’s outcome is a function of αi and αj for all j ∈ Mtn. This suggests

that we need to minimize the conditional likelihood function over all of the α’s directly. We

are able to avoid this by instead repeatedly updating αi using the first order condition from

the least squares problem.

Consider the first order condition of the nonlinear least squares problem with respect to

αi:

0 =
T∑
t=1

Yitn − αi − γ

Mtn

∑
j∈Mtn∼i

αj

+
∑

j∈Mtn∼i

γ

Mtn

Yjtn − αj − γ

Mtn

∑
k∈Mtn∼j

αk

 (8)

Solving for αi yields:

αi =

∑
t

[
Yitn − γ

Mtn

∑
j∈Mtn∼i

αj +
∑

j∈Mtn∼i

γ
Mtn

(
Yjtn − αj − γ

Mtn

∑
k∈Mtn∼i∼j

αk

)]
T +

∑
t
γ2

Mtn

(9)

Note that we have pulled out the αi terms from the last term in (8) to derive (9). We establish

in Theorem 2 the conditions under which, given any initial set of α’s, repeatedly updating the

α’s using (9) yields a fixed point.

Theorem 2. Denote f(α) as a function mapping from RN → RN where the ith element of

f(α) is given by the right hand side of (9) ∀i ∈ N . A sufficient condition for f(α) to be a

contraction mapping is that the maximum of γ is less than 0.4.
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The restriction on the maximum value γ is needed to ensure that the feedback effects are

not too strong. With Theorem 2 giving a solution method for the α’s conditional on the γ’s,

our algorithm iterates on estimating the α’s using f(α) (taking the γ’s as given), and then

estimating the γ’s taking the α’s as given. Each of these two steps lowers the sum of squared

errors and, analogous to the estimator in Section 2, converges to the nonlinear least squares

solution. In practice, we have found that the algorithm performs substantially faster if the

α’s are only updated until the sum of squared errors falls before moving on to re-estimating

γ.14 To summarize, the algorithm is started with an initial guess for the α’s and iterates on

two steps until convergence, with the qth iteration given by:

• Step 1: Conditional on αq−1, estimate γq by OLS.

• Step 2: Conditional on γq, update αq according to (9).

3 Model Extensions

The baseline model makes a number of simplifying assumptions regarding the channel through

which the spillover operates, the shared group environment, and the form of the spillover effect.

The following sections discuss extensions of the model to address these complications.

3.1 Endogenous Effects

Until this point we have ignored how individual and peer choices may affect outcomes: endoge-

nous effects. The peer effects literature that allows for endogenous effects can be broken out

into two classes of models. In the first class, the outcome of interest is itself a choice, and this

choice is directly affected by the actual or expected choices of an individual’s peers. Examples

of this situation, which illustrates what is commonly known as the “reflection problem”, are

the choice of college major and the choice to use drugs.15 In the second class of models, the

outcome of interest is not completely within the individual’s control. However, choices by

both the individual and the individual’s peers directly affect the outcome. Examples of this

situation are wages and final examination scores.16 In these two cases, it is own effort and the
14For most iterations of our models updating the α’s just once led to a decrease in the sum of squared errors.
15See, for example, Giorgi et al. (2007).
16See, for example, Cooley (2009b).
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effort that other individuals exert in the office or the classroom that affect own outcomes, but

others’ outcomes per se do not appear in the own-outcome equation. Cooley (2009a) shows

that identification is much more complicated in this second class of models.

In Appendix B, we consider the complications introduced by endogenous effects by setting

up a structural representation of each of these classes of models and showing what our estima-

tor is able to recover using reduced-form estimation in each case. We illustrate the obstacles

to estimation confronted by both observables-based approaches and our fixed-effects-based ap-

proach when the underlying structural model contains endogenous effects. We also show what

structural parameters can be estimated using our model, and we provide conditions under

which we can separate out exogenous from endogenous effects using the reduced form. The

key result is that in our empirical application, as well as a wide variety of endogenous-effects

settings, the fixed-effects-based approach itself does not restrict one’s ability to separately

identify the various peer effect channels when compared with the standard observables-based

approaches.

We do not pursue the endogenous effects extension further in the text since the conditions

necessary to separately identify exogenous and endogenous effects are not satisfied in our

empirical application. Namely, we lack a valid exclusion restriction, which in this scenario

is a variable that affects the choices of the individual but affects his peers only through the

individual’s choice. As a result, the estimates of our model can be interpreted as a combination

of both exogenous and endogenous effects.

3.2 Correlated Effects

We next discuss an extension to our baseline model in which common shocks, correlated effects,

influence outcomes. If each individual peer group is exposed to a different environment, it

is impossible to separate the correlated effects from the exogenous effects without further

parameterizations. A restriction that is easily imposed for correlated effects in our context is

a component to one’s grade that is course-specific. This is important as grade inflation and

where the curve lies will affect one’s final grade irrespective of own and peer ability. Denote

individual i’s outcome at time t, in peer group n, and course c as Yitnc, and the set of students
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in course c at time t by Mtc. Placing course fixed effects into the achievement equation yields:

Yitnc = αio +
γo
Mtn

∑
j∈Mtn∼i

αjo + δtco + εitnc (10)

The δtco’s are then the course fixed effects used to capture correlated effects since all peer

groups are formed within courses.

The non-linear least squares problem we are now interested in solving takes the following

form:

min
α,γ,δ

N∑
i

T∑
t=1

Yitnc − αi − γ

Mtn

∑
j∈Mtn∼i

αj − δtc

2

(11)

While the consistency of γ̂ is unchanged regardless of whether we include other time-varying

regressors, it is particularly clear here since we can re-write the above expression without δtc

by demeaning the dependent variable at the course level.

The first order condition with respect to αi changes to reflect the presence of the course

fixed effects:

αi =

∑
t

[
Yitnc − δtc − γ

Mtn

∑
j∈Mnt∼i

αj +
∑

j∈Mnt∼i

γ
Mtn

(
Yjtnc − αj − δtc − γ

Mtn

∑
k∈Mnt∼i∼j

αk

)]
T +

∑
t
γ2

Mtn

(12)

The updating rule for the α’s then follows directly from (12), once the α terms are collected

for each student.

For a given set of α’s and γ’s, the course fixed effects can be calculated according to:

δtc =

∑
i∈Mtc

(
Yitnc − αi − γ

Mtn

∑
j∈Mtn∼i

αj
)∑

i∈Mtc
1

(13)

The estimation strategy is then the same as without correlated effects, with one additional

step. As before, each step of the estimation decreases the sum of squared errors. The algorithm

is set by an initial guess of the α’s and δ’s and then iterates, with the qth iteration following:

• Step 1: Conditional on αq−1 and δq−1, estimate γq by OLS.

• Step 2: Conditional on δq−1 and γq, update αq according to (12).

• Step 3: Conditional on αq and γq, update δq according to (13).
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Adding other types of fixed effects simply adds additional steps to the estimation, with each

set of fixed effects updated in an additional step. For example, had data been available on

teaching assistants, it would have been possible for us to control for teaching assistant effects

as well.

3.3 Heterogenous Effects

The assumption that each student is affected in the same manner by their classmates is

restrictive and, as pointed out by Hoxby and Weingarth (2005), not particularly interesting

from a policy perspective. In particular, the linear-in-means model implies that, in terms of

grades, any winners from reshuffling peers are perfectly balanced by those who lose from the

reshuffling. We now relax this assumption by extending our spillover framework to allow for

either heterogeneity in the response to peers or heterogeneity in the impact of peers.

The first extension allows the effect of peers to vary with an individual’s own characteristics,

a model we refer to as heterogeneity in responsiveness to peers. A simple example would be

if female students are influenced more by peer ability than male students. We can express a

spillover model that incorporates heterogeneity in the responsiveness to peers as follows:

Yitn = αio +

∑
j∈Mtn∼i

αjo

Mtn

(
Xi ∗ γo

)
+ δtco + εitn

where Xi denotes the observable characteristics of individual i.

The second model, which we refer to as heterogeneity in peer influence, allows the strength

of the peer effect to depend on the interaction between own and peer characteristics. For

example, male students may be affected more by other male students than they are by female

students. For ease of exposition, assume that students can be assigned to one of two groups,

such as male or female, or black or white. Heterogeneity in peer influence can then be easily

incorporated as follows:

Yitn = αio +
1
Mtn

γ1o

∑
j∈Mtng∼i

αjo + γ2o

∑
j∈Mtng′

αjo

+ δtco + εitn

where Mtng∼i is the set of all students in peer group n at time t who are in the same group as

i, excluding individual i, and Mtng′ are all individuals in peer group n at time t who are not

in the same group as i. This simple model can be extended to allow for interaction-specific
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spillovers (as opposed to own and other group), or matching based on continuous regressors

using a distance measure.

The steps required to estimate either of the above models are identical to the those out-

lined in the previous section, though each step becomes slightly more complicated. Rather

than estimating a single γ by OLS in Step 1, multiple γ’s will need to be estimated. Com-

putationally, Step 2 is also more cumbersome since the first order condition for αi will likely

depend on i’s type and the type of peers with whom i is grouped.

4 Monte Carlo Simulations

To investigate the properties of our iterative estimator, we now run simulations using different

assumptions about the composition and selection into the peer groups. In each setting, the

model is simulated using 10,000 students. We simulate the model 100 times under various

states of the world constructed by varying four dimensions of the problem:

1. Observations per student- The number of outcomes observed per student varies across

simulations between 2, 5, and 10. 5 is the maximum number of observations a researcher

may have when analyzing grade school or high school test score data, and 10 observa-

tions is more likely when analyzing grades achieved in university-level courses. More

observations per student implies more accurate measurement of the α’s.

2. Students per peer group- The number of students per peer group varies across simulations

between 2 and 10. 2 is the minimum number of observations required to identify a

spillover in this type of model. 10 students per peer group is in the range of what might

be observed in typical classroom-based data sets.

3. Selection into classes- To show that our estimator solves the selection problem, we

simulate the model under alternative assignment rules. Under random assignment, the

average standard deviation of the α’s within a peer group equals the standard deviation

of α in the population. We also simulate the model with selection such that the average

standard deviation of the α’s within a peer group is 75% of the population standard

deviation. The selection level in the non-random assignment simulation corresponds
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with the sorting observed in the Maryland transcript data.17

4. Transitory component- The noisier the outcome measure, the noisier the estimates of

the α’s will be. The distribution of the α’s is set at N(0,1). The ε’s are distributed with

mean zero and standard deviation equal to 1.15 or 1.95.

The common group-level shock used to model the correlated effect is not statistically associated

with the abilities of students in the classes. However, students are sorted into classes based

upon ability. Thus, the average standard deviation of abilities within a class is smaller than

standard deviation of abilities in the population.

Table 1 documents the model’s performance when the true value of γo is 0.15. Again,

regardless of assignment procedure or section size, γ̂ is centered around the truth. However,

two interesting patterns emerge in the estimates and standard errors of γ̂. First, γ̂ is more

precisely measured when students are randomly assigned to sections. Selection in this case

can be thought of as occurring at two levels: the class level and the section level. These

results reflect the fact that selection at the class level confounds the estimate of the correlated

effect and reduces the precision of the section-level peer effect estimate. In fact, if selection

occurred only at the section level, the peer effect estimates would be more precise than in the

random assignment case (ceteris paribus), since there would be greater variation in peer ability.

Second, as the peer group size increases, the precision of γ̂ decreases.18 This is again related

to the variation in peer ability across sections. With smaller section sizes, other things equal,

there is greater variation in peer ability across sections which yields more precise estimates of

the spillover.

As noted previously, the linear-in-means model may not be the most interesting case from

the policy maker’s perspective. We suggested two extensions to the baseline framework that

would relax this assumption. Table 2 illustrates the performance of the heterogenous effect
17In our data, the standard deviation of ability within peer groups is between 70% and 77% of the standard

deviation of ability in the population depending upon the course type.
18This can be seen in Table 1 since as the number of observations per student increases, we should naturally

see an increase in precision—yet we do not, because peer group size increases as well, driving standard errors

up. The negative association of peer group size and precision, as well as all other relationships discussed here,

have also been verified in numerous additional Monte Carlo exercises; results are available upon request from

the authors.
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models, where the basic structure of the Monte Carlos is kept intact. Each model is simulated

100 times using 10,000 students, with and without student sorting based on unobserved ability.

In each case we assume students are characterized by one binary variable. The results indicate

that the estimation framework previously outlined is amenable to heterogenous peer effects.

5 Data

With the model producing consistent estimates of the spillover parameter and performing well

in our Monte Carlos, we now turn to the data used in estimation. The administrative data

set used in this paper covers all undergraduates observed residing in University of Maryland

on-campus housing during any of the following six academic semesters: Spring 1999, Fall

1999, Spring 2000, Fall 2000, Spring 2001, or Fall 2001. The data set includes students living

off-campus in a given semester as long as they were observed living on campus during at least

one of the six semesters. 90% of University of Maryland entering freshmen live on campus

in their first semester,19 so the data set includes at least 90% of the University of Maryland

undergraduate population who began study sometime in the six-semester period. There is a

less complete representation for upperclassmen, some of whom entered before our observation

period and may not have lived on campus during the period. However, our identification of peer

effects comes from large, multi-section courses in which freshmen predominate.20 A “section”

in the American undergraduate context is a subset of students from an entire course that

meets together formally at least once a week. In these smaller groups, greater communication

and interaction is expected of students. Our section-level spillover captures how the ability of

other students in the same section impacts any given student’s eventual grade in a course.

To generate the student-section-level sample used to estimate our models, we first placed

two major restrictions on the data set: students had to have valid A through F grade informa-

tion for the given section, and they could not be the only student observed in the section that

semester.21 These restrictions yielded a sample of 300,640 student-section observations. We
19This number is taken from publicly-available statistics posted on the University’s web page.
20In tests of whether classes that were under-represented had lower estimated peer effects than those with a

complete representation, we found no meaningful differences.
21Numeric grade equivalents were assigned as follows: A = 4; B = 3; C = 2; D = 1; and F = 0. Students who

withdrew from a course, audited, or received a non-letter grade (such as Pass) were excluded from the sample
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then deleted all observations on sections that were not in one of three well-defined academic

subgroups: (1) humanities (86,844 observations), (2) social sciences (77,312 observations), and

(3) hard sciences and mathematics (82,675 observations).22 This left a combined sample of

246,831 student-section observations, representing 18,511 individual students. Sample sizes

are provided in Table 3.

Finally, while our method does not require the presence of observable characteristics about

individuals, the data set to which we apply it does offer an array of observable measures about

each student. Later in the paper, we use the following information about students in further

analysis of our models’ results: SAT math and SAT verbal scores; high school grade point

average; sex; race; whether the student was included in the honors program; whether the

student participated in sports; and whether the student was an in-state student (as opposed

to out-of-state or international).

6 Estimates of Classroom Spillovers

We now turn to our model specifications and estimates. We first describe and estimate a model

that restricts the peer effect such that the spillover only depends upon the mean ability in the

section. The second specification allows the size of the spillover to depend upon one’s own

characteristics. For example, those with high SAT verbal scores may receive higher benefits

from their peers than those with low SAT verbal scores. With the results of the two models in

hand, we then show how predictable ability is given observable measures such as SAT scores,

high school grade point average, and demographics.

due to concerns that they might not have been present during sections and classes. If two separate grades were

recorded for the student for a given section, the highest grade was used. We dropped students who do not

receive a final grade in a given course, which assumes that these students did not affect the outcomes of their

peers. We could have treated those who attrit as full members of the class provided we observed a grade for

these individuals in another course. The other course would then pin down the individual’s fixed effect.
22Excluded courses include those that are generally more vocationally-oriented, but very diverse; for example,

journalism, nutrition and food science, landscape architecture, and library science. Because our model estimates

a homogeneous underlying ability for each course type, we did not include these courses in a separate category

due to our concern that the underlying ability necessary to succeed in them is not sufficiently homogeneous

across the category.
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6.1 Homogeneous Gamma Model

With n, c, and t indexing sections, courses, and semesters, we have the same specification as

in equation (10) except that now, with the number of individuals in each section varying, we

restrict the spillover to depend upon the mean fixed effect of the other individuals in the same

section of a course:

Yitnc = αio +
γo
Mtn

∑
j∈Mtn∼i

αjo + δtco + εitnc (14)

Because grades are assigned at the course level, there is a relationship between students who

share a course but are not in the same section that cannot be captured by the section peer

effect, γo. We might expect, for example, that if the course is graded on a curve and the

entire class is extremely able, a mediocre student’s grade may suffer. Similarly, the teacher

of a course may respond to higher average class ability by teaching in a way that enhances

learning and therefore raises grades for at least some portion of the class. By including fixed

effects at the course level, the δtco’s, we can make the outcome measure comparable across

classes.

Consistent with the data section, we split courses into three types: humanities, social

sciences, and math and science. A student’s performance in each type of course will differ

according to the particular student’s strengths and weaknesses. Therefore, instead of encap-

sulating all the attributes of a student into one ability measure, we allow students to have

separate ability measures for each course type in which they are enrolled. As noted above, all

courses used in our analysis are classified as belonging to one of the following course types:

humanities, social sciences, or math and science. We estimate an independent ability measure

for each type of course for each student, conditional on the student’s enrollment in at least one

class within that course type.23 Another supporting rationale for the empirical division into

course types is that the amount of interaction, and therefore the size of the peer effect, may

differ by course type. The algorithm is then run separately for each type of course, yielding

three sets of peer and class effects estimates, as well as separate student ability measures for

each course type taken. Note that while classes with only one section do not help in the

estimation of the spillover parameter directly, these classes are still useful in pinning down the
23Information as to which courses were assigned to which course types is available from the authors upon

request.
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student fixed effects.

Table 4 shows the results from estimating equation (14) for each of the three types of

courses. The results indicate positive and significant section peer effects for all course types.

The magnitudes of the section-level peer effects suggest that peer effects are most important

in the social sciences and least important in math and science. This pattern may reflect the

amount of collaborative work required in each course type as well as the differing amounts of

discussion that occur in the sections.

In order to understand the importance of peer ability relative to own ability, we need to

take into account the differences in variation of peer and own ability. There is likely to be

less variation in peer ability than in own ability as peer ability averages over a cross-section

of students leading to some heterogeneity canceling out. The first two columns of Table 5

show the standard deviation of mean peer ability and the standard deviation of individual

ability, respectively. The third column then shows the fraction of a standard deviation of own

ability that is equivalent, in terms of its effect on grades, to a one-standard-deviation increase

in peer ability. This is calculated by dividing the standard deviation of mean peer ability

by the standard deviation of individual ability and multiplying this number by the estimated

gamma.

The gap evident in the raw marginal effects between math and science and the other

course types is somewhat mitigated because there is relatively more heterogeneity in peer

ability in math and science courses than in humanities or social science courses. A one-

standard-deviation increase in peer ability is shown to be equivalent to a maximum of 9% of

the effect of a one-standard-deviation increase in individual ability in the social sciences, and

to a minimum of 3% of the effect of a one standard deviation increase in individual ability in

math and science courses.

6.2 Heterogeneous Gamma Model

Table 6 shows the results of a peer effect model that allows for heterogeneity in the response

to peers.24 Response to peer ability is allowed to vary according to an individual’s gender,

race, and SAT scores. The qualitative results for humanities and social sciences are the same.
24We also allowed for peer effects to be stronger for those of similar races and genders, with little change in

the results.
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Relative to white males, Asians see less of a return to peer ability while females and other

non-white students see higher returns. Both SAT math and SAT verbal scores are associated

with higher returns to peer ability. While Asians in math and science again see lower returns

to peer ability, females and other non-whites also see lower returns relative to their white male

counterparts. The interaction of the peer effect with SAT verbal score is once again positive,

but the sign on the SAT math interaction is now negative.

The differences in the SAT interactions across fields suggest that two competing forces

may be at play. First, those with higher test scores may have skills that make them better

able to benefit from their peers. Working against this, however, is that there is more scope

for students to benefit the lower they are in the ability distribution. SAT verbal and math

scores may not be highly correlated with the ability to perform well in the humanities and

social sciences implying that the first effect dominates in these course types. However, the

SAT math score may be highly correlated with the ability to perform well in math and science

classes, leading to the second effect dominating.

Averaging across all individuals within a course type, the relative magnitude of the peer

effects is unchanged from the homogenous gamma model. Peer ability is most important in

social science courses and least important in math and science courses. However, the overall

magnitude of the peer effects is significantly higher, increasing by an average of over 40%

across course type. Relative to a one-standard-deviation increase in own ability, the effects of

a one-standard-deviation increase in peer ability are also higher in the heterogeneous gamma

model as shown in the fourth column of Table 7. The ratio of the effects of a one-standard-

deviation increase in mean peer ability to a one-standard-deviation increase in own ability

range from a low of 3.5% for math and science to a high of 10.5% in the social sciences.

6.3 Analysis of Ability

Next, we explore the extent to which the fixed effects from our iterative algorithm are pre-

dictable using the observed proxies for ability consistently used in related literature, and to

what extent the fixed effects estimated using the two methods differ. In order to facilitate

this comparison, we use SAT scores, high school performance, and a host of other observable

student attributes as regressors to construct a conglomerate observable measure of ability.

This approach is analogous to the creation of an academic index (as employed by Sacerdote
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(2001)). For each course type, we regress our estimated student fixed effects on an array of

previous performance measures and demographics. These results are presented Table 8.

Columns 1 through 3 of Table 8 show results when we use the fixed effects estimated in

our homogeneous gamma model as the dependent variable. The statistical significance and

magnitudes of the coefficients on SAT math and SAT verbal scores vary across the four dif-

ferent course types in predictable ways. For example, SAT math scores are insignificant when

explaining ability in humanities courses, but are a better proxy for math and science ability.

The opposite is true for SAT verbal scores, with higher SAT verbal scores associated with

higher ability in the humanities but uncorrelated with ability in math and science. Consistent

with Arcidiacono (2004), females outperform males across all course types. Conditional on

SAT scores and high school GPA, whites perform better than all other ethnic groups including

Asians.

The second set of columns in Table 8 shows the corresponding results for the heterogeneous

gamma model. Recalling the results found in Table 6 regarding the positive association of

SAT verbal scores with stronger peer effects across all course types, it is unsurprising that the

coefficient on own SAT verbal score is smaller and even negative for some course types when

predicting own ability. Previous work such as Arcidiacono (2004), Arcidiacono and Vigdor

(forthcoming), and Arcidiacono et al. (2008) have all found no returns to verbal test scores in

the labor market. Combining these findings with the results presented here suggests that SAT

verbal scores have very little to with ability in the absolute, but rather reflect how capable an

individual is at extracting rents from others.

We find that the R2 for these regressions ranges from 0.13 to 0.36 depending on the course

type and whether we use the homogeneous or heterogeneous gamma model to generate the

individual fixed effects. That these observable characteristics only explain a small portion

of our estimated ability measures suggests the possibility of large biases associated with the

unobserved ability problem when following a selection-on-observables, or random assignment,

approach. With much of peer ability unobserved, we would expect to underestimate the extent

to which outcomes are affected by one’s peers. However, selection into sections may occur

based upon one’s own unobserved ability, which in turn may be correlated with observed peer

ability. This latter effect characterizes the selection problem, and is likely to bias peer effects

estimates upward. While random assignment circumvents this latter problem, a downward
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bias remains from not taking into account the impact of unobservable peer attributes on

outcomes.

7 Quantifying Selection

In this section we quantify how much selection is taking place within course types with respect

to both observed and unobserved ability.25 For ease of exposition, we refer to the predicted

values of the regressions in Table 8 as ‘observed ability’ and the residuals of those regressions as

‘unobserved ability’. Thus, by construction, observed and unobserved ability are uncorrelated

at the individual level. However, unobserved individual ability and observed peer ability

will be correlated if students sort by total ability. By decomposing ability into its observed

and unobserved components, we can calculate the correlation between unobserved individual

ability and observed peer ability which is the crux of the selection problem. We also examine

selection across course types. In particular, we can split our student sample by which course

type was chosen the most. Because we estimate separate abilities for each course type, we

are able to determine whether students choose to take more courses in areas where they are

comparatively more able. In addition to examining comparative advantage, we can also see

whether students who choose particular course types enjoy an absolute performance advantage

by determining if their mean fixed effects are higher on average across all course types.

7.1 Selection Within Course Types

Table 9 provides information by course type on the selection evident with respect to both ob-

served and unobserved ability. We use the underlying ability as estimated by the homogeneous

gamma model and the heterogeneous gamma model, as well as the observed and unobserved

portions of this ability. The first row for every course type shows the section-size-weighted

average of the section-wide standard deviation of the variable in question, across all sections

in the particular course type; the second row for every course type shows the simple standard

deviation of the variable in question across the sample of students taking courses of the given

course type. The third row provides the ratio of the two. The smaller the numbers in the

third row, the tighter is the distribution of the variable within sections relative to the unsorted
25See Altonji et al. (2005) for more discussion of selection on observed and unobserved factors.
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distribution, and therefore, the more selection is evident with respect to that variable.

This table allows a direct analysis of the comparative degree of selection evident with

respect to observed versus unobserved ability. The patterns for both the homogeneous speci-

fication and the heterogeneous specification are almost exactly the same. For all three course

types there is more selection on unobserved ability than on observed ability, with higher ratios

of section standard deviations to population standard deviations found for observed ability. In

the social sciences and in particular for the humanities there is more selection on the estimated

α’s as a whole than on either observed ability or unobserved ability separately, with the high-

est levels of selection found in math and science. These patterns are driven by the correlation

between peer observed and unobserved ability. For the homogeneous gamma specification, the

correlation coefficients between peer observed and unobserved ability are 0.03, 0.07, and 0.35

in the humanities, social sciences, and math and science, respectively. The selection on the

estimated α’s in math and science is particularly strong relative to selection on either observed

or unobserved ability, which is consistent with the high correlation between peer observed and

unobserved ability.

With the observed and unobserved ability measures it is also to possible to estimate the

correlation between unobserved individual ability and observed peer ability, which feeds di-

rectly into the bias associated with the selection problem. The correlation coefficients for

unobserved individual ability and observed peer ability are 0.03, 0.06, and 0.20 for humani-

ties, social sciences, and math and science, respectively. The high correlation coefficient for

math and science suggests that the upward bias associated with peer effect estimation using a

selection on observables approach might be quite large. We test this hypothesis in section 7.

7.2 Selection Across Course Types

Because the vast majority of students are observed in courses of multiple types during their

tenure at Maryland, we obtain multiple estimates of ability for most students. Each estimated

ability measure is specific to courses of a particular type, by virtue of the estimation procedure,

and as such each can be assumed to reflect a skill set that is particularly in demand in that

course type. Calculating the correlations between estimated ability levels illuminates the

extent to which good performance in each of the three course types is driven by similar student

attributes as performance in the other course types, and therefore provides an empirical index
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of the academic similarity of course types. For ease of exposition, we focus on the homogeneous

gamma model for the rest of the paper.

Panel A of Table 10 shows the correlation coefficients among estimated ability levels across

the three course types from the homogeneous gamma model. These correlations are created

using estimated abilities from students observed in all course types.26 The correlation coeffi-

cients are all quite large and close together, ranging from 0.65 to 0.69.27 Panel B of Table 10

displays analogous results using only the portion of estimated abilities for each student that

is predictable using our observable variables. The relative relationships amongst observable

abilities by course type are the same, with observable abilities to perform in the humanities

and in math and science being related to a lesser extent than those of the other two course type

pairings (humanities and social sciences, and social sciences and math and science). However,

the strength of the relationships is much stronger across the board with correlation coefficients

above 0.95 for observed abilities for two out of three pairings. The differences across the pan-

els suggest that ability is much more heterogeneous than can be captured by observed ability

measures.

With this information as background, Table 11 illustrates the degree to which individual

students are observed to be sorting into the types of courses for which they appear, based on

our model, to be best suited. In particular, we label a student as specializing in a particular

course type if the number of courses taken in that course type is higher than the number of

courses taken in either of the other two course types. Panel A of this table displays results

using the estimated abilities from our homogeneous gamma model standardized to a N(0,1)

distribution, and Panel B displays results using only the portion of those estimated abilities

that could be predicted based on observable characteristics, also standardized to N(0,1). The

rows correspond to the sets of students who specialize in humanities, social sciences, and math

and science, respectively. The numbers along the rows gives the mean (normalized) fixed effect

for each of the different course types.

We see two striking patterns in Panel A. First, students who specialize in humanities
26Correlations among estimated abilities were also calculated for all students who were observed in each pair

of course types. Similar coefficients resulted.
27The pattern of correlations for the heterogenous gamma model is similar, although the correlation coeffi-

cients are slightly lower: 0.64 for social sciences and humanities, 0.62 for social sciences and math and science,

and 0.54 for math and science and humanities.
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courses are estimated to be less able across the board than those who specialize in either

the social sciences or math and science. Students specializing in math and science are the

most able across the board, with higher average fixed effects in each course type. Even more

interesting, students in each specialization group appear to have specialized in the area for

which they are most suited. This can be seen from the fact that the highest number in each row

is that corresponding to the course type specialized in by that sample of students–the highest

number in each row is on the diagonal.28 Panel B of Table 11, where we use only observed

ability to examine selection, also illustrates both absolute and comparative advantage, but

reflects more attenuated distributions of abilities and less heterogeneity than shown in Panel

A.

8 Comparing the Method to Conventional Methods

To compare our estimated peer effects to those that would be obtained using conventional

techniques, we first conceptualize the estimation problem as follows. Given a model where the

ability of each student can be decomposed into observed versus unobserved portions, there

are two econometric obstacles to the accurate estimation of the spillover. The first obstacle

is a positive correlation between the student’s own unobserved ability and his peer group’s

observed ability, which also leads in any given sample to a correlation between the peer group’s

observed ability and the peer group’s unobserved ability. This problem leads to an upward

bias of the spillover parameter. The second obstacle is that when only observables are used

to form the peer ability measures, the underlying distribution of peer ability is attenuated,

leading to downward pressure on the estimated impact of a one-standard-deviation change in

peer ability.

To examine the quantitative impact of these two problems separately, we first artificially

eliminate the correlation between the student’s own unobserved ability and the peer group’s

observed ability, by differencing out our estimated individual fixed effects and course effects

from student grades. We regress these adjusted grades on observed peer ability, rather than
28Paglin and Rufolo (1990) find similar sorting patterns using GRE exam data and transcript data from the

University of Oregon and Oregon State University. They find that students with high math ability tend to take

courses in which there is a high return to this skill.
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total peer ability. This enables us to examine the consequences for estimation of using an

incomplete measure of peer ability in a case where the link between individual unobservables

and peer observables is broken.

Row 2 of Table 12 for each course type presents the results of this first exercise, where

we use total ability (our estimated α’s) for the individual and observed ability for peers.

For comparison, Row 1 of the table for each course type gives the original spillover estimate

produced using our algorithm. Looking at Column 3 of the table, we can see that the estimated

effects of a one-standard-deviation increase in observed peer ability are at most two-thirds the

size of a one-standard-deviation increase in total peer ability. This first-order decrease in effect

magnitude is evident because the impact of unobserved peer ability is not captured in Row 2

except through the correlation between observed and unobserved peer ability.

However, under random assignment, a one-standard-deviation increase in peer ability

would produce even smaller effects than those shown in Row 2 of Table 12 for each course

type. There are two reasons for this. First, peer observed ability and peer unobserved ability

are positively correlated in our data, but would not be correlated under random assignment.29

This leads to an upward bias on our estimates of the spillover parameters: the estimated

coefficients in the second row for each course type are all higher than those in the first row.

The largest percentage increase in the peer ability coefficient is for courses in math and sci-

ence, where the correlation between observed and unobserved peer ability is the highest. The

second reason why random assignment will lead to even lower estimates of a one-standard-

deviation increase in peer ability is that random assignment itself leads to less heterogeneity

in mean peer ability across sections when higher ability students choose sections with other

high ability students. This attenuation in the distribution of peer ability means that a one-

standard-deviation increase in peer ability will be smaller under random assignment than in

a self-selected context.

We next investigate what happens when the econometrician additionally assumes that

students select into peer groups only based on observable characteristics (the “selection on

observables” approach). In Row 3 of Table 12, we again use observed peer ability, but now
29Recall that observed and unobserved ability are uncorrelated by construction at the individual level. Under

random assignment, observed and unobserved peer ability will also be uncorrelated. The positive correlation

in observed and unobserved peer ability in our data stems from student sorting based upon total ability.
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we use observed ability for the individuals as well rather than the estimated fixed effects. The

positive correlation between unobserved individual ability and observed peer ability biases the

selection-on-observables estimate of the spillover parameter upward. While the estimate of the

spillover parameter is biased upward, the effect of a one-standard-deviation increase in peer

ability may still be smaller because the variance in observed peer ability is smaller than the

variance in peer ability as a whole. As can be seen in the third column, this is indeed the case

for humanities, the course type with the smallest correlation between unobserved individual

ability and observed peer ability. For the social sciences, the selection-on-observables estimate

of a one-standard-deviation increase, although higher than our original estimate, is still closer

than the estimates given in the second row that mitigate the selection problem. However,

for math and science the estimated effect of a one-standard-deviation increase in peer ability

is significantly higher using the selection-on-observables approach than using our algorithm.

This is driven by (1) the high correlation between unobserved individual ability and observed

peer ability in math and science; (2) the fact that observed ability is a greater fraction of

total ability in math and science; and (3) the fact that the underlying peer effect estimate

from our method is smallest in math and science, which mitigates the underestimation of a

one-standard-deviation increase in peer ability.30

9 Conclusion

Accurate estimation of peer effects in the classroom is plagued by at least two issues, both

of which have to do with ability not being fully observed. First, there is selection into the

peer group which leads to a positive correlation between unobserved individual ability and

observed peer ability. If ignored, this correlation leads to biased-upward estimates of peer

effect parameters. On the other hand, underestimation of the effects of peers may result from

ignoring peer effects that operate through unobservables.

We present a new iterative method for estimating educational peer effects that overcomes

both these obstacles. All that is required is that there are multiple observations per student,

with the peer group changing over time. We control for individual effects and allow the

peer effect to operate through a linear combination of the other individual fixed effects. We
30Indeed, if the spillover parameter were zero, there would be scope for the attenuation effect.
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show that our estimator is consistent and asymptotically normal for fixed T as N goes to

infinity. We also develop an iterative algorithm that is computationally much cheaper than

direct non-linear least squares minimization yet produces the non-linear squares results upon

convergence. Monte Carlo results suggest that the model performs quite well even when the

number of observations per student is small.

We estimate the model on transcript data from the University of Maryland. Small but

significant peer effects are found, with evidence of heterogeneity by course type. Social science

courses show the largest peer effects, whereas grades in math and science courses rely least on

peer ability and most heavily on a student’s own ability.

Previous efforts to estimate spillover effects in education that do not rely on random

assignment are often plagued by concerns regarding selection on unobservables. Our data

suggest that this is a valid issue. Students select into sections based more on unobservable

factors than on observable factors. This leads to correlation in unobserved own ability and

observed and unobserved peer ability that, if ignored, biases the spillover parameter upward.

There is also much selection across course type. Students sort into course types where their

relative abilities are highest, suggesting comparative advantage is important in the selection

of courses. However, absolute advantage is also present as those who primarily choose math

and science course are more able in both humanities and social sciences than those who choose

to specialize in one of the other ares.

Our method allows us to quantify the effects of both the selection problem and the prob-

lem of not being able to estimate peer effects through unobservables. Estimation using data

on different course types illustrate how the setting dictates which of these problems is more

important. For math and science courses, the estimated spillover parameter from our model

is small. This, coupled with much selection into math and science courses, leads to estimates

from a selection-on-observables approach that significantly overstate the importance of peers.

However, for humanities courses the estimated spillover parameter is larger than in math and

science, and this fact coupled with much less selection than in math and science makes the

selection-on-observables approach yield a similar peer effects estimate to what is estimated

by our model. We also show that a random assignment approach, which removes the correla-

tion between individual unobserved ability and peer observed ability but ignores peer effects

through unobsevables, significantly understates the impact of peers on achievement.
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There are many avenues to be explored in future research. First, future research will relax

the assumption that an individual’s ability to help others is proportional to an individual’s

own ability to perform well. The individual who asks the clarifying question may be more

useful to others than a smarter individual who remains quiet. It is possible to extend the

model such that spillover ability is treated differently from the ability to perform well for

oneself.

Second, peer effects here are purely transitory. Future work will relax this assumption

by allowing the effect of peer ability in a particular course to decay over time, as well as

to influence performance in other contemporaneous classes. This will help us determine the

long-run impact of peer groups on educational achievement, and may result in higher peer

effect estimates as we account for spillovers beyond the classroom.

Finally, rather than separately estimating ability in each course type, the model could be

expanded to allow a factor structure on ability and allow the returns to the different abilities

to vary by course type. This expansion would allow a better exploitation of large data sets,

such as ours, with outcomes that have heterogeneous determinants, since performance on all

outcome measures collectively would be used to estimate individual abilities.
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A Proofs

A.1 Proof of Theorem 1

Proof. For ease of exposition, we illustrate the proof assuming that students are grouped with

at most one other student at any point in time. The proof for general class sizes is given in the

attached appendix. Keeping with the literature, we also assume a homogeneous peer effect

that is proportional to the ability of a student’s peer. The proof can be readily expanded to

multiple γ’s.

We consider the limiting case where

1. We observe students for at most two time periods.

2. Within each class there is only one student that is observed for two periods. The other

student is observed for only one time period.

Remark 1: Clearly if the estimator is consistent for T = 2, it is also consistent for T > 2.

The second simplification is equivalent to allowing all of the individual effects in a class

but one to vary over time. For example, suppose there were 2N students observed for two

periods, implying that 2N individual effects would be estimated. We could, however, allow the

individual effect to vary over time for one student in each group, making sure to choose these

students in such a way that they are matched with someone in both periods whose individual

effect does not vary over time.31 3N individual effects would then be estimated. Having one

individual whose effect varies over time is equivalent to estimating two individual effects—it

is the same as having two different individuals who were each observed once. If the estimator

is consistent in this case, then it is also consistent under the restricted case when all of the

individual effects are time invariant (fixed effects).

Consider the set of students that are observed for two time periods. Each of these students

has one peer in period one and one peer in period two. Denote a student block as one student

observed for two periods plus his two peers. There are then N blocks of students, one block
31To see how these assignments work, consider a two period model where the groups in period 1 are {A,B}

and {C,D} and the groups in period 2 are {A,C} and {B,D}. We could let the individual effects vary for

either {A,D} or {B,C}. In both these cases, each group in each time period would have one student observed

twice and one student observed once. The number of individual effects would then increase from four to six.
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for each student observed twice, with three students in each block. Denote the first student

in each block as the student who is observed twice where α1n is the individual effect. The

individual effect for the first classmate in block n is α2n, while the individual effect for the

second classmate in block n is α3n.

The optimization problem is then

min
α,γ

1
N

N∑
n=1

(
(y11n − α1n − γα2n)2 + (y12n − α1n − γα3n)2 +

3∑
i=2

(yin − αin − γα1n)2

)
(15)

Within each block there are four terms, two residuals for the student observed twice, and a

residual for the peer in each period.

Remark 2: Note that, conditional on γ, the estimates of individual effects in one block will not

affect the estimates of the individual effects in another block. Hence, we are able to focus on

individual blocks in isolation from one another when concentrating out the α’s as a function

of γ.

Our proof then consists of the following five lemmas, each of which is proven later in this

appendix.

We first show that the α’s can be written as closed form expressions of γ and the data.

Lemma 1

The vector of unobserved student abilities, α, can be concentrated out of the least squares

problem and written strictly as a function of γ and y. Ability for the student in block n

observed in both periods is given by

α1n =
y11n + y12n − γ(y2n + y3n)

2(1− γ2)

while the abilities for the peers in block n are given by

α2n =
y2n + γ2y3n − γy12n − γ3y11n

1− γ4

and

α3n =
y3n + γ2y2n − γy11n − γ3y12n

1− γ4
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We then show the form of the minimization problem when the α’s are concentrated out.

Lemma 2

Concentrating the α’s out of the original least squares problem results in an optimization

problem over γ that takes the following form

min
γ

1
N

N∑
n=1

(y11n − y12n + γ(y3n − y2n))2

2(1 + γ2)

Our nonlinear least squares problem now has only one parameter, γ. We are now in a

position to investigate the properties of our estimator of γo. For ease of notation, define

q(w, γ) as

q(w, γ) =
(y11 − y12 + γ(y3 − y2))2

2(1 + γ2)

where w ≡ y. We let W denote the subset of R4 representing the possible values of w. Our

key result is then Lemma 3, which establishes identification.

Lemma 3

E[q(w, γo)] < E[q(w, γ)], ∀ γ ∈ Γ, γ 6= γo

Theorem 12.2 of Wooldridge (2002) establishes that sufficient conditions for consistency

are identification and uniform convergence. Having already established identification, Lemma

4 shows uniform convergence.

Lemma 4

max
γ∈Γ

∣∣∣ 1
N

N∑
n=1

q(wn, γ)− E[q(w, γ)]
∣∣∣ p→ 0

Consistency then follows from Theorem 12.2 of Wooldridge: γ̂
p→ γo.

Finally, we establish asymptotic normality of γ̂. Denote s(w, γo) and H(w, γo) as the first

and second derivative of q(w, γ) evaluated at γo. Then, Lemma 5 completes the proof.

Lemma 5
√
N (γ̂ − γo)

d→ N(0, A−1
o BoA

−1
o )
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where

Ao ≡ E[H(w, γo)]

and

Bo ≡ E[s(w, γo)2] = V ar[s(w, γo)]

QED.

Proof of Lemma 1

Our objective is to show that the system of equations obtained by differentiating Equation

(15) with respect to α can be expressed as a series of equations in terms of γ and y, and

that these expressions are as given in Lemma 1. Again, conditional on γ, the estimates of

individual effects in one block will not affect the estimates of the individual effects in another

block. Thus, we can work with the system of first-order conditions within one block and then

generalize the results to the full system of equations. The first-order condition for α1n (student

in each block who is observed in both time periods) is given by

0 =
−2
N

[
(y11n − α1n − γα2n) + (y12n − α1n − γα3n) + γ

3∑
i=2

(yin − αin − γα1n)

]
while the first-order condition for α2n and α3n are respectively given by

0 =
−2
N

[(y2n − α2n − γα1n) + γ (y11n − α1n − γα2n)]

and

0 =
−2
N

[(y3n − α3n − γα1n) + γ (y12n − α1n − γα3n)]

Within each block, this yields a relatively simple system of 3 equations and 3 unknown

abilities. The first order conditions for α2n and α3n can be re-arranged such that

α2n =
y2n + γy11n − 2γα1n

1 + γ2

and

α3n =
y3n + γy12n − 2γα1n

1 + γ2

Notice that the equation for α2n depends only on the own outcome, the outcome of individual

one when grouped with individual two, and the ability of individual one. A similar result

occurs for α3n. Thus, the only thing linking individuals two and three within a block is the

ability of individual one.
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Re-arranging the first order condition for α1n such that the α1n are grouped on the left

hand side of the equation results in

α1n(2 + 2γ2) = y11n + y12n + γ(y2n + y3n)− 2γ(α2n + α3n)

substituting for α2n and α3n using the previously derived formulas yields

α1n(2 + 2γ2) = y11n + y12n + γ(y2n + y3n)− 2γ
1 + γ2

(y2n + y3n + γ(y11n + y12n)− 4γα1n)

Moving all the α1n terms to the left side and finding common denominators on both sides of

the equation results in

α1n((2 + 2γ2)(1 + γ2)− 8γ2)
1 + γ2

=
(1 + γ2)(y11n + y12n + γ(y2n + y3n))− 2γ(y2n + y3n + γ(y11n + y12n))

1 + γ2

Canceling out the denominators and simplifying both sides of the equation yields

α1n(2(1− γ2)2) = (1− γ2)(y11n + y12n)− γ(1− γ2)(y2n + y3n)

Dividing both sides of the equation by 2(1− γ2)2 yields the desired result that

α1n =
y11n + y12n − γ(y2n + y3n)

2(1− γ2)

The solution for α1n can now be substituted back into the first-order conditions for α2n

and α3n to yield solutions strictly as functions of γ and y. Substituting α1n into the equation

for α2n and finding a common denominator yields

α2n =
2(1− γ2)(y2n + γy11n)− 2γ(y11n + y12n − γ(y2n + y3n))

2(1− γ2)(1 + γ2)

Factoring out the 2 in the numerator and expanding the resulting expression yields

α2n =
(1− γ2 + γ2)y2n + (γ(1− γ2)− γ)y11n − γy12n + γ2y3n

(1− γ2)(1 + γ2)

Some simple manipulation leads to the final result that

α2n =
y2n + γ2y3n − γy12n − γ3y11n

1− γ4

Obtaining the solution for α3n proceeds in exactly the same way, and yields a formula that

mirrors the solution for α2n with the appropriate indices changed to reflect when individual

three is grouped with individual one. The result is given below

α3n =
y3n + γ2y2n − γy11n − γ3y12n

1− γ4
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QED

Proof of Lemma 2

Lemma 1 provides a solution for α strictly as a function of y and γ. We can substitute this

solution back into the original optimization problem to derive the result in Lemma 2.

Consider minimizing the sum of squared residuals within a particular block n. There

are four residuals within each block, two for the student observed twice, and one each for

the corresponding peer. We begin by simplifying the residual for the first observation of the

student observed twice, which is given by the expression below

e11n = y11n − α1n − γα2n

Substituting for α1n and α2n in e11n with the results from Lemma 1 results in

e11n = y11n −
y11n + y12n − γ(y2n + y3n)

2(1− γ2)
− γ(y2n + γ2y3n − γy12n − γ3y11n)

1− γ4

Finding a common denominator and combining like terms in the numerator yields

e11n =
(2(1− γ4)− (1 + γ2) + 2γ4)y11n − ((1 + γ2)− 2γ2)y12n + (γ(1 + γ2)− 2γ)y2n + (γ(1 + γ2)− 2γ3)y3n

2(1− γ4)

Simplifying the numerators on each of the y terms and factoring the denominator yields

e11n =
(1− γ2)y11n − (1− γ2)y12n − γ(1− γ2)y2n + γ(1− γ2)y3n

2(1− γ2)(1 + γ2)

Finally, we can cancel all the (1− γ2) terms to arrive at

e11n =
y11n − y12n + γ(y3n − y2n)

2(1 + γ2)

The expression for e12n as a function of γ and y can be similarly derived by substituting in

α1n and α3n. However, the expressions for e12n and α3n are mirror images of the expressions

for e11n and α2n. Thus, e12n will take the exact same form as e11n except the subscripts

denoting the period or classmate are swapped. The expression is given below.

e12n =
y12n − y11n + γ(y2n − y3n)

2(1 + γ2)

The residuals for the one observation individuals in each block, e2n and e3n, are given by

e2n = y2n − α2n − γα1n
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and

e3n = y3n − α3n − γα1n

To write these strictly as functions of γ and y, we again use the results of Lemma 1. Substi-

tuting for α1n and α2n in e2n yields

e2n = y2n −
y2n + γ2y3n − γy12n − γ3y11n

1− γ4
− γ(y11n + y12n − γ(y2n + y3n))

2(1− γ2)

Finding a common denominator and simplifying the resulting expressions yields

e2n =
γ(y12n − y11n + γ(y2n − y3n))

2(1 + γ2)

The expression for e3n is similar to that of e2n, except the subscripts differ to reflect the time

period in which individual three is grouped with one. Thus the solution for e3n will mirror

the solution for e2n, except that the appropriate subscripts are swapped across terms. The

final expression for e3n is given below.

e3n =
γ(y11n − y12n + γ(y3n − y2n))

2(1 + γ2)

The original optimization problem written as a function of the residuals in each block n

takes the following form

min
α,γ

1
N

N∑
n=1

(
e2

11n + e2
12n + e2

2n + e2
3n

)

Now we can substitute in for each residual using the formulas previously derived. However, a

cursory glance at the formulas for e11n, e12n, e2n, and e3n reveals that

e11n = −e12n = −γe2n = γe3n

Using these relationships we can re-write the least squares problem as

min
α,γ

1
N

N∑
n=1

(
(2 + 2γ2)e2

11n

)

Substituting in with our solution for e11n yields

min
γ

1
N

N∑
n=1

(
(2 + 2γ2)

(y11n − y12n + γ(y3n − y2n))2

(2(1 + γ2))2

)
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Canceling terms results in the following optimization problem

min
γ

1
N

N∑
n=1

(y11n − y12n + γ(y3n − y2n))2

2(1 + γ2)

QED

Proof of Lemma 3

The population objective function as a function of γ is given by

E[q(w, γ)] = E


(
y11 − y12 + γ(y3 − y2)

)2

2(1 + γ2)


Substituting for y with the data generating process yields

E[q(w, γ)] = E


(
α1o + γoα2o + ε11 − (α1o + γoα3o + ε12) + γ(α3o + γoα1o + ε3 − (α2o + γoα1o + ε2))

)2

2(1 + γ2)


Canceling the appropriate terms and combining like terms in the numerator leaves

E[q(w, γ)] = E


(

(γo − γ)(α2o − α3o) + (ε11 − ε12) + γ(ε3 − ε2)
)2

2(1 + γ2)


Opening up the square term leaves

E[q(w, γ)] = E

[
1

2(1 + γ2)

(
(γo − γ)2(α2o − α3o)2 + (ε11 − ε12)2 + γ2(ε3 − ε2)2

+ 2(γo − γ)(α2o − α3o)(ε11 − ε12) + 2γ(γo − γ)(α2o − α3o)(ε3 − ε2) + 2γ(ε11 − ε12)(ε3 − ε2)
)]

By assumptions 2 and 3, the final 3 terms in the numerator all have expectation 0. Simi-

larly, any covariance terms associated with the first three terms in the numerator will have

expectation 0. The final simplified expression is given by

E[q(w, γ)] =
(γo − γ)2E[(α2o − α3o)2] + E[ε211] + E[ε212] + γ2(E[ε23] + E[ε22])

2(1 + γ2)

which we can re-write in the following manner

E[q(w, γ)] =
(γo − γ)2E[(α2o − α3o)2]

2(1 + γ2)
+
E[ε211] + E[ε212] + γ2(E[ε23] + E[ε22])

2(1 + γ2)
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Note that by assumption 7, E[ε211] = E[ε22] and E[ε212] = E[ε23] implying that we can rewrite

the above equation as

E[q(w, γ)] =
(γo − γ)2E[(α2o − α3o)2]

2(1 + γ2)
+
(
E[ε211] + E[ε212]

)
/2

The first term in the above expression is strictly greater than 0 for all γ 6= γo and the second

term does not depend upon γ. As a result, E[q(w, γo)] < E[q(w, γ)] for all γ ∈ Γ when γ 6= γo.

QED.

Proof of Lemma 4

Uniform convergence, requires that

max
γ∈Γ

∣∣∣ 1
N

N∑
n=1

q(wn, γ)− E[q(w, γ)]
∣∣∣ p→ 0

Theorem 12.1 in Wooldridge states four conditions that the data and q must satisfy in order

for the above condition to hold.

1. Γ is compact

This condition is satisfied by assumption 8.

2. For each γ ∈ Γ, q(·, γ) is Borel measurable on W

Since q(·, γ) is a continuous function of w, it is also Borel measurable.

3. For each w ∈ W, q(w, ·) is continuous on Γ

Our concentrated objective function is continuous in γ.

4. |q(w, γ)| ≤ b(w) for all γ ∈ Γ, where b is a nonnegative function on W such that

E[b(w)] <∞

Note that q(w, γ) is always positive so we can ignore the absolute value. We derive a

bounding function b(w) in the following manner

q(w, γ) =
(y11 − y12 + γ(y3 − y2))2

2(1 + γ2)

=
(y11 − y12)2 + γ2(y3 − y2)2 + 2γ(y3 − y2)(y11 − y12)

2(1 + γ2)

≤ 2 (y11 − y12)2

2(1 + γ2)
+

2γ2 (y3 − y2)2

2(1 + γ2)
≤ (y11 − y12)2 + (y3 − y2)2
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Where the third line follows from the triangle inequality. Our bounding function is then

b(w) = (y11 − y12)2 + (y3 − y2)2

where we have shown that b(w) ≥ q(w, γ) for all y.

We now show that E[b(w)] <∞, completing the proof. Note that E[b(w)] is given by

E[b(w)] = E
[
(y11 − y12)2 + (y3 − y2)2

]
Using the triangle inequality, we can re-write the above expression as

E[b(w)] ≤ E[2y2
11 + 2y2

12 + 2y2
3 + 2y2

2]

≤ 2(E[y2
11] + E[y2

12] + E[y2
3] + E[y2

2])

Next we substitute in for y using the data generating process. Consider E[y2
11], which is

given by

E[y2
11] = E[(α1 + γoα2 + ε11)2]

Applying the triangle inequality again yields

E[y2
11] ≤ 3(E[α2

1] + γ2
oE[α2

2] + E[ε211])

Assumptions 5 and 6 ensure that all of the terms on the right hand side of the inequality

in the above equation are finite. Thus, E[y2
11] is finite. By a similar argument, it can be

shown that all the terms in E[b(w)] are finite.

QED

Proof of Lemma 5

Theorem 12.3 in Wooldridge(2002) states six conditions that must hold in order for γ̂ to be

distributed asymptotically normal.

Many of these conditions involve the first and second derivatives of q(w, γ). We begin our

proof of asymptotic normality by deriving the first and second derivatives of the objective

function.

The first derivative of the objective function, or the score, is given by

s(w, γ) =
1

4(1 + γ2)2

[
2(1 + γ2)

(
2(y3 − y2)(y11 − y12 + γ(y3 − y2))

)
− 4γ

(
(y11 − y12 + γ(y3 − y2))2

)]
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Expanding the square and grouping on the γ terms yields

s(w, γ) =
1

(1 + γ2)2

[
(1− γ2)(y11 − y12)(y3 − y2) + γ

(
− (y11 − y12)2 + (y3 − y2)2

)]

The Hessian of the objective function is simply the derivative of the score, ∂s(y,γ)
∂γ , and is

given below

H(w, γ) =
1

(1 + γ2)4

(
(1 + γ2)2

(
(y3 − y2)2 − (y11 − y12)2 − 2γ(y3 − y2)(y11 − y12)

)
− 4γ(1 + γ2)

(
γ((y3 − y2)2 − (y11 − y12)2) + (1− γ2)(y3 − y2)(y11 − y12)

))

Factoring out a (1 + γ2) and combining like terms greatly simplifies the above expression,

leaving

H(w, γ) =
1

(1 + γ2)3

(
(1− 3γ2)((y3 − y2)2 − (y11 − y12)2)− 2γ(3− γ2)(y3 − y2)(y11 − y12)

)
We now show that the six conditions of Theorem 12.3 in Wooldridge(2002) are satisfied.

We will refer to the above formulations of the score and Hessian throughout.

1. γo must be in the interior of Γ

This condition is satisfied by assumption 8.

2. s(w, ·) is continuously differentiable on the interior of Γ for all w ∈ W

Since H(w, γ) is continuous in γ, s(w, ·) is continuously differentiable.

3. Each element of H(w, γ) is bounded in absolute value by a function b(w) where E[b(w)] <

∞

We derive a bounding function b(y) in the following manner

H(w, γ) =
(1− 3γ2)

(
(y3 − y2)2 − (y11 − y12)2

)
− 2γ(3− γ2)(y3 − y2)(y11 − y12)

(1 + γ2)3

H(w, γ) ≤
∣∣∣(1− 3γ2)

(
(y3 − y2)2 − (y11 − y12)2

)
− 2γ(3− γ2)(y3 − y2)(y11 − y12)

∣∣∣
H(w, γ) ≤

∣∣∣(1− 3γ2)
(

(y3 − y2)2 − (y11 − y12)2
)∣∣∣+

∣∣∣2γ(3− γ2)(y3 − y2)(y11 − y12)
∣∣∣

H(w, γ) ≤ (1 + 3γ2)
(

(y3 − y2)2 + (y11 − y12)2
)

+ (3 + γ2)
∣∣∣2γ(y3 − y2)(y11 − y12)

∣∣∣
H(w, γ) ≤ (1 + 3γ2)

(
(y3 − y2)2 + (y11 − y12)2

)
+ (3 + γ2)

∣∣∣γ((y3 − y2)2 + (y11 − y12)2
)∣∣∣

H(w, γ) ≤ (1 + 3γ2)
(

(y3 − y2)2 + (y11 − y12)2
)

+ (3 + γ2)|γ|
(

(y3 − y2)2 + (y11 − y12)2
)
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where the second to last line utilizes the fact that (y3 − y2)2 + (y11 − y12)2 > 2(y3 −

y2)(y11 − y12) as ((y3 − y2) − ((y11 − y12))2 > 0. Let γ and γ denote the largest and

smallest elements of the set Γ. The γ that maximizes the right hand side is given by

γ∗ = max{γ,−γ} <∞. Our bounding function is then

b(y) = (1 + 3γ∗2)
(

(y3 − y2)2 + (y11 − y12)2
)

+ γ∗(3 + γ∗2)
(

(y3 − y2)2 + (y11 − y12)2
)

= (1 + γ∗(γ∗2 + 3γ∗ + 3))
(

(y3 − y2)2 + (y11 − y12)2
)

where we have shown that b(w) ≥ H(w, γ) for all w. Notice that the absolute value of

γ is no longer necessary since by definition γ∗ is always positive.

We now show that E[b(w)] <∞, completing the proof.

E[b(w)] = (1 + γ∗(γ∗2 + 3γ∗ + 3))E
[
(y3 − y2)2 + (y11 − y12)2

]
When deriving the bounding function for q(w, γ), we showed that E

[
(y3− y2)2 + (y11−

y12)2
]
<∞. Since γ∗ is also finite, E[b(w)] <∞.

4. Ao ≡ E[H(w, γo)] is positive definite

We first note that we can interchange the expectations and the partial derivatives:

E[H(w, γ)] = ∂2E[q(w, γ)]/∂γ2. From Lemma 3, we know that E[q(w, γ)] can be written

as

E[q(w, γ)] =
(γ − γo)2E[(α2o − α3o)2]

2(1 + γ2)
+
(
E[ε211] + E[ε212]

)
/2

Note that γ affects two terms: (γ − γo)2 and the denominator. However, because we

are going to evaluate the expected Hessian at γo, we only need the second derivative of

the first term, (γ − γo)2. All of the other partial derivatives will either be multiplied

by (γ − γo)2 or (γ − γo), both of which are zero when γ = γo. The second derivative

of (γ − γo)2 with respect to γ is positive. This second derivative is then multiplied by

the expectation of a squared object in the numerator and divided by the sum of squared

objects in the denominator. Thus, the expectation of the Hessian evaluated at γo is

strictly positive.

5. E[s(w, γo)] = 0

Note that E[s(w, γ)] = ∂E[q(w, γ)]/∂γ. Differentiating E[q(w, γ)] with respect to γ
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leaves terms that are multiplied by (γ−γo) or by (γ−γo)2, implying that if we evaluate

the derivative at γ = γo then the expected score is zero.

6. Each element of s(y, γo) has finite second moment.

Given that the score has only one element, this condition boils down to E[s(y, γo)2] <∞.

To show this we square the score function, repeatedly apply the triangle equality, and

evaluate the expected value at the true γ.

E[s(w, γo)2] = E

(
1

(1 + γ2
o)4

[
(1− γ2

o)(y11 − y12)(y3 − y2) + γo(−(y11 − y12)2 + (y3 − y2)2)

]2)
Repeatedly applying the triangle inequality yields

E[s(w, γo)2] ≤ E

(
1

(1 + γ2
o)4

[
2(1− γ2

o)2(y11 − y12)2(y3 − y2)2 + 2γ2
o(−(y11 − y12)2 + (y3 − y2)2)2

])

≤ E

(
4

(1 + γ2
o)4

[
2(1− γ2

o)2(y2
11 + y2

12)(y2
3 + y2

2) + γ2
o((y11 − y12)4 + (y3 − y2)4)

])

≤ E

(
4

(1 + γ2
o)4

[
2(1− γ2

o)2(y4
11 + y4

12 + y4
3 + y4

2) + 4γ2
o((y2

11 + y2
12)2 + (y2

3 + y2
2)2)

])

≤ E

(
8

(1 + γ2
o)4

[
(1− γ2

o)2(y4
11 + y4

12 + y4
3 + y4

2) + 4γ2
o(y4

11 + y4
12 + y4

3 + y4
2)

])

≤ E

(
8

(1 + γ2
o)2

[
y4

11 + y4
12 + y4

3 + y4
2

])

≤ 8
(1 + γ2

o)2
E

(
y4

11 + y4
12 + y4

3 + y4
2

)
Now we substitute for y with the DGP. Consider E[y4

11] which is given by

E[y4
11] = E[(α1 + γoα2 + ε11)4]

Repeatedly applying the triangle inequality yields

E[y4
11] ≤ 9E[(α2

1 + γ2
oα

2
2 + ε211)2]

≤ 27(E[α4
1] + γ4

oE[α4
2] + E[ε411])

Assumptions 5 and 6 ensure that all of the terms on the right hand side of the inequality

in the above equation are finite. Thus, E[y4
11] is finite. By a similar argument, it can be

shown that all the terms in the expectation of the squared score are finite.

QED
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A.2 Proof of Theorem 2

Proof. The first order condition for αi can be written as

0 =
T∑
t=1

Yitn − αi − γ

Mtn

∑
j∈Mtn∼i

αj

+
T∑
t=1

∑
j∈Mtn∼i

γ

Mtn

Yjtn − αj − γ

Mtn

∑
k∈Mtn∼j

αk


(16)

Solving for αi and collecting terms, we have

αi =

∑T
t=1

[
Yitn − γ

Mtn

∑
j∈Mtn∼i

αj + γ
Mtn

∑
j∈Mtn∼i

(
Yjtn − αj − γ

Mtn

∑
k∈Mtn∼j∼i

αk

)]
T +

∑T
t=1

γ2

Mtn

(17)

Now we stack these equations, such that the N × 1 vector of α’s runs down the left hand

side of the stack. To apply our iterative method, we make a first guess at this vector, and

then use this guess to generate OLS-derived estimates of the other parameters appearing in

the model. Once obtained, these estimates are then plugged into the right-hand side of these

equations and we update our guess of the α vector. Let the first of any two consecutive guesses

of the α vector be called simply α, and let the second (updated) guess be called α′. We would

like to show that our mapping, call it f , from α → α′ is a contraction mapping. That is,

ρ(f(α), f(α′)) < βρ(α, α′) for some β < 1 and where ρ is a valid distance function. Using a

Euclidean distance function for ρ, our task is then to show under what conditions, for a chosen

β < 1, the following N∑
i=1

−∑T
t=1

[
γ

Mtn

∑
j∈Mtn∼i

α̃j + γ
Mtn

∑
j∈Mtn∼i

(
α̃j + γ

Mtn

∑
k∈Mtn∼j∼i

α̃k

)]
T +

∑T
t=1

γ2

Mtn

2


1/2

(18)

will be less than

β

(
N∑
i=1

α̃2
i

)1/2

(19)

where α̃ = α − α′ and N again refers to the total student population. Factoring out the α’s,

this requirement can be rewritten as N∑
i=1

−∑T
t=1

[(
2γ
Mtn

+ γ2(Mtn−1)
M2

tn

)∑
j∈Mnt∼i

α̃j

]
T +

∑T
t=1

γ2

Mtn

2


1
2

< β

(
N∑
i=1

α̃2
i

) 1
2

(20)
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Expanding the inner square on the left hand side of the inequality and repeatedly applying

the triangle inequality yields N∑
i=1


∑T

t=1 T

[(
2γ
Mtn

+ γ2(Mtn−1)
M2

tn

)2 (∑
j∈Mnt∼i

α̃j

)2
]

(
T +

∑T
t=1

γ2

Mtn

)2




1
2

< β

(
N∑
i=1

α̃2
i

) 1
2

(21)

Expanding the square on the sum of the α̃j ’s and applying the triangle inequality leaves

 N∑
i=1


∑T

t=1 T

[(
2γ
Mtn

+ γ2(Mtn−1)
M2

tn

)2
Mtn

∑
j∈Mnt∼i

α̃2
j

]
(
T +

∑T
t=1

γ2

Mtn

)2




1
2

< β

(
N∑
i=1

α̃2
i

) 1
2

(22)

Inside the square brackets of equation (23) there are no α̃i since this term reflects the purged

first order condition from individual i. However, α̃i will be present in the first order condition

from all of i’s classmates over time. Because the Mtn in the denominator reflects the peer

group sizes experienced by individual i over time, all the terms on the left hand side of the

inequality containing an α̃i will have different denominators. Substituting M for Mtn in the

denominator will ensure a common denominator across the terms containing an α̃i. N∑
i=1


∑T

t=1 T

[(
2γ
Mtn

+ γ2(Mtn−1)
M2

tn

)2
Mtn

∑
j∈Mtn∼i

α̃2
j

]
T 2
(

1 + γ2

M

)2




1
2

< β

(
N∑
i=1

α̃2
i

) 1
2

(23)

This substitution is valid since it shrinks the denominator for every term on the left hand

side of the inequality, making it less likely to hold. Now we can easily collect all the terms

containing an α̃i, yielding N∑
i=1


∑T

t=1 T

[(
2γ
Mtn

+ γ2(Mtn−1)
M2

tn

)2
M2
tnα̃

2
i

]
T 2
(

1 + γ2

M

)2




1
2

< β

(
N∑
i=1

α̃2
i

) 1
2

(24)

The additional Mtn term in the numerator comes from the fact that α̃i will show up once for

each the Mtn peers at time t. Bringing the M2
tn inside the parentheses in the numerator yields N∑

i=1


∑T

t=1 T

[(
2γ + γ2 − γ2

Mtn

)2
]

T 2
(

1 + γ2

M

)2

 α̃2
i


1
2

< β

(
N∑
i=1

α̃2
i

) 1
2

(25)
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Notice that we can again substitute for Mtn with M since this will strictly increase the

coefficient on α̃i, making it less likely that the inequality is satisfied. Making this substitution

and canceling the T 2 terms leaves N∑
i=1


(

2γ + γ2 − γ2

M

)2

(
1 + γ2

M

)2

 α̃2
i


1
2

< β

(
N∑
i=1

α̃2
i

) 1
2

(26)

which can be re-written as

2γ + γ2 − γ2

M

1 + γ2

M

(
N∑
i=1

α̃2
i

) 1
2

< β

(
N∑
i=1

α̃2
i

) 1
2

(27)

As long as the γ’s are such that (27) is satisfied, we have a contraction mapping. The de-

nominator of the leading term is strictly greater than one, implying that if the numerator is

strictly less than one than the contraction holds for some β < 1. If 2γ+γ2 < 1 the numerator

will be strictly less than one, which is true for γ ≤ .4.32 QED

B Endogenous Effects

In this section we show how our framework can be incorporated to allow for endogenous effects.

We introduce a new variable, Zitn, that affects the choices of the individual but affects his

peers only through the individual’s choice. Throughout, we assume that Zitn is uncorrelated

with all the ε’s. For ease of notation, we also focus on the case where peer groups consist of

only two individuals.33 We first consider the case where individuals have total control of the

outcome: the outcome of interest is a choice. We then consider the case that is most relevant

to our empirical work, where individuals only have partial control over the outcome.

B.1 Total Control

We first consider the case where Yitn is directly affected by Yjtn. In this case, the linear model

is:
32An identical restriction on γ is required in the case of an unbalanced panel. To derive this simply define

ρ as a weighted Euclidean distance where the individual weights are given by the number of observations for

student i, Ti.
33Results for larger peer groups are available upon request.

51



Yitn = αio + γoαjo + φoYjtn + θoZitn + εitn (28)

Substituting into (28) the expression for Yjtn and solving for Yitn yields:

Yitn =
(

1 + φoγo
1− φ2

o

)
αio +

(
γ0 + φo
1− φ2

o

)
αjo +

θoZitn
1− φ2

o

+
φoθoZjtn
1− φ2

o

+
εitn + φoεjtn

1− φ2
o

(29)

Note that the last term, the reduced form error, has both εitn and εjtn. The reduced form errors

will then be correlated between individuals who share a peer group, violating assumption 3

of Theorem 1. In estimation, this correlation is partially absorbed by the peer fixed effects,

which in turn prohibits consistent estimation of the coefficient on αjo. Our conclusion is that

when the outcome variable is a choice that is affected by the actual choices of one’s peers,

we cannot obtain a consistent estimate of the parameter on the peer fixed effects for fixed T .

Note, however, that if the spillovers only operated through observables, which would imply

replacing the αio’s with Xβ, then all of the structural parameters would be identified.

We now consider the case where individuals only have expectations about what their peers

will choose. This situation maps well to a wide variety of outcomes where the behavior of

others is either not perfectly observed, or occurs at exact the same time as own behavior and

therefore cannot be a direct input to own behavior. In particular, suppose that εjt is unknown

to individual i and has mean zero. The outcome equation is then:

Yitn = αio + γoαjo + φoE(Yjtn) + θoZitn + εitn (30)

Again substituting in for Yjtn and solving for Yitn yields:

Yitn =
(

1 + φoγo
1− φ2

o

)
αio +

(
γ0 + φo
1− φ2

o

)
αjo +

θoZitn
1− φ2

o

+
φoθoZjtn
1− φ2

o

+
εitn

1− φ2
o

(31)

Assumption 3 of Theorem 1, that the reduced form error is uncorrelated between peer group

members, is no longer violated by the model. We can then write (31) as:

Yitn = α∗io + γ∗oαjo + θ∗oZitn + φ∗oZjtn + ε∗itn (32)

where:

α∗io =
(

1 + φoγo
1− φ2

o

)
αio

γ∗o =
(
γ0 + φo
1 + φoγo

)
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θ∗o =
θo

1− φ2
o

, φ∗o = φoθ
∗
o , ε∗ =

εitn
1− φ2

o

Estimating the reduced form then makes it possible to recover all the structural parameters,

as would also hold in the standard case where the αio’s were replaced by a set of observables

multiplied by a vector of coefficients. We can recover φ̂ and θ̂ from φ̂∗ and θ̂∗. Next, given φ̂,

we can obtain γ̂ using γ̂∗ as γ̂ = (γ̂∗ − φ̂)/(1− γ̂∗φ̂).

One key identifying assumption in this case is that the expected choices of the individual’s

peers are formed on the basis of observed characteristics and the peer fixed effects, both of

which are uncorrelated with the structural errors. Identification of the underlying parameters

using our fixed-effects approach also requires Zitn to be time-varying. If it is not, then Zitn

would be absorbed into the reduced-form individual effect, and we would be back to using two

coefficients to recover three parameters. We would be left with the same estimating equation

as the baseline model, and the reduced form would be a linear combination of own and peer

fixed effects plus the Z values of the peers, but we could not separate out the endogenous

effects from the exogenous effects. Note that in the case that spillovers operated only through

observable characteristics, Zitn is only required to vary across individuals, not within-person.

B.2 Partial Control

As pointed out by Cooley (2009b) and Cooley (2009a), the estimation issues become much

more complicated when individuals only have partial control over their outcomes. For example,

in educational settings where grades are the outcome of interest, it is not the grades of the

other students in the class that affect the student’s grades, but the effort the other students

exert. Moreover, students cannot directly choose their grades but can only choose effort levels

which in turn combine with other forces (including peer effort) to determine their grades.

Separating out endogenous and exogenous effects is much harder in this case.

We now show what we can identify when individuals make choices that only partially affect

their outcome, and where the choices of others influence both own choices and own outcomes.

Let eitn indicate the continuous choice individuals make to affect outcome Yitn. Adding eitn

and ejtn to the baseline model as direct influences on outcomes yields:

Yitn = αio + φ1oeitn + γoαjo + φ2oejtn + εitn (33)

The utility associated with choosing a particular value of eitn depends on the individual’s
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fixed effect, αio, as well as on the choices of the other individual and their individual effect.

Similar to the previous case, we assume that there is an additional variable, Zitn, that affects

the choice of effort. We assume that the utility function takes the following form:

U(eitn, E(Yitn)) = E(Yitn) + eitn(λ1oαio + λ2oZitn + λ3oejtn + λ4oαjo)− e2
itn/2 (34)

where we have normalized the coefficient on the squared term. The first order condition from

maximizing (34) with respect to eitn and solving for eitn implies that own optimal effort can

be written as:

eitn = φ1o + λ1oαio + λ2oZitn + λ3oejtn + λ4oαjo (35)

Substituting in for ejtn from j’s maximization problem into (35) yields:

eitn =
(1 + λ3o)φ1o + (λ1o + λ3oλ4o)αio + (λ4o + λ3oλ1o)αjo + λ2oZitn + λ3oλ2oZjtn

(1− λ2
3o)

(36)

Substituting in for eitn and ejtn in equation (33) and collecting terms implies we can rewrite

(33) as:

Yitn = α∗io + φ∗1oZitn + γ∗oα
∗
jo + φ∗2oZjtn + ε∗it (37)

where:

α∗io = C +
(

1 +
φ1o(λ1o + λ3oλ4o) + φ2o(λ4o + λ3oλ1o)

1− λ2
3o

)
αi

γ∗o =

(
(1− λ2

3o)γo + φ2o(λ1o + λ3oλ4o) + φ1o(λ4o + λ3oλ1o)
)(

1− λ2
3o + φ1o(λ1o + λ3oλ4o) + φ2o(λ4o + λ3oλ1o)

)
φ∗1o =

λ2(φ1o + λ3oφ2o)
1− λ2

3o

, φ∗2o =
λ2(φ2o + λ3oφ1o)

1− λ2
3o

, ε∗itn =
εitn

1− λ2
3o

and where C is the adjustment to α∗io coming from the φo terms that are not multiplying a

regressor.

Reduced-form estimation will then yield estimates of three coefficients, φ̂∗1, φ̂∗2, and γ̂∗, that

are functions of six underlying parameters. What we can say is that φ̂∗1 being greater than

zero implies that individual effort either directly affects the outcome or affects the outcome

through the other individual’s effort, which in turn affects the individual’s outcome. Similarly,

if the coefficient on Zjtn, φ̂∗2, is greater than zero, we can conclude that peer effort matters in

some form, either directly or through affecting the individual’s own effort. Once again, these

results are essentially to identical to those in Cooley (2009b), subject to replacing observable

characteristics with individual effects.
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Table 1: Monte Carlo Simulations: γo = .15

Obs. Per Peer Group Random Assignment Selection

Student Size σε=1.95 σε=1.15 σε=1.95 σε=1.15

2 2 γ̂ 0.151 0.151 0.140 0.151

(0.034) (0.016) (0.060) (0.024)

R2 0.706 0.822 0.713 0.828

5 10 γ̂ 0.150 0.150 0.146 0.149

(0.041) (0.021) (0.059) (0.033)

R2 0.482 0.686 0.494 0.697

10 10 γ̂ 0.150 0.148 0.148 0.152

(0.025) (0.012) (0.036) (0.018)

R2 0.415 0.644 0.429 0.659

Note: The R-squared values reported in this table are those pertaining to the

regression of grades onto the constructed fixed effect values. We alter the random

error added on to the constructed grade for each student in order to manipulate

the amount of variation in performance that is explained by the ability measure.

Parameter values are averages over 100 simulations on a population of 10,000

students.
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Table 2: Monte Carlo Simulations: Heterogenous Gamma Models

Model Random Assignment Selection

Heterogeneity in Responsiveness to Peers γ1o = .15 0.151 0.146

(0.025) (0.029)

γ2o = .1 0.100 0.094

(0.033) (0.032)

R2 0.683 0.699

Heterogeneity in Peer Influence γ1o = .15 0.150 0.151

(0.029) (0.037)

γ2o = .1 0.102 0.098

(.030) (.039)

R2 0.687 0.684

Note: The R-squared values reported in this table are those pertaining to the regression of grades

onto the constructed fixed effect values. Parameter values are averages over 100 simulations on

a population of 10,000 students. Each student is observed 5 times with a total group size of 10

students.
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Table 4: Peer Effects Results by Course Type: Homogeneous Gamma Model

Humanities Soc.Sci. Math/Sci.

Section peer ability 0.1613 0.1960 0.0483

(0.0007) (0.0008) (0.008)

N 86,844 77,312 82,675

R2 0.6373 0.6321 0.6861

Note: Dependent variable is the grade in the class. Class

fixed effects are estimated in all specifications.
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Table 6: Peer Effects Results by Course Type: Heterogeneous Gamma Model

Humanities Soc.Sci. Math/Sci.

Section peer ability 0.2058 0.2227 0.0940

(0.0008) (0.0013) (0.0013)

Section peer ability*Female 0.0970 0.0584 -0.0517

(0.0010) (0.0018) (0.0018)

Section peer ability*Asian -0.0098 -0.0347 -0.0346

(0.0016) (0.0026) (0.0022)

Section peer ability*Other Nonwhite 0.0375 0.0252 -0.0420

(0.0014) (0.0026) (0.0026)

Section peer ability*SATm 0.0410 0.0507 -0.0560

(0.0006) (0.0012) (0.0011)

Section peer ability*SATv 0.0222 0.0147 0.0635

(0.0005) (0.0010) (0.0009)

N 86,844 77,312 82,675

R2 0.6376 0.6323 0.6864

Note: Dependent variable is the grade in the class. Class fixed effects are

estimated in all specifications.
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Table 8: Regression of Fixed Effects on Observed Ability

Homogeneous Gamma Model Heterogenous Gamma Model

Hum. Soc.Sci. Math/Sci. Hum. Soc.Sci. Math/Sci.

SATm 0.00 0.11 0.36 -0.20 -0.04 0.51

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

SATv 0.08 0.11 0.00 -0.04 0.06 -0.19

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

HS GPA 0.49 0.49 0.73 0.49 0.49 0.72

(0.01) (0.02) (0.02) (0.01) (0.02) (0.02)

Female 0.26 0.17 0.15 -0.15 0.03 0.27

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Black -0.28 -0.23 -0.18 -0.44 -0.29 -0.10

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Hispanic -0.15 -0.19 -0.17 -0.31 -0.25 -0.08

(0.03) (0.04) (0.04) (0.03) (0.04) (0.04)

Asian -0.12 -0.13 -0.10 -0.08 -0.05 -0.02

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Amer. Ind. -0.39 -0.35 -0.31 -0.55 -0.41 -0.22

(0.12) (0.12) (0.16) (0.12) (0.12) (0.16)

Honors 0.14 0.15 0.17 0.14 0.15 0.17

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Sports -0.07 -0.14 0.01 -0.08 -0.14 0.00

(0.02) (0.03) (0.03) (0.02) (0.03) (0.03)

In-state 0.05 0.08 0.12 0.05 0.08 0.12

(0.03) (0.03) (0.03) (0.03) (0.03) (0.04)

N 17,332 15,264 16,077 17,332 15,264 16,077

R2 0.22 0.24 0.34 0.13 0.17 0.36

Note: The dependent variable in columns 1 through 3 is the student-level

fixed effects estimated in the homogeneous gamma model; the dependent

variable in columns 4 through 6 is the student-level fixed effects estimated

in the heterogeneous gamma model. The excluded racial/ethnic category is

white; racial/ethnic categories are mutually exclusive. Standard errors are

robust to heteroskedasticity.
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Table 10: Correlations of Estimated Abilities Across Course Types

Panel A: Abilities

Course type Humanities Social Science

Humanities 1.0000

Social Science 0.6875 1.0000

Math and Science 0.6469 0.6776

Panel B: Predicted abilities

Course type Humanities Social Science

Humanities 1.0000

Social Science 0.9643 1.0000

Math and Science 0.8808 0.9593

The abilities used in these correlation matrices are those of

the 12,715 students who took classes in all three course types,

and they are estimated by the homogeneous gamma model.

Panel A displays correlations amongst the full abilities, while

Panel B displays correlations amongst the predicted values

from regressing the estimated abilities from the homogeneous

gamma model on observable variables (as shown in the first

three columns of Table 8).
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Table 11: Specialization of Students into Course Types By Relative Aptitude

Panel A: Abilities

Humanities Soc.Sci. Math/Sci. N

Humanities-specializers -.08 -.19 -.26 3978

Social Science-specializers .04 .10 -.07 3547

Math and Science-specializers .14 .21 .43 3745

Panel B: Predicted abilities

Humanities Soc.Sci. Math/Sci. N

Humanities-specializers -.04 -.13 -.21 3977

Social Science-specializers -.11 -.10 -.11 3547

Math and Science-specializers .18 .27 .36 3745

In Panel A, each cell shows the mean of the deviations of students’ ability to

perform in the course type of that column (as estimated by our homogeneous

gamma model, and standardized to a normal (0,1) distribution) from the

sample standardized mean of estimated ability across the course type, for

the population of that row. “Specializers” are students who are observed to

take more courses in the given course type than in either of the other two

course types.
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Table 12: Comparing the Method to Conventional Results: Homogeneous Gamma Model

Own Section peers’ Effect of 1-stddev Own Peers’

ability ability chg in peer ability ability ability

Humanities 1 0.1613 0.0455 Total Total

(–) (0.0007)

1 0.1642 0.0285 Total Observed

(–) (0.0008)

0.9349 0.2502 0.0435 Observed Observed

(0.0076) (0.0077)

Social Science 1 0.1960 0.0608 Total Total

(–) (0.0008)

1 0.2061 0.0370 Total Observed

(–) (0.0009)

0.8518 0.4085 0.0733 Observed Observed

(0.0077) (0.0077)

Math and Science 1 0.0483 0.0287 Total Total

(–) (0.0008)

1 0.0516 0.0193 Total Observed

(–) (.0009)

0.7784 0.3519 0.1313 Observed Observed

(0.0062) (0.0063)

Note: Dependent variable is grade in the class. For models shown in Rows 1 and 2 for each

coursetype, class effects are removed before estimation by demeaning using the ‘true’ values

of the class effect as estimated by our homogeneous gamma model. For Row 3, class fixed

effects are absorbed in estimation. For the purposes of this table, we ignore the sampling

variation in the parameter estimates used to construct our observed ability measures, which

may impact the standard errors reported here. Observations are as in Table 4, although

creating the second and third rows involved dropping observations for which observables

were missing. The maximum number of observations dropped for a course type was 6.
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