1 Proof of Theorem 1: General Case Size

Proof. The setup of the problem and the structure of the proof for the general class size case
mimics the roommate case illustrated in Theorem 1. We continue to assume a homogeneous

peer effect and consider the limiting case where
1. We observe students for at most two time periods.

2. Within each class there is at most one student that is observed for two periods. All

other students are observed for only one time period.

Remark 1: Clearly if the estimator is consistent for T' = 2, it is also consistent for T > 2.
The second simplification is equivalent to allowing all of the individual effects in a class but
one to vary over time. For example, suppose class size was fixed at M + 1 and there were
(M + 1)N students observed for two periods, implying that (M + 1)A individual effects
would be estimated. We could, however, allow the individual effects to vary over time for all
students but one in each group, making sure to choose these students in such a way that they
are matched with someone in both periods whose individual effect does not vary over time.!
(2M + 1)N individual effects would then be estimated. Having M individuals whose effect
varies over time is equivalent to estimating 2M individual effects—it is the same as having
two sets of M individuals who are each observed once. If the estimator is consistent in this

case, then it is also consistent under the restricted case when all of the individual effects are

time invariant (fixed effects).

1To see how these assignments work, consider a two period model where the groups in period 1 are {A,B,C}
and {D, E, F} and the groups in period 2 are {A, B, F'} and {D, E,C}. We could let the individual effects
for {B,C, E, F'} vary over time. Each group in each time period will have one student observed twice and one
student observed once. The number of individual effects would then increase from six to ten. More generally,
with a common class size of M + 1, the most severe overlap that still allows variation in the peer group is to
have M individuals in each class remain together in both periods. In this case, we could allow all individual
effects to vary over time except for one of the individual effects of the M individuals in each class that stay
together in both periods. Things become more complicated when class size is not constant, but allowing all
individual effects to vary over time except for a set of individuals who never share a class will grow linearly in .
Hence, while the asymptotic variance would be affected, identification, consistency, and asymptotic normality

are unaffected.



Consider the set of students that are observed for two time periods. Each of these students
has My, peers in period one and Ms, peers in period two. Denote a student block as one
student observed for two periods plus his My, + Mo, peers. There are then N blocks of
students, one block for each student observed twice. Denote the first student in each block as
the student who is observed twice, where o, is the individual effect. For ease of exposition
we will also write ay, as a1, or ais,. The time subscripts are irrelevant here since time does
not indicate a different individual. The individual effect for the ith classmate in block n at
time period t is «;t,, where ¢ > 2. For these individuals the time subscript is relevant for

identifying each individual.

The optimization problem is then:
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Within each block there are four terms, two residuals for the student observed twice, and peer

residuals in time period one and two.

Again, conditional on =, the estimates of individual effects in one block will not affect the
estimates of the individual effects in another block. Hence, we are able to focus on individual

blocks in isolation from one another when concentrating out the a’s as a function of ~.

Our proof in the general class size case then consists of the following five lemmas, each of

which is proven later in this appendix.

Lemma 1.G
The vector of unobserved student abilities, o, can be concentrated out of the least squares prob-
lem and written strictly as a function of v and y.

Due to the complexity of these expressions we only provide them in the following proof.

We then show the form of the minimization problem when the a’s are concentrated out.



Lemma 2.G
Concentrating the o’s out of the original least squares problem results in an optimization

problem over v that takes the following form:
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where

Wiin = (v — May)(Miy + (M, — 1))
Wian = —(v— Mip)(May +y(Ma, — 1))
len = _’V('Y - MQn) V] > 1

Wion = ~y(y— M) Vj>1

Our nonlinear least squares problem has only one parameter, v. We are now in a position

to investigate the properties of our estimator of v,. For ease of notation, define ¢(w, ) as:

2
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where w = (y, M). We let W denote the subset of R2+2M o J? representing the possible

Q(wa’)/) =

values of w, where J is the number of possible class sizes, M — M + 1.



Our key result is then Lemma 3.G, which establishes identification.

Lemma 3.G

Elg(w,v)] < Elg(w,7)]l, Yy €T, v#%

Theorem 12.2 of Wooldridge (2002) establishes that sufficient conditions for consistency
are identification and uniform convergence. Having already established identification, Lemma

4 shows uniform convergence.

Lemma 4.G

N
1 P
ma ’N ;q(wn,v) — Elg(w,7)]| =0

Consistency then follows from Theorem 12.2 of Wooldridge: v = ~,.
Finally, we establish asymptotic normality of v. Denote s(w,,) and H(w,~,) as the first

and second derivative of q(w,y) evaluated at -,. Then, Lemma 5 completes the proof.

Lemma 5.G
VN (Y = 70) 4 N(0, 4,1 B,A; )
where
Ao = E[H(w,7,)]
and
B, = E[s(w,7)?] = Var[s(w, )]
QED.



Proof of Lemma 1.G

Our objective is to show that the system of equations obtained by differentiating Equation
(?7) with respect to « can be expressed as a series of equations in terms of v, y, and M.
Again, conditional on +, the estimates of individual effects in one block will not affect the
estimates of the individual effects in another block. Thus, we can work with the system of
first-order conditions within one block and then generalize the results to the full system of
equations.

The first-order condition for ay,, is given by:
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while the first-order condition for «a;1, (applicable to all block n students observed once in

time period 1) is given by:
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The first order condition for ayo, is identical to above formulation except that all the time
subscripts are changed from 1 to 2. Within each block n, we are left with a system of
(1 + My, + May,) equations and (1 + My, + Ma,,) unknown abilities.

We can re-arrange the above first-order conditions such that all the parameters to be
estimated (a’s and «y) are on the left and all the observed grades (y) are on the right. Doing

this for the first-order conditions derived for oy, and «;1, yields the following two equations

2(My, + M 2y (M — Kol N
o+ e oS () 8 ) s (3
MlnMZn
and
2 2 My, — 1)7? Mol et
(1+J\}7>06z‘1n+<]\47 . 2 i )<a1”+ > O‘ﬂ")_y“"JrMi(y“"Jr 2 ‘M)
In 1n Mg, =2, j#i I=2i7

g



Again, the first-order condition for «;9, can be written in a form identical to the above equation
where all the time subscripts are changed from 1 to 2.

We can write the above system of equations in matrix form such that X, a,, = Y,,, where
oy, is simply a ((1 + My, + Ma,) x 1) vector of the individual student abilities in block n.
Recall that because the student blocks are independent conditional on v, we can solve for a,

separately from «y for s # n. The form of X,,, a,, and Y, are given by the following
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where the components of X,, are defined below:
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where Dy, is an (M1, + May,) x (M1, + May,)) symmetric matrix. The form of A,,, By, C,, and
D,, is driven by the coefficients on the «’s in the re-arranged system of first-order conditions.
The solution to the system of equations for «, is now given by the following simple ex-

pression

o =X 1Y,

The difficulty in calculating the solution arises in finding the inverse of X,,. Using the formula

derived by Banachiewicz(1937), the inverse of X,, can be calculated blockwise according to

(A, — B,D,;1C,) 1 —(A, — B,D;'C,) B, D!

Xt =
B _D-1C,(A, — B,D-1C,)"' D='+ D-1C,(A, — B,D-1C,)"'B, D~

Since (A, — B, D;1C,,)~! is just a scalar, the only difficult component of this formula is D;;*.
However, notice that D,, is block diagonal where each block is a symmetric My, x My, matrix
composed of only two components. Thus to get the form of D, ! we just need to invert one of

these My, x M;, matrices.



At this point it is useful to introduce some further notation in order to keep the matrix

algebra for calculating X! palatable. Define:

2M1nM2n + 72(M1n + M2n)
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Using these terms we can re-write the components of X,, in the following way

A, =a
Bn = |bin, -+ ,bin, bop, ... bop
M, terms Mo, terms
/
Cn = bln» 7b1n7 b2n7 an
M, terms Mo, terms
Cln bln N 0 0
bln Cln 0 0
D, =
0 0 ... Con bgn
0 0 ‘e bzn Con




Again, the key challenge in finding X! is finding D, '. Since D! is block diagonal,
this boils down to finding the inverse of a symmetric (My, x My,) matrix that consists of two
components, by, and ¢;,. Depending on the size of My, this may in itself be difficult. However,
we can recursively apply the same blockwise formula to this My, x My, matrix until we finally

get to the point where we only have to invert a two-by-two matrix. Following this procedure

one can show that D, ! takes the following simple form

[ Cln+b1n(M1n72) —b1
dln dlnn O 0
—b1 cin+bin(M1n—2)
dlnn dln O 0
-1
Dn
0 0 can+ban (M2, —2) —ban
d2n d2n
0 0 —bop C2n+b2n(M2n_2)
dzn dQn

We now have all the components required to calculate X, ! using Equation (??). According
to Equation (??), X,;1(1,1) is given by (4, — B,D, 'C,)~!. To calculate this expression, we
proceed step by step, starting with the first term in B, D,!.

bln(cln + bln(Mln - 2)) - b%n(Mln - 1)
dln

B.D;'(1,1) =

bln(cln - bln)
dln

Given the simple structure of B,, and the symmetric nature of D, !, it is obvious that the first
My, terms of B, D, 1 will be identical to the expression derived above. In addition, the final
My, terms will take the same form as the above expression, however, all the time subscripts

will change from 1 to 2. As a result,

B.D-l — bln(cln - bln) bln(cln - bln) an(CQn - bZn)
n+n dln ) ey dln ) d2n ) e

b2n(02n - an)
d2n

Calculating B, D, 1C,, is rather simple, since it is just a scalar.

Mlnb%n(cln - bln) + Man%n<CQn - b2n)

B,D'C, =
e din don




Finally,

Mlnb%n(cln - bln) M2nb%n(c2n - b2n))

XM (1,1)=a—
n ( ’ ) a ( dln d2n

Because this terms appears in all of the other components of X! for expositional ease we
define A, = X;1(1,1).
According to Equation (??), X 1(1,2) is given by —flanDgl. We calculated the expres-

sion for B, D, ! in the previous step, thus

bln(Cln - bln) bln(cln - bln) b2n(c2n - an) b2n(c2n - bZn)

X-1(1,2) = —A, .. ..
" ( ’ ) dln ’ ’ dln ’ d2n ’ ’ d2n

The expression for X 1(2,1), —A, D, 'C,, will be the transpose of the above, since D, is

symmetric and B,:f = (C,. Again for expositional ease, define Bm = —M and
By, = —W. Using this definition we can write
n

X (12) = [Buos oy By Bons oo Ban)

The final component of X! is also the most complicated. The expression for X 1(2,2) in

Equation (??) is D, ' + A, D; 'C,, B, D;;'. Again we proceed in steps. Pre-multiplying B, D;,*

by C,, will yield an ((My,, + May) x (M1, + May,)) matrix that takes the form

b%n (Cln 7b17l)

b%n (Cln 7b17l)

dln dln
b%n(cln_bln) b%n(cln_bln)

dln

CnB,D; ' =

binbon (Cln _bln)

dln

binbon (Cln _bln)

in

blann (Cln _bln)

in

blann (Cln _bln)

din

din

binbon (CQn *an)

binbon (CQn *an)

dgn dQ'n
blann(CQn_an) blnb2n(02n_b2n)

don

b%n (C2n _an)

don

b%n (C2n _b2n)

dgn d2n
bgn(c2n_b2n) b%n(c2n_b2n)

dan

dan

Notice that within any quadrant of the matrix all the terms are identical. Finally we need to

pre-multiply C,, B, D; ! by D;!. This yields a symmetric ((Mi, + May,) x (M1, + Ma,)) that
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takes the following form

b%n(clnfbln)2
di,
b%n(cln_bln)Q

2
dl'n

binbon (Cln _bln)(CZn _b2n)

b%n(clnfbln)2
di,,
b%n(cln_bln)Q

2
dln

binbon (Cln _bln)(CZn _b2n)

dlndQn dlnd2n
blann (Cln _bln)(CZn _b2n) blnb2n (Cln _bln)(CZn _bZn)

dlndQn

dlnd2n

binbon (Cln *bln)(CQn*an)

binbon (Cln *bln)(CQn*an)

dlnd2n dlnd2n
binbon (Cln _bln)(CQn_b2n) binbon (Cln _bln)(CQn_b2n)
d1nd2n dlndQn

b%n (62"7' _b2n)2
d3,,

bgn (CZn _b2n)2
3,

b%n (CQ"Z _b2n)2
d3,,

bgn (CZn _b2n)2
3,

The final step is to subtract flan 1C'anDg 1 from D, 1. The result is a symmetric (M, +

Moy,) x (M1y, + May,)) matrix that takes the following form

D' - A,D;'C,B,D,;! =

where

Cln

CQn

Dln

D2n

E,

Dln

éln Dln

E, E,
E, E,
C~12n D 2n
D 2n C~'2n

din(cin + (Myn — D)b1n) + Apb?, (c1n — bin)?

d2n(c2n + (M2n -

1)b2n) + Anb%n(c2n - an)2

Anb%n(cln - bln)2 — bipdin

2
dln

Anb%n(CQn - b2n)2 - b2nd2n

2
d2n

Anblann(cln - bln)(c2n - an)

dlndQn

Recall that the ay, b,’s, ¢,’s, and d,’s were defined earlier and are functions solely of v, M1,

and Mos,,.
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Substituting into Equation (?7) with the terms just calculated, we get the general form of
X—l

n

A, Bi, B By Bag

By, Cu D, ... E, E,

By, Dy, Ci, ... E, E,
X b=

By, E, E, Con Doy

By, E, E, Doy, Cop

Using X,,! and the formula for Y,, we can solve for the a,’s as functions of v, y, and M.

As an example, the solution for «aq, can be obtained by multiplying Y, by the first row of
XL

_ Mtn+1
ay, = A, Y1in + Y12n + Z <Mtn : yjtn)
t=1 j=2
2 _ Mtn+1 ’7 ’7 Mtn+1
+ Z (Btn Z Yitn + M. Yitn + M. Z Yijtn )
t=1 i=2 tn tn o ji

We can re-arrange this formula such that we group all the common y terms together. Doing

so yields the solution for oy, in terms of fln, Bln, and BQn

_ _ B B 2 B ’}/ (Mt o + Mt Mtn+1
a1y = (An+731n) y11n+<An+’YB2n>y12n+Z (A By n) Z th”)
=1

Mtn

Finding the solution for any « in block n other than «y, follows the same basic procedure.
Simply multiply Y, by the appropriate row from X, !. As an example, below is the formula

for aa1p,. To arrive at this formula simply multiply Y,, by the second row of X L

Min+1 5 5 Min+1
X (v 3 )+ ~
Q21n in y11n+y12n+z M, ]EZ; Yjtn + Cin | Y21n + M1ny11n+ My, Z Yjln
Min+1 y ~ Min+1
+ D, Z (yiln"i‘Miylln i Z Yjin)
i—3 1n In o it
J=2,j#i
M2n+1 ’y ,7 M2n+1
+ E, Z (yi2n+M7y12n M. Z ijn)
9 2n 2n o i
i J=2,j#1
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Again, we can re-arrange the above, grouping on the y’s

a21p = (Bln + éln ]J /y>y11n (Bln + En’Y) Y12n
1n

~ ~ M — 1

+ (Bln ]\]ln + Dln L 7>y21n
Mln+1
- M M
+ (Bln Mln + Cln Mln + D1y, n ( L. > Z Yjin
M2n+1

- - M Mo, —

+ (Bln]\}/ + En n ( n ) Z Yjon
2n

The formula for oy, for ¢ > 2 takes the same form as above, except that (1) y21, becomes
Yi1n and (2) the first summation on the second line will be over all j # i. The formula for a2y,
for ¢ > 1 also takes the same general form, except that all of the subscripts denoting period 1
need to be changed to denote period 2, and vice versa. All the terms in the formulas for ai,
and a4, consist solely of v, y, and M.

QED

13
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Proof of Lemma 2.G
Lemma 1 provides a solution for « strictly as a function of y, v, and M. We can substitute this solution back into the original
optimization problem to derive the result in Lemma 2.G.

Consider minimizing the sum of squared residuals within a particular block n. There are 2 + My,, + Mo, residuals within each
block, two for the student observed twice, and one each for the peers in both time periods. We begin by simplifying the residual for
the first observation of the student observed twice, which is given by the expression below

M1n+1
2 o
jln
My, ‘

€11ln = Y11n — Q1n —
—

Substituting for oy, and «a;1, in e11, with the results from Lemma 1.G and collecting terms on the y’s results in

- ~ 2 My, — 142 -
€1ln = Ylin (1 — A, — 2By, — ]\}m Cin — WD1n>

—Y12n (An + ’Y-éln + Vézn + 72En>

Mip+1
_ f ” Y QL V2 4 Min +y(Min —1) 5 LM+ (Min = 1) 5 (0 Min(Min + 7Min =29 = 1))
= jln Mln n Mln 1in M12n 1n M12n

M2n+1 2
Y3 i D, M2n + ’V(MQn - 1) o ’Y(MQn + ’Y(MZn - 1)) I
— E j —A B B E
< j=2 yﬂ”) <M2n et Moy, i Moay, 2n Moy, "

Dln)
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The form of ej9, will be identical to the above except all of the time scripts on the y’s, M’s, and inverse components will be swapped.

In other words, 1’s become 2’s, and 2’s become 1’s. Similarly, substituting for « in es1, and collecting terms yields

2 2 2 2 2
~ - M,y + 7y (Mln — 1) ~ Ml + (M1n — 1) ~ 2’)/M1n(M1n — 1) +y (Mln — 1)(M1n — 2)
= 1-A4,— —2B -C n —D
€21n y21n< nM12n 1n M12n 1n M12n 1n M12n
It v o Mln + (Mln - 1)7 + 72 ~ ’VMln + (Mln - 1)72 a (Mln - 1)7(M1n + (Mln - 1)’7)
—Yiin (An Mln + Bln Mln + Cln Mlzn + Dln Mlzn
- - My, + (My, — 1)y = 2 -y My, + (M1, — 1)y?
— A B B E
y””( "My, UMM, TP, T M,

Mipn+1 2 2 2 2 2
~ ~ M My, —1 ~ 2vM My, — 2 - (M My, — 2 My, — 1
ijln ljln

+ Bln + B2n

Mo, +1
_ f Yio A 72 ~ ')/Mln + '72(M1n - 1) ~ 7M2n + ’}’2<M2n - 1) + E Mln + ’Y(Mln - 1) M2n + ’Y(M2n - 1)
=2 e annM2n MlnMZn MlnMQn " Mln M2n

The residual e;1, for ¢ > 2 will look identical to the above except the leading y term will be ;1,, rather than ys1,, and the summation
term in the fourth line will be over all j # i. The My, residuals for the individuals observed once in the second period will look
identical to the above except that all of the time subscripts are swapped - 1’s become 2’s and 2’s become 1’s - for all the y’s, M’s,
and inverse components.

In order to write the least squares problem strictly as a function of v, we can simply substitute the above expressions directly
into the least squares problem. However, before doing so it is helpful to simplify the expressions for the residuals by substituting
in for the inverse components, fln, Bln, Bgn, C’ln, égn, Dln, Dzn, and En. At this point, the algebra required to show how these

equations simplify is extremely cumbersome. Web Appendix 2 shows the full derivation for the case where My, = Ma,. Here we

)
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jump directly to the simplified versions of the individual residuals:?

e _ (W(Mln - 1) + Mln)('y - MQn)
T\ (= M2 (My + 7 (My = 1))% +72My) + (v = M1)2((My + y(M — 1)) + 72My)
Min+1
X ((V(Mln — 1) + My,) (v — Man)y11in — (v — M1y (v(Man — 1) + May)y12n — y(7 — May) Z Yiin + (v
j=2
e _ (v(Man — 1) + Moy, ) (v — Min)
(v = Mo)2((My +~y(My = 1))2 +92My) + (7 = M) (M +5(Mz — 1)) + 42 M)

M1n+1
X ( — (y(Min, — 1) + Mip) (v — Mon)yiin + (v — Mip) (v(Man, — 1) + Map)yion + (v — May) Z Yjiin —

o V(v — Man)
(7 = M) (M +~(My = 1)) + 5200) + (3 = M)A (Mg + (M — 1)) +47002)

M1n+1
X ( — (v(Myp, — 1) + M) (y — Man)yiin + (v — Min) (v (May, — 1) + Map)y12n + v(y — May) Z Yjln —

o V(v — M)
(v = M2)2(My + (M — 1))% +42My) + (v = M1)2((Ma + (M — 1))% + 42 My)
Min,+1
X ((V(Mm — 1) + M1,) (v — Man)y11n — (v — M1y (v(Man — 1) + May)y12n — y(7 — May) Z Yitn + (v
7j=2

The simplified versions of e;1,, and e;o, for i > 2 exactly match the above expressions for es1, and ess, respectively.

2The algebra required to simplify these expressions is available upon request.

M2n+1
Mln Z yJZn)
M2n+1
) 3 y)
M2n+1
Mln Z yj2n>

Man+1
Mln Z y]2n>



L1

Close inspection of the residual equations indicates that they are all closely related. In fact, the residuals can be derived from

one another according to:

i
eiln = —e
iln 11n Mln T ’Y(Mln — 1)
e = —en Y Mln
14N 1ln o M2n
€1 = —ep (7 - Mln) (M2n + 7(M2n - 1)) (3)
" " P)/_MQTL M1n+'7(M1n_ 1)
Using these relationships, the sum of the squared residuals in block n, €2, + €3, + ZMWH gln + ZMZ"H 3271, can be written:
6%1 + (7 - Mln)2 (M2n + 'Y(MQTL 1)) 2 + 72M1n 2 + 72M2n(7 - ]\4171)2 2
n

e e e
(’Y - MQn)2 (Mln + V(Mln 1))2 tin (Mln + /Y(Mln - 1))2 tin (7 - MQn)z(Mln + /Y(Mln - 1))2 tin

2 [ My )* (Mg +v(Mip — 1))* + 72 M) 4 (v — Min)*(Man + 7 (Ma, — 1)) + V2M2n)}
B tin ( M2n) (Mln + ’Y(Mln - 1))2

Finally, substituting for ej1,,, we arrive at the least squares problem.

QED



Proof of Lemma 3.G

Recall that g(w, ) is given by

2
(Zt 1 ZMtH W tyjt)
S st we

where the W’s are defined in the outline of Lemma 2.G. Substituting in for y;; with the data

Q(wa 7) -

generating process yields:

2
<Zt 1 ZMtH Wi [O‘jto + i Z%gl Qkto + eth
Y i wE

Q(wv 7) -

Collecting the i, terms yields:

2
(Zt 1 ZMtH ( B Dk M Wkt) Qjto + th£jt>
Zt IZM’f“ w2

Note that the coefficient on a1, is given by the weight at t = 1 plus the weight at ¢t = 2:

q(wry) =

Mi+1

2
> W1t+ft > Wi | = (v=Mo)(My+~(My—1) =767) = (v = My) (Ma+y(Mz—1) —707)
=1 kAL

Because of the symmetry, after multiplying out, any terms involving M7 Ms will drop out as

will any terms where neither M; and M, enter. The expression then reduces to:

2 Mt
Z Wiy + — Z Wi | = (My— M)y + (M — Mo)y? — (My — Mo)vey + (Mo — M)y
t=1 M; kA1

= (M1 — My)(v* = 757)

= (My— Ma)(v — 7)Y

Now consider the coefficient on a1, for j > 1 which can be split into three components: 1)

the own weight, the weight from observation 1, and the weight from classmates besides 1:

M1+1
gl y(M; — 1)
i 1 - a5 o - a5 o
]1+ ZWk;l )(%L[Jrv Ml]v [ YR gl
k#j
which reduces to:
Ml—‘rl
Z Wit = (v = M2) (7o — )
k#j

18



We then know that the coefficient on Wjo for j > 1 is given by:

Ms+1

Wi2 + Z Wi = M1)(v = )
k#j

Substituting for these expressions in (?7?) yields:

Mi+1

qw,) = [(<M1 M) v+ (1= M)e—) [ 3 e
Ma+1 2 Mi+1
0= M)0 =70 | 3 am | +32 3 w) }
t=1 j=1
2 Mi+1
[z
t=1 j=1
We next take expectations conditional on My, Mos:
Mi+1
Elg(w,y)|My, Mp] = E (M1 = Ma)(y = Yo)vato + (v = Ma)(vo =) | D @jio
2
Ma+1 2 M+l
+ ('7 - Ml)(7 - '70) Z Qj20 | + Z Z W]tEJt
t=1 j=1

2 M+l
/ Z Z Wj2t | My, My

t=1 j=1

Expanding the square and noting that 1) E(aje€ere) = 0 for all j, k,t,t' by assumption 3 and
2) E(ejiepy) = 0 for all j # k or ¢t # t' by assumption 2 yields:

Mi+1
Elg(w,7)|My, My] = E (M1 — Ma)(v = yo)y010 + (v = M2) (%0 = 7) | D o
2
Mo+1 2 Mi+1
+ (’7 - Ml)(7 - 70) Z ®j20 Z Z ]tejt
=2 =1 j=1

2 M+l
/ Z Z Wj2t | My, My

t=1 j=1

19



which can be rewritten as:

Mi+1
Elg(w,7)|My, Ms] = (v —7)*E ((Ml — M)y, — (v — Ma) Z Qo
=2

2

Mo+1 2 M;+1
+ (v — M) ajoo | | 1My, M, / Y wh

j=2 t=1 j=1
M;+1 2 Mi+1

2 2 2

+ Z WAE (¢3,| My, My) / Z Z w3
t=1 j=1 t=1 j=1

Note that assumption 4 implies that the conditioning in the expectation over the squared
errors is not needed. Further, E(e?t) = E(e},) for all j,k by assumption 7. We can then
express the expectation over the squared errors solely as a function of the first observation’s

squared error:

Mi+1
Elg(w,7)|My, Ma] = (v =7)°E | | (My = My)yono — (v = Ma) | D ajio
=2

2

My+1 [ 2 M1
w3 | | pnan| /1SS W
j=2 | =1 j=1

2 M+1 2 Mi+1
X wre@)| /(XX w

t=1 j=1 t=1 j=1

Note that the weights in the numerator of the second expectation are the same weights as in
the denominator. Assumption 4 implies that these weights are orthogonal to the squared first
and second period errors. Further, E(e};) = E(e2,). Taking the unconditional expectation

then yields:

Mi+1
Elgw,7)] = (y=7%)E || (M = Ma)yono — (v = M) [ Y ajio
=2

Mo+1 2 2 Mi+1
ro-w | Xawl) /S
j=2

t=1 j=1
+E (¢

The first term in the above expression is strictly greater than 0 for all v # ~, and the second

term does not depend upon . As a result, E[g(w,7,)] < Elg(w,~)] for all v € T when v # ~,.

20



QED.

Proof of Lemma 4.G

Uniform convergence requires that

yel

1 N
max |— (wn, ) — Elg(w,7)]| 20
}N;q v q(w,y

Theorem 12.1 in Wooldridge states four conditions that the data and ¢ must satisfy in order

for the above condition to hold.

1. T' is compact

This condition is satisfied by assumption 8.

2. For each v € T, ¢q(+,7) is Borel measurable on W
q(+,7) is measurable with respect to product o-algebra of B(RZHM) x 27 where 27 is

the power set over the possible class sizes.

3. For each w € W, ¢(w, -) is continuous on I'

Our concentrated objective function is continuous in ~.

4. |g(w,y)| < b(w) for all v € T, where b is a nonnegative function on W such that
Eb(w)] < o0

Recall that g(w,y) is given by:

2

(ZM1+ Wiiyj1 + Z W]Qy]2>
My Mo+ 1y
Zj:l1+ Ry 2

Q(wvry) =

Expanding the square and noting that W tyjt+Wkt/ykt, > 2Wi Wi yeyre for all j, k. t, ¢
(the triangle inequality), we have:

(2+ My + Ma) (ZMlH W2 1%1 + ZMZH W32y]2>
ZM1+1 W2 2 + ZM2+1 W2

q(w,7) <

where the the leading term arises from replacing all the cross products using the triangle

inequality.

21



Note that each of the terms in the denominator is positive, implying that:

Mi+1 Ma+1
qlw,7) < @+ M+ M) [ D vhi+ D yh | =b(w)

where we have shown that b(w) > ¢(w, ) for all w.

We now show that E[b(w)] < co. Note that E[b(w)] is given by:

2 M;+1

Eb(w)]=F [(2+ M +M)> > 3
t=1 j—1

Note also that, by the law of iterated expectations E[b(w)] = E(E[b(w)| M, Ms]). We
first show that the inner expectation is bounded for all M, Ms and then show that this
guarantees the outer expectation is finite. Substituting in for y with the data generating

process into the inner expectation yields:

2 Mi+1 Mi+1 2
Eb(w)|[My, M) = 2+ My + M)E | > Y | ajeo + Z Qkto + €t | | M1, Mo
=1 j=1 kAj

Repeatedly using the triangle inequality after expanding the square implies:

2 Mi+1 2 Mi+1
E[b(w)|My, Ma] < (2+M+Ms)E Z Z M;+2) | oy, + +e5 | [ My, M,
t=1 j=1 k#j
Collecting a i, terms and recognizing that 7 2/M,; < ~2 implies that:
2 Mi+1
Elb(w)|[My, My] < (24 My + Ma)E |(1472) ) > (My +2) (o4, + €) [My, M,
t=1 j=1
We can take the expectation operator through yielding:
2 Mp+1
[( )|M17M2] (2+M1+M2 1+70 ZZ Mt+2 th|M17M2)+E( )]
t=1 j=1

where the conditioning is not necessary for the second expectation by assumption 4.
Assumptions 5, 6, and 8 ensure that E(a?to|M1, My), E(e?t), and 7, are all finite. Thus,
E[b(w)| My, Ms] < oo for all My, M. Now, note that E[b(w)] = E(E[b(w)|My, Ms]) <

max, v, E[b(w)| My, Ma] < oo, where the last inequality arises from assumption 1.
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QED
Proof of Lemma 5.G

To establish asymptotic normality, we now show that the six conditions of Theorem 12.3

in Wooldridge (2002) are satisfied.

1. v, must be in the interior of I"

This condition is satisfied by assumption 8.

2. Each element of H(w, ) is bounded in absolute value by a function b(w) where E[b(w)] <
00

Recall that g(w, ) be written as:
2
(Z;lerl Wityji + 352 M 2yj2>
ijll+1 W2 2 + ZM2+1 W2

M, +1 M, +1
Zt IZt’ 12— et WitWee gty

DD Dl U6
Denoting W]{t as the first partial derivative with respect to +,

q(w,y) =

Wi, = [(1+2y— My)(M; —1)+1]
Wiy = —[(142y—M)(My—1)+1]
3{1 = —2v+ My forall j > 1
](2 = 2v— M for all j > 1

and W as the second partial derivative of Wj; with respect to 7,

W = 2(M;—1)

Wiy = —2(My—1)
]"1 = -2 forall 7 > 1
]”2 = 2 for all j > 1

We can then write the score as:
2 Zt 1 Zt’ 1 ZMtH Mt/H W{tht’yjtykt’
i ZMt“ W
<Zt 1 Zt’ 1 ZMtH l/H thWkt’yjtykt’> <2 Zt 1 ZMtH WiLW. )

(2 st

S(’LU, 7) -

23



and the hessian as:

H(w,v)

Mi+1
2300 Y 2

/+1
t (W” Wi + W]{t W];t/ )yjtykt’

Y EMf“ w2
M ’
(Zt Dy ZMtH i) vt Wkt’%t?/kt’) (2 S ZM”LI WiW. )

(o o o

(Zt (S z)
t/+1 ) ] Mt+1 / / /i .
z W]L‘Wkt’yjtykt’> (2 S 12221 (WL W, thWJt))

(s o

(22, siwe)’

2
My +1
e W Wi ) (25200 S W)

(o2 sz’

We need to derive a bounding function such that b(w) > |H(w,~)| for all v € T". Note

that:

[H (w, )]

D YD 3D Byl

/+1
t (WH Wi + W]{t W]ét/ )yjtyk:t’

S 1ZMt“ w2

4 (o o

k:tll'i‘l W Wkt’%t?]kt') ’ ’ (2 Zt 1 ZMt+1 W/ W ) ‘

(o i

2
(Zr it wz)
e W Wi )| | (2 20 S WAW + W)

(oo o

(22, we)’

2
:t'+1 thWkt’yjtykt’) ’ (2 Zt 1 ZMtH Wi,W. >

(2 )’
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Repeatedly applying the triangle inequality and collecting terms yields:

2(2++ My + M) (X7 I (W2 + (W) + Wh))

[H(w,7)| < SRS
LA M M) (SR SOV WG ) | (2 S S W)
(2 1zﬂ“+1Wﬂ)2
, et (Zr i w2 ) | (2 S v W+ W) )|
(i st
|G (S S W) (25 S W)

(22, siwe)’
Denote W}, as the weight given to yJQ-t in the above expression:
L 202 My M) [(Wh)? (W) + W

4 S STW
424 My + M) (W + W) | (258, S W W) |

(2 sz
(24 My 4+ 0o W (235, SR VW + W)
(Zt L SML g2 )
2
(2 + My + Ma) (Wi Wjeyi) (2 > ! Wétht>

(2 sz

implying that: y
2 Mi+1

H(w, )| <> Z Wiy
t=1 =
Note that W7 is function only of the class sizes and « and for any class sizes and ~ it is
finite. Since the expression on the left hand side of the above equation is increasing in

W*

it define B;-‘t as:

which exists and is finite due to all elements of I' being finite. Our bounding function is

then:



We then need to establish that E[b(w)] < co. We first show that E[b(w)|Mi, Ma] < oo

2 Mi+1
Elb(w)| My, Ms] = ZZ E(y3| My, M)
t=1 j=1
2 Mi+1 Mi+1 2
N3 31| (PR S I
t=1 j=1 k#£j

Repeatedly using the triangle inequality after expanding the square implies:

2 Mp+1 ,2 Mi+1
Eb(w)|My, My] < Z Z (My+2)E a?to +63t | My, My
t=1 j=1 ¢ k#j
Collecting o, terms and recognizing that 72 /My < ~2% implies that:
2 Mp+1
Elb(w) M, M) < (149230 S BL(M +2)E (02, + &) [My, M)
t=1 j=1

Assumptions 1, 5, 6, and 8 ensure that B*, F(« ]to|M1,M2) E(e ]t) and -y, are all finite,
implying that E[b(w)|M;, Ms] < co. Now, note that E[b(w)] = E(E[b(w)|M, Ms]) <

maxas, v, E[b(w)| My, Ma] < oo, where the last inequality arises from assumption 1.

. S(w,-) is continuously differentiable on the interior of I' for all w € W

Since H(w,7y) is continuous in v, s(w, ) is continuously differentiable.

. Ay, = E[H(w,",)] is positive definite

With only one parameter, this implies that the Hessian is strictly greater than zero when
evaluated at the true . To test this condition, we evaluate the expected Hessian at
Yo- We first note that we can interchange the expectations and the partial derivatives:
E[H(w,v)] = 0*E[q(w,~)]/07?. From Lemma 3.G, we know that E[q(w,v)] can be

written as:

Mi+1
Elq(w,V)]=(y = 70)*E | | (M1 — Ma)yon, — (v — Ma) Z Qj10

Ma+1 2 Mt+1
+ (v — M) Z Q20 /
=2

t=1 j=1
+E ()

Note that  affects three terms: (v — 7,)?, the term inside the expectation, and the

denominator. However, because we are going to evaluate the expected Hessian at ~,,
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we only need the second derivative of the first term, (7 — ~,)2. All of the other partial
derivatives will either be multiplied by (y—",)? or (y—",), both of which are zero when
¥ = 7,. The second derivative of (7 — 7,)? with respect to  is positive. This second
derivative is then multiplied by the expectation of a squared object in the numerator
and divided by the sum of squared objects in the denominator. Thus, the expectation

of the Hessian evaluated at -y, is strictly positive.

. Els(w,7,)] =0
Note that E[s(w,v)] = 0F[q(w,~)]/dv. Differentiating with respect to v leaves terms
that are multiplied by (7—,) or by (y—1,)?, implying that if we evaluate the derivative

at v = o then the expected score is zero.

. Each element of s(w,",) has finite second moment.

We first take the expected squared score conditional on M7, Ms which is given by:

M M +1
YIRS Pl 12 AR DA Wi Wi yjtye
i 121‘“1 W,

Els(w,7)?My, M) = E({

i+1
(Zt 1th 12Mt+1 =t i thWkt'yﬁykt/) (2 Zt 1 ZMt+1 W/ o )} ’M M>
1, My

(z2, ot wz)’
Applying the triangle inequality and collecting terms yields:

(24 My + M) Yo7 S (W) + W)y,
St wE
((2 + My + Mo) Zt 1 ZMtH W]ty]t> (2 Zt 1 ZMtH WiLW.

Bls(w,7)?My, M) < E([

(e stz

27
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Repeatedly applying the triangle inequality we can write:

Mt+1 1\2 2
E[s(w,”y)2|M1, MQ] < E (2 |:2(2+M1+M2)Zt 12 ((W t) +W y]t:| ‘Ml,MQ)

Zt . Z]\It+1 W2

(eranam) $2, S w2 (252, SV W,

+ E |2
(o, o wz)”

W 2
t)] ‘MLMQ

Mt+1 2)
< E <8(2+M1+M2)2 (=i lét 12(1\/175—0—1) +V; o ] ‘MMMQ)
Alt+1 th+1
+ E (8(2 + My + My)? [(Zt R (zj: jgﬂgi 12)4 il ] ’MMMZ)
<

E [ 8(2+ M + My)3 S S W)+ W), ’M1,M2
(ZHZMW 2)”

(= IZM'*E;V;ﬁ Z)Ez;”* 1 Wi ]‘MI,MQ)
t=1 w

Note that the expectation is taken with respect to the y’s conditional on the M’s and

+E (8(2 + M + M,)?

7. Denote W}, as the aggregate weight given to y?t in the above expression:

8(2 + My + Ma)3(W)? + W2)>  8(2+ My + Mo)*(W. (Et L o Wétht)z
(s, st we)’ (s sirwz)’

where we know that Wt is finite as the denominator is greater than zero, M; and My

* JR—
Wi o=

are finite, and <y is finite. Substituting in with Wt in the inequality yields:

2 M;+1

E[S(w77>2’M17M2 S Z Z yjt‘MlaMQ)
t=1 j=1

Substituting in for y;; and repeatedly applying the triangle inequality yields:

2 Mi+1 [ My+1 4
E[S(wa7)2|M1aM2] < Z Ojto + Zakto“‘e]t |M1,M2

2 Mi+1 [ 92 Mi+1 2

< X Wik |04+ 2? (ad+ (1) X ohuch | o
t=1 j=1 i Py
2 M4+1 [ yy \ M

< Y B |(M; +2)° a§t0+<M"t) D ali, €y | 1My, My
t=1 j=1 | k#j

Collecting terms we have:

=
+

1

]

4
Els(w,7)*|My, Ma] < Wi, [(Mt+2> < M3>E(a§tolM1,Mz)+E<e§t>}

“
Il
—
.
I
—
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Wi Yo, and My are all finite and since the fourth moments of o and €’s are finite by
assumptions 5 and 6, the expression is finite for all v € I' and for all M;. Further,

E[S(wa /70)2] < mMaxnpr, Mo E[S(w7 70)2|M17 MQ] < 0.

QED O

2 Proof of Lemma 2.G: M, = M, = M,

Proof. The algebra required to derive the simplified residual expressions for the general class
size case is terribly cumbersome. For a sense of how the algebra works, we instead show how to
derive the residual equations for a slightly simpler problem, the case where M1, = Ms, = M,,.

We take as a staring point here the results of Lemma 1.G when My, = Ms,, = M,. While
we do not derive the result here, following the steps in Lemma 1.G would yield the following

solutions for a, and ;1.

~ N 2 Mp+1
_ - A(M, — 1)+ M,
a1y = (A +AB )(y11n+y12n)+ (Anl+Bn7< n—1) n)z Z Yjtn
My, My, t=1 j=2
A (M, —1) - _5 (M, —1)3
Qiln = (Bn+0n]\}TL+Dn( T}Wn )’.Y)ylln‘i'(B +En7)yl2n+(Bn]\ZL+Cn+Dn( T}Wn )V)yzln
. . 5 Mpn+1 . . M+l
A a4 ~M+ Yo p Myt (My—1)5
+ (Bnﬁn‘l‘cnﬁn"‘Dn ) Z Yjin + ( nﬁn‘f'En M, ) Z Yjion
J=2,j#i Jj=2
where
i = )M+ (1 +9)° My
" 2(147)2(y — My)?
_ P2+ My
2014 )2(y — My)?
o V=224 )M+ 28+ 9(12 4 57)) M7 — 4y(1 4 9)*(2 +9) My + 2(1 + )M,
=

201+ 79)2(y = Mp)?(v2 = v(2 +7) My + (1 4 v)2M2)
B V=272 My + 726 + (8 + 3v) My — 29(1+7)*(2+7) M
" 2(1+7)2(y = Mp)2(v2 = v(2+ )My + (1 +7)2M2)
o (M — 1) + 20,
214 )2(y = Ma)2(7? = (24 )My, + (1 +7)2M2)

The form of «;9,, is identical to the above formulation for «;1, except that the time indices are
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swapped on all the terms. Notice that here we have written the inverse components directly
as functions of v and M,,. The extra notation utilized in the general M case is not necessary
here since we are not going to show how to derive X! directly. However, it is immediately
clear that finding a simplified version for the residual equations will be easier in this case since

there are simply fewer terms to deal with.
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With the equations for the abilities in hand, we can begin substituting into the residual equations. Consider the residual for

individual 1 in block n at time period 1,

~ Myp+1
€l11ln = Y1ln — Qin — A g jin
n =2

Substituting in the solutions for a1, and aj1, and combining like terms yields the following:

~ N - ~2(M, —1 ~ - -
€l1ln = Ylin 1- An - Q’VBn - Cnl - DnM — Y12n (An + 27Bn + ’}/QETL>
M, M,
Myp+1
iy = = y(y+ My — 1)+ M, = YM,(1+7) =% = y(y+ My (M, + M,y — 2y —1))
- E Yjin An +Bn +Cn 2 +Dn b)
- M, M, Mz Mz
Jj=2
My+1 2
= 7 s Y0+ My 1)+ M, = yMp(1+7) =7
— ; A,— + B E 5
JZ:2 Yi2n ( ", T M, + M, (5)

Using the formulas for A,, B,, Cpn, Dy, and E, we show that the coefficients on the y’s simplify quite nicely. First we illustrate
how fln, Bn, C’n, Dn, and En are functionally related.

Property 1

The components of X! are interrelated according to the following:

y 5 M2 - - M2 . S VA S Vi
Ay=B,+-—+—"—, Co=Dp+—2— D,=B,+—, E,=B,— —

where
VM2 (=~ 4 2M,, + M)

Vn = (v = Mp)2 (v = y(2 +7) My, + (1 +7)2M2)




Proof of Property 1

Solving for A,, as a function of By, is rather straightforward as they have the same denominator.

V2 =724+ 7) My + (1 +7)° M2 — (2 — (2 +7)M,)
2(1+79)%(y — My)?

A, - B, =

M2
2(y - Mn)2

In order to relate C’n to Bn, we first show how é’n is related to ﬁn and then how ﬁn is related

to Bn. Below are the formulas for C’n and Dn.

o V= 2P 24 7)Mo+ 284+ 9(12 4 57)) My — 4y(1 4 9)*(2 +7) My + 2(1 + )M,
! 2(1+7)2(y = Mp)2(v2 = (2 + )My + (1 +7)2M2)

B - =224 )My + 926 + (8 + 3v) My — 29(1+7)*(2+ 1) My,
=

+
21+ 9)%(y = M) (72 — (2 + ) My + (1 + )2 M2)

Both terms share the same denominator, and in fact share the same first two terms in the

numerator. Subtracting D,, from C, and simplifying yields
. - M?
C. —-D =_—~—n
" " (v — Mp)?
Next we want to find the difference between f)n and Bn. This difference is more compli-
cated than the first two since they do not share the same denominator. However we can easily
get a common denominator since the denominator for B, is simply missing one term present

in the denominator of ﬁn. Thus we can write the difference as

v = 2932+ )My + 936 + (8 + 37)) M7 — 29(1 +7)*(2 + )M,
21 4+79)2(y = Mp)2(02 = v(2 + 7) My, + (1 +7)2M32)

(72 =124+ My + (1+9)°M2)(v* = 7(2+7)M,)

2(14+7)2(y = Mn)?(v2 = v(2 + )My 4 (1 + )2 M32)

Dy By =

Combining terms and simplifying yields

D _ B — 7M72L(7 - 2Mn - 7Mn)
v 2(y — Mp)2(72 — v(2+7) My + (1 +7)2M2)

1\3‘5

32



The last piece is to relate En to Bn. Just as with Dn we need to find a common denomi-

nator.
B g~ YO(My—1) +2M)% = (72 = Y2+ 7)Mo + (1 +9)* M) (7! = 7(2 +7) M)
oo 2(1 +7)2(y = Mp)2 (v = v(2 + )My + (1 +7)2M2)
_ VM (= + 2My + M)
o 2(y = Mn)?2(7? = (2 + ) M + (14 )2M2)
— Vn
-2
QED

Using Property 1, we now show that the coefficients on the observed grades in Equation (?7)
have other appealing properties. Then we use these properties to simplify Equation (?7), in

an effort to arrive at a simplified version of the least squares problem as a function of ~.

Property 2
Equation (??) describes the prediction error for the first outcome of the individual observed

twice in block n. In Equation (?7?), the coefficient on y11,, is equal to the coefficient on y19y,

My+1

and the coefficient on ) i=n  Yjin IS equal in magnitude but of the opposite sign as the coef-

ficient on Zj]\i”;rl Yjon-

Proof of Property 2
The coefficient on y11, is given by
~ ~ = 2 - 2 (M, —1
1= Ay 2B, - Gyl - D, =
Substituting in for A,, Cy, D,, and E, as a function of B, using Property 1 and simplifying
yields the following
2 2 2 2 2 2

i oA s (M=) 297 = 29(y = 2)Mp + My — Vi (v — Ma)® 2
1-A,—2vB,—Cp,——D = —B,(1

n=2yBn=Cog Do 2y — ML) (1)

The coefficient on y12, is given by

fln + 273n + 'yQEn
Again making the appropriate substitutions allowed by Property 1, we can re-write this ex-

pression as

My = Vay* (v = Mp)?

An+27én+72E~n = 2(y — My)? +Bn(1+7)2
n
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Finally, taking the difference between the coefficients on y11, and yi9,, we find

=~ 7 < (M, -1
L_Dnv( )

Ap +2vB, +7*E, — (1 - A, —2vB,, — C, i — )
9B, (14 )2 4 Ma = Vet (v = Ma)® = 297 4 2y(y = )My — My 4 Vo Py — Mn)®
- n
2(’7 - Mn)2
A —27% +2y(y — 2) My,
=2B,(1 2
) e
2 92 o
V2 +)My | =297+ 29(y — 2) My,
(7 - Mn)2 2(7 - Mn)2

=0

where the second to last line results from substituting in our formula for B,, given in Equation

(?7).
Now we show that the coefficient on EM”H Yj1n is equal in magnitude but of the opposite

Jj=2
sign as the coefficient on Zj]vi”;l Yjon. The coeflicient on Z?i”;l Yj1n is given by

A ’Y+Mn_1)+Mn A VMn(1+7)_72

v 5 ~ y(y + My (M, + Myy — 27y — 1))
n BT’L CTL Dn
M, M, * Y2 + 2

and the coefficient on Z?i";l Yjon 1S given by

5 M, —1)+ M, - ~vM,(1 &
_i_Bn'Y(V'f' n )+ n E'Y n( +'Y) Y

-
A _r
"M, M, + En M,

If we add these two coeflicients together we arrive at the following expression

24,7 +2 an(wM]%lHMn +C, an(}\p%vQ

~ M (Mp+Mpy—27y— = My —~2
+ Dn7(7+ ( +2 7—27y-1)) Ty o (}\Z:Y) v

n

Now, we substitute for /Nln, C’n, Dn, and E’n as functions of Bn from Property 1. After some
manipulation, we can write the above expression in the following form

Ay My + 292 M, — 2°

2B, (14 7)% + 20— M)
n

Notice that this expression contains no V,, terms as they cancel out when substituting in for

C,, D,,, and E,,. The last step is to substitute in for B, from Equation (?7).

v =2+ )My | AyMy + 2y My, — 297
(7 - Mn)2 2(7 - Mn)2
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All of the terms in the above expression cancel out, proving that the sum of the coefficients

on Z?i”;l Yj1n and Z?i”;l Yjon are equal in magnitude and of the opposite sign.
QED

Now we return to Equation (?7?), which describe the prediction error for the first observation of
the student observed twice in block n. Using Properties 1 and 2 we will show how to simplify
this expression, and in turn describe how the prediction errors for all of the other outcomes
in block n can be similarly simplified. This will yield a simplified version of the original least
squares problem strictly as a function of v, M, and .

Property 2 indicates that

- - T B v (M, —1)

;\/47 n Vi = An + Q'VBn + 72En
n n

and
-y = y(y+ M, -1+ M,  ~ yM,(1+7) =% = y(y+ Mu(M, + My — 2y — 1))
A, + B C D
nar, TP M, +En M?2 T M2
- (A,-+B E
(nMn+ n i + En A )

We now proceed to solve for each of these coefficients strictly as a function of ~. First, we
solve for the coefficient on yi9y,.
By substituting for A, and E,, from Property 1, we can write the coefficient on 412, in the

following way

. - = M2 — Vi (y — M,)?
Ap +29By + 7y Ep = =" .

+ Bp(1+7)?

To solve for this as a function of v we need to substitute in for B,, and V,,. Substituting in for
B,, from Equation (??) and V;, from Property 1 yields

_ (Y= @+ ) M) + MP) (P = (2 + )M + (1 +7)°M3) — v M (y* — 2vMy — * My
20y = Mn)?(v? = v(2 +9) My + (1 +7)2M7)

We can re-arrange this expression in the following manner:

(v* = 29yMp + M7)(v* = (2 + )M + (1 +7)° M)
27— My)2(y2 —A(2 + 1) My + (1 +7)2MZ)
VM (Y = (2 4+ )M+ (14 7)2 My + 92 My, — 2yM;; — ¥° M)
2(y = Mn)2(v2 = v(2 + 7)) My + (1 +7)2M3)
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where we split the expression simply for ease of presentation. The numerator in the second
line simplifies greatly, such that the entire expression simplifies to

(72 — 2yMy, + M2)(v? — 4(2 4 7) My + (1 + 7)?M2) — v* My (v — 2y M, + M2)
(v = Mn)2(v2 =72+ )My + (1 4+ 7)2M2)

The numerator then factors to produce

(7 - Mn)2(Mn + ’Y(Mn - 1))2
2(y — Mp)?2(v2 = v(2+7) M, + (1 4 v)2M2)

Finally, we cancel out the common terms in the numerator and denominator to yield

(M, + (M, — 1))?

A, +2vB, +12E, =
n+27Bn + Y’ E, 2(v2 — (2 + 7) My, + (1 + 7)2M2)

This gives us the coefficient on y11, and y12, in the expression for eji, as a function of ~.

Mp+1

Now we proceed to solve for the coefficient on ) i=n

Yjon as a function of +.

Using Property 1, we can write the coefficient on Zj]\i”;rl Yjon in the following fashion:
i D ’7(7+Mn - 1) +Mn I 'YMn(l_"’Y) _’72 D, 2 ’YMn Vn(’YMn(l'i_’Y) _’72)
A,—+B E = B,(1 —
T N +Ey A n(14+7) AT TAE S0,

Substituting for B, from Equation (??)and re-arranging yields

'72 — M, — ’YZMn _ Vi (YMy (14 ) — 72)
2(y — My)? 2M,,

Substituting for V,, from Property 1 and finding a common denominator yields

(72 = YMpn — ¥ M) (v* = y(2 + )My 4+ (1 +7)* M) — y My (y — 2M,, — yMy) (VM (1 + ) — 7%
2(y = Mp)2(v2 = (2 + )My + (1 +7)2M2)

After some manipulation the numerator of the above expression simplifies to yield

—(y = Mp)*(YMyn (1 +17) —~?)
2(y = Mp)?(v2 = v(2 +7) My + (1 4 v)2M32)

Canceling out the common terms in the numerator and denominator yields

—(YMy(147) — %)
2(v2 =y (2+ )My, + (1 +7)2M2)

Finally we can substitute our simplified versions of the coefficients on y11,, Y12, Zj]\i”;rl Yjon,
and Zj]\/i";rl Yjon back into the equation for eq1,, described in Equation (?7?).

(M,, +~v(M,, —1))? (M, + (M, — 1)) Mp+1

207 9@+ DMy + (1200 I 507 @ )M, + (1)) ]22(‘%2" )

€l1in =
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This simplifies further to produce

Mn+1
(M, +~(M,, — 1))
€lin = M, +~v(M, — 1 — + E o ay
11n 2(72_7(2+7)Mn+(1+7)2M%) (M, + (M, ) Witn — Y12n) + = (yjzn yﬂn)

We now have the component of the least squares problem that corresponds to the residual for
student 1 in block n as a function of v with the a’s concentrated out. Next, we need to find

similar expressions for eq9, and e;,.
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Finding a version of ej9, as function of « is simple since it takes a form that is essentially identical to ej1,. The expression for

e12, is given by
Mp+1
€12n = Y12n — Q1n — T E Qa9
n — n n 72n
M, =

which after substituting for a using the results from Lemma 1 yields

N B B 2 5 2 M. —1 _ N _
€12n = Yi2n - An - 2/7Bn - Cnl - DnM — Yiin (An =+ 273n + ’72En>
M, M,
Man+1
i) oy (Y My — 1)+ My A AMa(149) =42 = (v 4 M (M, 4+ My — 2y — 1))
- Z Yjon Ani + Bn + Cn 2 + Dn 2
Jj=2 M M, M Mg

Mp+1
- Zy' Al—i-é 7(7+Mn_1)+Mn+E ’YMn(1+’Y)_’V2

=~ 71ln nMn n Mn n Mn
This equation is identical to the equation for eq1, except that all the time subscripts are changed. However, we know from Property
2 that the coefficients on y11, and y192, are equal in this expression and that coefficients on Zjﬂi"jl Yjon and Z?i";l Yjon are equal
but of the opposite sign. Thus, e12, = —€11n-

To get the final piece of the least squares problem with the a’s concentrated out we need to substitute for « in e;,. where i > 1.

To find a simplified formula for e;s;, consider first substituting in for « in es1,. The formula for esy, from the basic least squares

problem can be written as follows:
Mp+1

8
€21n = Y21n — O21n — A Qin + E Qjln
n .
Jj=3



6¢

Substituting in for a from Lemma 1 and combining like terms yields the following expression:

it 2 My + '72(Mn —1) - M2+ '72(Mn —1) = 2y My (M, — 1) + VQ(Mn — 1)(M,, —2)
€2ln = Y21n <1 - A W - 2B M2 - Oy L M,% - D, M»,% )
i Y s Mu (My = 1)y +77 YMy + (M —1)y* = (M — 1)y(My, + (M, — 1)7)
— A,— + B C D,
Yiin ( nMn + bn M, + M% + Mﬁ
i 7 B Mn+(Mn_1)7+'72 M, +
— A,— + B E
Y12n ( nMn + n Mn +
N N (A2 o Mt = 1) 2y M i (M =2) | (Mo 7y = 2) + (M — 1)
| 2w | (A M2 +C M2
j:3 n n
M71,+1 2 2 2
o = YMy, + (Mn -1) r (Mn + (Mn - 1)7)
]:

To simplify the above expression, we follow the same strategy employed in simplifying eq1,.



Property 3

The coefficients on 11, and y19, in the equation for es1, are equal in magnitude but of

Mp+1

the opposite sign. The same relationship exists between the coefficients on 23:3 Yj1n and

Z?i";l Yjon- In addition, the coefficient on 21, is identical to the coefficient on Z;‘igﬂ Yjln-
Proof of Property 3

The first step is to examine the coefficients on y11, and y12,. Our work is simple here since
the coefficients on 11, and y12, in the expression for es1, and the coefficients on Zj]\i";rl Yiln
and Zjﬂi’fl Yjon in the expression for ei1, are exactly the same. Thus, we know they are

opposite in sign, and of magnitude

(YMn(1+7) —~?)
2(v2 = v(24v) My + (1 +7)2M2)

by Property 2.

Now we turn to the coefficients on 421y, Zj]\i";

! Yjin, and Zj]\i”;rl Yjon. Using the results
from Property 1 relating A,, Cn, D,, and E, to B,, we can re-write the coefficient on
Z?i”;l Yjin in the following fashion:

(Mn + ’Y(Mn _ 2))2 + (Mn B 1)72

2 2 2
= = YMy + v (My —1) | = 2yMy + (M, —2) | =
A,-L- 1+ 2B, +0, + D,
M2 M2 M2 M2
Byl 4)? V(72 = 29Mp(1+7) + M2(1+7)%) | 29yM,(2+7) —37°
= By(1+7)"+ +
2Mn2 2('7 - Mn)2

Next, substituting in for A,,, Dy, and E, in the coefficient on ij\i”;rl Yjon and simplifying

yields
2 2 2
i = My + (M, — 1) = (M, + (M, — 1)7)
Anm + 2B, YE + En VE
- Vi (V2 — 2y M, (1 + ) + M2(1 + 7)? 2
~ Ba(147)?— n(7” = 29 My ( z) WAt v i
2Mn 2('7 - Mn)
Adding together the simplified expressions for the coefficients on Zj]\i%“ Yj1n and ij\i’aﬂ Yjon
yields
2 2
A v 29Mn(2+7) — 3y
2B,(1+7)% +
R To VA E 2(y — My)?

after the terms including V,, cancel each other. Substituting in our expression for B,, from
Equation (?7) yields
’72 - ’Y(Q + ’Y)Mn 2yMy, + 72Mn - '72
(’7 - Mn)2 (7 - Mn)2
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All the terms in the above expression cancel out, indicating that

2 2 2 2 2
= = My + A (Mp — 1) 5 2yMy +44 (M, —2)  ~ (My +v(M, —2))* + (M, — 1)y
A”ﬁg +2Bn M?2 +Cn M?2 + Dn M?2

2 2 2
e ’Y i ’YMn + ’7 (Mn - 1) I (Mn + (Mn - 1)7)
- <A”Mg +2Bn M2 +En M2

or that the coefficients on Zé\i’fl Yj1n and Zj]\/i”;rl Yjon are equal in magnitude but of the
opposite sign.

Finally, we can substitute in for /LL, C’n, [)n, and En as function of Bn from Property 1
in the coefficient for y91,. After some simplification we can show that this coefficient can be
written as

B1ez Vo =2M(14+9) + Mi(1+7)%)  2yMn(2+7) — 39
~Ball+7)" - 2012 T oy - M)

Comparing this to the coefficient on Z?i";l Yj1n as shown above indicates that these two

expressions are exactly the same, except that the signs are flipped on all the terms. Thus, the

M7L+1

coefficients for yo21, and iy

QED

Y;1n are equal in magnitude but of the opposite sign.

All that remains is to find the expression for these three coefficients as a function of v. We
can work with the easiest formula since they are all identical. Recall that the coefficient on

Z?i";l Yjon can be written

~ 2 Va0 =2y M1 +9) + Mp(1+9)Y)  +°

Bn(1
n(1+7) 2012 37— M)
Substituting in for V,, yields
- M, + 2M,, —~)(M?(1 2442 29 M,(1 2
Bn(1+v)2—7(7 n + 2Mp — ) (ME (14 7)° +9° — 29 M, ( Jrv))+ gl

2(y = Mn)*(7? = 72+ )My + (1 +7)2M3) 2(y — My)?
Finding a common denominator and re-arranging yields

72((’7 - Mn)2 + 'VMn(2Mn -7+ ’YMn)) — ’Y(’YMn + 2M,, — 7)((7 - Mn)2 + 'YMn(2Mn + M, — 27))

B (147)*+ 2(y — Mp)2(72 — 42 + )My + (1 + 7)2M2)

Finally, substituting in for B, finding a common denominator, and eliminating terms yields.

VA((y — My)? 4+ v M (2M,, — v +My,)) — 2 (v My + 2M,, — 7)
20y — Mp)?2(v2 = v(2+7) M, + (14 v)2M2)
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The above expression simplifies further to

72

2(v2 =24+ y) My + (1 +7)2M2)

Now we have expressions for all the terms in the equation for es1,,. We can substitute back

in and write the residual as a simple function of ~.

My,+1
(M + (M, — 1)) 72 X

Y1in—Y12n)+ Yion—Uil
257 =22 + )Mo+ (1 +770) P o e M, + (L 1)) ;2 (Y520 =Ys1n)

€21n =

Notice that in the residual for es1,, we can combine yo1,, and ZM"H

Y;1n since they share the
exact same coefficient. This means that the form of e;q,, for all 7 > 1 will take the exact form
as the equation for esq,. In addition, if we were to write down the equation for eso,, it would
take the exact same form as the equation for esy,, except the coefficients would be swapped
across the two time periods. As a result, eso, = —ea1,. These relationships will allow us to
greatly simplify the least squares problem.

We can simplify the solution for es1, by factoring out the common terms in the numerator

and denominator of each term. Doing so yields

M1
o
eotn — My, + (M, — 1 —ye) 47> (Wiom — v
2 = ST @ )Mo & (11 7)2M D) (M + (M, — 1)) (Y110 — y120) ’Yj:2 (Yjon — Yjin)

Finally we have all the components of the least squares problem strictly as functions of y,

v, and M,. Re-writing the least squares problem in terms of the residuals yields

Mp+1
IIllIl § elln + 612n + E 'Lln + ean)
n=1 7j=2
Using the fact that e12, = —e11n, €j1n = €21, for 7 greater than 3, and ez, = —e21, we can

simplify the above expression to

N
. 2 2
mvln 2 Z (elm + Mnemn)
n=1

Now substituting in for the residuals using the results previously derived yields

My+1
(M, +~(M,, —1))?
mln 2 Z VS (My, + (M = 1)) (Y110 — Y120) + Z (3/j2n - yjln)
4(y? —72+7)M +(147)Mz)? =
M,+1 2
2 n
v< My,
+ M, + (M, — 1 — Yi2n) + o0 — Yy
T2 =@+ )My + (g | Mt 7 = D) = yian) 47 jz; Wion = yjin)
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Notice that the terms inside the squares are exactly the same. We can re-arrange the above

expression by combining like terms.

Myp+1
(M, + (M, — 1))? +~+>M,,
2§ M, M, —1 - > (Yjan — v
mln [ ’}/ — 2—|—’}/)M +(1+7)2M2) ( n+'7( n ))(ylln y12n)+')’ p (y]2n yjln)

Simplifying the leading term leaves us with the following least squares problem,

2
X ((Mn +9(Mp — 1)) (Y110 — Y120) + v ZM"H(ypn - yjm))
Ea 2072 = (2 +7)Mp + (1 +7)2M2)

n=1

Notice that if you set M1, = Ms, = M, in the general version of the least squares problem
you arrive at the above formulation.

QED O
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