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1 Introduction

The output gap is often conceived of as encompassing transitory movements in log real GDP
at business cycle frequencies. Because the Beveridge and Nelson| (1981) (BN) trend-cycle
decomposition defines the trend of a time series as its long-horizon conditional expectation
(minus any deterministic drift) after all forecastable transitory momentum has died out, the
corresponding cycle for log real GDP should provide a sensible estimate of the output gap
so long as it is based on reasonably accurate forecasts over short to medium term horizons
associated with the business cycle. Noting that standard model selection criteria suggest a
low-order autoregressive (AR) model predicts quarterly output growth better at these horizons
than more complicated alternatives, Figure |1| plots the estimate of the U.S. output gap from
the BN decomposition based on an AR(1) model What is immediately apparent about the
estimated output gap is its small amplitude and lack of persistence. Its movements also do not
match up well at all with the reference cycle of U.S. expansions and recessions determined by
the National Bureau of Economic Research (NBER). For comparison, Figure [T also plots an
estimate of the U.S. output gap based on the Congressional Budget Office (CBO) estimate of
potential output. In contrast to the estimate from the BN decomposition, the CBO output gap
has much higher persistence and larger amplitude. Its movements are also strongly procyclical
in terms of the NBER reference cycle. An important reason for these differences is that the
estimate of the autoregressive coefficient for the AR(1) model used in the BN decomposition
implies a very high signal-to-noise ratio in terms of the variance of trend shocks as a fraction
of the overall quarterly forecast error variance for output growth, while the CBO implicitly
assume a much lower signal-to-noise ratio.

Our main contribution in this paper is to show how to conduct the BN decomposition impos-

ing a low signal-to-noise ratio on an AR model, an approach we refer to as the “BN filter”. The

'U.S. real GDP data are from FRED for the sample period of 1947Q1-2016Q2. Output

growth is measured in continuously-compounded terms. Model estimation is based on least
squares regression or, equivalently, conditional maximum likelihood estimation (MLE) under
normality. Throughout the paper, initial lags are backcast using the sample mean growth rate.

Our choice of lag order p=1 is based on the Schwarz Information Criterion (SIC).
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BN filter is easy to implement in comparison to related methods that also seek to address the
conflicting results in Figure|[I] such as Bayesian estimation of an unobserved components (UC)
model with a smoothing prior on the signal-to-noise ratio (e.g., Harvey et al., 2007). Notably,
as shown below, when we apply the BN filter to U.S. log real GDP, the resulting estimate of the
output gap is persistent and has large amplitude, while its movements match up well with the
NBER reference cycle. At the same time, real-time estimates are subject to smaller revisions
and appear to be more accurate in the sense of performing better in out-of-sample forecasts
of output growth and inflation than real-time estimates for other trend-cycle decomposition
methods that also impose a low signal-to-noise ratio, including deterministic detrending using
a quadratic trend, the Hodrick-Prescott (HP) filter, and the bandpass (BP) filter. Thus, our pro-
posed approach directly addresses a key critique by Orphanides and van Norden| (2002) that
popular methods of estimating the output gap are unreliable in real time.

The fact that the BN filter estimates are not heavily revised stems directly from our choice to
work with AR models. In principle, the BN decomposition can be applied using any model that
generates a long-horizon forecast, including multivariate vector autoregressive (VAR) models.
However, because the estimated output gap for a BN decomposition directly reflects the esti-
mated parameters of the model, it is mechanical that any instability in the estimated parameters
in real time will produce estimates of the output gap that are heavily revised. Notably, estimates
of autoregressive coefficients for univariate AR models of output growth are particularly stable
in comparison to parameters for more complicated models such as VAR models. Therefore, a
natural outcome of our modeling choice is output gap estimates that are more reliable in the
sense of being subject to small revisions. Meanwhile, the out-of-sample forecasting results are
suggestive of reliability in the sense of being more accurate than other methods.

Our proposed approach is robust to the omission of multivariate information in the forecast-
ing model and can be adapted to accommodate structural breaks in the long-run growth rate,
thus addressing important issues with trend-cycle decomposition raised by |[Evans and Reichlin
(1994) and Perron and Wada (2009). Meanwhile, because we use the BN decomposition, our
proposed approach explicitly takes account of a random walk stochastic trend in log real GDP

and implicitly allows for correlation between movements in trend and cycle, unlike many popu-
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lar methods that assume trend stationarity or that these movements are orthogonal. See Nelson
and Kang| (1981)), Cogley and Nason (1995), Murray| (2003)), and Phillips and Jin| (2015) on
the problem of “spurious cycles” in the presence of a random walk stochastic trend when using
popular methods of trend-cycle decomposition such as deterministic detrending, the HP filter,
and the BP filter. Meanwhile, see Morley et al.| (2003), Chan and Grant| (forthcoming)), and
Dungey et al.| (forthcoming) on the importance of allowing for correlation between permanent
and transitory movements. Application of the BN filter to data for other countries confirms its
ability to produce intuitive estimates of output gaps and suggests strong Okun’s Law relation-
ships when also considering unemployment gaps.

The rest of this paper is structured as follows. Section 2 presents our proposed approach and
applies it to U.S. log real GDP, formally assessing its revision properties relative to other meth-
ods. Section 3 provides a justification for our approach, in particular why one might choose to
impose a lower signal-to-noise ratio on an AR model than would be implied by sample esti-
mates, and then presents forecast comparisons with other methods. Section 4 suggests how to

account for structural breaks and applies our approach to other data series. Section 5 concludes.

2  Our Approach

2.1 The BN Decomposition and the Signal-to-Noise Ratio

Beveridge and Nelson (1981) define the trend of a time series as its long-horizon conditional
expectation minus any a priori known (i.e., deterministic) future movements in the time series.
In particular, letting {y,} denote a time series process with a trend component that follows a

random walk with constant drift, the BN trend at time ¢, 75, is
TtBN = ]lililo E [y — 7 - E[Ay]]. (D)

The simple intuition behind the BN decomposition is that the long-horizon conditional ex-
pectation of a time series is the same as the long-horizon conditional expectation of the trend

component under the assumption that the conditional expectation of the remaining cyclical
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component goes to zero at long horizons. By removing the deterministic drift, IE [Ay,], the
conditional expectation in (I) remains finite and becomes an optimal (minimum mean squared
error) estimate of the current trend component (see Watson, [1986; Morley et al., 2003).

To implement the BN decomposition, it is typical to specify a stationary forecasting model
for the first differences {Ay;} of the time series. Modeling the first differences in this way
directly allows for a random walk stochastic trend in the level of the time series because forecast
errors for the first differences can be estimated to have permanent effects on the long-horizon
conditional expectation of {y;}.

Based on sample autocorrelation and partial autocorrelation functions for many macroeco-
nomic time series, including the first differences of U.S. quarterly log real GDP, it is natural

when implementing the BN decomposition to consider an AR(p) forecasting model:

p
Ay, =c+ Z jAy—j + e, (2)
j=1
where the forecast error e; ~ #id N (0, US)EI For convenience when defining the signal-to-noise
ratio below, let (L) = 1 — ¢ L — ... — ¢, LP denote the autoregressive lag polynomial, where
L is the lag operator. Then, assuming the roots of ¢(z) = 0 lie outside the unit circle, which
corresponds to { Ay, } being stationary, the unconditional mean p = E [Ay,] = ¢(1) !¢ exists.

Using the state-space approach to calculating the BN decomposition in Morley| (2002), the BN

2A normality assumption is not strictly necessary for the BN decomposition. However,
under normality, least squares regression for an AR model becomes equivalent to conditional
MLE, while the Bayesian shrinkage priors used in our approach, as discussed in the next sub-
section, become conjugate, making posterior calculations straightforward. Also, forecast errors
need not be identically distributed, so long as they form a martingale difference sequence. How-
ever, in terms of possible structural breaks in the forecast error variance, the key assumption
we make is that there are no changes in the signal-to-noise ratio, as defined in this subsection
below, an assumption which is implicitly supported by the relative stability of the estimated

sum of the autoregressive coefficients across possible variance regimes within the sample.
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cycle at time ¢, ¢V, for this model is
N =—[1 0 .- OFI-F)'X, (3)

where X, = (A, AYi—1, ..., AG_p+1)’, with Ay, = Ay, — po denoting the deviation from the

unconditional mean, and F' is the companion matrix for the AR(p) model:

le ¢2 pr
1 0 0
F:
0
1 0

Although an AR(1) forecasting model might seem reasonable for output growth given sam-
ple autocorrelations and partial autocorrelations and is supported by SIC, we have already seen
in Figure [I] that the estimated output gap from a BN decomposition based on an AR(1) model
does not match well at all with widely-held beliefs about transitory movements in economic
activity as reflected, for example, in the CBO output gap. Most noticeably, the estimated output
gap is small in amplitude, suggesting that most of the fluctuations in economic activity have
been driven by trend.

To see why the BN decomposition based on an AR(1) model produces an estimated output
gap with such features, note that from (3) the BN cycle is simply —¢(1 — ¢) ' Ag;. Therefore,
by construction, the estimated output gap will only be as persistent as output growth itself,
which is not very persistent given that ¢ based on MLE is typically between 0.3 and 0.4 for U.S.
quarterly data. Similarly, given that (ﬁ(l — gg)*l ~ (.5, the amplitude of the estimated output
gap will be small, with the implied variance only about one quarter that of output growth itself.
Furthermore, given that —Qg(l — gg)*l < 0, the estimated output gap will increase in recessions
when output growth becomes negative and vice versa in expansions.

More generally, to understand the BN decomposition for an AR(p) model, it is useful to de-
fine the following signal-to-noise ratio for a time series in terms of the variance of trend shocks

as a fraction of the overall forecast error variance: § = 0%./02. Given a Wold representation
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for { Ay},
6 =1(1)?, (4)

where ¥(1) = limj_m% is the “long-run multiplier” corresponding to the sum of the Wold

e
coefficients that captures the permanent effect of a forecast error on the long-horizon condi-
tional expectation of {y,} and relates to the BN trend as follows: AN = 4(1)e,f| For an
AR(p) model, this long-run multiplier has the simple form of 1/(1) = ¢(1)~! and, based on
MLE for an AR(1) model of U.S. quarterly output growth, the signal-to-noise ratio appears to
be quite high with § = 2.22. That is, BN trend shocks are much more volatile than quarter-to-
quarter forecast errors in log real GDP, leading to an estimated output gap with small amplitude
and counterintuitive sign. Notably, however, 4 > 1 holds for all freely estimated AR(p) models
given that gg(l)_1 is always greater than unity regardless of lag order p. Thus, many of the
surprising results for a BN decomposition based on an AR(1) model carry over to higher-order
AR(p) models, although the estimated output gap no longer has to have the same persistence
as output growth and will not be perfectly correlated with Ay, given that, as can be seen from

(3). the BN cycle would depend on a linear combination of current and lagged values of output

growth, rather than just the current value, as is the case with the AR(1) model.

2.2 Imposing a Low Signal-to-Noise Ratio

The insight that the signal-to-noise ratio § is mechanically linked to ¢(1) for an AR(p) model
is important because it implies that we can impose a low signal-to-noise ratio by fixing the sum
of the autoregressive coefficients when estimating an AR(p) model. To do this, we transform

the AR(p) model in (2) into its Dickey-Fuller representation, which we also write in terms of

3An implicit equivalence between the variance of trend shocks, UZT, and the variance of the
changes in the BN trend follows from the equivalence of the spectral density at frequency zero
for { Ay, } based on the reduced-form forecasting model and a more structural representation
that separates out the true permanent and transitory shocks, but implies the same autocovari-

ances as the reduced-form model.
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deviations from the unconditional mean for convenience when implementing our approach:

p—1
Ay = pAgi-1 + Z O A% + e, &)

j=1
where p = ¢1 + 2+ ... + ¢, =1 — ¢(1) and ¢; = —(dj11 + ... + ¢p). Then, noting that
§ = (1 — p)~2 for an AR(p) model, can be estimated imposing a particular signal-to-noise

ratio & by fixing p as follows:

p=1-1/Vs. (©6)

The BN decomposition can then be applied imposing a particular signal-to-noise ratio d by first
solving the restricted estimates of {¢j}§:1 when inverting the Dickey-Fuller transformation
given p and estimates of {¢} ?;i and then calculating the BN cycle as in .

Before discussing estimation of the model in (5)) and how we choose § in practice, it is
helpful to explain why we need to consider a higher-order AR(p) model in order to impose
a low signal-to-noise ratio. In particular, if one were seeking to maximize the amplitude of
the output gap, it turns out an AR(1) model would be a poor choice because the stationarity
restriction |¢| < 1 implies 0 > 0.25, which is to say trend shocks must explain at least 25% of
the quarterly forecast error variance. Higher-order AR(p) models allow lower values of 4 (e.g.,
0 > 0.0625 for an AR(2) model), although a finite-order AR(p) model would never be able to
achieve 0 = 0 given that this limiting case would actually correspond to a non-invertible MA
process with a unit MA root (i.e., {y;} would actually be level or trend stationary, so {Ay;}
would, in effect, be “over-differenced”). Also, as noted above, consideration of a higher-order
AR(p) model allows for different persistence in the output gap and different correlation with
output growth than is possible for an AR(1) model.

Given a higher-order AR(p) model, estimation of (5)) imposing a particular signal-to-noise
ratio is straightforward without the need of complicated nonlinear restrictions or posterior sim-

ulation Conditional MLE entails a single parametric restriction p = p, which can be imposed

It would, of course, also be possible to impose a low signal-to-noise ratio for a more
general ARMA model. However, estimation would be far less straightforward, there would

also be greater tendency to overfit the data given well-known problems of weak identification
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by bringing pAgy, ; to the left-hand-side when conducting least squares regression. However,
even though it is possible to implement our approach using MLE, we opt for Bayesian estima-
tion in practice because it allows us to utilize a shrinkage prior on the higher lags of the AR(p)
model in order to prevent overfitting and to mitigate the challenge of how to specify the exact
lag order beyond being large enough to accommodate small values of . We thus consider a

“Minnesota” shrinkage prior on the second-difference coefficients {¢; }?;i as follows:

05,

@5 ~ N(0, 72

In practice, we consider an AR(12) model, although our results are robust to consideration

2

e’

of higher lag orders given the shrinkage. With the Minnesota prior and conditional on o
the posterior distribution for {¢% ?;i has a closed-form solution and can be easily calculated
without the need for posterior simulation. For simplicity, we condition on the least squares
estimate for o2 using the sample mean for x, which is equivalent to assuming a flat/improper
prior for these parameters[]

All that remains is to choose the particular value of § to impose. We see this choice as
a dogmatic prior based on beliefs about large transitory movements in economic activity as
reflected in, say, the CBO output gap in Figure This dogmatic prior is analogous to the
imposition of a low signal-to-noise ratio by fixing A=1600 when implementing the HP filter for
quarterly data (see |[Harvey and Jaeger (1993))E]

Imposing a dogmatic prior could be as simple as setting § to a particular low value such as,

and near-cancellation of roots, and the corresponding BN decomposition would be less reliable.
STt is still possible to solve the posterior distribution analytically given an informative prior

on o2 by using dummy observations. However, we find different priors on o2 have very little

impact on BN filter estimates, so we use the improper prior for convenience.
®The HP filter can also be interpreted as an approximate high-pass frequency-domain filter

of a stationary process, with the choice of A=1600 for quarterly data isolating movements at
particular frequencies that are often associated with the business cycle. In the online appendix,
we examine the sample periodogram for the estimated output gap to determine what frequencies

are being highlighted and confirm that they correspond to those highlighted by the HP filter.
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for example, § = 0.05, which would correspond to the strict belief that only 5% of the quarterly
forecast error variance for output growth is due to trend shocks. However, we recognize that
any such precise choice might appear somewhat arbitrary in practice. Therefore, we propose
an automatic selection of § based on the following implied amplitude-to-noise ratio: a(d) =
02(0)/c2(8), where, noting the implicit dependence on the signal-to-noise ratio ¢ through p and
{7 }?;i, 02(4) is the variance of the corresponding BN cycle in H and 02(0) is the variance
of the forecast error for the corresponding restricted version of the AR(p) model in E] For

the automatic selection, J is chosen to maximize the signal-to-noise ratio as follows:
§ =inf{d > 0:a/(§) = 0,a"(5) < 0}.

This is still a dogmatic prior in the sense that, even in large samples, § will generally be smaller
than if it were freely estimatedﬂ However, with the use of a local maximizer for values of §
close to zero, the prior is now framed in terms of the amplitude-to-noise ratio being “large”
for a “low” signal-to-noise ratio rather than in terms of the signal-to-noise ratio taking on a

particular low Valueﬂ Meanwhile, as we show below, the shape of the output gap is highly

"The analytical expression for the variance of the BN cycle is given in the online appendix.
However, in practice, when implementing our approach to selecting J, we simply calculate
the sample variance of the estimated output gap. Also, we use the sample variance of the
forecast errors from the restricted model rather than the posterior estimate of o2, which actually

corresponds to the least squares estimate for the unrestricted model given our priors.
$We confirm this with a Monte Carlo simulation in the online appendix, with the downward

bias much larger when the true signal-to-noise ratio is large than when it is small. Note that this
approach of imposing a dogmatic prior to induce a downward bias on the signal-to-noise ratio
is related to, but different than the suggestion in Bewley (2002)) of using Bayesian estimation

to offset biases in least squares estimates of autoregressive parameters.
9We provide a visual perspective on our proposed approach to selecting d in the online

appendix. The visual analysis makes it clear that it is the imposition of a low 9, not the use
of shrinkage priors on the second-difference coefficients, that produces a large amplitude-to-

noise ratio. It also explains why we focus on a local maximizer of the amplitude-to-noise ratio.
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robust to imposing other low values of . Therefore, a researcher with a particular dogmatic
prior about the value of the signal-to-noise ratio could simply impose a low value such as

§ = 0.05 and the estimated output gap would remain similarly intuitive and reliable.

2.3 The BN Filter and the Estimated Output Gap

Reflecting the similar smoothing effect on the implied trend as for the HP filter when imposing a
low signal-to-noise ratio, we refer to our proposed approach as the “BN ﬁlter”m To summarize,

it has three steps:

1. Set a low 5. We employ an automatic selection based on the local maximum of the
implied amplitude-to-noise ratio for values of § closest to zero. This is done by repeating
steps 2 and 3 below for proposed incremental increases in § from an initial increment just

above zero until the estimated amplitude-to-noise ratio 62(8)/62(J) decreases.

2. Given 6, estimate the Dickey-Fuller transformed AR(p) model in (5) imposing p = 1 —
1/ V5. We conduct Bayesian estimation assuming implicit flat/improper priors for . and
o2 and a Minnesota shrinkage prior for {45 ?;}. We set p = 12, but our results are robust

to higher values of p given the shrinkage.

p—1

3. Given p and estimates of {¢}}/_,, solve for restricted estimates of {¢;},_, by inverting

the Dickey-Fuller transformation and then apply the BN decomposition as in (3).

Figure 2| plots the estimated U.S. output gap along with 95% confidence bands for the BN
filter, with § = 0.24 determined by automatic selection based on maximizing the amplitude-to-
noise ratio. A cursory glance at the figure suggests that the BN filter is much more successful

than the traditional BN decomposition based on a freely estimated AR model at producing an

In particular, because of non-monotonicities in the relationships of ¢ with amplitude and fit, a
global maximum does not exist, while the local maximizer for values of 9 close to zero imposes

a low signal-to-noise ratio by construction.
1'We note that a few previous studies have referred to a “Beveridge-Nelson filter”, but always

as an alternative terminology for the traditional BN decomposition, which does not impose a

smoothing effect on the trend.

10
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estimated output gap that is consistent with widely-held beliefs about transitory movements
in economic activity. In particular, the estimated output gap is large in amplitude, persistent,
and moves procyclically with the NBER reference cycle. In contrast to the small and negative
correlation of -0.30 for the BN decomposition based on an AR(1) model and the CBO output
gap that was evident in Figure [I] the correlation of the BN filter output gap with the CBO
output gap is reasonably high at 0.75. Meanwhile, as detailed in the online appendix, the
95% confidence bands are based on inverting a simple z-test that the true output gap, c;, is
equal to a hypothesized value based on the unbiasedness, variance, and assumed normality of
the BN cycle. According to these confidence bands, the estimates are reasonably precise and
significantly different from zero at many points of time, especially during recessionsE]

Before examining the reliability of our approach, we consider the sensitivity of the esti-
mated output gap to varying the signal-to-noise ratio. The top panel of Figure [3] plots the
estimated output gap for 6 € {0.05,0.8} compared to our approach where 6 = 0.24. The shape
of the estimated output gap is little changed, with the persistence profile virtually unaltered.
Indeed, the correlations between the different estimated output gaps varying the signal-to-noise
ratio is always greater than 0.95. Meanwhile, because the estimated output gap is so similar as
we change the signal-to-noise ratio, the revision properties and real time forecast performance
will also be highly robust to § € {0.05, 0.8}, as we show in the online appendix.

Given this apparent robustness to different values of J, we check whether our results are
actually driven by the AR(12) specification rather than imposing a low signal-to-noise ratio.
To do this, we compare the estimated output gap from the BN filter to that produced by the
BN decomposition based on an AR(12) model freely estimated via MLE. The bottom panel

of Figure [3| plots the two output gap estimates and makes it clear that imposing a low signal-

TAII of the methods considered here effectively impose a mean of zero on the estimated
output gap by construction. However, the significantly negative estimates from the BN filter
during recessions are consistent with the findings in Morley and Piger (2012) and |Morley and
Panovska (2017) using weighted averages of model-based trend-cycle decompositions for lin-
ear and nonlinear time series models that the output gap is asymmetric in the sense of being

generally close to zero during expansions, but large and negative during recessions.

11
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to-noise ratio is crucial. For the freely estimated AR(12) model, we obtain 5 = 1.86 and
the correlation between the two estimates is only 0.39. Also, as shown below, the revision
properties and forecast performance are not nearly as good when using the BN decomposition

based on a freely estimated AR(12) model as they are for the BN filter.

2.4 Revision Properties of the BN Filter and Other Methods

Having proposed a BN filter that imposes a low signal-to-noise ratio and applied it to U.S. log
real GDP, we now assess its revision properties. As discussed in the introduction, by working
with an AR model, we seek to address the Orphanides and van Norden| (2002) critique that
popular methods of estimating the output gap are unreliable in real time. Because Orphanides
and van Norden| (2002)) show that most real-time revisions of output gap estimates are due to
the filtering method rather than data revisions for real GDP, we consider “pseudo-real-time”
analysis using the final vintage of data (from 2016Q2) in order to focus on the revision proper-
ties of the filtering method. However, as shown in the online appendix, our results are generally
robust to consideration of data revisions too [

To evaluate the performance of the BN filter, we compare it to several other methods of

trend-cycle decomposition. First, we consider BN decompositions based on various freely

2The only major change in a fully real-time environment with different vintages of data
is that the BN filter clearly outperforms the traditional BN decomposition based on an AR(1)
model, which is the one other method that does comparatively well in the pseudo-real-time
environment. We speculate that the reason for the improved relative performance of the BN
filter when also allowing for data revisions is that its BN cycle is a weighted average of 12
quarters of output growth, while the BN cycle based on an AR(1) model only reflects the current
quarter. To the extent that most data revisions apply most heavily to the current quarter or even
recent quarters, the estimated output gap for the BN decomposition based on an AR(1) model
will be more heavily revised with each data revision. Meanwhile, the size of revisions are, of
course, somewhat larger across the board given data revisions. However, the size of revisions
for the BN filter remain well below even the best results in the fully real-time environment in

Orphanides and van Norden| (2002).

12
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estimated ARMA forecasting models of { Ay, } and Kalman filtering for a UC model of {y; }. In
particular, we consider BN decompositions based on an AR(1) model, an AR(12) model, and an
ARMA(2,2) model, all estimated via MLE. We also consider a multivariate BN decomposition
based on a VAR(4) model of U.S. quarterly output growth and the civilian unemployment rate,
also estimated via MLE. For the UC model, we consider a similar specification to Harvey
(1985) and Clark! (1987) estimated via MLE. The AR(1) model is chosen based on SIC for the
whole set of possible ARMA models. The AR(12) model allows us to understand the effects
of imposing a longer lag order, although we note that standard model selection criteria would
generally lead a researcher to choose a more parsimonious specification in practice. Morley
et al.| (2003)) show that the BN decomposition based on an ARMA(2,2) model is equivalent to
Kalman filter inferences for an unrestricted version of the popular UC model by Watson|(1986).
In particular, the Watson UC model features a random walk with constant drift trend plus an
AR(2) cycle, but, as Morley et al. (2003) show (also see (Chan and Grant, forthcoming)), the
zero restriction on the correlation between movements in trend and cycle can be rejected by
statistical tests, suggesting the BN decomposition based on an unrestricted ARMA(2,2) model
is the appropriate approach when considering UC models that feature a random walk trend with
drift plus an AR(2) cycle. However, for completeness, we also consider the Harvey-Clark UC
model, similar to that considered by Orphanides and van Norden| (2002). The Harvey-Clark
UC model differs from the Watson| (1986]) model in that it also features a random walk drift in
addition to a random walk trend. For this model, we retain the zero restrictions on correlations
between movements in drift, trend, and cycle.

We also consider some popular methods of deterministic detrending and nonparametric
filtering. In particular, we consider a deterministic quadratic trend, the HP filter by [Hodrick
and Prescott (1997), and the BP filter by Baxter and King (1999) and [Christiano and Fitzgerald
(2003). For the HP filter, we impose a smoothing parameter A = 1600, as is standard for
quarterly data. For the BP filter, we target frequencies with periods between 6 and 32 quarters,
as is commonly done in business cycle analysis. It is worth noting that, whatever documented
misgivings about the HP and BP filters (e.g., Cogley and Nason, |1995; Murray, 2003; Phillips

and Jin, |2015), they are relatively easy to implement, including often being available in many
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canned statistical packages, and are widely used in practice. We report results for standard
implementations, although we note that the results are virtually unchanged when padding the
data with AR(4) forecasts to try to address endpoint problems, as done in [Edge and Rudd
(2016), which directly reflects the difficulty of forecasting future output growth.

Figure [] plots the pseudo-real-time and the ex post (i.e., full sample) estimates of the out-
put gap from the BN filter and the various other methodsE] The first result to notice is that
all of the features of the output gap for the BN filter in Figure 2] carry over to the pseudo-real-
time environmentEr] Meanwhile, in contrast to the BN filter, both the AR(1) and ARMA(2,2)
models produce output gap estimates that have little persistence, are small in amplitude, and
do not move procyclically with the NBER reference cycle. Adding more lags impacts the
persistence and sign of the estimated output gap, with the AR(12) model suggesting a more
persistent output gap that moves procyclically with the NBER reference cycle. Even so, the
estimated output gap for the AR(12) model still has relatively low amplitude, consistent with
our earlier observation that AR forecasting models estimated via MLE always imply a rela-
tively high signal-to-noise ratio of 6 > 1 for U.S. data. The BN decomposition for the VAR
model suggests an output gap that is more persistent and larger in amplitude, consistent with
the point made by Evans and Reichlin| (1994) that adding relevant information for forecasting
of output growth mechanically lowers the signal-to-noise ratio. Finally, the estimates for the
other popular methods of trend-cycle decomposition are all reasonably intuitive in the sense of
being persistent, large in amplitude, and generally moving procyclically in terms of the NBER
reference cycle. However, it is notable how different they are from each other and from the

estimates based on the BN filter and the BN decompositions for the AR(12) model and the

3We start the pseudo-real-time analysis with raw data from 1947Q1 to 1968Q1 for U.S. real
GDP and 1948Q1 to 1968Q1 for U.S. civilian unemployment rate and add one observation at
a time until we reach the full sample that ends in 2016Q2. Again, all raw data are taken from
FRED. As with output growth, the unemployment rate is backcast using its pseudo-real-time

sample average to allow the estimation sample to always begin in 1947Q2.
14We re-calculate 0 for each pseudo-real-time sample. Encouragingly, the values that maxi-

mize the amplitude-to-noise ratio are quite stable, fluctuating between 0.21-0.26.
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VAR model. Thus, being “intuitive” is clearly not a sufficient condition for choosing amongst
competing methods. Hence, we also consider reliability, which is why, like Orphanides and van
Norden| (2002), we look at revision properties of the estimates, although we will also examine
other aspects of reliability in the next section.

In terms of the revision properties of the output gap estimates, the main finding in Figures
is that, regardless of the features in terms of persistence, amplitude, and sign, all of the es-
timates for various BN decompositions, including the BN filter, are subject to relatively small
revisions in comparison to the other methods. The key reason why output gap estimates for
the various BN decompositions are hardly revised is because the estimated parameters of the
forecasting models turn out to be relatively stable when additional observations are considered
in real time. Meanwhile, even though the output gap estimates using the BN decomposition
appear relatively stable, the estimates for the more highly parameterized AR(12) and VAR(4)
models are subject to somewhat larger revisions than the simpler AR(1) and ARMA(2,2) mod-
els. This suggests overparameterization and overfitting can compromise the real-time reliability
of the BN decompositionE] This is the main reason we impose a shrinkage prior when con-
sidering the highly parameterized AR(12) model in our proposed approach. In particular, the
shrinkage prior prevents overfitting, while the high lag order still allows for relatively rich dy-

namics. The revision properties of the BN filter estimates, which are more similar to those

5Notably, as shown in the online appendix, the pseudo-real-time estimates for the AR(12)
and VAR(4) models lie outside the ex post 95% confidence bands much more than 5% of the
time, raising serious doubts about their reliability in terms of accuracy. At the same time, even
the ex post estimates are not particularly precise, especially with the BN cycle for the VAR(4)
model, which is significantly different than zero less than 5% of the time. The BN cycle for the
ARMA(2,2) model is more accurate in the sense that the pseudo-real-time estimates lie within
the ex post 95% confidence bands 100% of the time, but the ex post estimates are almost never
statistically different than zero. Meanwhile, the pseudo-real-time estimates for the BN filter
and the AR(1) model appear accurate, with the estimates within the ex post 95% confidence
bands 100% of the time and the ex post estimates are relatively precise with the cycle being

significantly different than zero about 40% and 30% of the time, respectively.
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for the AR(1) model than for the AR(12) model based on MLE suggest that our proposed ap-
proach achieves a reasonable compromise between avoiding potential overfitting and allowing
for richer dynamics. Finally, all of the estimates for the other popular methods in Figure [
are heavily revised and clearly highly unreliable in real time In particular, the deterministic
detrending is extremely sensitive to the sample period, while the HP and BP filters and the
Harvey-Clark estimates all suffer from the endpoint problems of two-sided filters (or smoothed
inferences in the case of the Harvey-Clark model).

While eyeballing Figure [ suggests the BN filter should be relatively appealing from a
reliability perspective, we formally quantify these revision properties by calculating revision
statistics similar to the analysis in Orphanides and van Norden| (2002)), Edge and Rudd| (2016),
and Champagne et al. (2016). First, to quantify the size of the revisions, we consider two
measures, the standard deviation and the root mean square (RMS), with the RMS measure
designed to penalize a bias in revisions more heavily than the standard deviation measure.
Both the standard deviation and RMS measures are normalized by the standard deviation of the
ex post estimate of the output gap for each method to enable a fair comparison given that the
different methods produce estimates with very different amplitudes Second, we calculate the
correlation between the pseudo-real-time estimate of the output gap and the ex post estimate

of the output gap. Third, we compute the frequency with which the pseudo-real-time estimate

16As shown in the online appendix, the pseudo-real-time estimate for the Harvey-Clark UC
model is inaccurate in the sense that it lies outside the 95% confidence bands about 25% of
the time, similar to the BN decomposition for the AR(12) model. Meanwhile, the cycle is
only significantly different than zero about 15% of the time, so it is relatively imprecise. For
deterministic detrending, the pseudo-real-time estimate always lies within what are very wide
95% confidence bands, with the cycle is significantly different than zero less than 5% of the
time. Unlike with the model-based methods, we do not consider confidence bands for the HP

and BP filters.
"Note that these statistics are referred to as “noise-to-signal ratios” by Orphanides and van

Norden| (2002). However, apart from the labelling, they have nothing to do with the signal-to-
noise ratio in our proposed approach. Thus, we use the terms “standard deviation” and “RMS”

of the revisions to avoid confusion.
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of the output gap has the same sign as the ex post estimate. We consider the evaluation sample
of 1970Q1-2012Q4 to match with the starting point for the out-of-sample forecast comparison
discussed in the next section and because the more recent estimates near the end of the full
sample in 2016Q2 may end up becoming more heavily revised in the future.

Figure [5| presents the revision statistics. As was visually apparent in Figure 4] the BN filter
does quite well in terms of size of revisions, with both the standard deviation and RMS statistics
being less than one quarter of a standard deviation of the ex post estimate of the output gap.
The BN decompositions based on freely estimated AR(1) and ARMA(2,2) models also do well
in terms of size of revisions, with the standard deviation and RMS statistics slightly better than
the BN filter for the AR(1) model and somewhat worse for the ARMA(2,2) model. By contrast,
the BN decompositions based on the highly parameterized AR(12) and VAR(4) models do not
do as well, with the standard deviation and RMS statistics about one standard deviation or more
of the ex post estimates. Meanwhile, all of the other popular methods produce revisions that are
well over half of one standard deviation of the ex post estimates, implying very large revisions
in absolute terms given the relatively large amplitude of their output gap estimates. In terms
of correlation of pseudo-real-time estimates with the ex post estimates, the BN decompositions
tend to do well, although the correlation is somewhat lower for the more highly parameterized
AR(12) and VAR(4) models. Notably, the BN filter and BN decomposition based on an AR(1)
model have near perfect correlation between the pseudo-real-time and ex post estimates. The
correlation for other popular methods is generally quite low, with the HP filter performing the
worst. Finally turning our attention to whether the sign of the estimated output gap changes
once one is endowed with future information, we find that, again, the BN decompositions tend
to do well, with the pseudo-real-time estimates for the BN filter and the BN decomposition
based on an AR(1) model performing best and correctly identifying the same sign as the final
estimate about 90% of the time.

To summarize, the BN decomposition appears more reliable in a pseudo-real-time environ-
ment than other popular methods. This is because the consideration of future observations does
not drastically alter the estimates of the forecasting model parameters. Even so, among the

different BN decompositions, model parameter parsimony seems to be important for reliability
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of the estimated output gap. This is not much of a surprise given that models which are highly
parameterized, such as the AR(12) model or the VAR(4) model, will tend to feature larger
changes in parameter estimates. Our proposed approach of imposing a low signal-to-noise ra-
tio on a high-order AR(p) model estimated via Bayesian methods with a shrinkage prior on
second-difference coefficients produces what appears to be a highly reliable pseudo-real-time
estimate of the output gap. Amongst the various methods that implicitly or explicitly impose
a low signal-to-noise ratio, including the HP and BP filters, the BN filter performs by far the
best. At the same time, the BN decomposition based on an AR(1) model also performs very
well in terms of revision properties, perhaps begging the question of why we impose a low

signal-to-noise ratio. We discuss this issue next.

3 Is Our Approach Reasonable?

3.1 Justification for Imposing a Low Signal-to-Noise Ratio

To the extent that one is agnostic about the true signal-to-noise ratio, there is little reason to de-
viate from using the BN decomposition based on an AR(1) model, especially if standard model
selection and revision properties are the main criteria for choosing an approach to estimating
the output gap. We can really only justify using the BN filter if there is a compelling reason
to believe that a low signal-to-noise ratio represents the true state of the world. Yet whether
it actually does so remains unresolved in the empirical literature. Indeed, considerable empir-
ical research has found support for the presence of a volatile stochastic trend in U.S. log real
GDP (e.g., Nelson and Plosser, 1982 Morley et al., 2003), although this view has not gone
unchallenged (e.g., Cochrane, [1994; Perron and Wada, 2009)).

One possible reason to believe the signal-to-noise ratio is lower than that given by a freely
estimated AR model is that { Ay, } may behave much more like an MA process with a near unit
root than a finite-order autoregressive process. In this case, the true signal-to-noise ratio would
be small and the process would have an infinite-order AR representation. However, a finite-
order AR(p) model would fail to capture the infinite-order AR dynamics and the estimated

signal-to-noise ratio for such models could be heavily biased upwards.
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To demonstrate this possibility, we consider two empirically-plausible data generating pro-
cesses (DGPs). In both cases, the observed time series is equal to a random walk trend plus
an AR(2) cycle. Also, in both cases, the first difference of the time series follows the identical
ARMA(2,2) process with a near unit MA root and a signal-to-noise ratio of §=0.50.

For the first DGP, we parameterize the Watson| (1986) UC model of {y,} with uncorrelated
components as estimated for U.S. real GDP by Morley et al. (2003). We choose this unob-
served components process because it corresponds to a low signal-to-noise ratio, unlike the un-
restricted UC model in Morley et al.| (2003) that allows for correlation between permanent and
transitory movements When considering model selection for possible ARMA specifications
for { Ay, } given this DGP in finite samples, SIC picks a low-order AR(p) model with reason-
ably high frequency even though the true model has an ARMA(2,2) specification. Meanwhile,
suppose there is some other observed variable {u,} that is related to the unobserved cycle {¢;},
but contains serially-correlated “measurement error”. Tests for Granger causality will often
suggest that {u;} has predictive power for {Ay,} beyond a low-order univariate AR(p) pro-
cess. Based on this, a researcher might consider a multivariate BN decomposition, as argued
for by (Cochrane (1994)) in such a setting. For this DGP, we consider how well different cases
for the BN decomposition would do in estimating the true cycle {c; }.

The top half of Table [I] reports the results for this first DGP in a finite sample (7'=250)
and in population (7'=500,000). The immediate result to notice is that the BN decomposition
based on an AR(1) model does poorly in estimating the true cycle, both in a finite sample and
in population. The estimated cycle is negatively correlated with the true cycle and its amplitude
(as measured by standard deviation) is only about 20% that of the true cycle. So this is exactly
the example of a true state of the world in which the BN decomposition based on an AR(1)
model would be a bad approach to estimating the output gap even though SIC might select a

low-order AR model in a finite sample. Notably, when 7'=250, we find that SIC chooses a lag

8Morley et al.| (2003)) find that a zero correlation restriction can be rejected at the 5% level
based on a likelihood ratio test. However, small values for the correlation cannot be rejected.
Thus, we argue that this DGP is empirically plausible, if not necessarily probable in a Bayesian

sense.
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order for an AR(p) model of p=1 more than 95% of the time.

The next result to notice is that a multivariate BN decomposition based on a VAR(4) model
of {Ay;} and the true cycle {c;} almost perfectly estimates the true cycle. This is not particu-
larly surprising given the inclusion of the true cycle in the forecasting model, corresponding to
the highly unrealistic scenario in which there exists an observed variable that perfectly captures
economic slack. Of course, if such a variable really did exist, there would be little reason to
estimate the output gap in the first place rather than just monitoring the observed variable. In-
stead, the more realistic scenario is one in which there exists an observed variable that is related
to economic slack but is also affected by persistent idiosyncratic factors (e.g., the unemploy-
ment rate). In order to capture such a scenario, we generate an artificial time series {u;} which
is linked to the true cycle {c;} up to a persistent measurement error. When we estimate the
cycle from a multivariate BN decomposition based on a VAR(4) model of {Ay, } and {w,}, its
correlation with the true cycle drops to around 0.5 and its amplitude is much less than that of
the true cycle. These results hold in both a finite sample and in population{];g]

A natural question is what role does model misspecification play in the results for the BN
decomposition. To consider this, we conduct the BN decomposition based on an ARMA(2,2)
model estimated via MLE. Despite the fact that the model is correctly specified, we can see that
correlation between the estimated cycle and the true cycle is less than one and the amplitude
is less than for the true cycle, even in population. This is similar to what was found in Morley
(2011), where the BN decomposition based on the true model provided an unbiased estimator
of the standard deviation of trend shocks for a UC process, but the estimate of the standard de-
viation of the cycle was downward biased. Indeed, as long as the true cycle is unobserved, there

will generally be a bias in estimating its standard deviation using the BN cycle@] Meanwhile,

YFurthermore, a researcher might not consider a multivariate BN decomposition in the first
place given this DGP and a finite sample. In particular, when 7'=250, we find that a test of no
Granger causality from {u;} to {Ay;} only rejects 30% of the time for a VAR(4) model. It
should be noted, however, that this relatively low power reflects the relative magnitude of the
measurement error in {u;}, as the empirical rejection rate is effectively 100% for a test of no
Granger causality from {¢; } to {Ay;}.

2The BN decomposition based on a VAR(4) model of {Ay,} and the true cyclical compo-
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the finite sample results for the ARMA(2,2) model are much worse than the population results,
with the correlation between the estimated cycle and the true cycle being close to zero. The
relatively poor finite sample performance of the BN decomposition in this case likely reflects
well-known difficulties in estimating ARMA parameters due to weak identification.

Turning to our proposed BN filter, we find that the estimated cycle shares the same relatively
high correlation with the true cycle as the BN decomposition based on an AR(12) model and a
version of the BN decomposition that imposes the true signal-to-noise ratio (which, of course,
is never known in practice). The AR(12) model does reasonably well given that it approximates
the infinite-order AR representation of { Ay, }. However, for this DGP, the BN decomposition
based on the AR(12) model suffers from a larger downward bias in estimating the amplitude
than our proposed approach. Meanwhile, the BN filter does even better in terms of amplitude
than the BN decomposition imposing the true signal-to-noise ratio because it explicitly involves
targeting 0 to maximize amplitude subject to a tradeoff with model fit.

Following Morley| (2011)), we also consider a second DGP for which the BN trend based
on the true model defines the trend rather than just provides an estimate of an unobserved

random walk trend component, as was the case with the first DGP. In particular, we consider

nent {c¢;} does not suffer from a downward bias because the cyclical component is observed
and the true DGP has a (restricted) VAR(2) representation. Also, it is important to emphasize
that a bias in the estimate of the standard deviation of the cycle is not the same as a bias in the
estimate of the cycle. In particular, the BN cycle provides an unbiased estimator of the true
cycle given the correct model specification. It is just that a property of the estimated cycle — in
this case its standard deviation — is different than the property of the true cycle. This is some-
what analogous to least squares residuals providing unbiased estimates of the true regression
errors given the correct model, but the sample variance of the least squares residuals providing
a downwardly biased estimate of the variance of the true errors. In general, it is always possible
for an optimal estimate to have different properties than the object being estimated. An obvious
and relevant example is filtered and smoothed inferences from the Kalman filter and smoother,
which are both optimal subject to different information sets, but which inevitably have different

properties in terms of their variability, as alluded to by their labels.
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a single-source-of-error process (see Anderson et al., 2000) that is parameterized to imply the
same ARMA(2,2) process for { Ay, } as the first DGP. Thus, the same signal-to-noise ratio and
all the same tendencies for SIC to pick a low-order AR model hold for this DGP. The only
difference in a univariate context is a conceptual one about whether forecast errors represent
true trend shocks (i.e., they are the “single source of error” in the process for {y,}) or they are
linear combinations of unobserved trend and cycle shocks, as was the case for the first DGP.
See Morley (2011) for a full discussion of this conceptual distinction.

The bottom half of Table [I| reports the results for the second DGP and they are fairly sim-
ilar to before, except that the BN decomposition generally does a better job estimating the
amplitude of the true cycle. However, there are a few key results to highlight. First, the BN
decomposition based on the ARMA(2,2) model still does poorly in terms of the correlation
with true cycle in finite samples, despite being correctly specified. The point here is that the es-
timation problems for ARMA models remain massive even for sample sizes as large as 7'=250.
Imposing a low signal-to-noise ratio for an AR model appears to be a more effective way to
get close to the true cycle than estimating the true model when estimation involves weak iden-
tification issues. Second, the BN decomposition based on a VAR(4) model of {Ay;} and {u,}
does worse than for the first DGP, suggesting that measurement error in an observed measure
of economic slack offsets the benefits of having a forecast error represent the true trend shock.
Again, imposing a low signal-to-noise ratio appears to be a more straightforward and effective
way to get close to the true cycle than adding multivariate information, even if the multivari-
ate information also decreases the signal-to-noise ratio, as discussed in |[Evans and Reichlin
(1994). Determining the appropriate multivariate information is also a difficult econometric
problem in practice, with finite-sample power issues and, at the same time, considerable dan-

ger of overfitting unless variable selection is handled carefullyE] Meanwhile, even given the

2nterestingly, the finite-sample power of the Granger causality tests for {u;} to {Ay,} and
{c;} to { Ay, } is lower for this DGP than the first one. In particular, when 7'=250, the respective
empirical rejection rates for a VAR(4) model are only 8% and 51% compared to 30% and 100%
for the first DGP. Thus, a researcher who only considered {u;} or {c;} as a possible predictive

variable would be even less likely to consider a multivariate BN decomposition if this DGP
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correct multivariate information, the practical issue of measurement error that effectively mo-
tivates the need to estimate the cyclical component in the first place means that a multivariate
BN decomposition will suffer even in population. Third, although the BN decomposition based
on an AR(12) model estimated via MLE does relatively well, especially for this DGP, we know
from the analysis in the previous section that, like the BN decomposition based on a VAR
model, it is less reliable than our proposed approach.

The bottom line is that it is quite possible to think of a true state of the world in which stan-
dard model selection criteria and hypothesis testing would push a researcher towards an AR(1)
model (based on parsimony), an ARMA(2,2) model (as estimation and testing eventually dis-
covers the true model given enough data), or possibly a VAR model (based Granger causality
tests), but the BN decomposition based on these models would do much worse at capturing the
true cycle than our proposed approach. Although the ARMA(2,2) model is the correct specifi-
cation, the BN decomposition for this model suffers in finite samples due to known estimation
problems for such models. The BN decomposition for the AR(1) model performs poorly in
large samples, as does the VAR(4) model when the multivariate information is measured with
error. Meanwhile, even though the BN decomposition based on an AR(12) model does reason-
ably well, as would a VAR(4) model when the multivariate information is measured accurately,
these versions of the BN decomposition suffer more from reliability issues. By contrast, the BN
filter works relatively well even in finite samples and is more reliable in terms of its revision
properties.

Next, we consider whether the BN filter is also reliable in the sense of minimizing a spurious
cycle that is unrelated to future output growth or other macroeconomic variables. Although
we might worry about model selection criteria and hypothesis testing pushing us to consider
models that lead to poor estimates of the output gap, we should also worry that imposing a low
signal-to-noise ratio might produce a spurious cycle if the true state of the world is more along
the lines of an AR(1) model than the two DGPs considered above. In particular, if the BN filter
produces a large spurious cycle, then our estimated output gap should not perform as well as

the BN decomposition based on a freely estimated AR(1) model in forecasting output growth

represented the true state of the world.
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and inflation out of sample. We check whether this is the case in practice.

3.2 Out-of-Sample Forecast Comparisons

In this subsection, we evaluate different trend-cycle decomposition methods in terms of the
ability of their pseudo-real-time output gap estimates to forecast future U.S. output growth and
inflation. Given the first estimate of an output gap in 1947Q2 and the forecast evaluation sample
starting in 1970Q1, we use an expanding window estimation of a forecasting relationship based
on the available sample for each forecast.

Nelson (2008) argues for using forecasts of future output growth as a way to evaluate com-
peting estimates of the output gap. The underlying intuition is that if output is currently below
trend, this should imply faster output growth at some point in the future as output adjusts back
up to trend. Conversely, if output is currently above trend, one should forecast slower output
growth at some horizon for output to revert back down to trend. In particular, because the true
cycle will cross its unconditional mean of zero at some point, a good estimate of the output gap
should be able to forecast the effects of this reversion to mean. Thus, for an h-period-ahead

output growth forecast, we consider a forecasting equation similar to Nelson| (2008):

Yirh — Yo = a0+ BC + €rny (7

where y is the natural log of real GDP, ¢ is the estimated output gap, € is a forecast error, and
a and [ are coefficients estimated using least squares. For an accurate estimate of the output
gap, we expect § < 0 at some horizon h and the inclusion of the estimated output gap in the
forecast equation to help predict h-period-ahead output growth.

Figure [6] presents the out-of-sample forecasting results, with relative root mean squared
errors (RRMSESs) in comparison to forecasts using the BN filter estimate of the output gap. The
first result to notice is that the output gap estimates constructed using the BN decomposition
do better at all horizons than those based on other methods, including the HP and BP filters.
This further vindicates our choice to work with a BN decomposition. Meanwhile, among the

different BN decompositions, similar to with the revision statistics, parsimony or shrinkage
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priors seem to be key to good performance. In particular, the BN decomposition based on
AR(12), ARMA(2,2), and VAR(4) models do worse than the BN decomposition based on an
AR(1) model or the BN filter. Therefore, the results for forecasting output growth mimic many
of the results we had for the revisions statistics.

Notably, despite imposing a low signal-to-noise ratio, the BN filter appears to avoid pro-
ducing much of a spurious cycle that would diminish the forecasting performance of its output
gap estimate out of sample. It is true that the estimated output gap from the BN decomposi-
tion based on an AR(1) model does slightly better at short horizons. But this could be due to
momentum in output growth initially following a transitory shock. In particular, the BN cycle
for an AR(1) model is proportional to output growth, so its strong forecast performance could
just be capturing positive serial correlation at short horizons rather than an ability to capture
reversion to trend. The RRMSE is close to one and not significant at longer horizons, suggest-
ing that an AR model does no better than the BN filter at longer horizons. So, unlike other
methods that produce intuitive estimates of the output gap by imposing a low signal-to-noise
ratio, our approach does not seem to produce a spurious cycle in the sense of having less of a
link to future output growth at longer horizons than a basic AR(1) modelF_fl

We also consider a Phillips Curve type inflation forecasting equation to evaluate competing
estimates of the output gap. Similar to, amongst others, Stock and Watson| (1999, 2009) and
Clark and McCracken| (2006), we use a fairly standard specification from the inflation fore-
casting literature. In particular, we specify the following autoregressive distributed lag (ADL)

representation for our pseudo-real-time /-period-ahead Phillips Curve inflation forecast:

22Also, supportive of the greater accuracy of the BN filter compared to the other more
heavily-revised methods in particular, we show in the online appendix that the revised estimate
from the BN filter is much more positively correlated with the Chicago Fed’s National Activity
Index based on 85 data series than are any of the other revised estimates. We also show that
the pseudo-real-time estimate from the BN filter is more (typically negatively) correlated with
future revisions in other estimates than other pseudo-real-time estimates are correlated with

future revisions in the estimate from the BN filter.
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p q
Tpn — T =7+ Z 0 Amy_; + Z KiCi—i + €14y (8)

=0 i=0
where 7 is U.S. CPI inﬂation We choose the lag orders of the forecasting equation, namely
p and q above, using SIC. As is commonly done (see, for example, [Stock and Watson, 1999,
2009; (Clark and McCracken, 2006), we apply the information criterion to the entire sample
and run the pseudo-real-time analysis using the same number of lags, implicitly assuming we
know the optimal lag order a priori. The set of lag orders we consider for our ADL forecasting
equation are p € [0,12] and ¢ € [0, 12].

Figure [7] presents the out-of-sample forecasting results for the U.S inflation. As in the case
of forecasting output growth, the BN filter estimate of the output gap does relatively well.
In particular, imposing a low signal-to-noise ratio outperforms all other BN decompositions,
although generally not significantly so. The BN filter also generally does better than the HP
filter, BP filter, and deterministic detrending, although again not significantly so. In contrast to
the results for forecasting output growth, the differences in inflation forecast performance using
the different output gap estimates are fairly small, with most RRMSEs within the 1.00 to 1.05
range, indicating the gains in changing the output gap estimates for forecasting inflation can be
marginal at best and are generally not significant. To an extent, these results are not entirely
surprising. |/Atkeson and Ohanian| (2001) and [Stock and Watson| (2009)) show that real-activity
based Phillips Curve type forecasts may not be particularly useful for forecasting inflation.
In some sense, then, our results are simply a manifestation of what is commonly found in the
inflation forecasting literature. However, we note that our proposed approach is still competitive
and may be slightly better than other methods in terms of providing a good real-time measure
of economic slack as it pertains to inflation. In particular, the BN filter estimate of the output
gap produces statistically significantly better inflation forecasts at some horizons relative to

approaches such as the HP filter and deterministic detrending. It is also noteworthy that none

2The raw monthly data for the U.S. Consumer Price Index (CPI) for all urban consumers
(seasonally adjusted) are again taken from FRED and are converted to the quarterly frequency

for 1947Q1 to 2016Q2 by simple averaging.
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of the alternative methods outperform our proposed approach in a statistically significant WayEf]

4 Extensions

4.1 Accounting for Structural Breaks

The traditional BN decomposition assumes that the trend component of {y, } follows a random
walk with constant drift. One potential concern then is, if there has been a sufficiently large
change in the long-run growth rate, the assumption of constant drift will lead to biased estimates
of the output gap. For example, if there is a large reduction in the long-run growth rate, a
forecasting model that fails to account for it will keep anticipating faster growth than actually
occurs after the break, leading to a persistently negative estimate of the output gap based on the
BN decomposition. More generally, Perron and Wada (2009, 2016) argue that estimates of the
output gap from different methods can be highly sensitive to accounting for structural breaks.
Therefore, we consider the effect of structural breaks on our estimates and propose a simple
way to address their possible presence.

When we test for breaks in the long-run growth rate for U.S. real GDP using|Bai and Perron
(2003) procedures, we find one break in 2006Q1 We therefore adjust the data for the break
in the long-run growth rate in 2006Q1 and apply the BN filter to the adjusted data. If there
were evidence of a structural break in the persistence of U.S. output growth, we would have

considered a break in the imposed signal-to-noise ratio given the link between 6 and ¢(1) for an

2*Furthermore, in our analysis in the online appendix of whether large revisions are useful
for understanding the past, we show that revised estimates are not capturing anything about the
true output gap in terms of a relationship with inflation that was not already captured in pseudo-
real-time estimates. In particular, the inflation forecast comparisons are almost identical using

revised estimates instead of pseudo-real-time estimates.
We use 15% trimming of the sample between potential breaks. One concern is that a

possible break has occurred since the Great Recession, a period which falls within the 15%
trimming window at the end of the sample. However, when we reduce the trimming window to

5% or 10%, we still find evidence of only one break in 2006Q1.
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AR(p) model. However, we find no evidence for a break in persistence and assume a constant
§ for the whole sample.

The estimated output gap allowing for a break in long-run growth in 2006Q1 is shown
in the top panel of Figure |8l Because we capture an apparent slowdown in long-run growth,
the estimated output gap turns positive around 2010 and remains slightly positive from then
on. However, a notable finding is that the estimated output gap prior to the break is virtually
identical to the benchmark results when not allowing for a break.

There are two practical issue to deal with when considering structural breaks. First, it would
clearly be difficult to detect breaks in real time. Our empirical example suggests that one can
date a possible break in 2006Q1, but this is only with hindsight given an addition of 10 extra
years of dataFf] Therefore, allowing for breaks as done above with a Bai and Perron| (2003))
test is ultimately an ex post exercise that requires a long span of data. Second, even though
we can allow for breaks ex post, there can remain a concern that break date estimates are not
particularly robust. For example, when we use data up to 2016Q2, the break date is estimated
at 2006Q1, but using data up to 2016Q1, the break date is estimated at 2000Q2.

To help address these practical concerns, we propose a way to guard against possible struc-
tural breaks in the long-run growth rate in real time, while still being robust to different possible
break dates. In particular, instead of testing for breaks using |Bai and Perron| (2003) procedures
and adjusting the data to their regime specific mean, we propose dynamically demeaning the
data using a backward-looking rolling 40-quarter average growth rate That is, we construct

deviations from mean as follows:

39
5 1
Ay = Ay — 4—0 ; Ayp_i.

26 Andrews| (2003) proposes a generalized test for a structural break that is applicable at the
end of a sample. However, not surprisingly, the test has limited power unless the magnitude of

the break in mean is very large relative to the error variance.
2’One potential issue is what to choose as the appropriate window for estimating a changing

long-run growth rate. We use 40 quarters in order to smooth over the effects of most business

cycle fluctuations on average growth.
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We then apply the BN filter using X; = (Ag, AGi—1, ..., AG_pt1)" in (3) for the dynamically
demeaned data. This procedure loses some precision in the estimate of the mean compared to
knowing the exact break date. However, it is robust to multiple or gradual breaks and it can be
easily applied in real time

In the middle panel of Figure [§] we plot the estimated output gap given dynamic mean
adjustment and compare it to the results when allowing for a break in 2006Q1. As can be seen,
the BN filter with dynamic mean adjustment does quite well at approximating the BN filter
when allowing for a break detected by Bai and Perron| (2003) proceduresFE] Meanwhile, in the
bottom panel of Figure |8, we compare pseudo-real-time and ex post estimates of the output
gap using dynamic mean adjustment. Encouragingly, the pseudo-real-time estimates appear

reasonably reliable in terms of their revision properties.

4.2 Application to Other Data Series

We apply the BN filter to log real GDP and unemployment rate data for the G7, Australia, and
New Zealand in order to estimate both output and unemployment gaps@] Figure @ plots the
estimated gaps, noting the signal-to-noise ratio that maximizes the amplitude-to-noise ratio for
the output gap and an implied Okun’s Law coefficient in terms of the percentage change in the
output gap per percentage point change in the unemployment gap. All of output growth rates,
except for the U.S. data, are adjusted for breaks in the long-run growth rate found by Bai and

Perron (2003) procedures. The negative of the unemployment gap is plotted to enhance the

2For the first 40 quarters of the sample, we use the average growth rate for that 10 year
period. However, after that, the estimate of the mean is completely backward looking, making

it suitable for our pseudo-real-time analysis given our evaluation samples that start in 1970Q1.
PFurthermore, in the online appendix, we show that the BN filter with dynamic mean adjust-

ment is still comparatively reliable in terms of its revision properties and out-of-sample forecast
performance. We also show that dynamic mean adjustment also does quite well at approximat-
ing results when allowing for breaks detected from |Bai and Perron| (2003) procedures for the

non-U.S. G7 countries, Australia, and New Zealand.
The data are sourced from the IMF Outlook and we apply the BN filter to each series

separately.
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visual comparison with the output gap.

For the U.S. data, the estimated unemployment gap is highly (negatively) correlated with
estimated output gap. When we regress the output gap against the unemployment gap, we ob-
tain a coefficient of -1.4, which is slight lower than the consensus estimate of Okun’s Law, but
in agreement with a comparable analysis by [Sinclair| (2009), who estimates output and unem-
ployment gaps with a multivariate UC model. For the other countries, the ¢ that maximizes the
amplitude-to-noise ratio is comparable to § = 0.24 for the U.S. data, but generally a bit smaller,
ranging from as low as 0.08 for New Zealand to 0.21 for Canada. As with the U.S. data, there
is a clear negative relationship between the estimated output and unemployment gaps for the
other countries. The Okun’s Law coefficient ranges from -0.3 for Germany to -2.5 for Italy. In
some cases, such as for Australia, Canada, and the United Kingdom, the negative correlation
between the estimated output and unemployment gaps is visually quite clear, while in other
cases, such as for Italy and Japan, it is less so, perhaps reflecting the varying degrees of labour
market rigidities across countries.

Overall, the main conclusion from these results for other data series is that the BN filter is
able to produce intuitive estimates of output and unemployment gaps in the sense of concor-
dance of movements in the gaps over the business cycle, not just for the United States, but for

other countries as well.

5 Conclusion

We have proposed the application of a restricted BN decomposition that imposes a low signal-
to-noise ratio. In particular, rather than focusing solely on model fit by freely estimating a time
series forecasting model, we develop a “BN filter” that trades off amplitude and model fit by
maximizing the amplitude-to-noise ratio in order to determine a low signal-to-noise ratio that
we impose in Bayesian estimation of a univariate AR model. When applied to postwar U.S.
quarterly log real GDP, the BN filter produces estimates of the output gap that are both intuitive
and reliable, while estimates for other methods are, at best, either intuitive or reliable, but never

both at the same time. Notably, the BN filter retains the relative reliability of the traditional
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BN decomposition based on freely estimated AR models, but the estimated output gap is much
more intuitive in the sense of being large in amplitude, persistent, and moving closely with the
NBER reference cycle. Other methods that produce similarly intuitive estimates of the output
gap are far less reliable in terms of their revision properties.

We consider why it can be useful to impose a low signal-to-noise ratio. In particular, if
the true state of the world is one in which there is an unobserved output gap that is large in
amplitude and persistent, other methods will tend to produce highly misleading estimates of
the output gap in finite samples. By contrast, the BN filter performs relatively well in terms of
correlation with the true output gap. At the same time, despite imposing a low signal-to-noise
ratio, our proposed approach also appears reliable in the sense of not generating a large spurious
cycle when applied to U.S. log real GDP. Specifically, the estimated output gap from the BN
filter forecasts U.S. output growth and inflation essentially as well as the estimated output gap
from the BN decomposition based on a freely estimated AR(1) model and better than for other
methods, especially those that also impose a low signal-to-noise ratio.

Finally, we show how to account for potential structural breaks in long-run growth rates
when implementing our approach and we apply our approach to real GDP and unemployment
rate data for the United States and other countries, producing intuitive estimates of output gaps

that have strong Okun’s Law relationships with estimated unemployment gaps.
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Figure 1: Two contrasting estimates of the U.S. output gap
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Notes: Units are 100 times natural log deviation from trend. The Beveridge-Nelson decompo-
sition estimate of the output gap is based on an AR(1) model of U.S. quarterly output growth
estimated via MLE. The CBO output gap is derived from the natural log of real GDP minus
the natural log of the CBO’s estimate of potential output. Shaded bars correspond to NBER

recession dates.
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Figure 2: Estimated U.S. output gap from the BN filter with 95% confidence bands
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Notes: Units are 100 times natural log deviation from trend. “BN filter” refers to our proposed
approach of estimating the output gap using the BN decomposition based on Bayesian esti-
mation of an AR(12) model of U.S. quarterly output growth with shrinkage priors on second-
difference coefficients and imposing the signal-to-noise ratio that maximizes the amplitude-to-
noise ratio. The solid line is the estimate. Shaded bands around the estimate correspond to a
95% confidence interval from inverting a z-test that the true output gap is equal to a hypoth-
esized value using the standard deviation of the BN cycle. Shaded bars correspond to NBER

recession dates.
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Figure 3: U.S. output gap estimates based on the BN decomposition when varying the signal-

to-noise ratio
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Notes: Units are 100 times natural log deviation from trend. The different lines in the top panel
are for a BN decomposition based on Bayesian estimation of an AR(12) model of U.S. quar-
terly output growth with shrinkage priors on second-difference coefficients imposing different
signal-to-noise ratios. In the bottom panel, “AR(12) MLE” refers to the BN decomposition
based on an AR(12) model estimated via MLE. Shaded bars correspond to NBER recession

dates.
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Figure 4: Pseudo-real-time and ex post U.S. output gap estimates for various methods
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Notes: Units are 100 times natural log deviation from trend. “BN filter” refers to our proposed
approach of estimating the output gap using the BN decomposition based on Bayesian esti-
mation of an AR(12) model of U.S. quarterly output growth with shrinkage priors on second-
difference coefficients and imposing a signal-to-noise ratio that maximizes the amplitude-to-
noise ratio. “AR(1)”, “AR(12)”, and “ARMA(2,2)” refer to BN decompositions based on the
respective models estimated via MLE. “VAR(4)” refers to the BN decomposition based on a
VAR(4) model of output growth and the unemployment rate estimated via MLE. “Determin-

istic” refers to detrending based on least squares regression on a quadratic time trend. “HP”

refers to the [Hodrick and Prescott| (1997) filter. “BP” refers to the bandpass filter of

and Fitzgerald| (2003)). “Harvey-Clark” refers to the UC model as described by (1985)
and (1987)). Shaded bars correspond to NBER recession dates.
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Figure 5: Revision statistics for U.S. output gap estimates
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Notes: See notes for Figure || for descriptions of labels of methods. Standard deviation and root
mean square of revisions to the pseudo-real-time estimate of the output gap are normalized by
the standard deviation of the ex post estimate of the output gap. “Correlation” refers to the
correlation between the pseudo-real-time estimate and the ex post estimate of the output gap.
“Same sign” refers to the proportion of pseudo-real-time estimates that share the same sign as
the ex post estimate of the output gap. The sample period for calculation of revision statistics

is 1970Q1-2012Q4.
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Figure 6: Out-of-sample U.S. output growth forecast comparison relative to the BN filter bench-

mark using pseudo-real-time output gap estimates
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Notes: See notes for Figure [ for descriptions of labels of methods. The graphs plot out-of-
sample RRMSEs compared to forecasts based on the BN filter estimated output gap. Out-

of-sample evaluation begins in 1970Q1. The bands depict 90% confidence intervals from a

two-sided Diebold and Mariano (1995)) test of equal forecast accuracy.
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Figure 7: Out-of-sample U.S. inflation forecast comparison relative to the BN filter benchmark

using pseudo-real-time output gap estimates
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Notes: See notes for Figure [ for descriptions of labels of methods. The graphs plot out-of-
sample RRMSEs compared to forecasts based on the BN filter estimated output gap. Out-

of-sample evaluation begins in 1970Q1. The bands depict 90% confidence intervals from a

two-sided Diebold and Mariano (1995)) test of equal forecast accuracy.
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Figure 8: U.S. output gap estimates from the BN filter when allowing for structural breaks
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Notes: Units are 100 times natural log deviation from trend. The top panel compares the

BN filter estimated output gap in Figure 2] to a BN filter estimated output gap allowing for a

break in long-run growth in 2006Q2 found using the Bai and Perron| (2003)) test. The middle

panel compares the BN filter estimated output gap allowing for a break in long-run growth in
2006Q2 to a BN filter estimated output gap when dynamically demeaning the data relative to
a backward-looking rolling 40 quarter average. The bottom panel compares the ex post and
pseudo-real-time BN filter estimates of the output gap when dynamically demeaning the data.

Shaded bars correspond to NBER recession dates.
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Figure 9: Output and unemployment gap estimates from the BN filter for the G7, Australia,

and New Zealand
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France, § = 0.12, Okun = -0.9 4 Germany, § = 0.17, Okun = -0.3 4 Italy, 4 =0.13, Okun = -2.5
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Notes: Units are 100 times natural log deviation from trend. The estimated output gap is from
the BN filter and 0 is the corresponding signal-to-noise ratio that maximizes the amplitude-to-
noise ratio. The estimated unemployment gap is from the BN filter and “Okun” refers to the
implied Okun’s law coefficient in terms of the percentage point change in the output gap per
percentage point change in the unemployment gap. Shaded bars correspond to NBER recession

dates.
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Table 1: Monte Carlo simulations

T =250 T = 500,000

Correlation ~ Amplitude Correlation ~ Amplitude

DGP 1 — an unobserved components process

True Cycle 2.47 2.53
AR(1) -0.12 0.51 -0.12 0.50
VAR [ Ay, ¢ 0.99 2.48 1.00 2.54
VAR [ Ay, uy] 0.48 1.71 0.49 1.73
ARMA(2,2) 0.16 1.15 0.66 1.66
BN filter[§ = J] 0.49 1.27 0.59 1.97
BN filter[0 = 0.50] 0.51 0.96 0.59 1.44
AR(12) 0.56 1.01 0.59 0.96
DGP 2 — a single source of error process
True Cycle 1.62 1.66
AR(1) -0.17 0.51 -0.18 0.50
VAR [ Ay, 4 0.98 1.68 1.00 1.65
VAR [ Ay, uy] 0.26 1.11 0.34 0.90
ARMA(2,2) 0.19 1.16 1.00 1.63
BN filter[§ = J] 0.73 1.27 0.89 1.96
BN filter[§ = 0.50] 0.76 0.96 0.90 1.43
AR(12) 0.82 1.02 0.89 0.97

Notes: For both DGPs, iy, = 72 + ¢, 7 = 0.81 + 741 + ¢, uy = —0.5¢ + vy, vy = 0.9v,_1 + (;,
where 7; ~ #dN(0,0.69?) and ¢; ~ #dN(0,1). For DGP 1, ¢; = 1.53¢;_1 — 0.61c;_5 + €,
where ¢, ~ iidN(0,0.62%) and 7;, ¢, and (; are mutually uncorrelated. For DGP 2,
¢ = 1.53¢;_1 — 0.61¢;_o + 0.42n, — 0.18n,_1, where 7, and (; are mutually uncorrelated.
0 = 0.50 is the true value for both DGPs. “Correlation” refers to correlation between the true
cycle and the estimated cycle. “Amplitude” is in terms of the standard deviation of percent
deviation from trend. All estimated cycles are derived from BN decompositions for the

respective models.

44



	Introduction
	Our Approach
	The BN Decomposition and the Signal-to-Noise Ratio
	Imposing a Low Signal-to-Noise Ratio
	The BN Filter and the Estimated Output Gap
	Revision Properties of the BN Filter and Other Methods

	Is Our Approach Reasonable?
	Justification for Imposing a Low Signal-to-Noise Ratio
	Out-of-Sample Forecast Comparisons

	Extensions
	Accounting for Structural Breaks
	Application to Other Data Series

	Conclusion

