James Morley’s Website                                                                                                                                 

Economics 5161

Applied Econometrics (Macro)

Spring 2010


Instructor: James Morley

Office: Seigle Hall 383

Office Hours: TTh 1:30-2:30

Email: morley@wustl.edu



Course Description


Introduction to econometrics as it is applied in microeconomics and macroeconomics (modular). Emphasis is on hands-on implementation of the models covered in the course. Topics related to the analysis of microeconomic data include cross-section and panel data linear models and robust inference; instrumental variables estimation; simultaneous equation models; models for discrete choice; and truncation, censoring and sample selection models. Topics related to the analysis of macroeconomic data include linear time series models; practical issues with likelihood-based inference; forecasting; structural identification based on timing restrictions; and computational methods for hypothesis testing.



Grading


The course has two modules. Your course grade is based on an average of your grade in each module.


Microeconomics Module50%

Macroeconomics Module      50%


You will be assigned numerical scores on your homework assignments and take-home exams. Your scores will be converted to an overall percentage grade. The letter grade for the course will be determined by converting your percentage score according to the following letter grade distribution:


     A+   95-100%        B+   80-84%C+   67-69%D+   57-59%F      0-49%

     A     90-94%B     75-79%C     63-66% D     53-56%

     A-    85-89%B-    70-74%C-    60-62% D-    50-52%



Requirements


There will be weekly homework assignments and a take-home exam at the end of the module. The weights in determining the grade for the macroeconomics module are given as follows:


     Homework Assignments      40%

     Take-Home Exam                      60%



Readings


The required readings for the macroeconomics portion of the course will be collected in a reading package that will be available for purchase from the main office of the Economics Department. The readings (listed under topics below) include journal articles and chapters from the following textbooks:


Introduction to Econometrics, by James Stock and Mark Watson, 2003.


Econometric Theory and Methods, by Russell Davidson and James G. MacKinnon, Oxford University Press, 2004.


Time Series Analysis, by James D. Hamilton, Princeton University Press, 1994.


Bayesian Econometrics, by Gary Koop, Wiley & Sons, 2003


Introduction to Bayesian Econometrics, by Edward Greenberg, Cambridge University Press, 2007.



Topics


1. Time Series

Macroeconomic Data

Serial Correlation

Trends and Breaks

Methodology

(Readings: Stock and Watson, Ch. 12; Hansen, 2001; Hoover, 2001; Sims, 1996)


2. Models

•ARMA Processes

•Seasonality

•ARCH

•VARs

(Readings: Stock and Watson, Ch. 12; Davidson and MacKinnon, Ch. 13)


3. Inferences

•Classical

MLE

Numerical Optimization

Hypothesis Tests and Confidence Intervals

Bootstrap Methods

•Bayesian

Priors and Posteriors

Model Comparison

Posterior Simulation

(Readings: Hamilton, Ch. 5; MacKinnon, 2006; Koop, Chs. 1-2; Greenberg, Ch. 7)


4. Forecasting

•Loss Functions

•Forecast Evaluation

(Readings: Hamilton, Ch. 4; Elliott and Timmermann, 2004; Diebold and Mariano, 1995)


5. Structural Analysis

•Granger Causality

•Cointegration

•Impulse Response Functions

•Timing Restrictions

•Identification through Heteroskedasticity*

(Readings: Diebold, 1998; Granger, 2004; Stock and Watson, 14.4, 2001; Hamilton, 11.6; Blanchard and Quah, 1989; Gravelle, Kichian, and Morley, 2006)


*time permitting

Syllabus