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Abstract—The business cycle is a fundamental yet elusive concept in
macroeconomics. In this paper, we consider the problem of measuring the
business cycle. First, we argue for the output-gap view that the business
cycle corresponds to transitory deviations in economic activity away from
a permanent, or trend, level. Then we investigate the extent to which a
general model-based approach to estimating trend and cycle for the U.S.
economy leads to measures of the business cycle that reflect models ver-
sus the data. We find empirical support for a nonlinear time series model
that produces a business cycle measure with an asymmetric shape across
NBER expansion and recession phases. Specifically, this business cycle
measure suggests that recessions are periods of relatively large and nega-
tive transitory fluctuations in output. However, several close competitors
to the nonlinear model produce business cycle measures of widely differ-
ing shapes and magnitudes. Given this model-based uncertainty, we con-
struct a model-averaged measure of the business cycle. This measure also
displays an asymmetric shape and is closely related to other measures of
economic slack such as the unemployment rate and capacity utilization.

I. Introduction

HE business cycle is a broad term that connotes the
inherent fluctuations in economic activity. Research on
the measurement of business cycles has a long tradition in
macroeconomics, with an early example provided by Wesley
Mitchell (1927), founder of the National Bureau of Eco-
nomic Research (NBER). An integral part of business cycle
measurement is its definition. Mitchell and the NBER
defined the business cycle in terms of the alternation between
periods of expansion and recession in the level of economic
activity (which can be denoted the alternating-phases defini-
tion). One popular alternative definition is that the business
cycle represents transitory fluctuations in economic activity
away from a permanent, or “trend,” level (which can be
denoted the output-gap definition). This definition is asso-
ciated with work on the U.S. business cycle by Beveridge
and Nelson (1981), who propose an approach to measuring
the business cycle based on long-horizon forecasts.
In this paper, we revisit the problem of measuring the
business cycle. We begin by arguing for the output-gap
notion of the business cycle as transitory fluctuations in
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economic activity. We then discuss how to conduct trend
and cycle decomposition based on long-horizon forecasts
for linear and nonlinear time series models, including how
to implement an approach developed in Morley and Piger
(2008) for empirically relevant regime-switching processes.

When we apply model-based trend and cycle decomposi-
tion to U.S. real GDP, we find that the estimated business
cycle is highly dependent on model specification, with the
key distinction being between linear models that imply
symmetric fluctuations around trend and nonlinear regime-
switching models that imply asymmetric deviations away
from trend. In order to discriminate among the different
measures of the business cycle, we use information criteria
to evaluate the models and, in certain key cases, carry out
formal hypothesis tests. The empirical results support a par-
ticular class of nonlinear regime-switching models and an
asymmetric business cycle. However, the results also reveal
several close competitors to the preferred nonlinear model
that produce business cycle measures of widely differing
shapes and magnitudes. This implies significant model-
based uncertainty regarding the appropriate business cycle
measure.

Given this uncertainty, we proceed to construct a model-
averaged measure of the business cycle. In doing so, we are
motivated by the principle of forecast combination, which
is the idea that a combined forecast can be superior to all of
the individual forecasts that go into its construction. For the
weights used in combining model-based business cycle
measures, we construct an approximation to Bayesian pos-
terior model probabilities based on the Schwarz information
criterion. The resulting model-averaged business cycle
measure displays an asymmetric shape across NBER-dated
recession and expansion phases. In particular, the business
cycle measure has relatively small amplitude during mature
expansions and substantial variation during and immedi-
ately following recessions.

The results for the model-averaged business cycle mea-
sure suggest a strong link between the output-gap notion of
the business cycle and the NBER’s alternating-phases
notion. Specifically, NBER recessions are periods of signifi-
cant transitory variation in output, while output in NBER
expansions is dominated by movements in trend. This has
potential relevance as a stylized fact to guide theoretical
models of the business cycle. Beyond this link, we also find
that the model-averaged business cycle measure is closely
related to other measures of macroeconomic slack such as
the unemployment rate and capacity utilization, even
though the cycle is estimated by univariate analysis of real
GDP. Taking these results together, we argue that the
model-averaged business cycle measure captures a mean-
ingful macroeconomic phenomenon and sheds more light
on the nature of fluctuations in aggregate economic activity
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than simply looking at the level or growth rates of real
GDP.

The rest of this paper is organized as follows. Section II
discusses different possible definitions of the business
cycle, focusing on the output-gap view taken in this paper.
Section III presents details on the model-based trend and
cycle decomposition methods employed in our analysis,
including the approach developed in Morley and Piger
(2008). Section IV lays out the competing time series mod-
els of postwar U.S. real GDP, presents the implied business
cycle measure for each model, and discriminates among
these measures using model comparison based on informa-
tion criteria. Section V reports hypothesis test results for a
leading linear model against key nonlinear alternatives.
Section VI presents the model-averaged measure of the
business cycle and compares it to other measures of eco-
nomic slack. Section VII concludes.

II. Definitions of the Business Cycle

In macroeconomics, fluctuations in economic activity are
typically classified into three categories: long-run growth,
the business cycle, and seasonal patterns. These different
types of fluctuations may in fact be related to each other,
but it can be useful to make some distinction among them.
In this paper, we follow standard practice by considering
seasonally adjusted data. This implicitly treats the seasonal
patterns as independent or, at least, not marginally relevant
for making inferences about long-run growth or business
cycles, although we note the existence of an interesting lit-
erature on the influence of seasonal fluctuations on business
cycles (see, for example, Wen, 2002).

So what is the business cycle as distinct from long-run
growth? One notion put forth by the NBER is that the busi-
ness cycle corresponds to an alternation between persistent
phases of expansion and recession in economic activity that
occur despite the positive average growth of economic
activity in most industrialized countries. We refer to this
notion of the business cycle as the alternating-phases defini-
tion." One problem with this notion is that it is far from uni-
versal. Some countries have experienced many consecutive
years of positive growth in the level of economic activity
and thus have no business cycles in the strict NBER sense
(for example, Japan in the early postwar period).

A more general notion of the business cycle is that it cor-
responds to all short-run fluctuations in economic activity
(again, beyond seasonal movements), without a distinction
made between whether they correspond to an increase or
outright decline in activity. The problem with this definition
is that it merely labels the analysis of higher-frequency var-
iation in economic activity as “business cycle analysis,”
without saying whether there is anything meaningful about

! Harding and Pagan (2005) also consider definitions of the business
cycle that are closely related to those discussed here, albeit with some-
what different terminology.
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the business cycle as a macroeconomic phenomenon. For
example, this notion begs the question of why any attention
is paid to whether the NBER deems there to be a recession.

A third notion of the business cycle is that it represents
the transitory fluctuations of the economy away from a
long-run, or trend, level. In this paper, we argue that this
output-gap definition provides the most useful notion of the
business cycle.” It implies a construct—the transitory com-
ponent of real economic activity—that can be measured for
any economy and is potentially useful for forecasting, pol-
icymaking, and theory. We emphasize that nothing about
this notion of the business cycle implies it is independent of
long-run growth. Transitory fluctuations could be due to the
same factors that drive long-run growth or due to indepen-
dent factors. It is ultimately an empirical question as to how
important these different underlying factors are. However,
the key point is that the business cycle as the transitory
component of economic activity is potentially an important
macroeconomic phenomenon in its own right.

Before discussing methods of measuring the transitory
component of economic activity in the next section, it is
worth providing a more formal discussion of the output-gap
view taken in this paper. First, following much of the litera-
ture, we use natural logarithms of U.S. quarterly real GDP,
denoted y,, as a measure of overall economic activity. We
acknowledge that this measure has its limitations and does
not always match up with the NBER’s implicit measure of
economic activity, but it does a reasonably good job on this
front (see, for example, Harding & Pagan, 2002, and the
subsequent literature on business cycle dating with real
GDP). Then, given y,, the output-gap definition of the busi-
ness cycle corresponds to the idea that economic activity
can be meaningfully decomposed into a trend and a cycle
as follows:

Ve =T+ ¢4y (1)

=T+t nt*, (2)

Cr= Z \I’j(’)t*l’ (3)
J=0

2 It is possible to make a further distinction between transitory move-
ments at different frequencies. This is the approach taken when a spectral
filter is applied to a time series with the goal of isolating fluctuations at,
say, the one- to five-year horizon. However, it is important to note that
these spectral filters are based on the assumption that the time series being
analyzed follows a stationary process. When applied to integrated pro-
cesses, part of the filter (a differencing operator) is used up transforming
the series to something that could be thought of as stationary, leaving the
rest of the filter to amplify fluctuations in the transformed series at differ-
ent frequencies than originally intended (see Cogley & Nason, 1995, and
Murray, 2003, on this point). While we acknowledge that the isolation of
transitory movements at different frequencies is an interesting issue in
business cycle analysis, we consider the initial isolation of transitory
movements for measures of real economic activity as the more important
and challenging task for macroeconomists given the basic premise that
not all fluctuations are transitory.
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where yp = 1, n/* = p + 1, and o = ® + o, with n, and
o, following martingale difference sequences. The trend, t,,
is the permanent component of y, in the sense that the
effects of the realized trend innovations, 1}, on the level of
the time series are not expected to be reversed. By contrast,
the cycle, c,, is the transitory component of y, in the sense
that the Wold coefficients, \s;, are assumed to be absolutely
summable such that the realized cycle innovations, ®*,
have finite memory. The parameter p allows nonzero drift
in the trend, while the parameter ® allows a nonzero mean
in the cycle, although the mean of the cycle is not identified
from the behavior of the time series alone, as different
values for ® all imply the same reduced-form dynamics for
Ay,, with the standard identification assumption being that
®=0.

Whether the permanent and transitory components in
equation (1) are meaningful macroeconomic phenomena is
ultimately an empirical question, although it is clear that
the trend should embody the steady-state effects of the fac-
tors that drive long-run growth in economic activity.? Such
factors might also have transitory effects, so we do not
assume the permanent and transitory shocks are uncorre-
lated (see Morley, Nelson, & Zivot, 2003, on this point).
Meanwhile, the business cycle may be related to other
macroeconomic phenomena such as inflation. However, to
allow empirical tests of such relationships, we do not
assume them a priori.

In this paper, we consider the setting where some of the
parameters describing the process in equations (1) to (3) are
regime switching, as discussed in Morley and Piger (2008),
and where some of the parameters undergo structural
breaks. In addition to finite-order unobserved-components
(UC) models of the process in equations (1) to (3), we also
consider processes for which there is no finite-order autore-
gressive moving-average (ARMA) representation of the
Wold form in equation (3). Specifically, we conduct trend
and cycle decomposition based on reduced-form forecasting
models that capture the autocovariance structure for a gen-
eral process as in equations (1) to (3), regardless of whether
the process has a finite-order UC representation. Given a
forecasting model that captures the autocovariance structure
of a process as in equations (1) to (3), the methods we
employ provide optimal estimates (in a minimum mean-
squared-error sense) of trend and cycle.

III. Trend/Cycle Decomposition Based on Time Series
Models

A. The Beveridge-Nelson Decomposition

There are many different approaches to trend and cycle
decomposition. In terms of the output-gap definition of the

3 To be clear with our terminology, by “steady state” we have in mind
the level to which the process would gravitate in the absence of future
permanent or transitory innovations.
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business cycle as transitory deviations away from trend, a
particularly useful and general approach is the Beveridge-
Nelson (BN) decomposition. The BN measure of trend is

& = Jim {EY [yl —j - EAv]}, (4)
where EM[] is the expectations operator with respect to a
forecasting model and €, is the set of relevant and available
information observed up to time ¢. In words, the BN trend is
the long-horizon conditional forecast of the time series
minus any deterministic drift. The intuition for the BN mea-
sure of trend is that as the forecasting horizon extends to
infinity, a long-horizon forecast of a time series should no
longer be influenced by the transitory component that exists
at time #, and therefore should reflect only the trend compo-
nent.

Both the conditional and unconditional expectations in
equation (4) are usually straightforward to calculate (either
analytically or by simulation) given a forecasting model.
Morley (2002) and Clarida and Taylor (2003) provide dis-
cussion and examples, while appendix A provides the rele-
vant formulas for the class of forecasting models to which
we apply the BN decomposition in the next section. Mean-
while, the BN trend provides an optimal estimate of the
underlying trend of an integrated process in the following
circumstances. First, the time series under analysis con-
forms to the trend and cycle process in equations (1) to (3),
with constant drift, pi, constant Wold coefficients, \s;, and
the mean of the cycle innovations equal to 0, ® = 0. Sec-
ond, the forecasting model captures the autocovariance
structure of the process such that E [y, ;|Q;,] = E[y.,|Q].

This second requirement highlights the fact that accurate
measurement of the business cycle requires an accurate
forecasting model. This is important because it justifies our
choice not to limit our consideration only to finite-order UC
models in order to capture the process in equations (1) to
(3). Such models represent a mere subset of all possible
time series models and can place binding restrictions on the
autocovariance structure of a given time series process. By
considering a broader set of models, we aim to get
EM [Vr4,1€2] as close as possible to E[y,1€2,].

B. Regime-Dependent Steady-State Approach

As shown in Morley and Piger (2008), the BN trend does
not generally provide an optimal or even unbiased estimate
of trend when the process in equations (1) to (3) has
regime-switching parameters, even if the forecasting model
is correctly specified such that £V /1] = Ely. Q1. As
an alternative, we consider the regime-dependent steady-
state (RDSS) approach from Morley and Piger (2008) that
generalizes the BN decomposition to provide optimal
estimates when the underlying trend or cycle is regime
switching.

The RDSS approach involves constructing long-horizon
forecasts conditional on sequences of regimes and then
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marginalizing over the distribution of the unknown regimes.
Specifically, the RDSS measure of trend is

S = 3 (S (50 ®)
S

055(5) = tim { B [y [{810s = 'Yt 5, 9]

J=0

(6)
—j- B Ay (s, = 1Y,
where 5‘, ={S;, .., S,,m}' is a vector of relevant current and
past regimes for forecasting a time series, p™(-) is the prob-
ability distribution with respect to the forecasting model, S,
is an unobserved Markov state variable that takes on N dis-
crete values according to a fixed transition matrix, and i* is
the “normal” regime in which the mean of the transitory
component is assumed to be 0. The choice of “normal”
regime i* is necessary for identification. However, unlike
the BN decomposition, there is no implicit assumption that
the cycle is unconditionally mean 0. Meanwhile, for a given
forecasting model, the probability weights in equation (5),
PM(S:/€), can be obtained from the filter given in Hamilton
(1989). Appendix A provides the relevant formulas for con-
structing the expectations in equation (6) for the regime-
switching models considered in this paper.

As long as EM 1] = Ely,.1Q,], the RDSS approach
will provide an optimal estimate of trend when the process
in equations (1) to (3) has regime-switching parameters (see
Morley & Piger, 2008, for full details of the RDSS
approach). Meanwhile, the RDSS approach is general in the
sense that it simplifies to the BN decomposition in the
absence of regime switching.

C. UC Models

A direct way to conduct trend and cycle decomposition is
to consider a finite-order parametric specification for the
Wold form of the transitory component in equation (3). For
example, a standard assumption is a finite-order stationary
AR process,

d(L)e, = 0], 3)
where ¢(L) denotes a lag polynomial with roots outside the
unit circle and, again, the standard identification assumption
for the mean of the cycle is that ® = 0. Assuming that the
shocks to the trend and the cycle in equations (2) and (3')
are Gaussian (1, ;) ~ N(0, X)), the Kalman filter can
be employed to make optimal inferences about the trend
and cycle. As Morley et al. (2003) discussed, the inferences
based on the Kalman filter will be the same as those based
on the BN decomposition given equivalent models of the
autocovariance structure of a time series.

It is possible to extend linear UC models to allow for
regime-switching parameters. For example, Lam (1990)
considers the case where the drift parameter is regime
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switching (L = (S, in equation [2]). Kim and Nelson
(1999a) consider the case where the mean of the innovations
to the cycle is regime switching—® = ®(S,) in equation
(3"). As with the RDSS approach, it is necessary for identifi-
cation to assume a “normal” regime i* in which the cycle is
mean 0. Meanwhile, the Kalman filter is no longer available
for regime-switching UC models, but estimates of trend and
cycle can still be obtained by using a Bayesian posterior
simulator such as the Gibbs sampler or Kim’s (1994) analyti-
cal approximation to the optimal filter. Finally, it is worth
noting that the RDSS approach and inference based on opti-
mal filtering will be the same given equivalent models of the
autocovariance structure of the time series, while the BN
decomposition in general will be different and not optimal.

IV. Model-Based Measures of the U.S. Business Cycle

A. Models of U.S. Real GDP

To keep the scope of our analysis manageable, we con-
sider only univariate models of postwar U.S. real GDP. We
justify this focus on univariate models in part because trend
and cycle decomposition is usually considered as a prior
step to cross-series analysis. For example, researchers are
often interested in whether and how trend and cycle compo-
nents of one time series are related to the trend and cycle
components of many other series. As a general method,
then, it is particularly useful if trend and cycle decomposi-
tion can be applied first at a univariate level and then the
resulting measures of trend and cycle considered in differ-
ent multivariate settings. For instance, this is the approach
taken in studies that use the Hodrick-Prescott filter or a
bandpass filter and could help explain their popularity.
Meanwhile, it should be noted that the univariate models
considered here capture a wide range of possibilities about
the predictability of postwar U.S. real GDP.

In terms of linear models, we consider AR models for the
first differences of y,:

O(L)(Ay; — ) = e, (7)

where ¢(L) is pth order with p set to certain values ranging
from O to 12. We consider versions of the AR models with
Gaussian errors (e, ~ N(O, Gg)) or Student ¢ errors (e, ~ t(v,
0, Gf)). Beyond the AR models, we also consider three UC
models. The first model (UC-HP) is due to Harvey and Jaeger
(1993) and corresponds to the Hodrick-Prescott filter with a
smoothing parameter of 1,600.* The second model (UC-0)
has a standard UC specification as in equations (1), (2),
and (3'), with an independent AR(2) cycle (n, ~ N(O, G%),
o, ~ N(O, Gé), and E[n;, ®;] = 0). The third model (UC-UR)

4 Harvey and Jaeger’s (1993) UC model assumes a random walk with
drift for the permanent component, where the drift itself follows a random
walk, plus noise for the transitory component (an AR(0) cycle). The var-
iance of the shock to the permanent component is assumed to be 0, while
the variance of the shock to the drift is assumed to be 1/1600 times as
large as the variance of the noise, which is freely estimated.
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has the same structure as the second model except that, fol-
lowing Morley et al. (2003), it allows correlation between
permanent and transitory movements by assuming a general
variance-covariance matrix X, for the shocks. Because the
Kalman filter assumes Gaussian shocks, we do not consider
Student ¢ errors for the UC models.

In terms of nonlinear models, we consider Hamilton’s
(1989) Markov-switching model and different versions of
Kim et al’s. (2005) “bounceback model.” If the Hamilton
model can be said to correspond to L-shaped recessions,
with the economy growing from a permanently lower level
following the end of a recession, the bounceback models
allow a postrecession recovery phase (see Sichel, 1994),
with the three cases of U-shaped recessions, V-shaped reces-
sions, and recoveries that are proportional to the “depth” of
the preceding recession. Each of these nonlinear models can
be expressed as an AR model with a regime-switching mean
that potentially depends on the current and m lagged states:

O(L)(Ayr — 1) = e, (8)

ut = M(Sh "'7Sl*m)7 (9)

where S, = {0,1} is a Markov state variable with fixed con-
tinuation probabilities Pr[S, = OIS,_; = 0] = pgyp and Pr[S, =
0IS,_; = 0] = py;. The Hamilton and bounceback models
differ by their specifications for the time-varying mean:

o Hamilton (H):

K, = Yo + V1S (10)

« U-shaped recessions (BBU):

m
B = Yo + V1S + %Z Y181
=1

« V-shaped recessions (BBV):

o=Yo+ 7S+ (1= S)R DY 7,8y (12)
j=1

« Recovery based on depth (BBD):

K="+ V1S + KZ (Yl + Ayt,j)St,j (13)

j=1

where the state S, = 1 is labeled as the low-growth regime
by assuming y; < 0. Following Kim et al. (2005), we
assume m = 6 for the bounceback models, which allows
recoveries to persist for up to six quarters following the end
of a recession. Again, for these nonlinear AR models, we
consider cases of both Gaussian errors and Student 7 errors.
In terms of nonlinear UC models, we consider Kim and
Nelson’s (1999a) version of Milton Friedman’s “plucking”
model (UC-FP-0) and a version due to Sinclair (2009) that
allows correlation between permanent and transitory shocks
(UC-FP-UR). These models augment the linear UC-0 and
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UC-UR models described earlier by allowing a regime-
switching mean of the cyclical component in equation (3'),

o =15, (14)
where S, is defined as before for the nonlinear AR models
and the state S; = 1 is labeled by assuming t© < 0. As in the
linear case, we consider Gaussian shocks only for the non-
linear UC models.

While there are many other nonlinear models, these
cover the range of possibilities in terms of whether reces-
sions are permanent or transitory. The Hamilton model
assumes the effects of regime switches into recessions are
completely permanent, the plucking model assumes they
are completely transitory, and the bounceback models allow
both possibilities and everything in between.

For both linear and nonlinear time series models of post-
war U.S. real GDP, a vast literature documents evidence of
structural breaks. In particular, the evidence for a structural
break in volatility sometime during 1984 (the so-called
Great Moderation) is as close to incontrovertible as it gets in
time series analysis of macroeconomic data, and several stu-
dies have pointed out the importance of accounting for this
volatility change when estimating regime-switching models
(Kim and Nelson, 1999b; McConnell & Perez-Quiros,
2000). Although less overwhelming than the evidence for
the Great Moderation, there is some evidence for a reduction
in mean growth rates in the early 1970s (the so-called pro-
ductivity slowdown) that has been considered in a number
of studies (Perron, 1989; Bai, Lumsdaine, & Stock, 1998).
In a recent paper, Perron and Wada (2009) argue that con-
trolling for the productivity slowdown is crucially important
for U.S. business cycle measurement. They show that mea-
sures of the business cycle for different UC models are less
sensitive to model specification once a break in the long-run
average growth rate of U.S. real GDP is allowed in 1973.
Thus, for all models under consideration, we allow a break
in long-run growth in the first quarter of 1973 and a break in
volatility in the second quarter of 1984. To keep the addition
of parameters across models the same, we accommodate
each structural break by a single parameter.’ Table 1 details
how we parameterize the structural breaks for each model.

For the trend and cycle decomposition given the linear
models, we use the BN decomposition or, in the case of the
UC models, the Kalman filter. Note again that the filtered
inferences from the Kalman filter are equivalent to the BN
decomposition using the corresponding reduced form of the
UC model. For trend and cycle decomposition given the
nonlinear forecasting models, we use the RDSS approach

3> More complicated patterns of structural change yielded only small
improvements in fit and had little effect on inferences about the business
cycle. Meanwhile, for the set of preferred models that emerge from the
model comparison, the business cycle estimates were robust to the exclu-
sion of one or both breaks. However, according to the information cri-
teria, specifications excluding both structural breaks were strongly domi-
nated by those including breaks for all models under consideration. Thus,
we focus on the results for models with structural breaks.
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TABLE 1.—PARAMETERIZATION OF STRUCTURAL BREAKS

Models Average Growth Break Volatility Break

AR(p) pPost1973L _ 5 pre-1973:1 62051—1984:2 _ azogre—1984:2
UC-0, UC-UR, UC-FP-0, UC-FP-UR pPostIOTIL = pre1973:1 TPOSCIB2 _ 5 wpre-1984:2
UC-HP NA? 21:1(31—1984:2 _ 5221:5—1984;2
H, BB ygosl-l973:l _ 6lygre-1973:1 post-1984:2 =8 pre-1984:2

1 1
post-1984:2 __ pre-1984:2
ob = 5,07

The “Average Growth Break” column details how a one-time break in long-run average growth in the first quarter of 1973 is incorporated in each of the models, and the “Volatility Break” column shows this
information for a one-time break in volatility parameters in the second quarter of 1984. Each break is parameterized such that it adds a single free parameter to each model. Following Kim and Nelson (1999b), a
break in the difference in growth rates across regimes for the Hamilton and Bounceback models is included as part of the volatility break. “The drift parameter in the UC-HP model follows a random walk process.
Because this allows time variation in long-run average growth, we do not allow for additional structural breaks in the drift parameter.

TABLE 2.—INFORMATION CRITERIA FOR LINEAR MODELS

Log Number of Akaike Schwarz Information Posterior
Model Likelihood Parameters Information Criterion Criterion Model Probability
AR(0) —297.50 4 —301.50 —308.46 0.00
AR(1) —287.00 5 —292.00 —300.70 0.17
AR(2) —283.97 6 —289.97 —300.40 0.23
AR4) —281.52 8 —289.52 —303.42 0.01
AR(8) —280.92 12 —292.92 —313.78 0.00
AR(12) —273.66 16 —289.66 —317.47 0.00
AR(0)-t —296.64 5 —301.64 —310.33 0.00
AR(1)-t —286.29 6 —292.29 —302.72 0.02
AR(2)-t —283.51 7 —290.51 —302.68 0.02
AR(4)-t —280.94 9 —289.94 —305.58 0.00
AR(8)-t —280.37 13 —293.37 —315.96 0.00
AR(12)-t —273.62 17 —290.62 —320.17 0.00
UC-HP —505.15 2 —507.15 —510.63 0.00
UC-0 —282.00 7 —289.00 —301.17 0.11
UC-UR —280.70 8 —288.70 —302.60 0.03

Maximum likelihood estimation is based on the conditional likelihood for 1947:Q2-2006:Q4. Observations prior to 1947:Q2 are backcast based on the mean growth rate. The AIC and SIC are formulated such that
the highest value (in bold) represents the preferred model. Posterior model probabilities are based on the asymptotic approximation given by the SIC, as discussed in section VI.

or, in the case of the nonlinear UC models, the Kim (1994)
filter, which combines the Kalman filter with Hamilton’s
(1989) filter for Markov-switching models. For the non-
linear models, we follow Kim and Nelson (1999a) and Sin-
clair (2009) by assuming i* = 0, which corresponds to an
assumption that the cycle is mean 0 in expansions.6

B. Estimates and Comparison of Business Cycle Measures

The raw data are seasonally adjusted quarterly U.S. real
GDP for the sample period of 1947:Q1 to 2006:Q4 and
were taken from the St. Louis Fed (FRED) database. We
conduct maximum likelihood estimation (MLE) for all of
the models and use the Akaike and Schwarz information
criteria (AIC and SIC) for model comparison.7 To facilitate
model comparison, we need to ensure that the adjusted sam-
ple period is equivalent for all of the models. Complicating

© 1t should be noted that this assumption places no a priori restriction on
the unconditional mean of the cycle for the bounceback models and does
not affect the general shape of the cycle. Also, the results for U.S. real
GDP suggest that the assumption of a mean O cycle in expansions is the
only assumption consistent with the steady-state notion that output is at
its trend level when the change in the cycle (which depends on the shape,
but not the level of the cycle) remains at O for an extended period of time.

7 We define AIC and SIC as in Davidson and MacKinnon (2004). Spe-
cifically, goodness of fit is measured by the log likelihood, and the offset-
ting penalty for AIC is the number of parameters, while the penalty for
SIC is the number of parameters times one-half of the log of the sample
size (natural logarithms in both cases). This definition is such that larger
values of the information criteria are preferred.

matters is the practical difficulty of conducting exact MLE
for the nonlinear AR models. Our solution to this problem
is to backcast a suitable number of observations prior to
1947:Q1 based on the long-run average growth rate. We
then conduct conditional MLE based on the same adjusted
sample of 1947:Q2-2006:Q4 for 100 times the first differ-
ences of the natural logs of real GDP.

Table 2 reports AIC and SIC results for the various linear
models, and figure 1 reports the corresponding cycle mea-
sures for all but the AR(0) model, which has no cycle by
assumption. Beginning with the results for the AR models,
AIC picks the AR(4) model with Gaussian errors, while
SIC picks the AR(2) model with Gaussian errors. Looking
at figure 1, we can see that the AR(2) and AR(4) cycles are
small, noisy, and typically positive during NBER reces-
sions. The reason for this counterintuitive result is that both
models imply positive serial correlation at short horizons.
Specifically, when output falls in a recession, there is a pre-
diction of further declines (or at least below-average
growth) in the short run, suggesting that output is above its
long-run (trend) level. By contrast, the AR(12) model pro-
duces a more traditional-looking cycle that typically turns
negative during NBER-dated recessions. In this case, the
model implies negative serial correlation at longer horizons.
Thus, when output falls in a recession, there is a prediction
of compensating above-average growth at some point in the
future, suggesting that output is below its long-run level.
The very different cycle for the AR(12) model is notable in
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part because even though the model is heavily discounted
by SIC, it has a sizable improvement in likelihood over
even the AR(8) model and is reasonably close to the low-
order AR models when considering AIC.

In terms of the UC models, it is interesting to note how
similar the HP cycle looks to the AR(12) cycle. However,
there are very different scales for these two cycles, with the
HP cycle being much larger in amplitude. Furthermore, the
UC-HP model has an extremely poor fit as judged by either
of the information criteria, suggesting that the autocovar-
iance structure implied by the UC-HP model is strongly at
odds with the data. In terms of model comparison, SIC
favors the UC-0 model, while AIC slightly favors the UC-
UR model. Interestingly, from figure 1, both the UC-0 and
UC-UR cycles are large and persistent and have a similar
pattern to the AR(12) cycle.

Comparing across all the linear models, the model selec-
tion criteria produce a mixed signal about the nature of the
business cycle. The preferred model, as judged by AIC, is
the UC-UR model, which, from figure 1, produces a large,
traditional business cycle that implies an important role for
transitory fluctuations. The preferred model, as judged by
SIC, is the AR(2) model with Gaussian errors. In contrast to
the UC-UR model, the AR(2) produces a small, nontradi-

Trw rew

970 2, 980 g8 990 g9 000 oy,

tional business cycle, implying that most short-run fluctua-
tions in output are permanent.

Before turning to the nonlinear models, it is worth com-
paring the results obtained for the linear models to the con-
clusions of Perron and Wada (2009), who argue that the
sensitivity of model-based measures of the business cycle is
due to a failure to account for structural breaks. In particu-
lar, they show that the cycles implied by different methods
and specifications of linear models look more similar once
a one-time break in the long-run growth rate of U.S. real
GDP is allowed in 1973. While the similarity in the implied
cycles generated by the UC-0 and UC-UR models corrobo-
rates the Perron and Wada finding, the discrepancy between
the implied cycles generated by the low-order AR models
and the UC models does not. Thus, allowing for structural
breaks does not in fact resolve the sensitivity of business
cycle measures to model specification.

Table 3 reports AIC and SIC results for the various non-
linear models, and figure 2 reports the corresponding cycle
measures for all but the Hamilton model, which has only a
linear cycle by assumption. Beginning with the nonlinear
AR models, the results in table 3 suggest that the bounce-
back model, in all of its versions, is strongly preferred to
the corresponding Hamilton model. Evidently the idea that
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TABLE 3.—INFORMATION CRITERIA FOR NONLINEAR MODELS

Log Number of Akaike Information Schwarz Information Posterior Model
Model Likelihood Parameters Criterion Criterion Probability
H-ARO —286.13 7 —293.13 —305.29 0.00
H-AR2 —282.71 9 —291.71 —307.35 0.00
BBU-ARO —280.34 8 —288.34 —302.25 0.03
BBU-AR2 —279.77 10 —289.77 —307.15 0.00
BBV-ARO —281.24 8 —289.24 —303.15 0.01
BBV-AR2 —279.33 10 —289.33 —306.71 0.00
BBD-ARO —277.95 8 —285.95 —299.86 0.33
BBD-AR2 —277.14 10 —287.14 —304.53 0.00
H-ARO-t —285.83 8 —293.83 —307.74 0.00
H-AR2-t —282.27 10 —292.27 —309.65 0.00
BBU-ARO-t —280.19 9 —289.19 —304.84 0.00
BBU-AR2-t —279.62 11 —290.62 —309.75 0.00
BBV-ARO-t —280.88 9 —289.88 —305.53 0.00
BBV-AR2-t —278.97 11 —289.97 —309.09 0.00
BBD-ARO-t —277.59 9 —286.59 —302.23 0.03
BBD-AR2-t —276.53 11 —287.53 —306.65 0.00
UC-FP-0 —281.38 10 —291.38 —308.76 0.00
UC-FP-UR —280.09 11 —291.09 —310.21 0.00

Maximum likelihood estimation is based on the conditional likelihood for 1947:Q2-2006:Q4. Observations prior to 1947:Q2 are backcast based on the mean growth rate. The AIC and SIC are formulated such that
the highest value (in bold) represents the preferred model. Posterior model probabilities are based on the asymptotic approximation given by the SIC, as discussed in section VI.

FIGURE 2.—MEASURES OF THE U.S. BUsINESS CYCLE BASED ON NONLINEAR MODELS
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the regime switches correspond to only permanent move- Hamilton model, at least according to AIC. However, the
ments in the level of output is not supported by the data. various versions of the bounceback model are generally
The nonlinear UC models fare somewhat better than the preferred to the nonlinear UC models.
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Comparing across all of the nonlinear models, both AIC
and SIC choose the depth version of the bounceback model
(BBD-ARO0) with no linear dynamics and Gaussian errors.
However, from the perspective of measuring the business
cycle, all versions of the bounceback model yield similar
results. From figure 2, the different bounceback models all
imply cycles that have a similar shape and display a distinct
asymmetry in the form of “deepness” (see Sichel, 1993)
across NBER-dated recession and expansion phases. Speci-
fically, the implied cycles from the bounceback models dis-
play little or no variation during mature expansions, which
suggests that most variation in output during expansions is
due to fluctuations in trend. However, in recessions and their
immediate aftermath, the bounceback model cycles display
considerable variation. Taken together, this implies an
asymmetry in the extent of transitory fluctuations in output
across expansion and recession phases. Furthermore, this
asymmetry suggests a direct link between the NBER defini-
tion of the business cycle and the transitory component of
U.S. real GDP. In terms of recessions, the NBER appears to
be identifying periods in which there are substantial nega-
tive transitory fluctuations in real economic activity.

Finally, we turn to the comparison between linear and
nonlinear models. According to both AIC and SIC, the pre-
ferred model is the BBD-ARO model with Gaussian errors.®
The AIC results suggest that the bounceback models are
dominant, as the only models with an AIC statistic close to
that for the BBD-ARO are other bounceback models. Thus,
if we restrict attention to AIC and given the robustness of
the business cycle measures to alternative bounceback mod-
els, the business cycle is adequately measured using the
BBD-ARO model. However, the SIC results suggest a
greater degree of model uncertainty, with several models
that are relatively close competitors to the bounceback
models. The final columns of tables 2 and 3 present poster-
ior model probabilities implied by SIC, the construction of
which will be discussed in section VI. These posterior prob-
abilities demonstrate that while the BBD-ARO model
receives the highest posterior probability (33%) of any indi-
vidual model, several other models receive nonnegligible
posterior probability, including the linear AR(1) model
(17%), linear AR(2) model (23%), and linear UC-0 model
(11%). If we aggregate probabilities across groups of mod-

8 It is notable that the findings in favor of the bounceback model are
robust to allowing for Student # errors, implying that it is the ability of the
model to capture nonlinear dynamics, rather than fat tails in the uncondi-
tional distribution of output growth that explains its empirical success.
We found more support for Student ¢ errors when considering models
without structural breaks. However, this directly suggests that it is really
the structural breaks (especially the Great Moderation) that matter for out-
put growth rather than fat tails in the error distribution. Meanwhile, the
estimates for the nonlinear models imply persistent regimes, suggesting
that it really is nonlinear dynamics rather than asymmetric shocks that are
important. Indeed, while the likelihood-based analysis here does not
directly consider asymmetric shocks, Morley, Piger, and Tien (2010)
show that linear time series models with shocks based on empirical distri-
butions are unable to reproduce key business cycle features that bounce-
back models with parametric and symmetric shocks are able to reproduce.
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els that produce similar business cycle measures, essentially
all posterior probability is accounted for by three groups:
bounceback models (40%), low-order AR models (44%),
and linear UC models (14%). In terms of measuring the
business cycle, this model uncertainty is relevant because
these three groups of models yield starkly different esti-
mates of the business cycle. In particular, while the bounce-
back models give an estimate of the cycle that is large and
asymmetric, low-order AR models yield small symmetric
cycles and linear UC models yield large symmetric cycles.
Thus, while the model comparison was successful at com-
pressing the set of relevant models, we are still left with a
fair degree of uncertainty regarding the appropriate measure
of the business cycle.

V. Tests of Nonlinearity

The standard information criteria choose a nonlinear
model with no linear dynamics, namely, the BBD-ARO ver-
sion of the bounceback model, as the single best model.
However, the support for nonlinearity is far from definitive
because the information criteria suggest some linear models
that are close competitors. Furthermore, as is evident in
tables 2 and 3, when comparing a more general version of
the bounceback model that incorporates AR(2) dynamics to
its nested linear AR(2) counterpart, SIC favors the linear
model (although AIC continues to favor the nonlinear
model). Thus, it is not clear if the bounceback model would
also be supported by formal statistical tests of nested mod-
els. In this section, we take up formal testing of nonlinearity
within the context of a few of the key models considered in
the previous section. In particular, we consider a null
hypothesis of a linear AR(2) model and compare it to the
nonlinear alternatives of the Hamilton model and the boun-
ceback models with AR(2) dynamics.

Testing for nonlinearity of the Markov-switching form is
difficult due to the presence of unidentified nuisance para-
meters under the null hypothesis of linearity and the singu-
larity of the information matrix at the null. There have been
different proposed tests to address this nonstandard environ-
ment, most notably by Hansen (1992) and Garcia (1998).
Recently, Carrasco, Hu, and Ploberger (2007) developed a
relatively straightforward information-matrix-based test
(the CHP test hereafter) that is optimal for local alternatives
to linearity and requires estimation only under the null
hypothesis of linearity. While estimation under the null
might seem like a small advantage given that we estimated
the alternative models in the previous section, it is helpful
because the test requires parametric bootstrap experiments
to assess statistical significance. The bootstrap experiments
are made easier by having to estimate models only under
the null of linearity given data generated under the null.
But, there are some limitations in terms of what alternatives
can be considered with the CHP test. Thus, at the end of this
section, we also discuss results for parametric bootstrap
experiments to assess the significance of a likelihood ratio
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(LR) test for nonlinearity.” In this case, the bootstrap
experiments require estimation under the alternative. We
address difficulties in estimating under the alternative by
considering a grid of possible values for the continuation
probabilities (see Kim et al., 2005) and a large number of
starting values for MLE.

The CHP test can be applied to a broad set of random
coefficient models, the most prominent of which are models
with Markov-switching parameters. In addition to present-
ing the general test, Carrasco et al. (2007) discuss how to
implement the test in the specific case where parameters
depend on only the current realization of a two-state Markov-
switching process (also see Hamilton, 2005, for an accessi-
ble discussion of how to implement the CHP test in this
case). In appendix B, we provide details on how to imple-
ment the CHP test for a broader range of Markov-switching
models, including the Hamilton and bounceback models
considered in this paper, for which parameters can depend
on current and lagged values of the state variable.

For our tests, we consider a linear AR(2) model as the
null hypothesis. As in the previous section, we assume
Gaussian or Student ¢ errors and allow structural breaks in
mean and variance. In terms of alternatives, we consider
Hamilton’s (1989) model, which implies L-shaped reces-
sions and the U-shape-recession version of the bounceback
model (BBU). Note that we do not consider the V-shape-
recession version of the bounceback model (BBV) because
the CHP test requires that the regime-switching parameters
be linear function of the state variables, while the BBV
model has the mean depend in part on the product of the
current and lagged states. The depth version of the bounce-
back model (BBD) is also difficult to cast into the CHP test
framework due to the interaction between the lagged states
and lagged growth rates. Thus, we consider a bootstrap LR
test instead of the CHP test for the BBD alternative.

Table 4 presents the results for the tests of linearity. For
the Hamilton model as an alternative, we are unable to reject
linearity using the CHP test. However, for the BBU model
as an alternative, the bootstrap p-value of the CHP test is
0.03, meaning that we can reject the null of linearity at the
standard 5% level. Likewise, the bootstrap p-value is 0.03
for the LR test with the BBD model as an alternative. These
results are robust to consideration of models with Student ¢
errors. Thus, using formal hypothesis tests, there is evidence
for nonlinearity given nonlinear alternatives that allow high-
growth recoveries following the end of recessions.

Yet while we are able to reject linearity for specific non-
linear alternatives, it must be acknowledged that the more
alternatives we consider, the more we are faced with a
potential size distortion in our overall test of linearity. Thus,
in terms of measuring the business cycle, we are left with

? Di Sanzo (2009) uses Monte Carlo analysis to investigate the small
sample properties of some statistical tests for Markov switching, includ-
ing the CHP test and a parametric bootstrap LR test. He finds that both
tests have good size properties, but that the LR test has higher power for
the specific data-generating processes considered in his study.
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TABLE 4.—TESTS OF NONLINEARITY
Alternatives

L-Shape U-Shape Depth
Null (Hamilton) (BBU) (BBD)
AR(2) Test statistic 0.07 2.14 13.32
(p-value) (0.52) (0.03) (0.03)

95% critical value 0.35 1.99 12.20

AR(2)-t Test statistic 0.27 2.36 13.40
(p-value) (0.19) (0.03) (0.03)

95% critical value 0.79 1.98 12.11

The test statistics for the L-shaped and U-shaped recession alternatives are based on Carrasco et al.
(2007). The test statistics for the depth-based recovery alternative are likelihood ratio statistics based on
estimation using a grid for the continuation probabilities. All p-values and critical values are based on
parametric bootstrap experiments with 499 simulations.

the unsatisfactory situation that our inferences depend cru-
cially on close to knife-edge test results about whether a lin-
ear model or nonlinear model provides a better description
of the autocovariance structure of U.S. real GDP growth.
Taken together with the model uncertainty demonstrated by
the comparisons based on information criteria, an obvious
response is to construct a model-averaged measure of the
business cycle that weights alternative business cycle mea-
sures in a way that incorporates model uncertainty. This is
the approach that we take in the next section.

VI. A Model-Averaged Measure of the Business Cycle

To construct a model-averaged measure of the business
cycle, we take a Bayesian approach to model uncertainty
and assign a posterior probability that each model is true.
The Bayesian model-averaged measure of the business
cycle, denoted ¢;, is then a probability-weighted sum of the
model-specific business cycle measures:

N
G = Zci,tpr(Mib))v (15)
i=1

where i indexes the N models under consideration, c;, is the
business cycle measure for model i, M; is an indicator for
model i, and Pr(M;ly) denotes the posterior probability that
model i is true, conditional on the data, y.

From a Bayesian perspective, the model-averaged mea-
sure in equation (15) is the optimal solution to incorporating
model uncertainty under certain conditions. Specifically,
assuming the set of models under consideration is exhaus-
tive, Min and Zellner (1993) show that ¢, minimizes
expected predictive squared error loss. However, it is worth
mentioning that even without taking a Bayesian viewpoint,
constructing a model-averaged measure of the business
cycle has some justification. In particular, the BN and
RDSS methods that we use to estimate the business cycle
involve constructing long-horizon conditional forecasts
based on time series models. It has long been understood in
the forecasting literature that combined forecasts can out-
perform individual forecasts (see, for example, Bates &
Granger, 1969). Thus, combining model-based business
cycle estimates could produce a measure with a lower
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mean-squared error than any of the individual estimates. Of
course, the principle of combining forecasts does not
answer the question of exactly how to combine forecasts. In
this paper, we choose to use Bayesian model probabilities
to construct weights on different forecasts.

Computation of equation (15) requires the posterior
model probability, Pr(M;ly), for each model. From Bayes’
rule, this probability is proportional to the model’s marginal
likelihood multiplied by the prior model probability,

Pr(M;ly) oc f(y[M:)Pr(M;). (16)

Direct calculation of the marginal likelihood, f(yIM)),
requires averaging the likelihood function over all model
parameters, where the averaging is done with respect to the
prior distribution for the model parameters. This requires
eliciting proper prior distributions for all parameters of each
model under consideration, which can be extremely chal-
lenging for a large set of competing models. Complicating
matters, marginal likelihood calculations are known to be
sensitive to parameter prior specification, and models with
diffuse parameter priors and many parameters are almost
always dominated by models with diffuse parameter priors
and fewer parameters. Thus, using nearly uninformative
priors as a shortcut to avoid the difficult task of prior elicita-
tion is generally not an option.

For the analysis here, we sidestep the need to elicit para-
meter priors by using an asymptotic approximation to the
marginal likelihood of a model provided by the SIC statis-
tic.'"” Under fairly general conditions, the SIC statistic is a
consistent estimate of the log of the marginal likelihood.
The advantage of the SIC statistic is that it relies on only
maximum likelihood estimates and does not require elicita-
tion of proper parameter priors. For this reason, as well as
the relative ease of calculation, the SIC-based approxima-
tion is a popular choice in applied work.'' Then, using the
SIC statistic as an approximation to the log marginal likeli-
hood, we have the following calculation for the posterior
model probability:

SIC; ,
Pr(M;|Y) = NePﬂ.
> eSICPr(M;)
i=1

(17)

In addition to the SIC statistic, the posterior model prob-
ability depends on a prior model probability, Pr(M;), for
each model. In our analysis, we assign equal weight to the
two classes of linear and nonlinear models. Then, within

19 We have also constructed posterior model probabilities directly. To
elicit parameter priors, we used a training sample of real GDP data to con-
vert improper priors to proper priors and then constructed marginal likeli-
hoods using the remainder of the sample. The model-averaged cycle
resulting from this analysis was very close to that obtained using the SIC-
based approximation. These results are available from us on request.

1 See, for example, Brock, Durlauf, and West (2003) and Doppelhofer,
Miller, and Sala-i-Martin (2004). For additional discussion of the SIC-
based approach to model averaging, see Raftery (1995).
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FiGURE 3.—MODEL-AVERAGED MEASURE OF THE U.S. BUSINESS CYCLE
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each class of models, we assign equal weight to each speci-
fication considered. There are 33 models under considera-
tion, 15 of them linear and 18 of them nonlinear. Thus, each
linear model receives prior weight proportional to 1/15,
while each nonlinear model receives prior weight propor-
tional to 1/18.

The final columns of tables 2 and 3 report the posterior
model probabilities constructed using the SIC-based
approximation. Again, as discussed in section IV, essen-
tially all posterior probability is accounted for by three
groups of models that yield similar business cycle mea-
sures: bounceback models (40%), low-order AR models
(44%), and linear UC models (14%). Figure 3 displays the
model-averaged measure of the business cycle. Perhaps the
most striking feature of this measure is its asymmetric
shape, which it inherits from the bounceback models. In
particular, the variation in the cycle is substantially larger
during recessions than it is in expansions.

It is worth noting that this asymmetry is not a forgone
conclusion given the weights on the bounceback models.
Had the cycles implied by the preferred linear models all
displayed substantial variation during expansions, then the
model-averaged measure would have a more symmetric
shape across business cycle phases. However, the low-order
AR models, which receive the highest weight of the linear
models, also display only small amounts of variability in
expansions. Thus, when combined with the bounceback
models, there is a total of 84% of the overall weight in the
model-averaged measure given to measures of the cycle
that display very little variation in expansion phases. Put
differently, while there is substantial model-based uncer-
tainty about the overall shape and magnitude of the cycle,
there is relatively little model-based uncertainty about what
the business cycle looks like during expansions.

The model-averaged business cycle measure is based on
only the univariate dynamics of real GDP. Therefore, it is
interesting to investigate its comovement with measures of
economic slack based on other variables. Two variables that
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FiGURE 4.—COMPARISON OF MODEL-AVERAGED BUSINESS CYCLE TO OTHER
MEASURES OF Economic SLACK
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are often thought to correspond closely to the business cycle
are the level of the unemployment rate and the level of
capacity utilization. Figure 4 plots the model-averaged
business cycle measure against these two variables.'? There
is a striking relationship between the model-averaged mea-
sure and both the unemployment rate and capacity utiliza-
tion, with the short-run movements in these three series
tracking each other quite closely. Of course, the advantage
of the model-averaged measure as an indicator of the busi-
ness cycle over these other readily available variables is
that it is designed to capture transitory fluctuations in over-
all real economic activity while abstracting from all long-
run variation. By contrast, while the unemployment rate
and capacity utilization variables are thought to move with
the business cycle, they are not as broad measures of eco-
nomic activity as real GDP, and their historical paths sug-
gest at least some permanent movements over time.

12 The raw data for both variables are taken from the FRED database
and cover the sample period 1948:Q1-2006:Q4 for the unemployment
rate, and 1967:Q1-2006:Q4 for capacity utilization.
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VII. Conclusion

We have provided estimates of the U.S. business cycle,
where we define the business cycle as transitory deviations
in economic activity away from trend. The estimates turn
out to be highly dependent on the particular time series
model used to capture postwar U.S. real GDP dynamics. As
a result, we have attempted to discriminate between differ-
ent implied business cycle measures by model comparison
and formal hypothesis testing. The empirical results support
a nonlinear regime-switching model that captures high-
growth recoveries following deep recessions and produces a
highly asymmetric business cycle with relatively small
amplitude during expansions but large and negative move-
ments during recessions. However, the model comparison
also reveals several close competitors to the nonlinear model
that produce business cycle measures of widely differing
shapes and magnitudes. To address this model-based uncer-
tainty, we constructed a model-averaged measure of the
business cycle using posterior model probabilities as
weights. We found that this model-averaged measure also
displays strong asymmetry across NBER expansion and
recession phases. Furthermore, the model-averaged business
cycle is closely related to other measures of economic slack
such as the unemployment rate and capacity utilization.

The asymmetry of the business cycle has many important
implications. Most directly, it suggests a link between the
output-gap definition of the business cycle and the NBER
definition of the business cycle as alternating phases of
expansion and recession. In particular, the asymmetry
implies that NBER-dated recessions are periods of signifi-
cant transitory variation in output, while output in expan-
sions is dominated by movements in trend. This supports
the idea that the business cycle is a meaningful macroeco-
nomic phenomenon and has potential relevance as a sty-
lized fact to guide theoretical models of the business cycle.
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APPENDIX A

Calculation of Trend Measures

This appendix provides formulas for the BN measure of trend implied
by an autoregressive model, as well as for the RDSS measure of trend
implied by the Hamilton and bounceback regime switching models.

Given a linear AR model of Ay,, such as was given in equation (7), the
BN trend for y, can be easily calculated analytically using the state-space
method in Morley (2002) as

N =y, + HF(I — F) ™ (A7, — ), (A1)
where
(bl ¢2 ! d)p
1 0 - 0
H=(1 0 0),F= . . .
0 "
0 0 1 0

Ay, = (AYI7 o AerpH),«, andfL = (i, ..., H),~

Then, for a nonlinear AR model, such as was given in equations (8)
and (9), the RDSS trend can be calculated as

0SS (S,) =y + HF(I - F)” (A3, — i)

+ g (E [Hm){srﬂ( =i'Y_,.S, Q,] _ Pt,-*)7 (A2)

where H, F, and Ay, are the same as in equation (Al), fi, =
(Ms» s b5, ) and [ = p(i*, ..., i*). The first two terms on the right-
hand side of equation (A2) are analogous to the calculation of the BN esti-
mate of trend in equation (A1), with the second term corresponding to
forecastable momentum due to linear dynamics. The third term arises due
to nonlinear dynamics and accounts for forecastable momentum implied
by any difference between the future time-varying mean and the regime-
dependent average growth rate in regime i*. When i* = 0 for the models
considered in this paper, the summation in equation (A2) can be truncated
at j = m and calculated analytically. In general, the infinite sum can be
calculated via simulation.'* Once tRPSS (S‘,) is calculated, S, can then be

'3 The RDSS approach is based on the assumption, discussed in Morley
and Piger (2008), that permanent and transitory innovations depend on
only current or lagged regimes. This assumption, which is explicitly made
for the nonlinear UC models considered in this paper, implicitly holds for
the BBU and BBV models, meaning that the specification of a “normal”
regime affects only the level of the cycle, not its magnitude or shape.
However, for the BBD model, the transitory effects of past shocks can
depend on future regimes because the model has implicit regime-switch-
ing autoregressive coefficients. In this case, the level and magnitude of
the cycle can be affected by the particular assumed sequence of future
regimes, although the general shape will be robust. In additional analysis
not reported here, we have also considered an extended simulation-based
version of the RDSS approach that allows more complicated patterns for
future regimes. Given the same “normal” regime at long horizons, we
found nearly identical measures of the cycle, including in terms of magni-
tude to what is produced by the considerations of equation (A2) for the
BBD model. Thus, for simplicity of presentation, we consider the basic
RDSS approach for all of the bounceback models in this paper.
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integrated out as in equation (5) using the probability weights, p™ (5,\9,),
to arrive at thPSS. These probability weights can be obtained from the
recursive filter given in Hamilton (1989).

APPENDIX B

Implementation of the Nonlinearity Test

This appendix provides details on how to implement the CHP test
developed by Carrasco et al. (2007) in the setting where the regime-
switching alternative allows parameters to depend on both current and
lagged values of the state variable. The CHP test considers the null
hypothesis of constant parameters against an alternative hypothesis of
switching parameters. Let 6, denote the potentially time-varying para-
meters, a subset of all model parameters ®. The null hypothesis is that
Hy: 0, = 0. The alternative hypothesis is that H;: 6, = 0, + 6;, where
0; = HE,, which is the product of a matrix of possible changes in para-
meter values given switching regimes and &, is a vector of current and
lagging 0 mean Markov state variables that determine the prevailing
regime for the parameters. The state vector evolves according to

i F&, | +w:, where the vector w, follows a martingale difference

sequence (E|&_,w,| = 0), with E|ww,] = Q. Lagged state variables

are incorporated into E, using identities, implying O elements in w,.
The general form of the CHP test statistic is given as

TST(B):FT—%‘%’@, (B1)
where
1T
I'r = m; Y.(B) (B2)
v(B) = (15 + 101 )E ) [0;6;"])
B3
+22 (lgle 50 9*/}) (B3
O Inf(yyi1,0) 1(2) 9 In fulyi-1,0) (B4)

0o 00 0000’ '

and € is the vector of residuals from an OLS regression of 1/2v,(B) on
15.1@)) (that is, the scores with respect to all of the parameters under the null,
not just those that are hypothesized to switch under the alternative), with
B denoting a vector of all of the nuisance parameters in H and F that are
not identified under the null. Because of the presence of nuisance para-
meters, the test is based on the supremum test statistic for a set of consid-
ered values of the nuisance parameters (a “sup” test statistic
sup TS = sup TSy (B), where B is a compact subset of all possible values
BeB
of the nuisance parameters B). Note that for the sup statistic, the scale of
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the nuisance parameters in / is not identified because it cancels out in the
first-order condition with respect to that scale parameter. Thus, the value
of an arbitrary nuisance parameter that is assumed not to take on the value
of 0 under the alternative can be normalized to 1 and the test statistic can

be constructed as
=~ max | 0, — ,
2 ey

where B is a vector of the remaining nuisance parameters and £* = & / VT.
Also, note that the expectations terms in equation (B3) can be solved as

E6;6] | = HVar(E,)H/, where

sup TS = sup (B5)

p'eB

vec(Var(E,)) = (I —F®F) "vec(Q),
and E|0707 | = HF'~ ‘Var(i,)H’

The asymptotic distribution of the CHP test depends on nuisance para-
meters. As a result, Carrasco et al. (2007) rely on parametric bootstrap
experiments to calculate the critical values. These experiments involve
simulating B bootstrap samples based on the estimated null model and
calculating the test statistic for each of these simulated samples. Then the
percentage of simulated test statistics larger than the sample statistic
determines the bootstrap p-value for the test, while the bootstrap critical
value for a test with nominal size o can be found by sorting the bootstrap
test statistics from smallest to largest and finding the (1 — o)B test statistic
or the next largest if (1 — a)B is not an integer.

A simple example helps illustrate the CHP test. Consider the null of an
AR(0) model Ay, = p + ¢;, e, ~ N(O, 62) against the alternative of a two-
state Markov-switching mean Ay, = 1, + e,, where [, = Yo + 715, and S, =
{0,1} is a two-state Markov-switching state variable with fixed continua-
tion probabilities Pr[S, = 0IS,_; = 0] = poo and Pr[S, = 1IS,_; = 1] = py;.
Then, letting & = E[S/] = (1 — poo)/(2 — p11 — poo)s f = P + 118, where
U =7, +v,tand & = S; — 7. Thus, in terms of the general CHP test, H =
Y1, & = &, and F = p, where p = poo + p1; — 1. Note that it is necessary
to normalize the variance of the unobserved state variable in order to iden-
tify the magnitude of y,. We do this by setting O = 1. Then, in construct-
ing the test statistic, we set y; = 1 and find the largest test statistic for p €
(0.02,0.98). In practice, we consider only positive values for p because
alternatives with persistent regimes are what we are interested in for U.S.
real GDP. Specifically, we are considering regime-switching models in
order to capture persistent business cycle phases rather than outliers. The
restriction on p can lower the value of the test statistic, and in some cases
it does. However, the same restriction is imposed when calculating the
bootstrap distribution of the test statistic, so it can also lower the critical
value of the test. Also, it is worth mentioning that we want to avoid the
case where p = 0 because given the assumption of a linear Gaussian model
under the null hypothesis, the second derivatives in equation (B3) are

equal to the negative of the outer product of the scores (159) = —lf]e) lfe) )

meaning that y,(B) = 0 and therefore making it impossible to run the OLS
regression to find €. As discussed in Carrasco et al. (2007), the test has no
power in this case. On the other hand, the test has nontrivial power in other
cases, including, in this setting, when p # 0.



