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betas for Book-to-Market (B/M) and momentum portfolios across stock

market volatility regimes. For our analysis, we jointly model market and

portfolio returns using a two-state Markov-switching process, with beta

and the market risk premium allowed to vary between ‘low’ and ‘high’

volatility regimes. Our empirical findings suggest strong evidence of time

variation in betas across volatility regimes in almost all the cases for which

the unconditional CAPM can be rejected. Although the regime-switching

conditional CAPM can still be rejected in many cases, the time-varying

betas help explain portfolio returns much better than the unconditional

CAPM, especially when market volatility is high.
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I. Introduction

The Capital Asset Pricing Model (CAPM) of Sharpe
(1964) and Lintner (1965) remains a benchmark asset
pricing model in the academic literature. According
to the CAPM, the risk of an asset is measured by its
‘beta’, which is the covariance between the asset’s
return and the return on the market portfolio per unit
of variance for the market return. A number of
studies (e.g. Fama and French, 1992, 1993, 1996)
have examined the CAPM with constant betas (i.e.
the unconditional CAPM) and reported that the
model performs poorly and is unable to explain
certain asset pricing anomalies. In particular, they
find that the unconditional CAPM cannot explain
why (i) portfolios of small firms outperform those of
large firms (the ‘size’ effect), (ii) portfolios of firms

with high Book-to-Market (B/M) ratios outperform
those for firms with low B/M ratios (the ‘B/M’ effect)
and (iii) portfolios of firms with relatively high
returns in the past year outperform those for firms
with relatively low past returns (the ‘Momentum’
effect).

One of the explanations for the failure of the
CAPM is its assumption that beta for a given
portfolio and the market risk premium are both
constant over time. Many papers report that betas are
time varying (e.g. Jagannathan and Wang, 1996;
Fama and French, 1997, 2006; Lettau and
Ludvigson, 2001; Lewellen and Nagel, 2006; Ang
and Chen, 2007). Jagannathan and Wang (1996)
show that ‘alpha’ from test regressions for the
unconditional CAPM, where ‘alpha’ corresponds to
the expected excess return for the portfolio over what
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would be predicted by the unconditional CAPM, is
theoretically related to the covariance between a
time-varying beta and a time-varying market risk
premium. Many studies find that capturing this
covariance can help explain the size and B/M
anomalies, although it is harder to explain the
momentum effect.

Many of the previous studies on the conditional
CAPM (e.g. Shanken, 1990; Clare et al., 1996;
Jagannathan and Wang, 1996; Ferson and Harvey,
1999; Lettau and Ludvigson, 2001; Petkova and
Zhang, 2005; Avramov and Chordia, 2006) use
instrumental variables to proxy time-variation in
CAPM betas and market risk premium and to specify
the covariance between them. However, Harvey
(2001) shows that the results of the time variation
in betas can be highly sensitive to the choice of
instrumental variables. Also, Lewellen and Nagel
(2006) argue that tests of the conditional CAPM
based on cross-sectional regressions do not impose
important theoretical restrictions in the estimation of
the covariance between beta and the market risk
premium. Thus, it can be useful to check the
robustness of past findings on the conditional
CAPM to consideration of alternative approaches
to modelling time variation in beta and to testing the
CAPM.

Our study contributes to the conditional CAPM
literature by (i) investigating time variation in betas
for the B/M and momentum portfolios across states
of the economy corresponding to discrete changes in
the level of stock market volatility and the market
risk premium, and (ii) studying the performance of
the conditional CAPM within these different states of
the economy. In contrast to the traditional approach
used in the pervious literature on the conditional
CAPM, we do not use instrumental variables to
capture time variation in betas. Instead, for our
analysis, we use a Markov-switching specification to
estimate discrete changes in betas.

Our consideration of discrete changes in CAPM
betas is motivated by numerous previous studies that
find large discrete changes in the level of stock market
volatility. For example, Hamilton and Susmel (1994)
find that the persistent low frequency changes in
volatility can be captured by a discrete Markov-
switching process that appears somewhat related to

discrete changes in business cycle phases between

periods of expansion and recession.1 Thus, if low

frequency changes in volatility are abrupt and priced

by market participants, one might expect the market

risk premium to change in a discrete way too. Then,

according to the idea of the conditional CAPM, if

any changes in beta are correlated with the discrete

changes in market volatility, they could explain the

empirical failure of the unconditional CAPM.
For our analysis, we follow Turner et al. (1989) and

Kim et al. (2004) by assuming that (i) stock market

volatility follows a two-state Markov-switching

process, with the market risk premium varying

across these ‘low’ and ‘high’ volatility regimes and

(ii) the processing of information about the prevailing

volatility regime generates a volatility feedback effect

that needs to be accounted for in order to reveal a

positive underlying relationship between market vol-

atility and the market risk premium. According to the

idea of volatility feedback, an exogenous and persis-

tent increase in the volatility of market news leads to

additional return volatility as stock prices adjust in

response to higher future expected returns.2 We then

jointly model the market return and the conditional

CAPM, with time variation in beta driven by the

market volatility regimes.
Our approach to testing the conditional CAPM has

three benefits over the traditional approaches taken

in the literature. First, we do not have to find

exogenous observable variables to identify time

variation in the market risk premium, thus helping

us to avoid any data mining concerns with an

instrumental variables approach. Second, the timing

of changes in beta, which correspond to changes in

the market risk premium, is determined directly by

the returns data through the Markov-switching

specification, rather than being imposed exogenously.

For example, this has a benefit over a rolling window

approach, which will naturally smooth out discrete

changes in beta and the results for which will depend

highly on the choice of window length. Third, our

model is based on time-series regressions, in contrast

to cross-sectional models traditionally used in previ-

ous literature, therefore it is not subject to the

limitations of the cross-sectional approach discussed

in Lettau and Ludvigson (2001).

1 Schwert (1989), Chu and Tang Liu (1996), Schaller and van Norden (1997), Assoe (1998), Kim et al. (1998, 2001, 2004), Hess
(2003) and Mayfield (2004), among many others, have modeled monthly stock return volatility using a Markov-switching
specification, with high volatility regimes typically corresponding to periods of recession and low volatility regimes typically
corresponding to periods of expansion. Perez-Quiros and Timmermann (2000) and Guidolin and Timmermann (2008) also
find evidence of discrete changes in stock return risk across business cycle phases. In an instrumental variables setting,
Avramov and Chordia (2006) also show that betas are significantly correlated with the business cycle.
2 French et al. (1987), Turner et al. (1989), Campbell and Hentschell (1992) and Kim et al. (2004), among many others,
account for volatility feedback to study the relationship between stock returns and volatility.
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Our modelling approach is conceptually close to
that of Ang and Chen (2007) and Adrian and

Franzoni (2009), who study the conditional CAPM

by modelling time variation in betas as stationary

latent variables in order to address the limitations of

the approach based on instrumental variables. Our

approach differs from these papers by modelling large

and discrete changes in betas rather than assuming

smooth and continuous changes. Also, our study is

similar to Huang (2000), who considers a Markov-

switching beta for a single stock, but he does not

relate it to market volatility regimes or business cycle

phases and does not study the asset pricing

anomalies.
Consistent with the basic idea of the conditional

CAPM, our empirical findings suggest strong evi-

dence of time variation in betas across market

volatility regimes in almost all the cases for which

the unconditional CAPM can be rejected. For ‘value’

portfolios of stocks for firms, which have relatively

high B/M ratios, and ‘winner’ portfolios of stocks,

which have relatively strong returns over the previous

year, the regimes alternate between periods of low

market volatility/high beta and periods of high

market volatility/low beta. For ‘loser’ portfolios of

stocks, which have relatively weak returns over the

previous year, the regimes alternate between periods

of low market volatility/low beta and periods of high

market volatility/high beta. Although the regime-

switching conditional CAPM can still be rejected in

many cases, the time-varying betas help explain

portfolio returns much better than the unconditional

CAPM, especially when market volatility is high. Our

findings are consistent with many previous studies,

including Ang and Kristensen (2010), who report

strong time variation in betas for the ‘value’, B/M

strategy, and momentum strategy portfolios using a

nonparametric method. However, it is useful to

confirm the robustness of past findings by consider-

ing a very different approach to modelling time-

varying betas than considered in previous studies

using instrumental variables, smooth and continuous

latent variables or nonparametric methods. At the

same time, the reasonably good performance of the

CAPM in periods of high volatility is an

important new result that the regime-switching ver-

sion of the conditional CAPM allows us to uncover

from the data.

The rest of this article is organized as follows.
Section II presents the model. Section III describes
the data and reports the empirical results. Section IV
concludes this article.

II. Model

According to the Sharpe–Lintner CAPM, the
expected excess return on a portfolio of assets over
a risk-free rate depends on a simple measure of the
portfolio’s risk relative to the market portfolio:

E½ri,t� ¼ �iE½rm,t� ð1Þ

where ri,t is the return for portfolio i in excess of the
risk-free return, rm,t the market return in excess of
the risk-free return and �i the measure of the
portfolio’s risk, defined as

�i ¼
covðri,t, rm,tÞ

varðrmÞ
ð2Þ

Fama and French (1992) examine the performance
of the unconditional CAPM and find that estimated
betas do not explain variation in average returns
across different portfolios. A possible explanation for
this failure of the CAPM is its assumption that the
market risk premium and beta are both constant over
time.3 Relaxing this assumption we get the condi-
tional CAPM, which holds period by period

E½ri,tjIt�1 ¼ �i,t�1E½rm,tjIt�1� ð3Þ

where It�1 denotes information available to market
participants in the previous period and �i,t�1 denotes
beta conditional on information It�1. In this model,
market participants price assets for the period t
conditional on information available in the previous
period. Following Jagannathan and Wang (1996) and
applying iterated expectations on both sides of
Equation 3, we get

E½ri,t� ¼ ��iE½rm,t� þ covð�i,t�1,E½rm,tjIt�1�Þ ð4Þ

where ��i is the unconditional expectation of beta. If
beta is constant, which means that the covariance
term is zero, then this equation is equivalent to
Equation 1 describing the unconditional CAPM.
However, it is straightforward to see that the uncon-
ditional CAPM would fail if beta were correlated
with the market risk premium.

3Another explanation for the failure of the CAPM has to do with the basic structure of the model. For example, Zou (2006)
introduces an alternative definition of beta and shows that doing so theoretically produces a smaller alpha than the standard
version of the CAPM. Raei and Mohammadi (2008) consider fractional returns and show that their model has higher R2 than
the standard model. However, the interpretation of parameters for these alternative approaches is somewhat different than it
is in the traditional CAPM, so it can be difficult to compare them to the standard approach.
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The conditional CAPM requires specifying the
information available to market participants when
they form conditional expectations of the market risk
premium and beta. In our analysis, we assume that
market participants know that risk changes dis-
cretely, distinguishing only between ‘good’ and
‘bad’ states of the economy related to market
volatility. It should be noted that, in principle, we
could consider more than two states of the economy.
However, as we show in the empirical analysis, a
model with two regimes is sufficient to capture
persistent changes in the volatility of market excess
returns for the sample period under consideration.

Following many studies, including Turner et al.
(1989) and Kim et al. (2004), we model states of the
economy with a two-state Markov-switching variance
for the market excess return

"m,t � Nð0, �m2,Sm,t
Þ, ð5Þ

�2m, sm, t
¼ �2m, 0ð1 � Sm,tÞ þ �

2
m, 1Sm, t ð6Þ

�2m, 0 5 �2m, 1 ð7Þ

Pr Sm,t ¼ 0jSm,t�1 ¼ 0
� �

¼ qm and

Pr Sm,t ¼ 1jSm,t�1 ¼ 1
� �

¼ pm
ð8Þ

where "m,t denotes the market news at time t, �2Sm, t
the

variance of "m,t, Sm,t a Markov-switching state
variable that takes value 0 in the low volatility
regime and 1 in the high volatility regime and qm and
pm the continuation probabilities for the regimes. The
regimes are assumed to be given exogenously and are
observable to market participants. However, it
should be noted that the regimes are not directly
observable by econometricians, who instead need to
make inferences about the regimes based on the
dynamics of observable returns data. The normaliza-
tion constraint in Equation 7 ensures that estimated
regimes are correctly labelled as ‘low’ and ‘high’
volatility regimes.

Given the two-state specification for market vola-
tility, one possible informational assumption for the
conditional CAPM is that market participants
immediately observe the market volatility regime.
Under this assumption, the period-by-period market
risk premium can be expressed as

E½rm,tjSm,t� ¼ �m,0 þ �m,1Sm,t ð9Þ

where �m,0 denotes the market risk premium in the
low volatility regime and �m,1 determines the mar-
ginal effect of the high volatility regime on the market
risk premium. However, consistent with past find-
ings, we find a negative estimate for �m,1 in our

empirical analysis. This result runs contrary to the
theoretical positive relationship between risk and
return, suggesting that, although market participants
may react to information inherent in the true vola-
tility regimes, it would be more realistic to assume
that they take time to process information about the
prevailing volatility regime.

In order to capture the processing of information,
we follow Campbell and Hentschell (1992) and Kim
et al. (2004), among many others, by allowing for
volatility feedback in our model. According to the
idea of volatility feedback, an exogenous and persis-
tent increase in the volatility of market news gener-
ates additional return volatility as stock prices adjust
in response to higher future expected returns.
We follow Kim et al. (2004) and consider a
Markov-switching model of the market excess
return with volatility feedback, which is specified as

rm,t ¼ E ½rm,tjSm, t�1� þ fm,t þ "m,t ð10Þ

where

E½rm,tjSm,t�1� ¼ �m, 0 þ �m,1 Pr½Sm,t ¼ 1jSm,t�1� ð11Þ

fm,t ¼ �fSm,t � Pr½Sm,t ¼ 1jSm,t�1�g ð12Þ

The fm,t term captures an unpredictable volatility
feedback effect on the market return due to period-
by-period revisions in future expected returns, where
E [fm,t|Sm,t�1]¼ 0. The � coefficient in the volatility
feedback term is related to the other model param-
eters based on a discounted sum of log-linear future
expected returns, as shown in Kim et al. (2004).
Specifically, the coefficient is equal to � ¼ ��m,1

1��� , where
�¼ pmþ qm�1 and � denotes the parameter of
linearization for the log-linear present value model,
which is the average ratio of the stock price to the
sum of the stock price and the dividend and, in
practice, has the value of 0.997, as reported in Kim
et al. (2004). In this specification, it is assumed that
market participants observe the previous volatility
regime Sm,t�1 at the beginning of the current period,
but learn about the current volatility regime Sm,t

during the current period. This specification helps to
reveal a positive relationship between risk and return.
See Kim et al. (2004) for further details.

Similar to the market excess return, we assume that
the portfolio excess return is specified as

ri,t ¼ E½ri,tjSm,t�1� þ fi,t þ "i,t ð13Þ

where E[ri,t|Sm,t�1] is defined by the conditional
CAPM, fi,t is the volatility feedback term for the
portfolio return and "i,t the news about portfolio i.
Because the conditional CAPM time-varying beta
may covary with the time-varying market risk
premium, which in our setting takes on two discrete
values conditional on the market volatility regimes,
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we allow for different values of beta in these two

regimes.4 Thus, the regime-switching conditional

CAPM is given by

E½ri,tjSm, t�1� ¼ �i,Sm, t�1
,E½rm, tjSm, t�1� ð14Þ

where �i,sm,t�1
takes on two values depending on the

market volatility regime at period t�1.5 Also,

substituting for ri,t and rm,t into Equation 14 based

on Equations 13 and 10, we can show that

E½ fi,tjSm,t�1� ¼ �i,Sm, t�1
E½ fm,tjSm,t�1� ¼ 0

which is consistent with the CAPM notion that the

expected excess return for a portfolio depends only

on its beta and the market risk premium.
Based on Equations 10 and 14, our joint model of

market and portfolio excess returns is given as

follows:

rm,t ¼ �m,0 þ �m, 1 Pr½Sm, t ¼ 1jSm, t�1�

þ �fSm, t � Pr½Sm, t ¼ 1jSm,t�1�g þ "m,t ð15Þ

ri, t ¼ �i,Sm, t�1
þ �i,Sm, t�1

rm, t þ ut

"m,t � Nð0, �2m,Sm, t
Þ and ut � Nð0, �2i,Si, t

Þ ð16Þ

where ut denotes idiosyncratic news for portfolio i,

which according to the CAPM should be uncorre-

lated with market news. In this model, the regime-

switching process for market volatility and the alpha

and beta for portfolio i is driven by a common

unobservable state variable Sm,t that takes on discrete

values of 0 in the low market volatility regime and 1

in the high market volatility regime. If the conditional

CAPM holds, �i,Sm, t�1
¼ 0 in both regimes. In addi-

tion to regime-switching market volatility, we also

control for heteroscedasticity in the residual for the

portfolio return by assuming that the variance �2i,Si, t

of idiosyncratic news ut follows a two-state Markov-

switching process that is assumed to be independent

of the process for market volatility. Estimates are

based on maximum likelihood estimation following

the procedure developed by Hamilton (1989).

III. Empirical Results

Data

We consider monthly data for stock returns on value-
weighted decile portfolios of all stocks listed on the
NewYork Stock Exchange (NYSE), AMEX and
NASDAQ sorted separately by B/M ratios (B/M
portfolios) and by the previous year’s returns
(momentum portfolios).6 The B/M portfolios are
constructed at the end of June each year based on the
ratio of the book equity of stocks for the previous
fiscal year to their market capitalization in December
of the previous year. The portfolios are formed
annually by sorting stocks using decile breakpoints of
B/M ratios for the NYSE stocks only. Momentum
portfolios are constructed each month using the
previous 11-month-return decile breakpoints for
NYSE stocks. The portfolio returns are value-
weighted monthly average returns on the stocks in
deciles. We define the ‘market’ return by considering
the return on a value-weighted portfolio of all stocks
listed on the NYSE, AMEX and NASDAQ. All
returns are continuously compounded in excess of the
continuously compounded one-month Treasury bill
rate and expressed in percentage terms. Most previ-
ous empirical studies only consider data for July 1963
and afterwards in order to focus on a period for
which the unconditional CAPM fails to explain B/M
and momentum effects (e.g. Ang and Chen (2007)
find that the unconditional CAPM cannot be rejected
for B/M portfolios over the longer sample period of
1926 to 2001). Therefore, we consider the sample
period of July 1963 to December 2010 in our analysis.
For this sample period, we do not observe a strong
size effect for portfolio returns double-sorted by size
and B/M ratios, which is a common way of sorting
portfolios in the literature, so we consider the overall
B/M sorting.7

Table 1 reports summary statistics for the returns
on B/M and momentum portfolios and estimates for

4An alternative approach would be to assume that beta has its own Markov-switching process. However, from the theory of
the conditional CAPM, the relevant issue for the failure of the unconditional CAPM is whether beta covaries with the market
risk premium, which in this case is driven by market volatility. Therefore, for simplicity, we consider a specification with
common regimes for beta and market volatility.
5 The beta used to price a portfolio depends on expectations of Sm,t. Thus, the beta will depend on the sensitivity of the
portfolio to market news in both regimes, with the weights on the two regimes depending on the continuation probabilities for
the Markov-switching state variable. Analytically, given fixed continuation probabilities, this assumption is equivalent to
specifying beta to be a function of Sm,t�1, as this will capture the weighted-average sensitivity for the portfolio conditional on
Sm,t�1.
6We are grateful to Kenneth French for making these data available at his data library at dhttp://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/DataLibrary/. Detailed description of portfolio formation is provided in Fama and French (2006).
7 By considering overall B/M-sorted portfolios, we are following Ang and Chen (2007). Although the average returns for the
largest size portfolios are always smaller than average returns for other size portfolios, the average returns for size portfolios
other than largest size portfolio are not always decreasing with size. Also, preliminary analysis, not reported to conserve
space, suggests that the unconditional CAPM cannot be rejected for the size-sorted portfolios for the sample period under
consideration.
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the unconditional CAPM regression model. The
results suggest a pattern of increasing average returns
with increasing B/M ratios and momentum. Based on
the estimated alphas, the unconditional CAPM can
be rejected for the last four deciles of the B/M
portfolios and for the first two and last three deciles
of the momentum portfolios.

Regime-switching volatility and the estimated
market risk premium

In order to determine the under of regimes that is
sufficient to capture changes in market volatility, we
estimate and compare the two-state and three-state
Markov-switching models of market excess returns.
Incorporation of volatility feedback in the three-state
model is fairly complicated. Thus, for simplicity, we
consider models without volatility feedback,
although, as we discuss below, this has little impact
on the estimated regimes for the two-state model. At
first glance, it appears that the fit of the three-state
model is better, with a log likelihood of �1623.85
versus �1635.72 for the two-state model.8 However,
we find that the estimated regimes for the three-state
model suggest that the highest volatility regime is
merely capturing a few extreme negative outliers in
the data, rather than persistent changes in volatility.
This result is consistent with the finding of Hamilton
and Susmel (1994) that ‘extremely large shocks, such

as the October 1987 crash, arise from quite different

causes and have different consequences for subse-

quent volatility than do small shocks’.
As an alternative way to address negative outliers,

we modify the model given in Equation 15 and

consider the two-state model with a dummy variable

to capture the most volatile negative spikes in market

returns. The modified model is described as follows:

rm,t ¼ �m,0 þ �m,1 Pr½Sm,t ¼ 1jSm,t�1�

þ �fSm,t � Pr½Sm,t ¼ 1jSm,t�1�g þ 	Dt þ "m,t

ð17Þ

where Dt denotes the dummy variable that is equal to

zero for most observations and equal to one for

selected negative outliers and 	 captures the addi-

tional volatility for these outlier observations. We

rank the negative outlier observations by their

magnitude and find that a model with only the two

largest negative outliers in the sample period –

October 1987 and October 2008 – produces a much

higher likelihood value than the three-state model,

even though the three-state model has many more

parameters. Thus, we argue that the two-state model

with the dummy variable provides a better descrip-

tion of the data than a three-state model. Meanwhile,

it is important to emphasize that our estimates of

parameters and regimes are extremely robust to

including the dummy variable or not. Indeed, our

Table 1. Summary statistics for B/M and momentum portfolios

Low 2 3 4 5 6 7 8 9 High HML

Panel A: B/M portfolios
�ri 0.21 0.35 0.38 0.38 0.38 0.46 0.52 0.56 0.63 0.72 0.51
SD (5.24) (4.82) (4.74) (4.86) (4.55) (4.59) (4.45) (4.65) (4.85) (5.91) (4.64)
�i �0.15 0.00 0.04 0.04 0.07 0.14 0.23 0.26 0.31 0.36 0.50
SE (0.10) (0.06) (0.07) (0.09) (0.09) (0.08) (0.11) (0.12) (0.11) (0.16) (0.20)
�i 1.06 1.01 0.98 0.99 0.91 0.93 0.86 0.89 0.92 1.07 0.00
SE (0.03) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.05) (0.04) (0.06) (0.13)

Panel B: Momentum portfolios
�ri �0.58 0.05 0.25 0.30 0.24 0.31 0.36 0.55 0.57 0.90 1.48
SD (8.06) (6.29) (5.37) (4.86) (4.53) (4.62) (4.48) (4.55) (4.98) (6.35) (6.86)
�i �1.07 �0.35 �0.10 �0.02 �0.07 �0.01 0.06 0.24 0.23 0.50 1.57

SE (0.20) (0.14) (0.12) (0.11) (0.08) (0.06) (0.08) (0.07) (0.09) (0.14) (0.28)
�i 1.44 1.18 1.00 0.95 0.91 0.94 0.90 0.92 0.99 1.18 �0.26
SE (0.09) (0.07) (0.05) (0.04) (0.03) (0.03) (0.03) (0.03) (0.04) (0.05) (0.06)

Notes: Data are for the value-weighted portfolios sorted into deciles of B/M ratios and the previous 12-month returns for the
sample period of July 1963 to December 2010. HML denotes a ‘High minus Low’ portfolio; �ri the average excess return for
portfolio i. Sample SD for excess returns are reported in parentheses. Estimates of �i and �i for the unconditional CAPM
regression model are based on Ordinary Least Squares (OLS). Newey and West (1987) heteroscedasticity and autocorrelation
consistent SEs are reported in parentheses for � and �. Statistically signicant alphas at the 5% level are in bold.

8Note, however, that it is difficult to evaluate the significance of the third volatility regime based on these likelihood values
due to violations of standard testing conditions for Markov-switching models.
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residual diagnostic checks suggest that a two-state
process without the dummy variable is generally
sufficient to capture ARCH effects and non-
Normalities in the data. However, in the remainder
of this article, we focus on results for the model with
the dummy variable because it appears to provide the
best description of the data. Meanwhile, it should be
noted that the dummy variable is introduced only
into the market return equation, while the CAPM
equation remains the same as in Equation 16,
ensuring that alpha and beta estimates will still
depend on all of the sample data, including October
1987 and October 2008.

In terms of the volatility regimes for the two-state
model, the estimates of the continuation probabilities
suggest that both regimes are very persistent, with
95% and 96% month-to-month probabilities of
remaining in the low and high volatility regimes,
respectively. From Fig. 1, which displays the
smoothed probabilities of the high volatility regime
over the sample period, we observe that the periods of
high stock market volatility include all of the
National Bureau of Economic Research (NBER)
recessions, suggesting a link between market volatility
and the state of the economy.

Table 2 reports estimates for regime-switching
volatility and market risk premium based on the
specifications of the market return given in Equations
15 and 17. In this case, the model is estimated
separately from consideration of portfolio returns
and we consider both a restricted version of the
model without volatility feedback (i.e. �¼ 0) and a
version that allows for volatility feedback. The model
without volatility feedback has a negative estimated
market risk premium in the high volatility regime, as
discussed in the previous section. Notably, whether or
not the market risk premium is actually negative, its
estimate is significantly lower in the high volatility
regime than in the low volatility regime. This result
does not accord with a basic theoretical positive
relationship between risk and return.9 However, after
accounting for volatility feedback, the estimates are
consistent with a positive relationship. Meanwhile, a
Likelihood Ratio (LR) test rejects the restricted
model without volatility feedback with a p-value of
<0.001 based on an asymptotic 
2(1) distribution,
suggesting that volatility feedback is an important
feature of stock returns. This is true whether or not
the dummy variable is included in the model,
suggesting that the feedback term is not merely

proxying for large negative outliers. In addition to the
significant feedback term, the estimates for market
volatility are quite different across the two regimes.
Thus, taken together, these results provide evidence
of significant time variation in the market risk
premium related to changes in market volatility.

Despite the differences in estimates of the market
risk premium for the two models with and without
volatility feedback, the estimates related to volatility
are quite similar. Also, smoothed probabilities of the
volatility regimes for both models are similar, with a
correlation of 0.95, suggesting that the regimes are
mainly identified by changes in variance rather than
by changes in the mean of excess returns. However,
given the significance of the feedback parameter, we
focus on models with volatility feedback in the
remainder of this article.

Regime-switching betas for B/M portfolios

Do the betas for the B/M portfolios vary across
market volatility regimes? To test for a regime-
switching beta for a given portfolio, we consider
another LR test. In this case, the LR test statistic is
constructed based on the likelihood for a restricted
version of the joint model of portfolio and market
returns described by Equations 16 and 17 in which
alpha is allowed to be regime switching and beta is
assumed to be constant across volatility regimes
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Fig. 1. Monthly stock market excess returns and smoothed

probabilities of the high volatility regime

Notes: Returns are continuously compounded monthly
value-weighted returns for all stocks listed on the NYSE,
AMEX and NASDAQ in excess of continuously com-
pounded one-month Treasury bill yields for the sample
period of July 1963 to December 2010. Shaded areas
correspond to NBER recessions.

9 Breen et al. (1989), Campbell (1987), Nelson (1991) and Glosten et al. (1993), among many others, find a negative
relationship between market volatility and the market risk premium. Glosten et al. (1993) argue that market participants may
not require a larger risk premium in more risky periods because they may need to save relatively more for a future that may be
even riskier.

Time variation of CAPM betas across market volatility regimes 1469

D
ow

nl
oa

de
d 

by
 [

U
N

SW
 L

ib
ra

ry
] 

at
 1

9:
16

 2
0 

M
ay

 2
01

2 



relative to the likelihood for a less restrictive version

of the model in which both alpha and beta are

allowed to be regime switching. Because both models

have Markov-switching market volatility under the

null hypothesis, they are nested without nuisance

parameters and the LR statistic should have an

asymptotic 
2(1) distribution. The test results,

reported in Table 3, strongly support regime-switch-

ing betas for five out of ten B/M portfolios. Amongst

the B/M portfolios for which the unconditional

CAPM is rejected, the LR tests support regime-

switching betas at the 1% level for the ninth and

tenth decile portfolios, the 5% level for the ‘High

minus Low’ portfolio, and just shy of the 10% level

for the eighth decile portfolio. The LR tests also

support regime-switching betas for three of the B/M

portfolios for which the unconditional CAPM cannot

be rejected. It should be noted that the fact that the

LR tests cannot reject a constant beta for the first,

fourth, sixth, and seventh decile portfolios only

suggests that the betas for these portfolios do not

have large changes over the market volatility regimes,

but they may still be time varying. However, impor-

tantly for the conditional CAPM, they appear not to

be time varying in a way that corresponds to changes

in the market risk premium.
The residual diagnostics, also reported in Table 3,

suggest that, after accounting for time variation in

beta and a regime-switching variance, there are no

remaining significant ARCH effects in the portfolio

residuals and, for the most of the B/M portfolios,

conditional Normality of returns cannot be rejected

based on the Jarque and Bera (1980) test.

These results are consistent with Hamilton and

Table 2. Parameter estimates for regime-switching volatility and market risk premium

Model �m,0 �m,1 � 	 �m,0 �m,1 qm pm logL

Model without 1.00 �1.90 3.15 6.24 0.95 0.92 �1635.72
volatility feedback (0.22) (�1.05) (0.24) (0.55) (0.02) (0.07)

Model with 0.30 0.80 �7.00 2.96 5.80 0.96 0.93 �1630.69
volatility feedback (0.20) (0.32) (1.46) (0.23) (0.46) (0.02) (0.05)

Model with volatility 0.27 0.60 �6.81 �24.89 2.59 5.07 0.95 0.96 �1614.08
feedback and dummy (0.20) (0.24) (1.13) (3.15) (0.28) (0.28) (0.02) (0.05)

Notes: The model for the market return is described by Equations 15 and 17, where � ¼ 0 for the version of the model without
volatility feedback. The model with volatility feedback and dummy includes the dummy parameter, denoted 	. The SE for the
volatility feedback parameter estimate was obtained using the Delta method. logL denotes the log likelihood.

Table 3. Likelihood ratio tests for regime-switching betas and residual diagnostics for B/M portfolios

Low 2 3 4 5 6 7 8 9 High HML

LR stat. 1.19 16.72 18.24 0.05 9.91 0.12 0.84 2.69 6.75 7.52 5.52
p-value (0.28) (0.00) (0.00) (0.83) (0.00) (0.73) (0.36) (0.10) (0.01) (0.01) (0.02)

Residual diagnostic tests: portfolio return with constant beta and variance
ARCH-LM 3.37 22.71 44.89 95.30 50.49 9.74 28.40 65.40 12.64 7.98 5.17
p-value (0.07) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02)
JB stat. 5.42 13.68 403.27 494.45 266.36 186.01 289.70 549.59 168.51 310.39 62.74
p-value (0.07) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Residual diagnostic tests: portfolio return with regime-switching beta and variance
ARCH-LM 0.03 0.77 0.41 0.83 0.73 2.08 3.63 4.25 0.94 0.33 0.58
p-value (0.85) (0.38) (0.52) (0.36) (0.39) (0.15) (0.06) (0.04) (0.33) (0.57) (0.45)
JB stat. 0.72 3.73 3.66 2.57 3.29 0.41 0.62 2.26 1.35 8.50 1.44
p-value (0.70) (0.16) (0.16) (0.28) (0.19) (0.81) (0.74) (0.32) (0.51) (0.01) (0.49)

Notes: To test for a regime-switching �, we use likelihood ratio (LR) test statistics constructed based on the likelihood for the
joint model of market and portfolio returns with regime-switching � and constant � (null) and the likelihood for the model
with regime-switching � and � (alternative). The residual diagnostic tests are conducted for the residuals in the portfolio
return equation of the joint model. The ARCH-LM statistics are constructed using R2 from an auxiliary regression of squared
standardized residuals on their lag and have a 
2(1) asymptotic distribution under the null of no ARCH effects. The JB –
Jarque and Bera (1980) test statistics of Normality of residuals have a 
2(2) asymptotic distribution under the null of
Normality. HML denotes a ‘High minus Low’ portfolio.
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Susmel (1994). They find that most of the ARCH
effects in weekly stock returns die out at the monthly
horizon and the remaining volatility changes that
persist over longer period of time can be captured by
a two-state Markov-switching process. For compar-
ison, the residuals for the unconditional CAPM
regression model exhibit strong ARCH effects and
Normality is strongly rejected.

For each of the B/M portfolios, Table 4 reports
estimates for the regime-switching model of portfolio
and market returns described by Equations 16 and
17. The estimates of the betas for the two portfolios
with the highest B/M ratios (i.e. ‘value’ portfolios)
vary considerably across the two market volatility
regimes; in particular, the betas for these portfolios in
the low volatility regime are higher than in the high
volatility regime. This result appears contrary to
some theoretical models (e.g. Zhang, 2005) that
suggest betas for value portfolios should be higher
during bad times when marginal utility is high than in
good times. However, our findings are similar to Ang
and Kristensen (2010), who find using nonparametric
estimates that betas for value portfolios are higher

during bad times than in good times. Our findings are

also consistent with Lakonishok et al. (1994), who

report that betas for value portfolios are higher

(lower) than betas for growth portfolios (i.e. portfo-

lios with low B/M ratios) in good times (bad times).

They explain the B/M anomaly by ‘contrarian’

investment behaviour, whereby certain market par-

ticipants overinvest in stocks that are ‘underpriced’

and underinvest in stock that are ‘overpriced’. By

contrast, Petkova and Zhang (2005) find a positive

relationship between betas for value portfolios and

the market risk premium. However, as discussed by

Ang and Kristensen (2010), this result is presumably

driven by the specification of both beta and the

market risk premium as linear functions of the same

instrumental variables. Meanwhile, our finding that

the dispersion of betas for B/M portfolios is consid-

erably higher in the high volatility regime than in the

low volatility regime is consistent with the theoretical

findings in Gomes et al. (2003), who show that the

dispersion of conditional betas should be countercy-

clical to the business cycle.

Table 4. Estimates for the regime-switching model of market and portfolio returns for BM portfolios

Low 2 3 4 5 6 7 8 9 High HML

Panel A: Regime-switching alphas
�i, 0 �0.20 �0.17 �0.11 0.01 0.03 0.20 0.30 0.30 0.27 0.25 0.32
SE (0.11) (0.07) (0.06) (0.01) (0.19) (0.11) (0.10) (0.11) (0.13) (0.18) (0.33)
�i, 1 0.07 0.23 0.23 �0.01 0.06 0.04 �0.15 0.13 0.22 0.21 0.33
SE (0.16) (0.12) (0.13) (0.02) (0.11) (0.13) (0.19) (0.12) (0.13) (0.23) (0.25)

Panel B: Regime-switching betas
�i, 0 1.02 1.12 1.10 1.02 1.03 0.97 0.90 0.96 1.12 1.29 0.41
SE (0.04) (0.02) (0.02) (0.03) (0.04) (0.04) (0.03) (0.04) (0.05) (0.08) (0.11)
�i, 1 1.07 0.95 0.93 1.03 0.90 0.95 0.96 0.86 0.89 0.86 �0.17
SE (0.03) (0.02) (0.03) (0.02) (0.02) (0.02) (0.04) (0.03) (0.03) (0.05) (0.06)

Panel C: Other parameters
�m, 0 0.22 0.33 0.44 0.27 0.25 0.28 0.33 0.29 0.34 0.33 0.27
SE (0.20) (0.20) (0.18) (0.21) (0.20) (0.20) (0.21) (0.19) (0.18) (0.19) (0.20)
�m, 1 0.69 0.80 0.55 0.59 0.63 0.57 0.67 0.57 0.39 0.53 0.54
SE (0.26) (0.30) (0.23) (0.25) (0.21) (0.23) (0.28) (0.22) (0.16) (0.22) (0.19)
� �6.75 �5.71 �7.04 �6.81 �6.98 �6.96 �6.80 �6.78 �6.95 �6.13 �6.39
SE (1.09) (1.33) (1.56) (1.15) (1.24) (1.12) (1.46) (1.14) (1.35) (1.17) (1.07)
	 �25.06 �25.44 �25.27 �24.81 �25.55 �24.84 �25.30 �23.98 �23.90 �23.72 �24.00
SE (2.98) (2.70) (2.89) (3.23) (2.37) (3.21) (2.81) (3.70) (3.61) (3.84) (3.58)
�m, 0 2.58 3.02 3.32 2.58 2.60 2.58 2.91 2.71 2.86 2.87 2.51
SE (0.21) (0.19) (0.17) (0.31) (0.23) (0.27) (0.23) (0.25) (0.17) (0.20) (0.23)
�m, 1 5.06 5.53 5.63 5.06 5.03 5.06 5.32 5.12 5.06 5.17 4.92
SE (0.25) (0.36) (0.36) (0.30) (0.26) (0.26) (0.32) (0.27) (0.23) (0.29) (0.22)
�i, 0 1.15 1.19 1.16 1.23 1.30 1.33 1.39 1.53 1.71 2.38 3.48
SE (0.13) (0.06) (0.04) (0.06) (0.09) (0.06) (0.08) (0.07) (0.12) (0.10) (0.15)
�i, 1 2.21 2.33 3.12 3.55 3.09 3.14 3.66 4.51 3.94 6.12 7.01
SE (0.11) (0.39) (0.39) (0.38) (0.39) (0.30) (0.34) (0.46) (0.53) (0.71) (0.56)

Notes: Data are for value-weighted B/M decile portfolios for the sample period of July 1963 to December 2010. HML denotes
a ‘High minus Low’ portfolio. Panels A and B report alphas and betas from the regime-switching model of portfolio and
market returns described by Equations 16 and 17. Statistically significant alphas at the 5% level are in bold face.
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From Table 1, the unconditional CAPM can be
rejected for the value portfolios, while we find that

the regime-switching alphas for these portfolios are
closer to zero in both regimes. Although the alphas
for the second, seventh, eighth, and ninth decile
portfolios remain statistically significant at the 5%
level in the low volatility regime, the alphas for all

decile portfolios are statistically insignificant in the
high volatility regime. We note that, for the second
decile portfolio, the unconditional CAPM regression
model has economically and statistically insignificant

alpha, while the regime-switching model has statisti-
cally significant alpha in one of the regimes. This
result illustrates that, while CAPM may appear to
hold unconditionally, it could still fail in some states
of the economy.

Table 5 reports estimates of the long-run expected

alphas for the B/M portfolios. These long-run alphas
are computed as weighted-averages of alpha in the
two market volatility regimes, with weights equal to
the steady-state probabilities of the regimes. The
estimates suggest that the values of most of the long-

run alphas are closer to zero than the alphas for the
unconditional CAPM regression model, although
most of them are still statistically significant. To be
clear, then, we do not claim that the conditional

CAPM explains the entire behaviour of excess
returns for the B/M portfolios; point estimates of
alphas for the last three portfolios are still large. Yet,
we find evidence that portfolios with high B/M

return premia demonstrate strong time variation of
betas in the two market volatility regimes. We also
find that accounting for time variation in the betas
for the B/M portfolios over different states of the

economy helps to explain some of the excess returns
not captured by the unconditional CAPM. For

example, the long-run expected alpha for the ‘High
minus Low’ portfolio strategy declined from 0.50 for
the unconditional CAPM regression model to 0.33

for the regime-switching model.
Figure 2 illustrates the relative performance of the

unconditional CAPM and the regime-switching con-
ditional CAPM for the B/M portfolios. If the CAPM

provided a useful qualitative prediction for the
behaviour of returns, then one should observe points
scattered along the 45� line, which corresponds to

excess returns fitted by the CAPM being equal to
average realized excess returns. As reported in many
studies (e.g. Fama and French, 1992; Jagannathan

and Wang, 1996), the unconditional CAPM performs
very poorly. The unconditional CAPM predicts flat
excess returns for the B/M portfolios, while the

average realized excess returns vary significantly
across the portfolios. The correlation coefficient
between the excess returns predicted by the uncondi-

tional CAPM and average realized excess returns for
the different portfolios has a value of �0.24, confirm-
ing the poor performance of the unconditional

CAPM.
The performance of the regime-switching condi-

tional CAPM for the B/M portfolios is different across
the two regimes. Although there is not much visual
improvement in the regime-switching conditional

CAPM performance in the low volatility regime,
there is an apparent improvement in the high volatility
regime, where we can observe a fairly linear

relationship between the CAPM-predicted excess
returns and the average realized excess returns.10

Table 5. Long-run expected alphas for B/M portfolios

Low 2 3 4 5 6 7 8 9 High HML

Panel A: Alphas for the unconditional CAPM regression model
�i �0.15 0.00 0.04 0.04 0.07 0.14 0.23 0.26 0.31 0.36 0.50

SE (0.10) (0.06) (0.07) (0.09) (0.09) (0.08) (0.11) (0.12) (0.11) (0.16) (0.20)

Panel B: Long-run expected alphas for the regime-switching model
�i �0.06 �0.03 �0.01 0.00 0.04 0.11 0.12 0.21 0.24 0.23 0.33
SE (0.09) (0.06) (0.06) (0.02) (0.11) (0.08) (0.09) (0.07) (0.09) (0.13) (0.17)

Notes: Panel A repeats estimates of � from the unconditional CAPM regression model, also reported in Table 1, for
comparison purposes. HML denotes a ‘High minus Low’ portfolio. Panel B reports estimates of long-run expected alphas for
the regime-switching model of portfolio and market returns described by Equations 16 and 17. The long-run expected alpha
for each portfolio is constructed as the weighted average of alphas in the two market volatility regimes, with weights equal to
the steady-state probabilities of each regime. The standard errors for these expected alphas are computed using the Delta
method.

10 The fitted excess returns for B/M portfolios in high market volatility regime are negative because they are computed based
on realized market excess returns (see details in the note to Fig. 2), which are negative. We use realized market excess returns
to compute fitted excess returns because we compare them with actual realized excess returns of portfolios.
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The correlation coefficients between the excess returns
fitted by the conditional CAPM and the average
realized excess returns for different B/M portfolios
have values of 0.58 and 0.98 in the ‘low’ and ‘high’
market volatility regimes, respectively. This result
suggests that, in the high volatility regime at least, the
regime-switching conditional CAPM provides a much
better qualitative prediction for excess returns on the
B/M portfolios than provided by the unconditional
CAPM.

Although there is some variation in the evidence
for regime-switching betas across different B/M
portfolios, the estimates of parameters related to the
market return when considered jointly with the
different B/M portfolios are in the same range as
those for a model of the market return with regimes
identified using only market volatility and not jointly
estimated with portfolio betas. The correlation coef-
ficients between smoothed probabilities of the high
volatility regime for the market-only model and the
joint market/CAPM model for the different deciles of
the B/M portfolios range from 0.75 to 0.99. This
finding suggests that the regimes are mainly identified
by changes in market volatility rather than by
changes in the betas. Figure 3 displays portfolio
excess returns and smoothed probabilities of the high
market volatility regime for the first, fifth and tenth
B/M decile portfolios. Consistent with the regimes
being identified by changes in market volatility, the
smoothed probabilities appear quite similar to those
in Fig. 1 and to each other across the different
portfolios.

Regime-switching betas for momentum portfolios

For the analysis of the momentum portfolios, we
proceed as before with the B/M portfolios. The LR

tests for the null hypothesis of a constant beta, the
results for which are reported in Table 6, support

regime-switching betas at the 5% level for all but the
fifth and sixth decile portfolios. Indeed, the tests are
significant at the 1% level in the majority of cases.

Thus, there is strong evidence for regime-switching
betas for all of the momentum portfolios for which
the unconditional CAPM can be rejected, as well as

for some of the portfolios for which it cannot be
rejected.

The residual diagnostic tests, also reported in

Table 6, suggest that, for most of the momentum
portfolios, there are no remaining ARCH effects in
the portfolio residuals. The Normality of the resid-

uals cannot be rejected for the majority of the
portfolios based on the Jarque and Bera (1980) test
and the test statistics for other portfolios declined

considerably relative to those for the unconditional
CAPM regression model. Again, the residuals for the

unconditional CAPM regression model exhibit strong
ARCH effects and their Normality is strongly
rejected.

Table 7 reports estimates for the regime-switching

model of the market and portfolio returns for each of
the momentum portfolios. The estimates of the betas
for most of the momentum portfolios vary consider-

ably across the two volatility regimes. Betas for the
four portfolios of stocks, which have relatively strong
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Fig. 2. CAPM fitted excess returns versus average realized excess returns for book-to-market portfolios

Notes: The returns are expressed as annualized percentages. The left scatter plt displays points with the average realized excess
returns on the horizontal axis and the fitted excess returns from the unconditional CAPM on the vertical axis. The scatter plot
in the middle (on right) displays points with the average realized excess returns conditional on smoothed probabilities of the
high market volatility regime being lower (higher) than 0.5 on the horizontal axis and the fitted excess returns in the low (high)
volatility regime from the regime-switching conditional CAPM on the vertical axis. The fitted excess return for each portfolio
at low (high) market volatility regime is computed as an average of fitted excess returns calculated as a product of estimated
betas in a previous period regime and realized market excess returns for observations with smoothed probabilities of high
market volatility lower (higher) than 0.5. The straight lines on the graphs are 45� lines from the origins.
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returns in the previous year (the ‘winner’ portfolios),

are higher in the low volatility regime than in the high

volatility regime. By contrast, betas for the four

portfolios of stocks, which have relatively weak

returns in the previous year (the ‘loser’ portfolios),

are lower in the low volatility regime than in the high

volatility regime.
Table 8 reports estimates of the long-run

expected alphas for the momentum portfolios.

Compared to the B/M portfolios, we observe

smaller differences from the unconditional CAPM

alphas. For example, the long-run expected alpha

for the ‘High minus Low’ portfolio strategy

declined only from 1.57 for the unconditional

CAPM regression model to 1.49 for the regime-

switching model. Therefore, we do not argue that

the regime-switching conditional CAPM explains

the failure of the unconditional CAPM for the

momentum portfolios.11 However, as shown in

Fig. 4, allowing for changes in beta still helps the

CAPM in terms of its qualitative predictions. In

particular, similar to Fig. 2 for the B/M portfolios,

Fig. 4 illustrates the relative performance of the

unconditional CAPM and the regime-switching

conditional CAPM for the momentum portfolios.

As with the B/M portfolios, the unconditional
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Fig. 3. Monthly returns for selected B/M portfolios and smoothed probabilities of the high market volatility regime

Notes: Returns are continuously compounded monthly value-weighted returns for B/M portfolios in excess of continuously
compounded one-month Treasury bill yields for the sample period of July 1963 to December 2010. Shaded areas correspond
to NBER recessions.

Table 6. Likelihood ratio tests for regime-switching betas and residual diagnostics for momentum portfolios

Low 2 3 4 5 6 7 8 9 High HML

LR stat. 10.81 69.62 53.60 21.08 1.33 3.36 6.73 15.56 73.28 41.50 28.13
p-value (0.00) (0.00) (0.00) (0.00) (0.25) (0.07) (0.01) (0.00) (0.00) (0.00) (0.00)

Residual diagnostic tests: portfolio return with constant beta and variance
ARCH-LM 84.97 41.05 39.35 64.33 7.49 44.86 28.22 28.77 34.81 19.45 84.78
p-value (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
JB stat. 722.12 541.32 914.26 484.24 2266.40 612.24 1038.02 100.31 340.77 165.60 575.03
p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Residual diagnostic tests: portfolio return with regime-switching beta and variance
ARCH-LM 0.70 6.56 0.31 0.03 0.06 0.22 0.91 1.01 0.91 0.39 0.37
p-value (0.40) (0.01) (0.58) (0.86) (0.80) (0.64) (0.34) (0.31) (0.34) (0.53) (0.54)
JB stat. 18.60 13.15 3.43 1.26 3.70 1.22 1.99 0.39 7.82 8.95 17.38
p-value (0.00) (0.00) (0.18) (0.53) (0.16) (0.54) (0.37) (0.82) (0.02) (0.01) (0.00)

Notes: To test for a regime-switching �, we use LR test statistics constructed based on the likelihood for the joint model of
market and portfolio returns with regime-switching � and constant � (null) and the likelihood for the model with regime-
switching � and � (alternative). The residual diagnostic tests are conducted for the residuals in the portfolio return equation of
the joint model. The ARCH-LM statistics are constructed using R2 from an auxiliary regression of squared standardized
residuals on their lag and have a 
2(1) asymptotic distribution under the null of no ARCH effects. The JB – Jarque and Bera
(1980) test statistics of Normality of residuals have a 
2(2) asymptotic distribution under the null of Normality. HML denotes
a ‘High minus Low’ portfolio.

11 Jegadeesh and Titman (1993) and Fama and French (1996) suggest that the momentum anomalies may reflect a short-run
underreaction to news. To the extent this is the case, we should not expect the conditional CAPM to explain alpha for the
momentum portfolios.
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CAPM predicts nearly the same excess returns for
the various momentum portfolios, while there is
significant variation in average realized excess
returns across the portfolios. When the two

volatility regimes are considered separately, there
appears to be a positive linear relation between the
excess returns fitted by the conditional CAPM and
the averaged realized excess returns.12

Table 7. Estimates for the regime-switching model of market and portfolio returns for momentum portfolios

Low 2 3 4 5 6 7 8 9 High HML

Panel A: Regime-switching alphas
�i, 0 �0.34 �0.14 �0.12 �0.11 �0.05 0.00 �0.11 0.24 0.18 0.56 1.44

SE (0.18) (0.10) (0.08) (0.07) (0.08) (0.06) (0.11) (0.07) (0.09) (0.14) (0.27)
�i, 1 �1.94 �0.61 0.05 0.16 �0.13 �0.03 0.14 0.10 0.29 0.30 1.64

SE (0.23) (0.22) (0.13) (0.18) (0.12) (0.07) (0.12) (0.18) (0.13) (0.26) (0.76)

Panel B: Regime-switching betas
�i, 0 1.11 0.92 0.85 0.86 0.87 0.87 1.04 1.02 1.20 1.35 0.24
SE (0.05) (0.03) (0.03) (0.02) (0.04) (0.04) (0.03) (0.02) (0.03) (0.04) (0.09)
�i, 1 1.37 1.54 1.23 1.15 0.96 1.00 0.91 0.76 0.82 0.80 �0.96
SE (0.05) (0.04) (0.04) (0.04) (0.03) (0.02) (0.03) (0.04) (0.03) (0.06) (0.39)

Panel C: Other parameters
�m, 0 0.24 0.45 0.32 0.26 0.36 0.36 0.28 0.47 0.37 0.40 0.43
SE (0.21) (0.18) (0.19) (0.19) (0.20) (0.19) (0.21) (0.18) (0.18) (0.18) (0.18)
�m, 1 0.65 0.70 1.00 1.03 0.58 0.35 0.77 0.58 0.54 0.86 0.72
SE (0.23) (0.23) (0.33) (0.32) (0.24) (0.16) (0.26) (0.24) (0.19) (0.30) (0.25)
� �6.82 �5.68 �5.66 �4.79 �5.82 �7.25 �5.74 �5.36 �4.38 �5.60 �5.34
SE (1.19) (1.13) (1.04) (1.07) (1.77) (1.30) (1.27) (1.47) (1.09) (1.14) (1.31)
	 �25.53 �25.26 �25.16 �25.07 �24.05 �23.91 �25.50 �25.27 �25.34 �24.86 �25.28
SE (2.38) (2.96) (3.01) (3.07) (3.82) (3.50) (2.57) (3.00) (2.77) (3.35) (3.00)
�m, 0 2.66 3.42 3.35 3.41 2.92 2.39 2.81 3.47 3.19 3.47 3.47
SE (0.18) (0.14) (0.17) (0.18) (0.26) (0.18) (0.33) (0.21) (0.18) (0.15) (0.18)
�m, 1 5.03 5.70 5.72 5.82 5.37 4.91 5.29 5.80 5.55 5.86 5.86
SE (0.23) (0.37) (0.41) (0.44) (0.38) (0.20) (0.40) (0.39) (0.30) (0.42) (0.45)
�i, 0 2.29 1.44 1.37 1.28 1.20 1.14 1.28 1.10 1.44 2.00 3.47
SE (0.11) (0.10) (0.06) (0.05) (0.05) (0.04) (0.05) (0.08) (0.06) (0.15) (0.46)
�i, 1 7.43 3.99 4.94 4.18 3.49 3.41 4.42 2.31 4.14 4.58 9.20
SE (0.49) (0.24) (0.39) (0.36) (0.30) (0.29) (0.55) (0.19) (0.61) (0.39) (0.95)

Notes: Data are for value-weighted momentum decile portfolios for the sample period of July 1963 to December 2010. HML
denotes a ‘High minus Low’ portfolio. Panels A and B report alphas and betas from the regime-switching model of portfolio
and market returns described by Equations 16 and 17. Statistically significant alphas at the 5% level are in bold face.

Table 8. Long-run expected alphas for momentum portfolios

Low 2 3 4 5 6 7 8 9 High HML

Panel A: Alphas for the unconditional CAPM regression model
�i �1.07 �0.35 �0.10 �0.02 �0.07 �0.01 0.06 0.24 0.23 0.50 1.57

SE (0.20) (0.14) (0.12) (0.11) (0.08) (0.06) (0.08) (0.07) (0.09) (0.14) (0.28)

Panel B: Long-run expected alphas for the regime-switching model
�i �1.19 �0.26 �0.08 �0.05 �0.08 �0.02 0.00 0.20 0.22 0.50 1.49

SE (0.20) (0.10) (0.07) (0.07) (0.07) (0.04) (0.06) (0.07) (0.07) (0.12) (0.23)

Notes: Panel A repeats estimates of � from the unconditional CAPM regression model, also reported in Table 1, for
comparison purposes. HML denotes a ‘High minus Low’ portfolio. Panel B reports estimates of long-run expected alphas for
the regime-switching model of portfolio and market returns described by Equations 16 and 17. The long-run expected alpha of
each portfolio is constructed as the weighted average of alphas in the two market volatility regimes, with weights equal to the
steady-state probabilities of each regime. The standard errors for these expected alphas are computed using the Delta method.

12 The 1st decile portfolio appears to be an outlier from the linear relationship in the high volatility regime. However, the
average returns for this portfolio are negative, while it has the highest volatility amongst all momentum portfolios. Because
this portfolio comprises assets under financial stress and limited borrowing, we should probably not expect the CAPM to
explain the returns for this decile.
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The correlation coefficient between the excess
returns fitted by the unconditional CAPM and
average realized excess returns for the different
portfolios has a value of �0.57, confirming a simi-
larly poor performance of the unconditional CAPM
as was found for the B/M portfolios. Meanwhile, the
correlation coefficients between the excess returns
fitted by the conditional CAPM and the average
realized excess returns for different momentum port-
folios have values of 0.70 and 0.73 in the ‘low’ and
‘high’ market volatility regimes, respectively. Thus,
the regime-switching conditional CAPM provides
much better qualitative predictions for excess returns
on the momentum portfolios than provided by the
unconditional CAPM.

Given the lack of tangible improvement in the
long-run expected alphas, it might seem surprising
that there is such an improvement in the qualitative
predictions of the conditional CAPM. This result can
be explained by the fact that the alphas, while
apparently not equal to zero, are responsible for
only relatively small portions of the overall portfolio
returns. By contrast, variation in the market return
explains sizable portions of the portfolio returns,
especially in the high volatility regime. In this sense,
the conditional CAPM, while not strictly holding for
all portfolios, appears to provide a reasonable
approximation of asset pricing behaviour.

The correlation coefficients between smoothed
probabilities of the high volatility regime from the
market-only model and the joint market/CAPM
model for different deciles of the momentum portfo-
lios range from 0.59 to 0.94. Evidently, in some cases,

changes in betas are not so strongly related to
changes in market volatility. In principle, to resolve
this issue, we could consider a joint model that
imposes the same market volatility regimes for all
momentum portfolios. However, in practice, this is
not feasible since it is important to allow for
heteroscedasticity in idiosyncratic news for each
portfolio, which would require incorporating 211

(i.e. 2048) regime processes in the joint model for
all momentum portfolios. In some cases, then, the
joint market/CAPM model for each momentum
portfolio identifies regimes as joint market volatil-
ity/beta regimes rather than as market volatility
regimes. For the ‘loser’ portfolios (first, second,
third and fourth deciles), the joint market volatility/
beta regimes are identified as low volatility/low beta
and high volatility/high beta regimes. For the
‘winner’ portfolios (seventh, eighth, ninth and tenth
deciles), the regimes are identified as low volatility/
high beta and high volatility/low beta. Figure 5
displays the excess portfolio returns and smoothed
probabilities of the high market volatility regime for
the first, fifth and tenth momentum decile portfolios.
Although changes in beta for the first momentum
decile portfolio do not appear to significantly alter
the identification of volatility regimes, as the
smoothed probabilities are similar to those in Fig.
1, changes in beta appear to strongly affect the
identification of regimes for the tenth momentum
decile portfolios. This lack of correspondence may
also explain why the regime-switching conditional
CAPM can still be rejected for a majority of the
momentum portfolios.
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Fig. 4. CAPM fitted excess returns versus average realized excess returns for momentum portfolios

Notes: The returns are expressed as annualized percentages. The left scatter plot displays points with the average realized
excess returns on the horizontal axis and the fitted excess returns from the unconditional CAPM on the vertical axis. The
scatter plot in the middle (on right) displays points with the average realized excess returns conditional on smoothed
probabilities of the high market volatility regime being lower (higher) than 0.5 on the horizontal axis and the fitted excess
returns in the low (high) volatility regime from the regime-switching conditional CAPM on the vertical axis. The fitted excess
return for each portfolio at low (high) market volatility regime is computed as an average of fitted excess returns calculated as
a product of estimated betas in a previous period regime and realized market excess returns for observations with smoothed
probabilities of high market volatility lower (higher) than 0.5. The straight lines on the graphs are 45� lines from the origins.
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IV. Conclusion

In this article, we allowed for time variation in
CAPM betas for B/M and momentum portfolios
according to a two-state Markov-switching process
driven by stock market volatility. Our empirical
findings suggest strong evidence of time variation in
betas across volatility regimes in almost all of the
cases for which the unconditional CAPM can
be rejected. Somewhat supportive of the regime-
switching conditional CAPM, we found that account-
ing for this time variation in betas helps explain some
of the portfolio excess returns that are not captured
by the unconditional CAPM. Thus, although the
regime-switching conditional CAPM can still be
rejected in many cases, it provides much better
qualitative predictions about the relationship between
risk and return compared to the unconditional
CAPM, especially when market volatility is high.
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