Introduction	Idea	Model	Data	Market	LR test	B/M portfolios	Momentum portfolios	Conclusion

Time-variation of CAPM betas across market volatility regimes for Book-to-market and Momentum portfolios

> Azamat Abdymomunov James Morley

Department of Economics Washington University in St. Louis

October 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Capital Asset Pricing Model

$$\mathsf{E}[r_i] = \beta_i \mathsf{E}[r_m]$$

where

- r_i is the excess return of asset i;
- *r_m* is the market excess return;
- β_i is the measure of asset's *i* risk.

$$\beta_i = \frac{Cov(r_i, r_m)}{Var(r_m)}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- CAPM performs poorly (Fama and French 1992,1993,1996);
- CAPM cannot explain some pricing anomalies:
 - "Size" effect : stocks of small firms outperform those of large firms;
 - "B/M" effect : stocks with high B/M ratios outperform those with low B/M ratios;
 - "Momentum" effect: stocks with high returns in past year outperform those with low past returns .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Many papers reports that β is time-varying: Jagannathan and Wang(1996), Lettau and Ludvigson(2001).

Conditional CAPM (CCAPM):

$$E_{t-1}[r_{i,t}] = \beta_{i,t-1}E_{t-1}[r_{m,t}]$$

applying iterated expectation:

$$E[r_{i,t}] = \overline{\beta}_i E[r_{m,t}] + Cov(\beta_{i,t-1}, E_{t-1}[r_{m,t}])$$

• CCAPM needs conditioning information

Introduction dea Model Data ON Market LR test B/M portfolios Momentum portfolios Conclusion ON Previous research on time-varying β

- Use of rolling windows and/or exogenously defined instrumental variables (IV);
- Common IVs to proxy the conditional market premium are related to BC: default spread, term spread;
- Lewellen and Nagel(2006) argue: CCAPM based on cross-sectional regressions do not impose important theoretical restrictions;
- Choice of IV may be subject to data mining concerns (results are somewhat sensitive to the choice of IV).

- Focus : investigate time-variation in βs across different states of the economy;
- States: low and high market volatility regimes;
- Market volatility regimes are related to BC;
 - Evidence of stock risk variations over BC (Perez-Quiros and Timmermann(2000) and Guidolin and Timmermann(2008)).

- Market volatility switches between two regimes identified by MS model;
 - Many papers show that market volatility can be modeled by MS and it is related to BC;

- Not subject to data mining concerns:
 - we do not use exogenously defined IV;
- Not subject to Lewellen and Nagel(2006) argument:
 - we do not use of cross-sectional estimation.

Introduction 0000	ldea ○○●	Model 00	Data 000	Market O	LR test 0	B/M portfolios	Momentum portfolios	Conclusion O
Finding	<u>j</u> S							

- Strong time-variation of βs across the market volatility regimes for those portfolios for which the unconditional CAPM is rejected;
- Accounting for variation of β s over states of the economy helps to explain some risk premium not captured by the unconditional CAPM

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction Idea Model Data Market LR test B/M portfolios Momentum portfolios Conclusion

New information available to agents at time t: $\varepsilon_t \sim N(0, \sigma_{S_m t}^2)$

$$\sigma_{S_{m,t}}^2 = \sigma_{m,0}^2 (1 - S_{m,t}) + \sigma_{m,1}^2 S_{m,t} \qquad \sigma_{m,0}^2 < \sigma_{m,1}^2$$

 $S_{m,t} = 0$ and $S_{m,t} = 1$ in low and high market volatility regimes

Transition probabilities: $Pr[S_{m,t} = 0|S_{m,t-1} = 0] = q_m$ $Pr[S_{m,t} = 1|S_{m,t-1} = 1] = p_m$

Assuming that agents observe $S_{m,t}$:

$$E[r_{m,t}|S_{m,t}] = \mu_{m,0} + \mu_{m,1}S_{m,t}$$

Assume β switchs between two market volatility regimes:

$$E[r_{i,t}|S_{m,t}] = \beta_{i,S_{m,t}}E[r_{m,t}|S_{m,t}]$$

Empirical joint model of the market volatility and CCAPM:

$$\begin{cases} r_{m,t} = \mu_{m,0} + \mu_{m,1}S_{m,t} + \varepsilon_t & \varepsilon_t \sim N(0,\sigma_{S_{m,t}}^2) \\ r_{i,t} = \alpha_{i,S_{m,t}} + \beta_{i,S_{m,t}}r_{m,t} + u_t & u_t \sim N(0,\sigma_{S_{i,t}}^2) \end{cases}$$

Introduction	ldea	Model	Data	Market	LR test	B/M portfolios	Momentum portfolios	Conclusion
0000	000	00	●○○	O	0		0000	O
Data								

- Monthly data on stock returns for value weighted decile portfolios (NYSE, AMEX, NASDAQ);
- Sorted by ratios of book equity to market capitalization (B/M portfolios) and previous year returns ("Momentum" portfolios);
- Returns are cts. compounded in excess of cts. compounded one-month TB (in percent)

• Period 1963:07-2007:12.

0000	Idea 000	00	Data ○●○	0	O CR test	0000	Momentum portfolios	O
CAPM	ner	forma	nce					

г

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summ	arv 🤇	statis	tics					
Introduction	Idea	Model	Data	Market	LR test	B/M portfolios	Momentum portfolios	Conclusion
0000	000	oo	○○●	O	0	0000	0000	O

Tabl	e1: Sun	ımary sta	itistics of I	Book-to-mar	ket and Momer	ntum portfolios

	Low	2	3	4	5	6	7	8	9	High
	Panel A	: B/M por	tfolios (m	onthly %)						
Excess return std. dev.	0.24 (5.14)	0.35 (4.72)	0.41 (4.69)	0.44 (4.62)	0.41 (4.37)	0.53 (4.32)	0.60 (4.22)	0.64 (4.22)	0.69 (4.56)	0.77 (5.27)
α std. error	-0.17 (0.10)	-0.04 (0.07)	0.02 (0.07)	0.08 (0.10)	0.07 (0.10)	0.19 (0.08)	0.29 (0.11)	0.32 (0.11)	0.35 (0.11)	0.40 (0.16)
β std. error	1.09 (0.03)	1.03 (0.02)	1.02 (0.02)	0.98 (0.03)	0.91 (0.03)	0.90 (0.03)	0.84 (0.04)	0.84 (0.04)	0.90 (0.04)	0.98 (0.05)
	Panel B	: Moment	um portfo	lios (mont	hly %)					
Excess return std. dev.	-0.59 (7.29)	0.07 (5.81)	0.24 (4.95)	0.31 (4.57)	0.23 (4.29)	0.33 (4.43)	0.37 (4.35)	0.59 (4.40)	0.64 (4.82)	0.99 (6.20)
α std. error	-1.10 (0.18)	-0.35 (0.14)	-0.12 (0.11)	-0.04 (0.11)	-0.11 (0.09)	-0.02 (0.06)	0.03 (0.07)	0.24 (0.08)	0.27 (0.09)	0.53 (0.14)
β std. error	1.36 (0.07)	1.12 (0.06)	0.97 (0.05)	0.93 (0.04)	0.90 (0.03)	0.93 (0.03)	0.91 (0.03)	0.92 (0.03)	1.00 (0.04)	1.21 (0.05)

Sample period 1963:07-2007:12. Data on the value-weighted portfolios sorted by deciles of B/M ratio and previous 11 month return. Newey and West (1987) HAC standard errors are reported in parentheses for α and β . Sample standard deviations are reported in parentheses for excess returns. Statistically significant alphas at the 5 percent level are in bold.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	ldea	Model	Data	Market	LR test	B/M portfolios	Momentum portfolios	Conclusion
0000	000	00	000	●	0	0000	0000	0
Market		acc ra	aturn					

Figure 1: Excess market stock returns and smoothed probabilities of the high volatility regime

<ロト <回ト < 注ト < 注ト

ł

- LR rejects CAPM with single β and α :
 - for 7-10 decile B/M portfolios;
 - for 2-3, 5-6, 8-10 decile Momentum portfolios;
- ARCH-LM test cannot reject the null : <u>no-ARCH in residuals;</u>
- Jarque-Berra test cannot reject the null : residuals are Normally distributed;
- Residuals from the unconditional CAPM: Both tests reject Normality and no-ARCH effect.

E la	. •		. c			C 11		
						0000		
Introduction	Idea	Model	Data	Market	LR test	B/M portfolios	Momentum portfolios	Conclusion

Estimation results for B/M portfolios

Table2: Estimation results for the joint model of regime-switching market excess returns and CAPM for the B/M portfolios

	Low	2	3	4	5	6	7	8	9	High
Panel A	: α from t	he regime-s	witching m	odel						
α ₀	-0.10	-0.20	-0.08	-0.02	0.00	0.18	0.14	0.23 (0.10)	0.25	0.30
std. error	(0.12)	(0.08)	(0.09)	(0.08)	(0.03)	(0.10)	(0.09)		(0.15)	(0.22)
α ₁	-0.18	0.19	0.13	0.18	0.06	0.05	-0.16	0.13	0.18	0.20
std. error	(0.26)	(0.13)	(0.14)	(0.17)	(0.14)	(0.13)	(0.27)	(0.15)	(0.15)	(0.27)
Panel B	: β from t	he regime-s	witching m	odel						
β ₀	1.08	1.09	1.04	1.01	0.93	0.95	0.99	0.94	1.14	1.20
std. error	(0.04)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.02)	(0.04)	(0.06)	(0.10)
β ₁	1.08	1.05	1.05	1.05	0.96	0.94	0.70	0.84	0.89	0.89
std. error	(0.04)	(0.02)	(0.02)	(0.02)	(0.03)	(0.02)	(0.04)	(0.03)	(0.03)	(0.04)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction Idea Model Data Market LR test B/M portfolios Momentum portfolios Conclusion of Performance of Regime-switching CAPM for B/M portfolios

Figure 2: B/M portfolios in different regimes

(日)、

ж

Figure 3: Excess returns of 1st, 5th, and 10th deciles B/M portfolios and smoothed probabilities of a high market volatility.

- High B/M portfolios demonstrate strong time-variation of β s;
- Regimes are identified as low market volatility / high β and high market volatility / low β;

Introduction	ldea	Model	Data	Market	LR test	B/M portfolios	Momentum portfolios	Conclusion
0000	000	00	000	O	0	0000	●○○○	0
Estima	tion	resul	ts foi	⁻ Mor	nentu	m portfol	ios	

Table3: Estimation results for	or the joint model o	f regime-switching	market excess	returns and	CAPM :	for the
Momentum portfolios						

Momentum portionos										
	Low	2	3	4	5	6	7	8	9	High
Panel	A: α from t	he regime-s	witching m	odel						
α ₀ std. error	-0.56 (0.20)	-0.15 (0.11)	-0.12 (0.08)	-0.10 (0.09)	-0.04 (0.07)	-0.06 (0.13)	-0.10 (0.08)	0.20 (0.09)	0.16 (0.09)	-0.01 (0.03)
α ₁ std. error	-2.49 (0.40)	-0.57 (0.24)	0.17 (0.20)	-0.01 (0.06)	-0.10 (0.16)	0.22 (0.25)	1.00 (0.72)	0.09 (0.14)	0.30 (0.13)	0.68 (0.15)
Panel	B: β from t	he regime-s	witching m	odel						
β ₀ std. error	1.30 (0.07)	0.93 (0.03)	0.87 (0.03)	0.96 (0.04)	0.86 (0.03)	0.91 (0.03)	0.96 (0.03)	1.04 (0.03)	1.19 (0.03)	1.68 (0.08)
β ₁ std. error	1.15 (0.07)	1.37 (0.07)	1.20 (0.03)	0.92 (0.04)	0.98 (0.02)	1.04 (0.02)	1.06 (0.04)	0.87 (0.03)	0.82 (0.03)	1.07 (0.04)

・ロト (個) (主) (主) (主) のへで

Introduction Idea Model Data Market LR test B/M portfolios Momentum portfolios Conclusion Performance of Regime-switching CAPM for Momentum portfolios

Figure 3: Momentum portfolios in different regimes

(日)、

э

Introduction Idea Model Data Market LR test B/M portfolios Momentum portfolios Conclusion OCOC Market volatility - beta regimes for Momentum portfolios

Figure 5: Excess returns of 2nd, 5th, and 10th deciles Momentum portfolios and smoothed probabilities of a high market volatility.

Introduction	ldea	Model	Data	Market	CR test	B/M portfolios	Momentum portfolios	Conclusion	
0000	000	00	000	O	○		○○○●	O	
Results for Momentum portfolios									

- Low ("losers") and high ("winners") Momentum portfolios demonstrate strong time-variation of βs;
- For "losers" regimes are identified as low market /low β volatility and high market volatility /high β ;
- For "winners" regimes are identified as low market volatility /high β and high market volatility /low β ;

Introduction	ldea	Model	Data	Market	LR test	B/M portfolios	Momentum portfolios	Conclusion
0000	000	00	000	O	0	0000	0000	•
Conclus	sion							

- We find evidence of strong time-variation across the market volatility regimes for:
 - high B/M portfolios;
 - low and high Momentum portfolios;
- These are portfolios for which the unconditional CAPM is rejected;
- Accounting for variation of β s over states of the economy helps to explain some risk premium not captured by the unconditional CAPM