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Outline

• Monte Carlo analysis of estimators

• Parametric Bootstrap Analysis

• Semiparametric Bootstrap Analysis



What is Monte Carlo? 

• Simulation using pseudo-random-numbers 
to evaluate the performance of estimators 
given specific data generating processes



Monte Carlo
• Specify the true DGP: e.g., R=mu+e, e~iidN

• S1. Simulate sample of T observations from 
DGP

• S2. Calculate estimate (i.e., mu_hat) and 
store

• S3. Repeat S1 and S2 for M simulations

• S4. Report summary statistics for M draws 
of estimator 



Monte Carlo 
Experiment

• How does OLS do for the CER model with 
mu=3, sigma=5, and T=50, 200?

• Estimator for mu?

• Confidence interval for mu?



Bootstrap?

• Use sample data to inform DGP used in 
Monte Carlo Analysis of estimator

• E.g., S&P500 stock returns and bootstrap 
percentile confidence interval



Confidence Intervals

• Rule to find set of possible parameter 
values that includes true parameter in (1-
alpha)% of samples (alpha is usually 5%)

• Standard 95% CI: mu_hat +/- t(alpha/2)*SE 
corresponds to inverted t-test rule (i.e., 
collect null hypotheses for mu that cannot 
be rejected using a t-test)



Percentile Approach

• Suppose we knew the distribution of 
mu_hat(rv) - mu

• Collect mu0’s for which mu_hat(estimate) - 
mu0 lies within the 2.5% and 97.5% 
percentile of mu_hat(rv) - mu



Equivalence

• In a simple setting (e.g., truth is CER model 
with Normal errors), and assuming known 
variance, standard CI and percentile CI are 
the same



Problem

• In reality, we don’t know the distribution of 
mu_hat(rv) - mu?



Possible Solution

• Use estimated parameters for DGP in 
order to conduct Monte Carlo simulation 
to find distribution of mu_hat(rv) - mu, 
when mu=mu_hat(estimate)

• This is a (parametric) bootstrap 
experiment



Pivotal

• To the extent that the distribution of 
mu_hat(rv) - mu does not depend on the 
value of mu, the distribution is said to 
pivotal

• If it is pivotal, the bootstrap experiment will 
work perfectly and is, perhaps, more 
intuitive than inverted t



Bootstrap Experiment

• Simulate distribution of mu_hat(rv) - mu

• Sort draws from distribution

• Find 2.5th percentile and 97.5th percentile

• Use this to determine values of mu0 for 
which mu_hat(estimate) would not fall 
below 2.5th percentile or above 97.5th 
percentile => 95% confidence interval



Why Bootstrap?

• In this simple case, as long as the conditions 
for OLS are satisfied, inverted t CI works 
just as well as (and is easier to compute 
than) bootstrap percentile CI

• However, when t-distribution is not good 
approximation to finite sample distribution 
(e.g., in presence of serial correlation), 
bootstrap can outperform inverted t



Outperform?

• For confidence intervals, we care about 
actual coverage versus nominal coverage 
(i.e., 95%)

• Undercoverage is common problem for CIs

• We also want to minimize the expected 
length of the interval given correct coverage



Semiparametric 
Bootstrap

• In the previous experiment, we assumed 
that returns were Normally distributed 
when simulating from bootstrap DGP

• What if they are not Normal?



Draw from Empirical 
Distribution

• For simulations, we can draw residuals from 
empirical distribution (with replacement)

• Proceed as before with parametric 
bootstrap experiment

• For sizable T, performs as well as when 
returns are actually Normal (e.g., consider 
fake data), but provides more accurate CIs 
when returns are not Normal


