Monte Carlo and Bootstrap Analysis Econ 487

Outline

- Monte Carlo analysis of estimators
- Parametric Bootstrap Analysis
- Semiparametric Bootstrap Analysis

What is Monte Carlo?

 Simulation using pseudo-random-numbers to evaluate the performance of estimators given specific data generating processes

Monte Carlo

- Specify the true DGP: e.g., R=mu+e, e~iidN
- SI. Simulate sample of T observations from DGP
- S2. Calculate estimate (i.e., mu_hat) and store
- S3. Repeat S1 and S2 for M simulations
- S4. Report summary statistics for M draws of estimator

Monte Carlo Experiment

- How does OLS do for the CER model with mu=3, sigma=5, and T=50, 200?
- Estimator for mu?
- Confidence interval for mu?

Bootstrap?

- Use sample data to inform DGP used in Monte Carlo Analysis of estimator
- E.g., S&P500 stock returns and bootstrap percentile confidence interval

Confidence Intervals

- Rule to find set of possible parameter values that includes true parameter in (1alpha)% of samples (alpha is usually 5%)
- Standard 95% CI: mu_hat +/- t(alpha/2)*SE corresponds to inverted t-test rule (i.e., collect null hypotheses for mu that cannot be rejected using a t-test)

Percentile Approach

- Suppose we knew the distribution of mu_hat(rv) mu
- Collect mu0's for which mu_hat(estimate) mu0 lies within the 2.5% and 97.5% percentile of mu_hat(rv) - mu

Equivalence

 In a simple setting (e.g., truth is CER model with Normal errors), and assuming known variance, standard CI and percentile CI are the same

Problem

 In reality, we don't know the distribution of mu_hat(rv) - mu?

Possible Solution

- Use estimated parameters for DGP in order to conduct Monte Carlo simulation to find distribution of mu_hat(rv) - mu, when mu=mu_hat(estimate)
- This is a (parametric) bootstrap experiment

Pivotal

- To the extent that the distribution of mu_hat(rv) - mu does not depend on the value of mu, the distribution is said to <u>pivotal</u>
- If it is pivotal, the bootstrap experiment will work perfectly and is, perhaps, more intuitive than inverted t

Bootstrap Experiment

- Simulate distribution of mu_hat(rv) mu
- Sort draws from distribution
- Find 2.5th percentile and 97.5th percentile
- Use this to determine values of mu0 for which mu_hat(estimate) would not fall below 2.5th percentile or above 97.5th percentile => 95% confidence interval

Why Bootstrap?

- In this simple case, as long as the conditions for OLS are satisfied, inverted t CI works just as well as (and is easier to compute than) bootstrap percentile CI
- However, when t-distribution is not good approximation to finite sample distribution (e.g., in presence of serial correlation), bootstrap can outperform inverted t

Outperform?

- For confidence intervals, we care about actual *coverage* versus nominal coverage (i.e., 95%)
- Undercoverage is common problem for Cls
- We also want to minimize the expected length of the interval given correct coverage

Semiparametric Bootstrap

- In the previous experiment, we assumed that returns were Normally distributed when simulating from bootstrap DGP
- What if they are not Normal?

Draw from Empirical Distribution

- For simulations, we can draw residuals from empirical distribution (with replacement)
- Proceed as before with parametric bootstrap experiment
- For sizable T, performs as well as when returns are actually Normal (e.g., consider fake data), but provides more accurate CIs when returns are not Normal