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Simulating an AR(1) 
Due: Thursday 9/3 

 
This homework will involve generating output from GAUSS. Please use a different 
program (e.g., Excel or EViews) for the figures (GAUSS figures are particularly ugly!). 
Compile all of your results in a word processor. Try to conserve paper in presenting the 
results. In particular, the figures do not need to be large, although I should be able to see 
what the units of measurement are.  
 
1. GAUSS Exercise 
 
Type up the attached program in a text editor (don’t forget those semicolons at the end of 
each line!) and save the file as “hw1.gau”. You may have to rename the file to make sure 
it is “hw1.gau” rather than, say, “hw1.gau.txt”. Open GAUSS. Go to the file menu. Select 
“Edit” and find the “hw1.gau” file. Open the file in GAUSS. The program “hw1.gau” 
will allow you to simulate and plot first-order autoregressive processes for different 
parameter values. Note the autoregressive parameter phi is initially set to 0.5. Also, be 
careful in distinguishing “1” (i.e., the number one) and “l” (i.e., the letter before m). 
 
• Run the program and look at resulting data (hw1.dta) in Excel to see what the 

resulting series looks like. Repeat this a few times to get a sense of what an AR(1) 
process with phi=0.5 looks like. Don’t print output yet.  

• Try different values for phi between –1 and 1, including phi=–0.9 and phi=0.9. 
• Try phi equal to one (the random walk case).  
• Try phi equal to 1.2 (an explosive case).  
 
a. Generate a plot of the series for the following cases: phi=-0.9, 0, 0.5, 0.9, 1, and 1.2. 

Comment on any notable features of the various plots. Does your plot for the phi=1 
case look more persistent than the phi=0.9 case? What do you find for the phi=1.2 
case? 

b. Repeat exercise a. for sample size (T) equal to 500. 
c. Comment on differences in findings across sample sizes. 
 
Now, find the “/*” below the line that reads “@here@”. Delete this “/*” tag and the “*/” 
tag at the end of the program.  
 
a. Set phi=0.5 and T=50. Run the program. You should get output for both conditional 

maximum likelihood and exact maximum likelihood. The difference is that 
conditional MLE treats the first observation as a given constant (log likelihood=0 for 
the observation) rather than as a random variable drawn from the unconditional 



distribution of Y. With a low value for phi, you should find that the estimates are 
similar for both types of MLE (note that c is the intercept from a regression model 
form used to estimate CMLE, while mu is the unconditional mean directly estimated 
by EMLE). Report your estimates in table format. 

b. Change to T=20. Run the program. Report your results. Are the results for both types 
of MLE still as similar? Comment on what you would expect the role of sample size 
to be in the relationship between the estimates? 

c. Set T=50 and change phi to 0.9. Run the program. Report the results. Are your 
estimates for both types of MLE as similar for the T=50 and phi=0.5 case. Comment 
on what you would expect the role of phi to be in the relationship between the 
estimates? 

d. Set phi to 1. Run the program ten times. Report the estimates of phi. What do you 
notice about them? 

e. Set T=500. Run the program ten times. Report the estimates of phi. What do you 
notice about your estimates of phi? What about the similarity between the estimates 
for both types of MLE? 

f. Experiment with different combinations of true parameters. (You do not need to 
report results.) For T=50, how do different phi’s affect the accuracy of your estimates 
of the unconditional mean mu (note that mu is not calculated for CMLE unless 
abs(phi)<1, so only consider values of phi that satisfy this constraint)? What is the 
intuition behind your result? 

g. Find a “real world” data series that looks like an AR(1) with phi=0.5. Plot the real 
series along side a simulated series for phi=0.5 (with the same sample size as the real 
world series). Explain in what sense the series “look similar”. 

 
 
 
 



/* PROGRAM SIMULATES AR(1) DATA 
ALSO, CALCULATES MLE FOR AR(1)  
 
3 PROCEDURES 
1. Log likelihood for CMLE 
2. Log likelihood for full sample MLE 
3. Transformation to constrain parameters 
 
PROGRAM DESIGNED BY JAMES MORLEY 1/23/2000  
MODIFIED 8/7/2008 */ 
 
@INITIAL GAUSS STUFF@ 
new; @clear memory@ 
format /m1 /rd 9,6; @set details of output format@ 
 
 
@SIMULATE DATA@ 
mu=1; @unconditional mean@ 
phi=0.5; @autoregressive coefficient@ 
sig_e=0.5; @standard deviation of error term@ 
T=50; @sample size@ 
 
if abs(phi) ge 1; 
y0=0; @initial demeaned value for nonstationary case@ 
else; 
y0= sqrt((sig_e^2)/(1-phi^2))*rndn(1,1); @initial demeaned value for 
stationary case@ 
endif; 
 
e=sig_e*rndn(T,1); @Normal random errors with variance sig_e^2@ 
u=recserar(e,y0,phi); @autoregressive series with zero mean@ 
 
y = mu + u; @autoregressive series with mean mu when abs(phi)<1, random 
walk with no drift when phi=1@ 
 
output file=hw1.dta reset;  @change working directory to wherever you 
want this file to go@ 
output on; 
y~mu*ones(T,1); @write the series and unconditional mean to a text file 
for use in EViews or Excel@ 
output off; 
 
@here@ 
/* 
 
output file=hw1.out reset; 
output off; 
 
 
@ESTIMATE CMLE AR(1) PARAMETERS@ 
prmtr_in=0|phi|ln(sig_e); 
{xout,fout,gout,cout}=QNewton(&lik_fcn1,prmtr_in); 
prm_fnl1=trans_cmle(xout); 
lik1=-fout; 
                hessn0=hessp(&lik_fcn1,xout); @calculate hessian@ 
                cov0=inv(hessn0); @estimate var-cov for parameters@ 
  grdn_fnl=gradp(&TRANS_CMLE,xout); 



  cov=grdn_fnl*cov0*grdn_fnl';  
@delta method to address transformation@ 
  SD1 =sqrt(diag(cov)); @calculate standard errors@ 
 
@ESTIMATE exact AR(1) PARAMETERS@ 
prmtr_in=mu|0|ln(sig_e); 
{xout,fout,gout,cout}=QNewton(&lik_fcn2,prmtr_in); 
prm_fnl2=trans_emle(xout); 
lik2=-fout; 
                hessn0=hessp(&lik_fcn2,xout); @calculate hessian@ 
                cov0=inv(hessn0); @estimate var-cov for parameters@ 
  grdn_fnl=gradp(&TRANS_EMLE,xout); 
  cov=grdn_fnl*cov0*grdn_fnl';  
@delta method to address transformation@ 
  SD2 =sqrt(diag(cov)); @calculate standard errors@ 
output on; 
"CMLE Estimates (standard errors in parenthesis)"; 
"c  phi  sig_e"; 
prm_fnl1'; 
"(";;sd1';;")"; 
""; "ll=";;lik1; 
""; 
if abs(prm_fnl1[2])<1; "The unconditional mean mu=";;prm_fnl1[1]/(1-
prm_fnl1[2]); else; "mu cannot be calculated because abs(phi) ge 1"; 
endif; 
 
""; 
 
" Exact MLE Estimates (standard errors in parenthesis)"; 
"mu  phi  sig_e"; 
prm_fnl2'; 
"(";;sd2';;")"; 
""; "ll=";;lik2; 
output off; 
 
END; @End of main program@ 
 
/*-------------------*/ 
@PROCEDURE TO CALCULATE CONDITIONAL LIKELIHOOD VALUE FOR AR(1)@ 
 
proc lik_fcn1(prmtr1); 
 
     local prmtr,c_hat,phi_hat,sig_hat,j,e_t,llikv;  
@local variables for procedure@ 
 
     prmtr=trans_cmle(prmtr1); @constrain parameters@ 
 
 c_hat=prmtr[1]; 
 phi_hat=prmtr[2]; 
 sig_hat=prmtr[3]; 
 
@Initialize for CONDITIONAL MLE@ 
llikv = 0; 
 
@Errors 2 through T needed to calculate CONDITIONAL (treat y[1] as 
given) likelihood@ 
j=2; 



do until j>T; 
e_t = y[j] - c_hat - phi_hat*y[j-1];  
llikv = llikv -0.5*ln(2*PI*sig_hat^2)-0.5*(e_t^2)/sig_hat^2; @log 
likelihood value@ 
j=j+1; 
endo; 
 
retp(-llikv); @return minus llikv since qnewton minimizes function@ 
endp; 
 
/*-------------------*/ 
@PROCEDURE TO CALCULATE EXACT LIKELIHOOD VALUE FOR AR(1)@ 
 
proc lik_fcn2(prmtr1); 
 
     local prmtr,mu_hat,phi_hat,sig_hat,j,e_t,llikv;  
@local variables for procedure@ 
 
     prmtr=trans_emle(prmtr1); @constrain parameters@ 
 
 mu_hat=prmtr[1]; 
 phi_hat=prmtr[2]; 
 sig_hat=prmtr[3]; 
 
@Initialize for FULL SAMPLE MLE@ 
e_t = y[1] - mu_hat;  
llikv = -0.5*ln(2*PI*((sig_hat^2)/(1-phi_hat^2))) 
-0.5*(e_t^2)/((sig_hat^2)/(1-phi_hat^2));  
@log likelihood value@ 
 
@Errors 2 through T and log likelihood@ 
j=2; 
do until j>T; 
e_t = y[j] - mu_hat - phi_hat*(y[j-1] - mu_hat);  
llikv = llikv -0.5*ln(2*PI*sig_hat^2)-0.5*(e_t^2)/sig_hat^2;  
@log likelihood value@ 
j=j+1; 
endo; 
 
retp(-llikv); @return minus llikv since optmum minimizes@ 
endp; 
 
/*-------------------*/ 
@PROCEDURE TO CONSTRAIN PARAMETERS@ 
proc trans_cmle(c0);  
 
local c1; 
 
      c1 = c0; 
 c1[3]=exp(c0[3]); @constrain variance to be non-negative@ 
 
retp(c1); 
endp; 
/*-------------------*/ 
 
 
 



/*-------------------*/ 
@PROCEDURE TO CONSTRAIN PARAMETERS@ 
proc trans_emle(c0);  
 
local c1; 
 
      c1 = c0; 
 c1[2]=c0[2]/(1+abs(c0[2])); @constrain AR to be stable@ 
 c1[3]=exp(c0[3]); @constrain variance to be non-negative@ 
 
retp(c1); 
endp; 
/*-------------------*/ 
 
*/ 

 


