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This article uses Bayesian marginal likelihood analysis to compare univariate models of the stock return
behavior and test for structural breaks in the equity premium. The analysis favors a model that relates the
equity premium to Markov-switching changes in the level of market volatility and accommodates volatil-
ity feedback. For this model, there is evidence of a one-time structural break in the equity premium in
the 1940s, with no evidence of additional breaks in the postwar period. The break in the 1940s corre-
sponds to a permanent reduction in the general level of stock market volatility. Meanwhile, there appears
to be no change in the underlying risk preferences relating the equity premium to market volatility. The
estimated unconditional equity premium drops from an annualized 12% before to the break to 9% after
the break.
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1. INTRODUCTION

The equity premium is the expected excess return on a mar-
ket portfolio over the risk-free interest rate. Although one of
the most important variables in financial economics, it is not
directly observable and must be estimated, typically from his-
torical stock return data. The standard approach to estimation
is to use the average excess return over a given sample period.
This approach is reasonable to the extent that excess returns be-
have as if drawn from a stable distribution for the entire sample.
However, beyond the simple iid case, using the sample average
to estimate the equity premium does not exploit all of the in-
formation inherent in a fully specified probabilistic model of
excess stock returns. It also does not account for possible struc-
tural (permanent) breaks in the equity premium during the sam-
ple period under investigation.

In this article, we use Bayesian marginal likelihood analy-
sis to compare univariate models of excess stock returns and
test for structural breaks in the equity premium. In the clas-
sical framework, model comparison and tests for structural
breaks with unknown breakpoints are complicated because of
the presence of nuisance parameters under alternative hypothe-
ses. However, in the Bayesian framework, nuisance parame-
ters do not pose any special problem as long as they, along
with the other parameters, can be integrated out of the likeli-
hood function to solve for the marginal likelihood of a given
model of interest. This is the approach that we take in this ar-
ticle. In particular, we follow Chib’s (1995) procedure for di-
rectly calculating the marginal likelihood based on the output
of the Gibbs sampler, which we also use to obtain inferences
about the distributions of model parameters. Then we construct
Bayes factors based on the marginal likelihoods, allowing us
to make model comparisons and to test for structural breaks.
Meanwhile, the Gibbs sampler makes it computationally feasi-
ble to estimate models that feature both Markov switching and
structural breaks with unknown breakpoints.

We consider four models of excess stock returns. Model I
assumes a constant equity premium and a constant level of

market volatility within each structural regime (i.e., excess re-
turns are iid normal within each subsample between structural
breaks). Model II assumes a constant equity premium within
each structural regime, but allows two-state Markov-switching
market volatility. Model III assumes that the equity premium
changes in response to the Markov-switching volatility within
each structural regime. Model IV assumes that the equity pre-
mium responds to volatility within each structural regime and
also accommodates the volatility feedback effects of unantic-
ipated changes in the equity premium on excess returns. For
each model, we test for structural breaks with unknown break-
points in model parameters corresponding to market volatility
and the equity premium. We use monthly excess return data for
a value-weighted portfolio of all NYSE stocks from the CRSP
files for the sample period 1926–1999.

Our main findings can be summarized as follows. The empir-
ical Bayes factors strongly favor the three models that incorpo-
rate Markov-switching volatility (models II–IV) over the simple
iid model (model I). The “most preferred” model (model IV)
relates the equity premium to Markov-switching changes in the
level of market volatility and also accommodates the volatil-
ity feedback effects of unanticipated changes in the equity pre-
mium on excess returns. For all four models, there is evidence
of a permanent reduction in the general level of stock market
volatility in the 1940s. Furthermore, because the “most pre-
ferred” model directly relates the equity premium to the level
of market volatility, the permanent reduction in volatility in the
1940s corresponds to a structural break in the equity premium.
There is mild evidence against a change in the underlying risk
preferences relating the equity premium to market volatility and
stronger evidence against additional structural breaks. The esti-
mated annualized equity premium drops from around 12% be-
fore the structural break to about 9% after the break.
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These findings represent somewhat of a departure from what
has been found elsewhere in the literature on structural breaks
and the equity premium. Pástor and Stambaugh (2001), who
also used a Bayesian approach to test for structural breaks in the
equity premium, reported a large number of structural breaks
(15 in total) over a longer sampling period (1834–1999), in-
cluding a sizeable break in the 1990s. However, they assumed
that excess returns were iid normal within structural regimes.
[It should be noted that Pástor and Stambaugh (2001) also al-
lowed for a transition period between structural regimes that
essentially accounts for volatility feedback after a permanent
change in the level of market volatility.] In contrast, we allow
for temporary changes in volatility and the equity premium,
and our preferred model allows us to separate out whether the
structural break in the equity premium is driven by a change in
the volatility process or by a change in risk preferences. Fama
and French (2002) found a much lower estimate of 2.5% for
the equity premium using the average dividend yield plus the
average dividend growth rate for the S&P index over the pe-
riod 1951–2000. The logic of their approach is that if the divi-
dend yield is stationary, then the average dividend growth rate
provides a reasonable estimator of the expected capital gain.
Furthermore, unlike the average capital gain, their estimator
does not suffer from a small-sample bias due to large capital
gains/losses generated by unanticipated changes in the equity
premium. They argued that the lower estimate for the equity
premium reflects an elimination of this bias. On the other hand,
they conceded that the dividend growth rate approach can suf-
fer from a small-sample bias of its own if there is a large shift
among firms away from dividend payments toward share re-
purchases. [Fama and French (2002) also considered earnings
data instead of dividends. Earnings data produce a higher es-
timated equity premium than dividends, although the estimate
of 4.3% is still well below our estimate of 9% for the corre-
sponding sample period. However, as with dividends, there is
a bias in their approach if the relationship between prices and
earnings undergoes permanent changes over the sample period.]
In contrast, we address the bias in using the average capital
gain directly by accounting for the volatility feedback effects
on share prices of unanticipated changes in the equity premium
due to changes in the level of market volatility. Our approach
avoids the bias introduced by shifts in dividend policies or any
other factors that might cause permanent changes in the divi-
dend yield.

The rest of the article is organized as follows. Section 2
presents the details of the four models considered in our
Bayesian model comparison. Section 3 discusses how we incor-
porate structural breaks with unknown breakpoints into these
models to allow for permanent changes in market volatility
and the equity premium. Section 4 provides an overview of the
Bayesian approach used in the article, and Section 5 presents
our empirical analysis. Section 6 concludes.

2. MODELS

The most basic model of excess stock returns assumes a con-
stant equity premium and constant market volatility:

Model I: Constant mean and variance

rt = µ + εt

and

εt ∼ iid N(0, σ 2),

where rt is an excess return on a market portfolio, µ is the eq-
uity premium, and εt is market news at time t with constant
variance σ 2. Given this model, a diffuse prior, and a quadratic
loss function, the sample average would provide the optimal
Bayesian estimate of the equity premium. However, the higher
moments of monthly stock returns are not consistent with this
model. In particular, the historical excess returns on a value-
weighted NYSE portfolio examined in this article are character-
ized by negative sample skewness (−.4910 vs. 0 for normality)
and excess kurtosis (10.2907 vs. 3 for normality). The cor-
responding Jarque–Bera test of normality yields a p value
of < .00001.

A standard way of capturing the excess kurtosis in stock re-
turns is to allow for time-varying volatility. The second model
that we consider allows market volatility to switch between two
discrete levels (high and low):

Model II: Constant mean and switching variance

rt = µ + εt,

εt|St ∼ N(0, σ 2
t ),

σ 2
t = σ 2

L + (σ 2
H − σ 2

L )St,

St = {0,1}, and σ 2
L < σ 2

H,

where the variance of market news equals either σ 2
L or σ 2

H ,
depending on the latent first-order Markov-switching state vari-
able St, which evolves according to transition probabilities

Pr[St = 0|St−1 = 0] = q

and

Pr[St = 1|St−1 = 1] = p.

Note that the unconditional variance σ 2 ≡ E[σ 2
t ] for this

model is

σ 2 = σ 2
L + (σ 2

H − σ 2
L )

1 − q

2 − q − p
.

For this model, the sample average no longer provides the opti-
mal estimate of the equity premium. Intuitively, returns drawn
from the high variance distribution are less informative and
should receive less weight than returns drawn from the low
variance distribution in making inferences about the equity pre-
mium.

Because a trade-off between risk and return is one of the
central tenets of financial economics, it seems natural to al-
low the possibility that time-varying volatility could generate
a time-varying equity premium. The third model that we con-
sider assumes that the equity premium is a linear function of the
expected level of market volatility:

Model III: Time-varying mean and switching variance

rt = µt + εt

and

µt = α + βEt−1[σ 2
t ],

where µt is the time-varying equity premium. The intercept α

allows the marginal price of risk, measured by the slope β ,
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differ from the average price of risk. As discussed by Wang
(2001), a difference could arise due to the existence of a con-
stant premium to compensate for the general risk of regime
change in addition to the time-varying premium reflecting the
current level of volatility. Indeed, the intercept can account
for any time-invariant factor that generates an equity premium.
Motivated by financial theory, we constrain α and β to be non-
negative, although we also consider the sensitivity of our find-
ings to these constraints. [We note that Merton (1980) proposed
nonnegativity constraints as reasonable prior beliefs to be used
in estimating the equity premium, as opposed to regularities
that one might verify with the data. In practice, the constraint
on the intercept term is not binding. Likewise, a nonnegativity
constraint on the constant equity premium in models I and II
is not binding. Meanwhile, as discussed later, the constraint
on the marginal price of risk is not binding if it is linked to
volatility feedback.] The specifications for εt and σ 2

t are the
same as in the previous model. The unconditional variance σ 2

is also the same. In this case the unconditional equity premium
µ ≡ E[µt] is

µ = α + βσ 2.

Again, the sample average does not provide the optimal esti-
mate of the unconditional equity premium for this model. As
before, the information content of a given return depends on
the level of market volatility.

The fourth and last model that we consider assumes a lin-
ear relationship between the equity premium and the expected
level of market volatility and also allows for volatility feedback
effects of unanticipated changes in the equity premium:

Model IV: Time-varying mean and switching variance with
volatility feedback

rt = µt + ft + εt

and

ft = δ(σ 2
t − Et−1[σ 2

t ]),
where ft is the volatility feedback term and δ is the volatility
feedback coefficient. The specifications for µt, εt, and σ 2

t are
the same as in the previous model. The unconditional equity
premium, µ, and unconditional variance, σ 2, are also the same.
As with the previous two models, the sample average does not
provide the optimal estimate of the unconditional equity pre-
mium. In this case, the information content of a given return
dependents on both the level of market volatility and the volatil-
ity feedback term.

Volatility feedback is the idea that an exogenous change in
the level of market volatility generates a large price adjust-
ment in response to new information about future discounted
expected returns (see Kim, Morley, and Nelson 2004 and refer-
ences therein for a thorough discussion of volatility feedback).
In terms of the foregoing model, the new information is mea-
sured by the deviation between the expected level of volatility at
the beginning of a trading period, Et−1[σ 2

t ], and the actual real-
ized level of volatility, σ 2. This specification is from Turner,
Startz, and Nelson (1989) and was also used by Kim et al.
(2001, 2004). Given a persistent volatility process (p + q > 1),
stock prices should initially move in the opposite direction to
a change in the equity premium. Because the price movement

generated by the change in volatility reflects the effect on all
future discounted expected returns, rather than just the partial
effect on the current period equity premium, the sign of the
marginal price of risk is easier to identify from the volatility
feedback coefficient than from the slope coefficient β . Indeed,
if we link the marginal price of risk to the volatility feedback
by constraining the sign of the volatility feedback effect to be
opposite to the change in the equity premium (i.e., β · δ ≤ 0),
then the nonegativity constraints on α and β do not bind. That
is, the estimated volatility feedback effect makes it clear that
the price of risk is positive. We discuss this point in more detail
in Section 5.

3. STRUCTURAL BREAKS

In our empirical analysis of the four models just introduced,
we allow some or all of the model parameters to undergo
structural (permanent) breaks with unknown breakpoints. The
timing of a breakpoint τi, i = 1, . . . ,n, where n is the total
number of breakpoints, is determined by a latent variable, Dt,
which we model as following a (n + 1)-state Markov-switching
process with constrained transition probabilities as suggested
by Chib (1998) and used previously to test for structural breaks
in a Bayesian context by Kim and Nelson (2001). In particular,
the transition probabilities for Dt are given by

Pr[Dt = j|Dt−1 = j] = κj,

Pr[Dt = j + 1|Dt−1 = j] = 1 − κj,

and

Pr[Dt = j′|Dt−1 = j] = 0, j′ �= j, j + 1,

where j = 1, . . . ,n + 1, 0 ≤ κi ≤ 1, and κn+1 = 1 , which im-
plies that the last structural regime is “absorbing” in the sense
that there are no additional structural breaks within the sample.

Denoting the set of model parameters affected by structural
breaks as θDt , we link these parameters to the latent variable Dt,

θDt =
n+1∑

j=1

Djtθj

and

Djt =
{

1, if Dt = j

0, otherwise,

where θj is the set of parameter values that prevails during the
structural regime associated with Dt = j.

There is an important practical issue in modeling structural
breaks with unknown breakpoints. It turns out to be neces-
sary to set a lower bound on the length of each structural
regime to avoid any irregularities in the likelihood function that
may occur when a subsample is too small. For example, out-
liers such as the 1987 stock market crash can easily be overfit
by frequently changing means and variances. Also, structural
regimes need to last a significant number of periods to identify
transitory Markov-switching regime shifts within the structural
regimes. Thus, in our estimation we consider a lower bound for
the length of structural regimes of 88 months, corresponding
to 10% of the 1926–1999 sample.
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For every model, we consider three different assumptions
about structural breaks: (A) There is no structural break;
(B) only parameters associated with the volatility process are
affected by structural breaks; and (C) all of the parameters
(except the break probabilities κi, i = 1, . . . ,n) are affected
by structural breaks. Note that for model I, only σ 2 is asso-
ciated with the volatility process, whereas for models II–IV, the
parameters σ 2

L , σ 2
H , q, and p are all associated with the volatil-

ity process. For model II, both structural break assumptions
(B) and (C) correspond to structural breaks in the unconditional
variance σ 2, whereas for models III and IV, both assumptions
(B) and (C) correspond to structural breaks in the uncondi-
tional mean µ and unconditional variance σ 2. However, for
models III and IV and assumption (B), structural breaks in the
unconditional mean µ are driven entirely by changes in the
unconditional variance, not by changes in the risk preference
parameters α and β .

It should be noted that the character of the latent vari-
able Dt is somewhat different than that of the latent variable St

in models II–IV. Not only are the states for Dt “terminal” in
the sense that on exit they never recur, but also the model para-
meters associated with the volatility process, the unconditional
variance, and the unconditional mean change when Dt switches.
In contrast, only the parameter associated with the current level
of volatility changes with St (between σ 2

L and σ 2
H). For St, the

volatility process, the unconditional variance, and the uncondi-
tional mean remain fixed. Although it is possible to think of
models II–IV with St as restricted versions of model I with
a large number of states for Dt, these restrictions are important
because they greatly reduce the number of model parameters.
Also, the restriction that structural regimes last at least 10%
of the sample creates a clear distinction between permanent
changes and transitory Markov-switching regime shifts.

4. THE BAYESIAN APPROACH

In the classical framework, testing for Markov switching
and/or structural breaks with unknown breakpoints is hindered
by the presence of nuisance parameters under the alternative
hypotheses (see Hansen 1992 and Garcia 1998 on testing for
Markov switching within the classical framework). Specifically,
the transition probabilities q and p are nuisance parameters for
Markov-switching models and the unknown breakpoints τi are
nuisance parameters for models with structural breaks. In a
Bayesian framework, however, nuisance parameters do not pose
any special problem for inference as long as they can be inte-
grated out of the likelihood function for each model under con-
sideration. Thus, in this article we cast the problem of making
inferences about Markov switching and structural breaks into a
Bayesian model selection framework.

First, we use the Gibbs sampler to obtain the marginal poste-
rior distributions for the model parameters (see Kim and Nelson
1999a for a direct comparison of Baysian inference and clas-
sical inference for Markov-switching models). In Appendix A
we provide a description of the Gibbs-sampling approach for
the most general model specification under consideration. For
model comparison, we use Bayes factors based on marginal
likelihoods for each model. In particular, if we assume that the

data ỸT = {r1, . . . , rT}′ have arisen from a given model specifi-
cation according to probability function (marginal likelihood)
m(ỸT |ω), where ω is a model indicator parameter, then the
Bayes factor in favor of model i over model j is defined as

BFij ≡ m(ỸT |ω = i)

m(ỸT |ω = j)
, i �= j.

Various ways of calculating Bayes factors have been pro-
posed in the literature. For example, Carlin and Polson (1991),
George and McCulloch (1993), Geweke (1996), and Carlin and
Chib (1995) provided procedures for model comparison based
on the sensitivity of the posterior probability of the model in-
dicator parameter ω to the prior probability. Kim and Nelson
(1999b) extended Carlin and Chib’s (1995) procedure to deal
with tests of Markov switching in univariate and dynamic factor
models. Verdinelli and Wasserman (1995) and Koop and Potter
(1999) suggested a way to indirectly calculate the Bayes fac-
tor using the “Savage–Dickey” density ratio for nested models.
Alternatively, Chib (1995) suggested a procedure for directly
calculating the marginal likelihoods based on the Gibbs output,
and Kass and Raftery (1995) provided a general discussion of
Bayesian model comparison and the issues related to the calcu-
lation of Bayes factors. Kim and Nelson (2001) applied Chib’s
(1995) procedure to test for a structural break in a Markov-
switching model of the business cycle. In this article we use
Chib’s (1995) procedure as implemented by Kim and Nelson
(2001). Appendix B provides a description of how we use this
procedure.

For model selection using Bayes factors, we adopt the fol-
lowing criteria, based on those of Jeffreys (1961) and Kass and
Raftery (1995):

1. ln(BFij) > 0 implies that the evidence supports model i.
2. −1.15 < ln(BFij) < 0 corresponds to “very slight evi-

dence” against model i, with the data up to three times
more likely to have arisen from model j.

3. −2.30 < ln(BFij) < −1.15 corresponds to “slight evi-
dence” against model i, with the data between 3 and
10 times more likely to have arisen from model j.

4. −4.61 < ln(BFij) < −2.30 corresponds to “strong evi-
dence” against model i, with the data between 10 and
100 times more likely to have arisen from model j.

5. ln(BFij) < −4.61 corresponds to “very strong evidence”
against model i, with the data more than 100 times more
likely to have arisen from model j.

The ln(BFij) measure is calculated as the difference between
the log marginal likelihoods for models i and j.

In addition to allowing for straightforward model compari-
son, the Bayesian approach also provides computationally fea-
sible estimation of models that feature both Markov switching
and structural breaks with unknown breakpoints. In particular,
the hierarchical nature of the Gibbs sampler allows us to break
down the problem of joint estimation into the more manageable
separate problems of making inference about Markov switch-
ing conditional on the structural breaks and making inference
about structural breaks conditional on the Markov switching.
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5. EMPIRICAL ANALYSIS

The data used in this article are monthly excess returns (cap-
ital gains plus dividends) on the value-weighted portfolio of
all NYSE-listed stocks over the yield on 1-month U.S. Trea-
sury bills from the CRSP files. We take natural logarithms of
the gross returns and multiply by 12 to obtain annualized con-
tinuously compounded returns. We consider the sample period
1926–1999.

Table 1 reports log marginal likelihoods for the four models
presented in Section 2 under the three assumptions about the
structural break discussed in Section 3. The first thing to notice
about the results is the strong support for a Markov-switching
specification of market volatility. For every structural break
assumption, there is “very strong evidence” in favor of mod-
els II–IV (Markov-switching variance) over model I (constant
variance). The implied log Bayes factors range from 39.24 for
model III over model I under assumption (C) with two breaks
for each model to 158.11 for model IV over model I under
assumption (A) of no structural breaks. To put these numbers
into some perspective, a log Bayes factor of 4.61 corresponds
to “very strong evidence” in favor of one model over another
according to the model selection criteria presented in Section 4.

Given the decisive evidence in favor of Markov-switching
volatility over a constant volatility assumption, the next thing
to notice about the results in Table 1 is that the evidence in
favor of a time-varying equity premium depends crucially on
whether volatility feedback is taken into account. Comparing
model II (constant mean) and model III (no volatility feedback)
shows no strong evidence in favor of a time-varying equity pre-
mium. If anything, the evidence is generally more supportive
of constant equity premium (at least within structural regimes).
The implied log Bayes factors range from .99 for model II over
model III under assumption (B) with two breaks for each model
to .26 for model III over model II under assumption (A) of
no structural breaks. However, comparing model II (constant
mean) with model IV (volatility feedback) gives “strong ev-
idence” or “very strong evidence” for a time-varying equity
premium in every case. The implied log Bayes factors range
from 4.27 for model IV over model II under assumption (B)
with two breaks for each model to 7.00 for model IV over
model II under assumption (A) of no structural breaks. Mean-
while, the evidence favors the existence of volatility feedback.

Table 2. Posterior Moments for the “Most Preferred” Model

Parameter Mean Standard deviation Median 90% posterior bands

α .079 .021 .080 (.042, .112)
β .045 .043 .032 (.002, .132)
δ −.287 .145 −.278 (−.542, −.066)
σ 2

L,1 .269 .071 .257 (.189, .379)

σ 2
H,1 2.113 .453 2.046 (1.507, 2.950)

σ 2
L,2 .166 .015 .165 (.141, .191)

σ 2
H,2 .675 .202 .633 (.430, 1.058)

q1 .948 .038 .956 (.889, .987)
p1 .945 .037 .953 (.875, .990)
q2 .959 .020 .962 (.920, .984)
p2 .803 .088 .820 (.630, .918)
κ .989 .008 .991 (.973, .998)

NOTE: Results are for model IV with structural break assumption (B) and one structural break.

Comparing models III and IV shows “very strong evidence”
in favor of volatility feedback in every case. The implied log
Bayes factors range from 4.75 for model IV over model III un-
der assumption (C) with two breaks for each model to 6.74 for
model IV over model III under assumption (A) of no structural
breaks.

Table 2 reports posterior moments for model IV under as-
sumption (B) with one structural break in the volatility process.
The results make it clear why this is the “most preferred”
model. In particular, although there is considerable uncertainty
regarding the magnitude of the marginal price of volatility β ,
there is little doubt that the volatility feedback as captured by
the parameter δ is an important aspect of stock return dynamics.
In particular, the 90% posterior bands for δ (−.542,−.066) do
not include 0. Meanwhile, the reduction in the level and persis-
tence of high volatility episodes after the structural break (com-
pare σ 2

H,1 with σ 2
H,2 and p1 with p2) explains the support for

structural break assumption (B).
The strong evidence for a negative volatility feedback ef-

fect reflects the fact that volatility feedback is easier to iden-
tify than the marginal impact of a change in volatility on a
single-period expected return because volatility feedback sum-
marizes the present value impact of volatility on all expected
future returns. As evidence of this, we note that when we con-
sider an alternative basis for rejection sampling that only re-
stricts the marginal impact parameter β to be the opposite sign
of the volatility feedback parameter δ (i.e., β · δ ≤ 0), we find

Table 1. Model Comparison

Log marginal likelihood

Model I:
constant

mean and
variance

Model II:
constant mean
and switching

variance

Model III:
time-varying
mean and

switching variance

Model IV:
time-varying mean

and switching variance
with volatility feedback

Structural break
assumption

Number of
breaks

(A) No structural break 0 −886.12 −735.01 −734.75 −728.01

(B) Structural breaks in volatility process 1 −778.32 −732.31 −733.14 −727.27
2 −776.72 −736.09 −737.08 −731.82
3 −776.05
4 −778.96

(C) Structural breaks in all parameters 1 −779.00 −733.36 −733.38 −728.28
2 −777.84 −738.13 −738.60 −733.85
3 −777.91
4 −782.00

NOTE: For each model, additional breaks are considered until the last break is no longer preferred for either structural break assumption (B) or (C).
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nearly identical results to when we restrict β to be nonnega-
tive. The 90% posterior bands for β are (.002, .127), whereas
the posterior bands for δ are (−.540,−.068). However, the log
marginal likelihood given this alternative restriction on the prior
and posterior distributions is −727.63, which means that there
is “very slight evidence” in favor of the nonnegativity con-
straint. We also consider the effect of relaxing the sign restric-
tions entirely. Again, the 90% posterior bands for the volatility
feedback parameter (−.586,−.166) do not include 0. However,
the posterior mean for the marginal price of risk parameter is
negative (−.071) with 90% posterior bands of (−.224, .093).
The log marginal likelihood is −727.12 for the unrestricted
model versus −727.27 when the nonnegativity constraints are
imposed. Thus, there is “very slight evidence” in favor of an
unrestricted model according to marginal likelihood analysis.
However, other considerations discussed at the end of this sec-
tion when we present estimates of the equity premium lead us
to impose the nonnegativity constraints as a strong prior.

Given our results, a reasonable question is whether other
models of stock returns would be preferable to model IV. For
example, we could consider more complicated univariate mod-
els that allow for a leverage effect and/or a third recurring
volatility regime to capture the negative skewness and excess
kurtosis of stock returns. Also, we could consider models with
lagged returns or multivariate models to capture any apparent
predictability in stock returns. However, Table 3 presents evi-
dence suggesting that model IV captures many of the key fea-
tures of stock return behavior with a relatively small number of
parameters. First, we consider the sample skewness and kurto-
sis of the standardized residuals for the preferred specifications
of each model under consideration. Not surprisingly, model I,
with its iid normal assumption, fails miserably at capturing the
distribution of stock returns, even though two structural breaks
in variance are allowed. Models II and III do a much better job
capturing the excess kurtosis of the raw data, but they do not ap-
pear to capture all of the negative skewness in returns. Model IV
appears to explain most of the negative skewness and all of the
excess kurtosis in the raw data. Second, we consider the mod-
ified Ljung–Box Q-statistic tests of residual serial correlation.
As discussed by Kim et al. (2001), a positive relationship be-
tween the equity premium and the Markov-switching level of

Table 3. Diagnostics of Standardized Residuals for
Preferred Model Specifications

Model I Model II Model III Model IV

Break assumption (B) (B) (B) (B)
Number of breaks 3 1 1 1

Skewness −.50 −.17 −.16 −.09
Kurtosis 4.74 2.64 2.61 2.79
JB 148.71 8.77 9.17 2.88

(<.01) (.01) (.03) (.24)
Q(1) 5.18 1.41 1.50 .70

(.02) (.24) (.22) (.40)
Q(5) 11.03 9.61 10.51 8.50

(.05) (.09) (.06) (.13)
Q(24) 36.07 32.80 33.18 31.63

(.05) (.11) (.10) (.14)

NOTE: For each tests statistic, the p-value is reported in parentheses. JB stands for the
Jarque-Bera test statistic for normality. The p-value is based on a chi-squared(2) distribution
under normality. Q(k) stands for the Ljung–Box test statistic for serial correlation at up to k lags.
The p-value is based on a chi-squared(k) distribution under the absence of serial correlation.

market volatility implies a small degree of positive serial cor-
relation in monthly returns. In particular, due to the persistence
of the variance regimes, periods of above- (below-) average re-
turns typically should be followed by more above- (below-) av-
erage returns. The results of the Q-tests confirm that model IV
does a reasonable job explaining the apparent short-horizon
predictability in excess returns. Kim et al. (2001) showed that
model IV can also explain the apparent long-horizon return pre-
dictability (mean reversion in stock prices) reported by Fama
and French (1988) and Poterba and Summers (1988). In light
of these diagnostic test results, we argue that model IV is an ap-
propriate model for conducting empirical analysis of structural
changes in the distribution of stock returns.

Having established model IV as a reasonable empirical
model of stock return behavior, we turn to the issue of struc-
tural breaks. Returning to Table 1, there is support for as-
sumption (B) of at least one structural break in the volatility
process for every model. Comparing assumption (B) with as-
sumption (A) of no structural breaks, the implied log Bayes
factors range from .74 for model IV with one break to 110.07
for model I with three breaks. Also, comparing assumption (B)
with assumption (C) of structural breaks in all parameters
(except break probabilities), the implied log Bayes factors range
from .24 for model III with one break to 2.04 for model II
with two breaks. Comparing the “most preferred” model with
model IV under assumption (C) with one break, the implied log
Bayes factor is 1.01. However, note that because the equity pre-
mium depends on the level of volatility for the “most preferred”
model, the structural break in the volatility process still corre-
sponds to a structural break in the equity premium. Meanwhile,
there is “strong” or “very strong” evidence for only one break,
except for model I. Comparing one break with two breaks for
models II–IV, the implied log Bayes factors range from 3.78
for model II under assumption (B) to 5.57 for model IV under
assumption (C). For model I, the evidence is strongest for three
breaks. Comparing three breaks versus one break for model I
under assumption (B), the implied log Bayes factor is 2.27.
However, the support for multiple breaks for model I likely
reflects the fact that, as with the model used by Pástor and
Stambaugh (2001), the constant mean/constant variance speci-
fication does not allow for transitory changes in volatility. Thus
the model may be prone to confusing transitory but persistent
changes in volatility with structural breaks.

Just as important as the existence of a structural break in the
equity premium is the timing and nature of the break. Figure 1
displays posterior distributions for the break dates for the “most
preferred” model in panel (a) and for the preferred two-break
model [model IV under assumption (B)] in panels (b) and (c).
The posterior distributions in (a) and (b) suggest a break in
the volatility process and, by implication, the equity premium
sometime during the early 1940s. The corresponding cumula-
tive distributions are very similar for the two models and are
reasonably steep, implying a fair degree of certainty about the
general timing of the structural break. In contrast, the cumu-
lative distribution for the second break date for the preferred
two-break model is reasonably flat, suggesting that the data are
not particularly informative about a location for a second break
date. Indeed, from the posterior distribution, the most proba-
ble second break date has a < 2% probability. Given this find-
ing, it is not surprising that the marginal likelihood analysis
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(a)

(b)

(c)

Figure 1. Posterior Distributions of Structural Breaks. The probabil-
ity distribution (left scale) is the solid line and the cumulative probabil-
ity distribution (right scale) is the dashed line. (a) The structural break
in the “most preferred” model [model IV with structural break assump-
tion (B) and one structural break]. (b) The first structural break in the
preferred model given an assumption of two structural breaks [model IV
with structural break assumption (B) and two structural breaks]. (c) The
second structural break in the preferred model given an assumption of
two structural breaks.

favors the one-break specification over the two-break specifi-
cation for model IV. Comparing the “most preferred” model
with the preferred two-break model, the implied log Bayes fac-
tor is 4.55. Also, as an additional check for a second struc-
tural break, we consider marginal likelihood analysis using
the shorter sample period 1952–1999. The log marginal likeli-
hood for model IV under assumption (A) of no structural break
is −391.12, whereas the log marginal likelihood for model IV
under assumption (B) with one structural break is −395.28.
Thus the log Bayes factor in favor of no additional structural
break in the postwar period is 4.16.

Figure 2 displays excess returns and estimates of the equity
premium for the “most preferred” model. There is a clear re-
duction in the general level and persistence of volatility during
the 1940s, which is reflected in the reduction in the uncondi-
tional equity premium and the persistence of the conditional
equity premium over the same time period. Thus, as stocks

Figure 2. Excess Returns and the Equity Premium. Excess returns
(left scale) are monthly value-weighted NYSE returns minus the yield
on 1-month U.S. Treasury bills from CRSP. The measures of the equity
premium (right scale) are from the “most preferred” model. The more
volatile measure is the posterior mean of the equity premium conditional
on the volatility regime. The smoother measure is the posterior mean of
the unconditional equity premium.

became less risky after the structural break, the expected re-
ward for investing in stocks declined as well. The reduced per-
sistence of high-volatility episodes also suggests that volatility
feedback may be less important in the postwar period, although
the persistence of low-volatility regimes and the big negative
returns in 1987 and 1998 suggest that it is still relevant. It is
worth emphasizing, however, that the structural break in the
equity premium appears to be driven entirely by the reduction
in volatility (i.e., the “quantity of risk”), and not by a change
in the risk preference parameters relating the equity premium
to the level of volatility (i.e., the “price of risk”) or a change
in volatility feedback. In particular, the marginal likelihood
analysis favors constant risk preference parameters α and β

and the related volatility feedback parameter δ across structural
regimes. This result suggests that the prebreak data contain rel-
evant information about the postbreak behavior of stock returns
and the equity premium.

Finally, with the most preferred model specification in hand
and an understanding of the nature and timing of the structural
break, we turn to the equity premium itself. As displayed in
Figure 2, the posterior mean of the unconditional equity pre-
mium µ for the “most preferred” model is about 12% near the
beginning of the sample and drops to about 9% for most of the
postwar period. The posterior mean of the conditional equity
premium jumps between 10% and 16% in the volatile prebreak
period. In the less volatile postwar period, the posterior mean
of the conditional equity premium jumps between 9% and 10%.
There is a large amount of uncertainty surrounding these point
estimates, however. Figure 3 displays the posterior mean of the
unconditional equity premium for the “most preferred” model
along with 90% posterior bands. The 90% posterior bands are
wide at the beginning of the sample and include the possibility
that the equity premium is as high as 20%. After the structural
break, the 90% posterior bands converge to 6% and 12%, which
includes the sample mean of 6.5%. We also report 90% pos-
terior bands for an unrestricted version of model IV under as-
sumption (B) with one structural break that does not impose any



188 Journal of Business & Economic Statistics, April 2005

Figure 3. Uncertainty About the Equity Premium. The posterior mean
and 90% posterior bands are for the “most preferred” model. The unre-
stricted posterior bands are for model IV with assumption (B) and one
break estimated without nonnegativity constraints. For computational
tractability, the posterior bands are based on every tenth draw from the
Gibbs sampler (i.e., 1,000 highly independent draws). [ posterior
mean; 90% lower; 90% upper; 90% lower (unre-
stricted); 90% upper (unrestricted).]

constraints on α and β . The bands are much wider before the
structural break and actually include negative values. We argue
that this finding for the unrestricted model provides justification
for our rejection sampling prior, because the rejection sampling
produces results that are more in accordance with what we con-
sider to be reasonable beliefs about the equity premium, namely
that it is positive. However, we note that the rejection sampling
has little impact on the 90% posterior bands after the structural
break. Also, we note that the rejection sampling has no impact
on the evidence in favor of a structural break in the volatility
process. The log marginal likelihood for an unrestricted version
of model IV under assumption (A) is −727.95, whereas the log
marginal likelihood for an unrestricted version of model IV un-
der assumption (B) with one break is −727.12. Therefore, the
log Bayes factor in favor of a structural break of this form is .83,
compared with .74 when the nonnegativity restrictions are im-
posed. Thus we conclude from our analysis that the postwar
unconditional equity premium is likely somewhere between 6%
and 12%, with 9% as our point estimate.

An interesting question is why our point estimate is so much
higher than the sample mean for excess returns and other esti-
mates reported in recent studies (e.g., Fama and French 2002).
In terms of the sample mean, we note that allowing for het-
eroscedasticity in stock returns generally produces higher es-
timates of the equity premium, because less weight is put on
higher variance returns in estimation. It is well known that stock
returns and market volatility are negatively correlated (see, e.g.,
French, Schwert, and Stambaugh 1987). As discussed by Kim
et al. (2004), volatility feedback provides an explanation for
this negative correlation given a positive underlying relation-
ship between the equity premium and market volatility. Thus,
by accounting for the volatility feedback effect, our model im-
plicitly puts less weight on highly volatile returns associated

Figure 4. The Equity Premium in Perspective. Excess returns are
monthly value-weighted NYSE returns minus the yield on 1-month U.S.
Treasury bills from CRSP. The posterior mean of the unconditional equity
premium and 90% posterior bands are for the “most preferred” model.

with changes in the volatility regime when estimating the eq-
uity premium. In terms of our higher estimate than the values
reported by Fama and French (2002), we note that if any of the
decline in the dividend yield or increase in the price/earnings
ratio over the past 50 years is permanent, then their point esti-
mates of 2.5% and 4.3% understate the true equity premium.

A related concern is that the high estimated value for the eq-
uity premium might somehow be implausible given other es-
timates and theoretical considerations. We argue that, on the
contrary, our estimate is quite plausible. First, we note that un-
conditional sample standard deviation of excess returns is .653.
Thus the classical 90% confidence bands for the equity pre-
mium based on the sample mean and standard deviation cover
the wide range of 3%–10%. Therefore, there is little sense from
a purely econometric perspective that a point estimate of 9%
is implausible just because the sample mean is around 6.5%
and other estimates are lower. Another way to see this point is
to notice that the scales in Figure 2 are vastly different. Fig-
ure 4 plots excess returns, the posterior mean of the uncon-
ditional equity premium, and the 90% posterior bands all on
the same scale. From this perspective, the equity premium ap-
pears essentially constant, and deciphering 6% from 12% is
not particularly easy. Meanwhile, from a theoretical standpoint,
the very possibility of structural change and the existence of
transitory Markov-switching shifts in volatility could explain a
high equity premium. As discussed by Wang (2001), shifts in
volatility and the volatility process might generate a constant
positive “jump-risk premium” making the unconditional equity
premium higher than it would be given a stable iid normal dis-
tribution.

6. CONCLUSIONS

We find evidence of a structural break in the equity pre-
mium using data for excess returns on a value-weighted port-
folio of NYSE stocks over the period 1926–1999. The break,
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which likely occurred in the early 1940s, appears to be driven
by a reduction in the general level and persistence of market
volatility, not by a change in risk preferences. This finding sug-
gests that although the overall distribution of excess returns has
changed, there is still useful information about current behavior
embedded in the prebreak data. The finding of a break in the eq-
uity premium arises from a model of stock returns that relates
the equity premium to the Markov-switching level of volatil-
ity and allows for volatility feedback in the event of unantici-
pated changes in the volatility. The Bayesian model selection
used in this article strongly favors this model over three more
basic models of excess returns that either do not relate the eq-
uity premium to changes in the level of volatility or do not ac-
count for volatility feedback. Our analysis also suggests that our
“most preferred” model captures most of the negative skewness,
excess kurtosis, and short-horizon serial correlation in monthly
stock returns. According to the model, the postbreak uncon-
ditional equity premium is about 9%. Finally, there is strong
evidence against a second structural break during the postwar
period, including during the 1990s. In particular, the large cap-
ital gains in the early and mid 1990s appear to be related to an
unusually long period of low market volatility reminiscent of
the 1950s and 1960s. Indeed, by the end of the sample in the
late 1990s, it is clear that the extended period of low volatil-
ity was only temporary, rather than the result of a permanent
change in the volatility process.
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APPENDIX A: THE GIBBS SAMPLING APPROACH

To make inferences about model IV under assumption (C)
with two structural breaks in all parameters, we need marginal
posterior distributions for the following:

µ̃ = {α1, α2, α3, β1, β2, β3, δ1, δ2, δ3}′;
σ̃ 2 = {σ 2

L,1, σ
2
L,2, σ

2
L,3, σ

2
H,1, σ

2
H,2, σ

2
H,3}′;

D̃T = {D1, . . . ,DT}′; S̃T = {S1, . . . ,ST}′;
S̃e

T = {Se
1, . . . ,Se

T}′, where

Se
t ≡ E[St|Ỹt−1], with Ỹt = {r1, . . . , rt}′;
p̃ = {q1,q2,q3,p1,p2,p3}′;

and

κ̃ = {κ1, κ2}′.

In principle, the marginal posterior distribution of a set of para-
meters can be obtained by integrating the other parameters out
of the joint posterior distribution

p(µ̃, σ̃ 2, D̃T , S̃T , S̃e
T , p̃, κ̃ |ỸT).

However, the hierarchical nature of the model allows us to use
Gibbs sampling to obtain the marginal posterior distributions
of interest. This is done by successively sampling from the full
conditional densities. The Gibbs sampling procedure involves
the following steps:

1. Generate S̃T and S̃e
T from p(S̃T , S̃e

T |µ̃, σ̃ 2, D̃T , p̃, ỸT),
where, conditional on D̃T , S̃T and S̃e

T are independent
of κ̃ .

2. Generate D̃T from p(D̃T |µ̃, σ̃ 2, S̃T , S̃e
T , κ̃, ỸT), where,

conditional on S̃T , D̃T is independent of p̃.
3. Generate p̃ from p(p̃|S̃T), where, conditional on S̃T , p̃ is

independent of the other parameters.
4. Generate κ̃ from p(κ̃ |D̃T), where, conditional on D̃T , κ̃ is

independent of the other parameters.
5. Generate µ̃ from p(µ̃|σ̃ 2, D̃T , S̃T , S̃e

T , ỸT), where, condi-
tional on D̃T and S̃T , µ̃ is independent of p̃ and κ̃ .

6. Generate σ̃ 2 from p(σ̃ 2|µ̃, D̃T , S̃T , S̃e
T , ỸT), where, con-

ditional on D̃T and S̃T , σ̃ 2 is independent of p̃ and κ̃ .

This procedure is a straightforward extension of Albert and
Chib’s (1993) Bayes inference via Gibbs sampling for an au-
toregressive time series subject to Markov-switching mean and
variance. Kim and Nelson (1999b) extended the procedure
to incorporate a one-time structural break in the Markov-
switching parameters. Note that as a byproduct of generat-
ing D̃T , we can get the marginal posterior distribution of the
break dates τ1 and τ2.

The prior distributions are given as follows:
Parameters subject to structural breaks

αj ∼ N(0, .04)[α≥0], βj ∼ N(0, .04)[β≥0],
δj ∼ N(0, .04),

1

σ 2
L,j

∼ 


(
4

2
,

1

2

)
,

1

σ 2
H,j

∼ 


(
2

2
,

1

2

)

[σ 2
H>σ 2

L ]
,

qj ∼ beta(4,1), pj ∼ beta(4,1), j = 1,2,3,

and
Structural break parameters

κi ∼ beta(20, .1), i = 1,2.

Here the subscript [·] function denotes a truncated distribu-
tion obtained via rejection sampling. Additional rejection sam-
pling occurs unless simulated structural regimes last at least
88 months, corresponding to 10% of the sample. All inferences
are based on the last 10,000 of 12,000 Gibbs simulations (i.e.,
the first 2,000 simulations are discarded). Sensitivity analysis
suggests that the qualitative results are robust with respect to
a wide range of priors. We also examine convergence of the
Gibbs sampler by trying different starting values for the para-
meters and by comparing reported inferences to those from an
additional 10,000 draws. We find that estimates are robust to the
reported number of decimal places. We also note that the serial
correlation of draws from the Gibbs sampler dies out monoton-
ically, with simulated values more than 10 draws apart having
less than 5% correlation.
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APPENDIX B: CALCULATING THE
MARGINAL LIKELIHOOD

Define θ = {µ̃′, σ̃ 2′, p̃′, κ̃ ′}′ to be a vector of the model para-
meters. Then, following Chib (1995), we can write the marginal
density of Ỹt, by virtue of being the normalizing constant of the
posterior density, as

m(ỸT) = f (ỸT |θ)π(θ)

π(θ |ỸT)
,

where the numerator is the product of the sampling density and
the prior, with all integrating constants included, and the de-
nominator is the posterior density of θ . Because the foregoing
identity holds for any θ , we may evaluate m(ỸT) at the poste-
rior mean θ∗. Taking the logarithm of the foregoing equation
for computational convenience, we have

ln m(ỸT) = ln f (ỸT |θ∗) + lnπ(θ∗) − lnπ(θ∗|ỸT).

The log-likelihood function and the log of the prior density
at θ = θ∗ can be evaluated relatively easily. First, the log-
likelihood is given by

ln f (ỸT |θ∗) =
T∑

t=1

ln

(
1∑

St=0

1∑

Dt=0

p(St,Dt|Ỹt−1, θ
∗)

× f (rt|Ỹt−1,St,Dt, θ
∗)

)
.

Second, the log of the prior density is given by

lnπ(θ∗) = lnπ(µ̃∗) + lnπ(σ̃ 2∗) + lnπ(p̃∗, κ̃∗),

where it is assumed that the parameter subsets are independent
of each other.

For evaluating the posterior density at θ = θ∗, we consider
the following decomposition of the posterior density:

π(θ∗|ỸT) = π(µ̃∗|ỸT)π(σ̃ 2∗|µ̃∗, ỸT)π(p̃∗, κ̃∗|µ̃∗, σ̃ 2∗, ỸT),

where

π(µ̃∗|ỸT)

=
∫

π(µ̃∗|σ̃ 2, D̃T , S̃T , S̃e
T , p̃, κ̃, ỸT)

× π(σ̃ 2, D̃T , S̃T , S̃e
T , p̃, κ̃ |ỸT)dσ̃ 2∗ dD̃T dS̃T dS̃e

T dp̃ dκ̃,

π(σ̃ 2∗|µ̃∗, ỸT)

=
∫

π(σ̃ 2|µ̃∗, D̃T , S̃T , S̃e
T , p̃, κ̃, ỸT)

× π(D̃T , S̃T , S̃e
T , p̃, κ̃ |µ̃∗, ỸT)dD̃T dS̃T dS̃e

T dp̃ dκ̃,

and

π(p̃, κ̃ |µ̃∗, σ̃ 2∗, ỸT)

=
∫

π(p̃, κ̃|µ̃∗, σ̃ 2∗, D̃T , S̃T , S̃e
T , ỸT)

× π(D̃T , S̃T , S̃e
T |µ̃∗, σ̃ 2∗, ỸT)dD̃T dS̃T dS̃e

T .

This decomposition of the posterior density suggests that
π(µ̃∗|ỸT) can be calculated based on draws from the full Gibbs

run and π(σ̃ 2∗|µ̃∗, ỸT) and π(p̃, κ̃|µ̃∗, σ̃ 2∗, ỸT) can be calcu-
lated based on draws from reduced Gibbs runs,

π̂(µ̃∗|ỸT)

= 1

G

G∑

g=1

π
(
µ̃∗|σ̃ 2g

, D̃g
T , S̃g

T , S̃eg

T , p̃g, κ̃g, ỸT
)
,

π̂(σ̃ 2∗|µ̃∗, ỸT)

= 1

G

G∑

g2=1

π
(
σ̃ 2∗|µ̃∗, D̃g2

T , S̃g2
T , S̃eg2

T , p̃g2 , κ̃g2, ỸT
)
,

and

π̂(p̃∗, κ̃∗|µ̃∗, σ̃ 2∗, ỸT)

= 1

G

G∑

g3=1

π(p̃∗, κ̃∗|µ̃∗, σ̃ 2∗, D̃g3
T , S̃g3

T , S̃eg3
T , ỸT),

where the superscript “g” refers to the gth draw from the full
Gibbs run and the superscript “gi,” i = 2,3, refers to the gith
draw from the appropriate reduced Gibbs runs. Thus, apart from
the usual G iterations for the full Gibbs run, we need additional
2 × G iterations for the appropriate reduced Gibbs runs. For ex-
ample, to calculate π(p̃, κ̃ |µ̃∗, σ̃ 2∗, ỸT), we need output from
an additional G iterations for the following reduced Gibbs run:

1. Generate p̃ and κ̃ from p(p̃, κ̃ |µ̃∗, σ̃ 2∗, D̃T , S̃T , S̃e
T , ỸT).

2. Generate D̃T from p(D̃T |µ̃∗, σ̃ 2∗, S̃T , S̃e
T , p̃, κ̃, ỸT).

3. Generate S̃T and S̃e
T from p(S̃T , S̃e

T |µ̃∗, σ̃ 2∗, D̃T , p̃,

κ̃, ỸT).

Note that throughout the reduced Gibbs run, µ̃ and σ̃ 2 are not
generated, but are set equal to their posterior means µ̃∗ and σ̃ 2∗.

[Received November 2002. Revised June 2004.]
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