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SUMMARY
We use counterfactual experiments to investigate the sources of the large volatility reduction in US real
GDP growth in the 1980s. Contrary to an existing literature that conducts counterfactual experiments based
on classical estimation and point estimates, we consider Bayesian analysis that provides a straightforward
measure of estimation uncertainty for the counterfactual quantity of interest. Using Blanchard and Quah’s
(1989) structural VAR model of output growth and the unemployment rate, we find strong statistical support
for the idea that a counterfactual change in the size of structural shocks alone, with no corresponding change
in the propagation of these shocks, would have produced the same overall volatility reduction as what
actually occurred. Looking deeper, we find evidence that a counterfactual change in the size of aggregate
supply shocks alone would have generated a larger volatility reduction than a counterfactual change in the
size of aggregate demand shocks alone. We show that these results are consistent with a standard monetary
VAR, for which counterfactual analysis also suggests the importance of shocks in generating the volatility
reduction, but with the counterfactual change in monetary shocks alone generating a small reduction in
volatility. Copyright  2007 John Wiley & Sons, Ltd.

1. INTRODUCTION

A striking stylized fact of the US macroeconomy is the large reduction in its volatility since the
early 1980s, a feature that has been called the ‘Great Moderation’ (Bernanke, 2004). This volatility
reduction, first documented by Niemira and Klein (1994), Kim and Nelson (1999) and McConnell
and Perez-Quiros (2000), has spawned a large literature attempting to isolate its source.1 The
literature has focused on three explanations: (1) improved macroeconomic policy; (2) changes in
the private sector’s behavior; and (3) good luck.

A popular approach to distinguishing between these competing explanations is through the
use of counterfactual experiments (e.g., Stock and Watson, 2002; Boivin and Giannoni, 2003;
Ahmed et al., 2004). In these counterfactual experiments, a macroeconomic model is estimated
over a pre-volatility reduction sample, denoted Period 1, and a post-volatility reduction sample,
denoted Period 2, and the counterfactual variance of a variable of interest is calculated in which the
parameter estimates from Periods 1 and 2 are intermingled. For example, a counterfactual variance

Ł Correspondence to: James Morley, Department of Economics, Washington University in St. Louis, Box 1208, One
Brookings Drive, St. Louis, MO 63130-4899, USA. E-mail: morley@wustl.edu
Contract/grant sponsor: Weidenbaum Center on the Economy, Government, and Public Policy.
1 See Simon (2000), Blanchard and Simon (2001), Chauvet and Potter (2001), Kahn et al. (2002), Stock and Watson
(2002), Boivin and Giannoni (2003), Ahmed et al. (2004), Kim et al. (2004), Sensier and van Dijk (2004), Herrera and
Pesavento (2005), Choi and Jung (forthcoming), and Gordon (2006).
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could be calculated in which Period 2 estimates of model parameters representing monetary policy
are mixed with the non-policy parameter estimates of Period 1. If the counterfactual variance is
considerably lower than the sample variance in Period 1, improved monetary policy would be a
strong candidate for the source of the volatility reduction.2

In this paper we also conduct counterfactual experiments to isolate sources of the volatility
reduction in US real GDP. However, unlike the previous literature that has focused on classical
estimation and point estimates, we consider Bayesian analysis in which posterior densities for
the counterfactual variances are constructed. This represents an improvement over the previous
analysis because it provides a sense of statistical precision about the counterfactual quantities
of interest. In particular, Bayesian estimation procedures make it straightforward to capture the
implications of both parameter uncertainty and uncertainty regarding timing of structural change on
inferences about the counterfactual variance. In the classical context, there is no known analytical
measure of estimation uncertainty for counterfactual variances, as they are complicated nonlinear
functions of the underlying model parameters, while a measure based on linear approximation (i.e.,
the ‘delta method’) is likely to be highly inaccurate, and it is unclear how to incorporate uncertainty
about the timing of structural change into such a measure. Furthermore, while classical inference
is difficult even with just two sources of uncertainty, it would be relatively straightforward to
incorporate additional sources of uncertainty, such as that about lag length or more general model
specification assumptions, in Bayesian analysis.

We apply the Bayesian counterfactual analysis to Blanchard and Quah’s (1989) structural VAR
model of output growth and the unemployment rate. The model has three structural components:
aggregate supply shocks, aggregate demand shocks, and a propagation mechanism for the structural
shocks. The structural components are identified using a long-run restriction in which aggregate
demand shocks have no long-run effect on the level of real GDP. Estimation results suggest a
large reduction in output volatility in the 1980s, with clear evidence of a reduction in the size of
the structural shocks. We find strong statistical support for the idea that a counterfactual change
in the size of structural shocks alone would have produced the same overall volatility reduction as
actually occurred. By contrast, a counterfactual change in propagation alone would have produced
little reduction in volatility, although these inferences are somewhat less precise. Meanwhile, a
change in the size of aggregate supply shocks alone would have generated a larger volatility
reduction than a change in the size of aggregate demand shocks alone. Thus, consistent with the
previous literature, these results point towards the role of good luck rather than a change in private
sector behavior or macroeconomic policy.

Because of concerns about identifying aggregate demand shocks using a long-run restriction,
and to explicitly consider the role of monetary policy, we check the robustness of our results
using a standard monetary VAR similar to that considered in Stock and Watson (2002), Boivin
and Giannoni (2003), and Ahmed et al. (2004). We find consistent results in that shocks are much
more successful than propagation in generating a large volatility reduction. Further, we find that a
change in monetary shocks alone is only able to generate a small fraction of the total reduction in
volatility. Thus, the primary role for shocks appears to be arising from the non-monetary shocks
in the system.

2 It is worth noting that counterfactual analysis is subject to the Lucas (1976) critique, in that the experiments proceed by
changing sets of model parameters while holding others constant. However, a number of papers have documented limited
empirical relevance of the Lucas critique for vector autoregressions estimated to US post-war data (e.g., Rudebusch, 2005;
Leeper and Zha, 2003; Sims and Zha, 2006), which is the application considered in this paper.
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The Bayesian approach we take to counterfactual analysis is closely related to that developed
in Sims and Zha (2006). They employ Bayesian techniques to estimate and compare a number of
multiple regime structural VAR models of the US economy, including models with regime switches
in propagation and/or shock parameters. They also simulate counterfactual histories of the level
of inflation under alternative policy regimes to ascertain the extent to which changes in monetary
policy parameters might account for the rise and subsequent fall in inflation observed in the
1970s and 1980s.3 While the Bayesian approach is similar, we consider a different counterfactual
quantity, namely the unconditional variance of real GDP growth under the assumption of a single
regime change.

In the next section we discuss the principles underlying counterfactual experiments in the context
of structural change. Section 3 describes the Bayesian approach taken in this paper. Section 4
presents details of the structural VAR and counterfactual experiments that we use to investigate
the sources of the volatility reduction in US real GDP growth. Section 5 reports the results of
the Bayesian estimation and counterfactual experiments. Section 6 examines the robustness of the
results to the alternative monetary VAR model. Section 7 concludes.

2. COUNTERFACTUAL EXPERIMENTS

The principles behind counterfactual experiments in the context of structural change are most
easily illustrated using the example of a stationary AR(1) process:

xt D �xt�1 C et, et ¾ N�0, �2� �1�

where j�j < 1. Suppose xt undergoes a structural break corresponding to a reduction in its variance.
There are two possible sources of the variance reduction: ‘shocks’ and ‘propagation’. To see this,
note that the variance of xt is

var�xt� � �0 D �2

1 � �2 �2�

where �2 corresponds to the variance of the shocks and �2 corresponds to the propagation. A
reduction in either �2 or �2 will reduce the size of �0. In practice, a variance reduction could
reflect a change in both shocks and propagation.

Counterfactual experiments consider the hypothetical changes that would have occurred if either
only shocks or only propagation had changed. To illustrate, let i, j D 1, 2 index the structural
regime for shocks and propagation, respectively:

��i,j�
0 D ���i��2

1 � ���j��2 �3�

Then i D j produces the actual variances for the two structural regimes, while i 6D j produces the
counterfactual variances based on changes in shocks only or propagation only.

3 Another example of a counterfactual quantity constructed using Bayesian techniques can be found in Dueker and Nelson
(2003), who use Bayesian analysis to simulate counterfactual histories of several macroeconomic variables given alternative
realizations of a latent business cycle indicator.
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It should be noted that counterfactual experiments do not provide a formal decomposition of
what caused the variance of xt to change. In particular, it is easily seen from (3) that shocks and
propagation interact in a nonlinear fashion to determine the variance. As a result, the changes in
variance implied by the counterfactual experiments do not necessarily sum to the actual change
in variance. Thus, some caution should be employed in interpreting counterfactual experiments.
In essence, they represent hypothetical scenarios only.

Nevertheless, a hypothetical may be very revealing. For example, suppose the counterfactual
variance corresponding to a change in shocks but not propagation (��2,1�

0 ) is of a similar magnitude
to the variance after the structural break (��2,2�

0 ), while the counterfactual variance corresponding
to a change in propagation but not shocks (��1,2�

0 ) is of a similar magnitude to the variance before
the structural break (��1,1�

0 ). Then, the findings would be highly suggestive of a large role for
shocks in producing the variance reduction. Of course, in practice, one might be concerned about
the statistical precision of these counterfactual inferences. The Bayesian approach taken in this
paper is designed to address this concern.

3. THE BAYESIAN APPROACH

In Bayesian analysis, beliefs about model parameters are described using probability distributions.
If data provide a lot of information about the values of parameters, posterior densities will be
relatively tight. If the data are uninformative, posterior densities will be more spread out and
largely reflect the specification of prior beliefs, rather than sample information.

Given posterior distributions for model parameters, it is possible to simulate from posterior
distributions for functions of those parameters, including counterfactual variances. Continuing
with the simple example of a structural break in the variance of the AR(1) process in the previous
section, we can repeatedly draw realizations of ���1�, ��2�, ��1�, ��2�� from their joint posterior
distribution and use the unconditional variance formula in (3) to construct implied realizations and,
therefore, distributions for ��i,j�

0 for i, j D 1, 2. For i D j, we would have posterior distributions
for the subsample variances of xt. For i 6D j, we would have posterior distributions for the
counterfactual variances.4

Bayesian analysis also allows us to make inferences about the relative sizes of different
variances. In particular, we can calculate ratios of functions of the variances and evaluate the
probabilities that they are less than a specified fixed value. A simple example would be the

4 Note that the counterfactual variances will reflect the weaker dependence between shock and propagation parameters
across subsamples than within subsamples. For example, suppose that shock and propagation parameters are negatively
related within subsamples such that the posteriors for the actual unconditional variances are much tighter than would
be implied by independent draws from the marginal distributions for the parameters. Then, given weak dependence or
independence (as would be the case under a noninformative prior) between parameters across subsamples, the posteriors
for the counterfactual variances will be much less precise than for the actual variances. However, if the dependence
between shock and propagation parameters reflects the relative size of the shock variance, then it is possible to use this
dependence when constructing counterfactual variances in order to get more precise inferences. To capture this dependence,
we consider sorting the realized propagation parameters by the realized shock variances and assigning them a rank, which
can be matched to the quantile of the realized shock variance in the other subsample. In practice, we find that sorting
makes counterfactual posteriors only slightly more precise. Thus, for simplicity of presentation, we report the basic results
without sorting.
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comparison of an actual and counterfactual variance:

Pr

[
��i,j�

0

��i,i�
0

< k

]

That is, we can evaluate the probability that the counterfactual variance when i 6D j is less than
some percentage, denoted by the fraction k, of the actual variance in sample period i. The important
benchmark is a probability of 0.5, which, given k D 1, suggests ‘even odds’ that the one variance
is bigger than the other. Meanwhile, as we vary k from one towards zero, probabilities much
higher or lower than 50% provide strong statistical support for one variance being significantly
(in an economic sense) larger than the other.

A particularly attractive feature of the Bayesian framework is that it allows us to account for
uncertainty about the exact timing of structural change in a relatively straightforward manner. In
particular, estimation of an unknown breakdate can be added to estimation of the parameters and
the actual and counterfactual variances. Accounting for uncertainty about the timing of structural
change represents an improvement over the existing literature, which has conducted counterfactual
analysis conditional on a given breakdate.

4. COUNTERFACTUAL ANALYSIS OF THE VOLATILITY REDUCTION IN US REAL
GDP GROWTH

In this section we present the design of our Bayesian counterfactual analysis of the recent volatility
reduction in US real GDP growth. For our model of the US macroeconomy, we consider Blanchard
and Quah’s (1989) long-run structural VAR model of output growth and the unemployment
rate. Beyond the basic distinction between shocks and propagation, the model allows us to
consider aggregate supply and aggregate demand shocks as separate possible sources of the
volatility reduction. In terms of propagation, the model also allows us to identify contemporaneous
structural propagation of shocks across series, in addition to the dynamic propagation considered
in counterfactual experiments based on reduced-form VARs (e.g., Stock and Watson, 2002).

4.1. A Long-Run Structural VAR Model of Output and Unemployment

We start with a reduced-form VAR model for output growth and the unemployment rate:

�L�Yt D c C et, et ¾ N�0, �� �4�

where Yt � �yt, ut�0, �L� � I �
p∑

kD1
kLk, c � �c1, c2�0, et � �e1t, e2t�0, and � D

[
�2

1 �12

�12 �2
2

]
.

We assume that the lag order, p, is finite and that Yt is stationary, meaning that we can invert
�L� to solve for the vector Wold form:

Yt D 	 C �L�et �5�

where 	 D �1��1c, and �L� D �L��1.
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The key structural assumption is that the reduced-form representation in (5) corresponds to the
following linear structural model:

Yt D 	 C ˇ�L�εt, εt ¾ N�0, D� �6�

where εt � �εAS
t , εAD

t �0, D �
[

�2
AS 0
0 �2

AD

]
, ˇ�L� �

1∑
kD0

ˇkLk, and ˇ0 D
[

1 1
ˇ0,21 ˇ0,22

]
. That is,

output growth and the unemployment rate depend on current and lagged values of aggregate supply
shocks (εAS

t ) and aggregate demand shocks (εAD
t ). For the purpose of separating out changes in

the size of shocks from changes in the contemporaneous propagation of shocks across series, we
normalize the size of both structural shocks in terms of their initial impact on output growth.5 In
terms of this model, D reflects the size of shocks and ˇ�L� reflects the propagation of the shocks.
The matrix ˇ0 captures the proportional impact of the shocks on each series, rather than the size
of shocks. In particular, regardless of the size of shocks or how the shocks are normalized, ˇ0

only changes given a change in the contemporaneous propagation of shocks across series.
We identify aggregate demand shocks, aggregate supply shocks, and the propagation of

the shocks using a long-run restriction, as in Blanchard and Quah (1989). Briefly, long-run
identification proceeds by assuming no long-run effect of the aggregate demand shock on the
level of output (yt); that is, ˇ�1� is a lower triangular matrix. This restriction is then used to solve
for ˇ�L� and D. The details of this solution are provided in the Appendix.

4.2. Counterfactual Experiments for the Structural VAR

Given the structural model in (6), the variance of Yt is a function of the shock variances D and
the propagation ˇ�L�:

0 D
1∑

kD0

ˇkDˇ0
k �7�

As with the simple AR(1) example, we can consider a structural break in the variance of Yt

and perform counterfactual analysis based on the structural break. Letting i, j D 1, 2 index the
structural regime for propagation and shocks, respectively:

�i,j�
0 D

1∑
kD0

ˇ�j�
k D�i�ˇ0�j�

k �8�

Then, i D j produces the actual variance estimates for the two structural regimes and i 6D j
produces counterfactual variances.

4.3. Bayesian Estimation for the Structural VAR

The reduced-form VAR in (4) is equivalently written as

Yt D 0Xt C et �9�

5 Given the normalization, there is an implicit assumption that both structural shocks have a non-zero initial impact on
output growth.
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where  D [ c 1 . . p ]0 and Xt D [ 1 Y0
t�1 . . Y0

t�p ]0. We allow for a one-time
structural break in the parameters of (9) at the breakdate �. That is, we have

Yt D
{

�1�0
Xt C et, et ¾ N�0, ��1��; t < �

�2�0
Xt C et, et ¾ N�0, ��2��; t ½ �

}
�10�

The breakdate � is assumed to be unknown, and is thus treated as a parameter to be estimated.
We estimate the parameters of the model in (10) using Bayesian methods. We assume a

normal prior for the intercept/slope parameters, vec��i�� ¾ N�, �, i D 1, 2, an inverted Wishart
distribution for the variance–covariance parameters, ��i��1 ¾ W��, S�, and a uniform prior for the
breakdate, � ¾ U��T, �1 � ��T�, where � determines the fraction of the sample period over which
a structural break is allowed to occur. While the joint posterior density of ��1�, �2�, ��1�, ��2�, ��
is not available analytically, it can be simulated via the Gibbs sampler (Gelfand and Smith, 1990).
In particular, we obtain 10,000 draws from the Gibbs sampler for each parameter, after discarding
an initial 5000 draws to ensure convergence. The details of the Gibbs sampling procedure are
provided in the Appendix.

Given draws from the joint posterior density for the reduced-form parameters, we can solve
for the structural propagation parameters and the structural variance parameters using the long-
run identification procedure. Then, we can form the actual and counterfactual variances �i,j�

0
by mixing the variance parameters from structural regime i with the propagation parameters in
structural regime j, where i, j D 1, 2. Doing this for each draw from the Gibbs sampler provides
us with posterior densities for the counterfactual variances that are neither conditional on model
parameters nor conditional on the timing of the unknown breakdate, but take uncertainty about
these parameters and the breakdate into account.

5. EMPIRICAL RESULTS

In this section we present the empirical results for our investigation of the sources of the volatility
reduction in US real GDP growth based on the long-run structural VAR model presented in the
previous section. First, we describe the details of the data, model specification, and priors used for
estimation. Second, we report the estimation results for the structural break and model parameters.
Third, we report the findings for the counterfactual experiments based on the Bayesian analysis.

5.1. Data, Model Specification, and Priors

The data series are 100 times the log first differences of US real GDP and the level of the US
civilian unemployment rate. We sample seasonally adjusted measures at a quarterly frequency for
the period 1960 : Q1 to 2005 : Q4. The raw data were obtained from the St Louis Fed website
(http://www.stls.frb.org/fred/).

Beyond which variables to include in the VAR model, the main specification issue is how
many lags to include in estimation. We report results for a model with four lags of quarterly data,
although we note that the results are qualitatively very similar both for models with fewer lags
and for models with more lags.

We consider noninformative priors for simplicity, although the results are robust to more
informative priors based on training sample information. The priors are ‘noninformative’ in the
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sense that the priors for the VAR parameters would have resulted in posterior means and standard
deviations that are the same as OLS estimates and standard errors if the breakdate were known,
although because we also assume a noninformative (i.e., uniform) prior for the breakdate, the results
are not identical to OLS. For the intercept/slope parameters, the hyperparameters for the normal
prior are  D 0 and  D �1.0 ð 106� ð I, with rejection sampling based on the largest modulus
of the eigenvalues for the companion form representation of the VAR to ensure stationarity. For
the variance–covariance parameters, the hyperparameters for the Wishart prior are � D 0 and
S D �1.0 ð 106� ð I, which is a flat, but improper prior (i.e., it does not integrate to one) for the
precision matrix ��i��1

. For the unknown breakdate, the hyperparameter for the uniform prior is
� D 0.15, which corresponds to equal weights for a breakdate sometime between 1966 : Q3 and
1998 : Q4.

5.2. Bayesian Estimation Results

We first look at the timing of the structural break. Figure 1 displays the posterior density and
cumulative distribution for the breakdate parameter �. It is clear from the sharpness of the posterior
density and the steepness of the corresponding cumulative distribution that the data are highly
informative about the presence of a structural break in the VAR parameters sometime between
1982 and 1988. In particular, if there were no structural break, the posterior would be relatively
flat, like the uniform prior. Also, it is clear from the precision of the posterior density that it would
be robust to a wide range of truncations of possible breakdates implied by the hyperparameter
� for the uniform prior.6 The posterior includes 1984, which is often cited as the most likely
date of a volatility reduction in output growth. Meanwhile, it should be noted that the dates for
the possible timing of the structural break reflect that the model allows for a change in mean
and variance parameters for both output growth and the unemployment rate, rather than simply a
change in output growth volatility.

Given the results for the structural break, we next look at the estimates for structural shocks
and propagation before and after the break. First, in terms of structural shocks, Table I presents
quartiles for the posterior distributions of the aggregate supply (AS) and aggregate demand (AD)
shock standard deviations, �AS and �AD. The results suggest that the structural break corresponds
to a reduction in the size of structural shocks, at least in terms of their impact on output growth.
The quartile values for the posterior distributions of �AS and �AD both fall by half, although
the reduction in aggregate demand shocks is smaller in absolute magnitude. Second, in terms of
propagation, Figure 2 displays the median and quartiles of the posterior distribution of the impulse

response functions,
∂ytCq

∂εAS
t

,
∂ytCq

∂εAD
t

, for q D 1 to 40.7 The impulse response functions have the

same general shape as reported in Blanchard and Quah (1989). Aggregate supply shocks generate
persistent long-run effects, while aggregate demand shocks generate a hump-shaped response
that decays to zero over a business cycle horizon. Notably, the impulse response functions look
reasonably similar before and after the structural break. However, the relatively wide quartile
bands imply a fair degree of uncertainty about whether there was a change in propagation.

6 However, as with classical estimation of unknown breakdates, it is important to have a sufficient number of observations
on either side of a breakdate to avoid irregularities in the likelihood function when a small number of observations can
be overfit by a heavily parameterized model.
7 To conserve space and because our primary focus is on output growth volatility, we do not report the impulse response
functions for the unemployment rate.
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Figure 1. Posterior density for the timing of the structural break. Note: The x-axis units are quarters in the
sample period. The y-axis units refer to frequency as a fraction of the total number of simulations. The
solid line is the simulated posterior density for the unknown breakdate. The dashed line is the corresponding

cumulative distribution (right axis)

Table I. Quartiles of posterior distributions for standard deviations of aggregate supply and aggregate demand
shocks

Period 25th percentile Median 75th percentile

Aggregate supply
1 2.79 3.38 3.77
2 1.47 1.68 1.84

Aggregate demand
1 1.08 1.92 2.71
2 0.37 0.71 1.08

Note: The structural shocks are normalized in terms of their initial impact on output growth. The standard deviations are
expressed in terms of quarterly percentage points. Period 1 refers to the pre-break period and Period 2 to the post-break
period.

5.3. Results for Counterfactual Experiments

Given the estimation results for the structural VAR, it is useful to consider counterfactual
experiments to determine whether the change in the size of structural shocks could have generated
the entire reduction in output growth volatility or, alternatively, whether even small changes in
propagation could have generated large changes in output growth volatility due to the nonlinear
impact of propagation on variance. Meanwhile, given uncertainty about the extent of a change
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Figure 2. Impulse response functions. Note: The x-axis units are quarters after a shock. The y-axis units refer
to impact of the shock on output. Results are based on simulated posterior distributions. Solid lines represent

median responses. Dashed lines represent upper and lower quartile responses

in propagation, it is particularly important to consider the Bayesian approach to counterfactual
analysis because it captures the extent to which an imprecisely estimated change in propagation
could have generated a large volatility reduction, even if posterior means suggest little reduction.

As discussed above, the counterfactual experiments involve mixing shock variance and prop-
agation parameters from before and after the structural break and solving for the resulting
unconditional variances. For ease of interpretation of units, we report our inferences in terms
of the standard deviations rather than variances. Also, while the structural VAR model includes
the unemployment rate, we focus on the results for output growth. Specifically, we consider ��i,j�

y ,

which is the square root of the (1,1) element of �i,j�
0 in (8), where i, j D 1, 2. Table II presents

quartiles for the posterior distributions of the actual and counterfactual standard deviations of
output growth.

The first and second rows of Table II report results for the actual standard deviations, ��1,1�
y

and ��2,2�
y , in the pre-break and post-break periods, respectively. The results confirm the large

reduction in output growth volatility after the structural break. Specifically, the median estimate
fell by roughly 50%, while the upper quartile for ��2,2�

y is well below the lower quartile for ��1,1�
y .

These results are evident in Figure 3, which displays the posterior densities for the actual and
counterfactual standard deviations of output growth. Almost all of the posterior density for the
post-break standard deviation lies below the density for the pre-break standard deviation.
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Table II. Quartiles of posterior distributions for standard deviations of real GDP growth

Propagation Shocks 25th percentile Median 75th percentile

Actual
1 1 4.37 4.66 5.00
2 2 2.08 2.25 2.46

Counterfactuals
2 1 4.57 5.02 5.86
1 2 2.11 2.32 2.68

Individual shock counterfactuals
1 AS 1 3.46 4.02 4.60

AD 2
1 AD 1 2.69 3.20 3.87

AS 2

Note: Standard deviations are expressed in terms of quarterly percentage points. Period 1 refers to the pre-break period
and Period 2 to the post-break period. AS refers to aggregate supply. AD refers to aggregate demand.
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Figure 3. Posterior densities for actual and counterfactual standard deviations of output growth. Note: The
x-axis units are values for the standard deviations expressed in terms of quarterly percentage points. The y-axis
units refer to frequency as a fraction of the total number of simulations. Solid lines denote the simulated
posterior densities for the pre-break and post-break periods. Dashed lines denote the simulated posterior
densities for the counterfactuals, where ‘Shocks’ refers to post-break shocks and pre-break propagation, and

‘Propagation’ refers to post-break propagation and pre-break shocks

The third and fourth rows of Table II report results for the counterfactual standard deviations,
��1,2�

y and ��2,1�
y , corresponding to a change in propagation alone and a change in shocks

alone, respectively. A change in propagation alone is entirely unsuccessful at generating the
actual reduction in variance. Indeed, the median of ��1,2�

y is actually above that of the actual
standard deviation, ��1,1�

y , in the pre-break period. A change in shocks alone is able to generate
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a volatility reduction, with the median value close to that of the actual standard deviation,
��2,2�

y , in the post-break period. Again, these results are evident in Figure 3, which shows that
the counterfactual standard deviation given a change in shocks alone is almost as precisely
estimated as the actual post-break standard deviation, but the counterfactual standard deviation
given a change in propagation alone is less precisely estimated than the pre-break standard
deviation.

While the results in Table II and Figure 3 clearly suggest that it is a change in shocks,
not propagation, that could have generated the entire reduction in output growth volatility, the
Bayesian analysis also allows for more precise inferences along these lines. In particular, as
discussed in Section 3, we can calculate ratios of functions of the actual and counterfactual
variances and evaluate the probabilities that these ratios are less than a specified fixed value.
Based on this idea, Figure 4 displays probabilities that counterfactual reductions in the standard
deviation of output growth are larger than fixed percentages of the actual reduction in the
standard deviation of output growth. At one extreme, we consider 0% of the actual change
(i.e., no change). The probability that a change in shocks alone would have reduced volatility
is high at about 0.9, while the probability that a change in propagation alone would have
reduced volatility is low at about 0.3. At the other extreme, we consider 100% of the actual
change. The probability that a change in shocks alone would have reduced volatility by more
than the actual change is just below 0.5, which would correspond to ‘even odds’ that one
reduction is larger than the other. The probability that a change in propagation alone would
have reduced volatility by more than the actual change is actually 0 (i.e., the Bayesian analysis
suggests that there is no way a change in propagation alone would have reduced volatility more
than the actual change). In between the extremes, these probabilities are useful for illustrating
the economic significance of a change in volatility. In particular, there is a reasonably high
probability (above 0.8) that the counterfactual change in volatility given a change in shocks
alone would have lowered volatility by more than 75% of the actual reduction. Conversely,
there is only a small probability (less than 0.05) that the counterfactual change in volatility
given a change in propagation alone would have lowered volatility by even 25% of the actual
reduction.

Given the primary role played by shocks in the overall volatility reduction, we examine the
relative importance of AS and AD shocks separately. The fifth and sixth rows of Table II report
results for the counterfactual standard deviations, ��1,AS1/AD2�

y and ��1,AD1/AS2�
y , corresponding

to a change in AS shocks alone and a change in AD shocks alone, respectively. The results
suggest that AS shocks are more successful than AD shocks at generating a large reduction
in volatility. The median for ��1,AS1/AD2�

y , which corresponds to a change in AD shocks alone,
is only a bit lower than that of the actual standard deviation, ��1,1�

y , in the pre-break period.

By contrast, the median for ��1,AD1/AS2�
y , which corresponds to a change in AS shocks alone,

is closer to that of the actual standard deviation, ��2,2�
y , in the post-break period, although

the lower quartile for ��1,AD1/AS2�
y is still above the upper quartiles for ��2,2�

y and ��2,1�
y , sug-

gesting that AS shocks could not have generated the entire volatility reduction on their own.
These results are evident in Figure 5, which displays the posterior densities for the actual
and individual shock counterfactual standard deviations of output growth. Much of the poste-
rior density for the counterfactual standard deviation given a change in AS shocks alone lies
below the density for the counterfactual standard deviation given a change in AD shocks alone,
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Figure 4. Probabilities of counterfactual changes in volatility. Note: The x-axis units are percentages of the
actual change in the standard deviation of output growth. The y-axis units are probabilities. Solid lines
denote the probabilities that the counterfactual reductions in volatility are larger than fixed percentages of
the actual reduction in volatility, where ‘Shocks’ refers to post-break shocks and pre-break propagation, and

‘Propagation’ refers to post-break propagation and pre-break shocks

although these counterfactuals are clearly less precisely estimated than the actual standard devia-
tions.

Figure 6 displays the probabilities that the counterfactual reductions in volatility implied by
changes in one type of shock alone are larger than fixed percentages of the actual reduction in the
standard deviation of output growth. For both AS and AD shocks, there is a high probability that
the corresponding counterfactual change would have reduced volatility, with the probability above
0.9 for AS shocks and above 0.8 for AD shocks. At the same time, there is a low probability that
either AS shocks alone or AD shocks alone would have generated the entire reduction, with the
probability about 0.1 for AS shocks and about 0.05 for AD shocks. There is a higher probability
of a large volatility reduction for AS shocks alone than for AD shocks alone, with ‘even odds’
that a change given AS shocks alone would have generated about 60% of the actual reduction and
a change given AD shocks alone would have generated about 25% of the actual reduction.

6. ROBUSTNESS

There are some issues with Blanchard and Quah’s (1989) structural VAR based on a long-run
restriction that potentially argue for consideration of a short-run structural VAR instead. First,
the long-run identification presented above is predicated on the assumption that there is only one
type of AS shock and one type of AD shock, where ‘type’ is defined in terms of the impact of
the shock on the dynamic relationship between output and unemployment. If there are multiple
types of AS and AD shocks, then it would be important to include additional variables and allow
for additional shocks in the structural VAR. However, it is, arguably, much more practical to
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Figure 5. Posterior densities for actual and individual shock counterfactual standard deviations of output
growth. Note: The x-axis units are values for the standard deviations expressed in terms of quarterly percentage
points. The y-axis units refer to frequency as a fraction of the total number of simulations. Solid lines denote
the simulated posterior densities for the pre-break and post-break periods. Dashed lines denote the simulated
posterior densities for the counterfactuals, where ‘AS Shocks’ refers to post-break aggregate supply shocks
and pre-break aggregate demand shocks and propagation, and ‘AD Shocks’ refers to post-break aggregate

demand shocks and pre-break aggregate supply shocks and propagation

include a larger number of variables in a short-run structural VAR and still identify key structural
shocks. Second, from an econometric perspective, identification based on the spectral density at
frequency zero, as is done with long-run restrictions, is much weaker than identification based on
the short-run variance–covariance matrix of forecast errors (see Faust and Leeper, 1997, on this
point). In particular, estimates of the spectral density at frequency zero can be highly sensitive to
the number of lags included in estimation, while estimates of the short-run variance–covariance
matrix are somewhat more stable.

With these concerns in mind, we conduct a robustness check on our main model by also
considering a short-run monetary VAR along the lines of what was considered in Boivin and
Giannoni (2003) and Ahmed et al. (2004). The short-run monetary VAR model includes output
growth, consumer-price inflation, commodity-price inflation, and the monetary policy instrument,
and identifies monetary shocks on the basis of the short-run restriction of delayed responses for
output and prices to monetary shocks. Specifically, in terms of the notation in Section 4, the impact
matrix ˇ0 for the structural model is assumed to be lower triangular, with the policy instrument
variable being the last element of Yt. Identification is based on the Choleski factorization of the
variance–covariance matrix �, with normalization of the size of shocks being in terms of their
initial impact on their associated variable (e.g., the monetary shock in terms of the monetary policy
variable).

The data series for output growth is the same as before. The series for the inflation variables are
100 times the log first differences of the US CPI and the Commodity Research Bureau Spot Price
Index for all Commodities, respectively. The series for the monetary policy instrument is the level
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Figure 6. Probabilities of individual shock counterfactual changes in volatility. Note: The x-axis units are
percentages of the actual change in the standard deviation of output growth. The y-axis units are probabilities.
Solid lines denote the probabilities that the counterfactual reductions in volatility are larger than fixed
percentages of the actual reduction in volatility, where ‘AS Shocks’ refers to post-break aggregate supply
shocks and pre-break aggregate demand shocks and propagation, and ‘AD Shocks’ refers to post-break

aggregate demand shocks and pre-break aggregate supply shocks and propagation

of the federal funds rate. As before, we sample seasonally adjusted (when applicable) measures
at a quarterly frequency for the period of 1960 : Q1 to 2005 : Q4 and the raw data were obtained
from the St Louis Fed website (http://www.stls.frb.org/fred/). The number of lags and the priors
are the same as before, with only a change in the number of variables in the VAR model.

Table III presents quartiles for the posterior distributions of the actual and counterfactual
standard deviations of output growth given estimation based on the short-run monetary VAR.
The results are qualitatively very similar to those in Table II. A change in propagation alone
generates a standard deviation that is close to the standard deviation in the pre-break period, while
a change in shocks alone generates a standard deviation that is close to the standard deviation in
the post-break period. Also, consistent with the findings for AD shocks, monetary shocks appear
to generate only a small reduction in volatility. These results are qualitatively very similar to
the findings in Stock and Watson (2002), Boivin and Giannoni (2003), and Ahmed et al. (2004),
but our results provide statistical credibility for the idea that shocks, not propagation, could have
generated the volatility reduction in US output growth.

7. CONCLUSIONS

We have used counterfactual experiments to study the sources of the ‘Great Moderation’ in
US real GDP growth volatility in the 1980s. The contribution of our paper is to use Bayesian
analysis to make inferences about the counterfactual variance of real GDP growth. Contrary to
an existing literature, which constructs this counterfactual variance using classical estimation and
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Table III. Quartiles of posterior distributions for standard deviations of real GDP growth based on a short-run
monetary VAR

Propagation Shocks 25th percentile Median 75th percentile

Actual
1 1 4.72 5.06 5.52
2 2 2.26 2.46 2.71

Counterfactuals
2 1 4.60 5.00 5.52
1 2 2.46 2.67 2.94

Individual shock counterfactuals
1 Monetary 1 3.05 3.33 3.73

Other shocks 2
1 Other shocks 1 4.34 4.65 5.05

Monetary 2

Note: Standard deviations are expressed in terms of quarterly percentage points. Period 1 refers to the pre-break period
and Period 2 to the post-break period. The results for this table are based on a short-run monetary VAR model of output
growth, consumer price inflation, commodity price inflation, and the federal funds rate, with four lags and monetary shocks
identified from the restriction that they impact output growth, consumer price inflation, and commodity price inflation
only with a lag.

point estimates, the Bayesian analysis provides posterior densities that give a sense of statistical
precision about counterfactual quantities and allow us to evaluate the probability of economically
significant changes in those quantities. The results support the notion that the volatility reduction
in output growth was driven by smaller shocks hitting the economy rather than changes in the
propagation of those shocks. Indeed, we have the extremely strong finding that there is zero
probability that a change in propagation alone would have generated a volatility reduction as large
as what actually occurred. Furthermore, in terms of smaller shocks, we find that a change in
the size of aggregate demand shocks and monetary shocks would not have generated much of a
volatility reduction on their own. Thus, our results provide further statistical support, beyond what
was suggested by classical estimation and point estimates alone, for the ‘good luck’ hypothesis in
explaining the Great Moderation.

APPENDIX

A.1. Identification of Structural VAR via Long-Run Restrictions

The structural VAR in (6) is identified using a long-run restriction, as in Blanchard and Quah
(1989). Long-run identification proceeds by assuming that there is no long-run effect of the
aggregate demand shock on the level of output (yt). Technically, the spectral density of the
aggregate demand component of output growth is equal to zero at frequency zero. Given (5) and
(6), the spectral density for Xt at frequency zero is proportional to the long-run variance–covariance
matrix, denoted :

 D �1���1�0 D ˇ�1�Dˇ�1�0 �A.1�

In order for the aggregate demand component of output growth to have a spectral density of
zero at frequency zero, ˇ�1� must be lower triangular. That is, the aggregate demand shock
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does not contribute to the permanent movements in output. In practice, identification proceeds by
constructing  using �1� and � from the reduced-form model. Then, the Choleski factorization
of  provides a unique lower triangular matrix that is equivalent to ˇ�1�D1/2.

Given ˇ�1�D1/2, full identification of the structural model follows from the relationship between
the reduced-form forecast errors and the structural shocks implied by the assumption that forecast
errors and structural shocks are both uncorrelated across time:

et D ˇ0εt �A.2�

Then, substituting (A.2) into (5) and comparing to (6) implies

�L�ˇ0 D ˇ�L� �A.3�

The condition (A.3) is general and holds for the following case:

�1�ˇ0 D ˇ�1� �A.4�

Rearranging and multiplying both sides by D1/2, we can determine the un-normalized impact
matrix �0 D ˇ0D1/2:

�0 D �1��1ˇ�1�D1/2 �A.5�

Then, given (A.5) and the normalization of shocks in terms of their initial impact on output growth,
we can solve for ˇ0 and D as follows:

ˇ0 D
[

1 1
�0,21/�0,11 �0,22/�0,12

]
, D D

[
�2

0,11 0
0 �2

0,12

]
�A.6�

A.2. Bayesian Estimation of the Reduced-Form VAR via the Gibbs Sampler

We begin by writing the reduced-form VAR model in (9) in matrix notation. Define the vectors
 Qy D �y1, . . . , yT�0, Qu D �u1, . . . , uT�0, and Qei D �ei1, . . . , eiT�0 and form the matrices Y D
[  Qy Qu ], X D b Q1 Y�1 . . Y�p c, and e D [ Qe1 Qe2 ], where Y�k holds the kth lag of  Qy
and Qu. The model in (9) is then equivalently written as

Y D X C e �A.7�

Again, we are interested in the case where the parameters of the reduced-from VAR undergo a
one-time structural break at the breakdate �. Thus the model in (A.7) can be partitioned into the
two subsamples:

Y�1� D X�1��1� C e�1�

Y�2� D X�2��2� C e�2� �A.8�

where Y�1�, X�1�, �1� and e�1� hold the first � � 1 rows of Y, X,  and e respectively, while Y�2�,
X�2�, �2� and e�2� hold last the T � �� � 1� rows of Y, X,  and e respectively.
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The model in (A.8) can be estimated in a Bayesian framework using the Gibbs sampler. In
particular, starting with arbitrary initial values for ��1�, ��2� and �, the Gibbs sampler proceeds
by iterating the following three steps:

1. Generate vec��1�� and vec��2�� from their conditional posterior density given previous values
for ��1�, ��2� and �. This density is given by

vec��i��j��i�, �, Y�i�, X�i� ¾ N�
�i�

, 
�i�

�

where 
�i� D (

�1 C ��i��1 � X�i�0
X�i�

)�1
, 

�i� D 
�i� ð ��1 C ���i��1 � X�i�0

�vec�Y�i���. A
generated value for �i� is then formed from the generated value of vec��i��.
2. Generate ��1� and ��2� from their conditional posterior distribution given previous values for

�1�, �2� and �. This density is given by

��i��1 j�i�, �, Y�i�, X�i� ¾ W���i�, S
�i�

�

where ��1� D � C � � 1, ��2� D � C T � �� � 1� and S D �S�1 C e0e�.
3. Generate � from its conditional posterior distribution given previous values of �1�, �2�, ��1�,

and ��2�. This density is given by

p��j�1�, �2�, ��1�, ��2�, Y, X� / L��j�1�, �2�, ��1�, ��2�, Y, X�

where the likelihood is evaluated for all possible breakdates between �T and �1 � ��T,
with L��j�1�, �2�, ��1�, ��2�, Y, X� equal to the joint normal density of the data Y given
�1�, �2�, ��1�, ��2� and �.

After a sufficient number of initial draws, the subsequent draws from the Gibbs sampler will no
longer reflect the arbitrary starting values, but will behave like draws from the joint posterior
density, p��1�, �2�, ��1�, ��2�, �jY, X�.
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