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tence based on generalized impulse response functions. Second,
model comparison is conducted via marginal likelihoods, which
reflect the relative abilities of models to predict the data given
prior beliefs about model parameters. This comparison is con-
ducted for a range of linear and nonlinear models and provides a
direct evaluation of the importance of nonlinear dynamics in
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suggest general support for nonlinearity, with the strength of the
evidence depending on which country pair is being considered.
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2 See, for example, Heckscher (1916), Cassel (192
always as small or smaller than for the linear models alone, sug-
gesting that the purchasing power parity persistence puzzle is less
of a puzzle than previously thought.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Numerous studies, includingMichael et al. (1997), Obstfeld and Taylor (1997), Sarantis (1999), Sarno
et al. (2004), and Bec et al. (2010), havemade use of nonlinear threshold-type autoregressive models to
investigate the purchasing power parity (PPP) persistence puzzle, a notion initiated in a survey by
Rogoff (1996). The motivation for using nonlinear models in this setting is that the original empirical
findings used to establish the puzzle may have arisen due tomodel misspecification. Specifically, linear
time series models restrict the degree of adjustment of real exchange rates to their PPP levels to be the
same at all points of time. However, basic theory suggests that transaction costs can determine when
the “law of one price” drives real exchange rates towards PPP and when it does not.2 Hence, nonlinear
models that allow for regime-switching behavior in real exchange rates may be more appropriate to
study PPP. Indeed, the findings of many recent empirical studies imply that estimated PPP adjustments
are faster for nonlinear models than those estimated for linear models, thus providing a potential
resolution for the PPP persistence puzzle. Sarno (2003) and Taylor and Sarno (2003) provide detailed
surveys of this literature.

In this paper, we adopt a Bayesian approach to investigate exchange rate nonlinearities and the PPP
persistence puzzle. There are three reasons for doing this. First, standard frequentist estimation for
nonlinear threshold models typically considered in the literature on exchange rates is cumbersome as
it involves procedures to grid-search for the value of the parameters in nonlinear transition functions.
Bayesian methods allow for joint estimation of all model parameters, as well as complicated functions
of the parameters, such as the half-life measure of persistence based on generalized impulse response
functions. Second, testing threshold-type nonlinearities in the frequentist setting is challenging due to
the presence of nuisance parameters, with the concomitant problem that tests may be relatively un-
informative in small samples due to weak power. In the Bayesian framework, model comparison via
marginal likelihoods, which reflect the relative abilities of models to predict the data given prior beliefs
about model parameters, is conceptually straight forward for any set of models and an inability to
discriminate between models based on sample information will be evident in posterior odds ratios
being close to even. Third, while frequentist inferences about exchange rate persistence can be highly
sensitive to model specification, the Bayesian approach allows for model-averaged measures that
address inherent uncertainty about model-specification issues such as lag order or the possible
presence of nonlinear dynamics.

Our empirical findings can be summarized as follows. Based on our model comparison, there is
general support for nonlinear threshold dynamics in real exchange rates for the G7 countries, although
the strength of the evidence varies across country pairs. Meanwhile, our model-averaged measures of
real exchange rate persistence are generally lower than for linearmodels alone. Thus, our analysis takes
the resolution of the PPP persistence puzzle further than frequentist analysis based on nonlinear
models. In the frequentist setting, the finding of lower persistence is a “knife-edge” results that de-
pends crucially on the presence of nonlinear dynamics in real exchange rates, with tests for nonline-
arity providing little support for nonlinearity across country pairs in practice. These “knife-edge”
inferences are particularly worrisome given the fact that tests of nonlinearity can suffer from weak
power in small samples. By contrast, our finding based on Bayesian analysis is that model-averaged
measures of persistence are generally lower than those based on linear models, including in the
cases where the evidence for nonlinearity is somewhat ambiguous. Specifically, we find that half-lives
2), Dumas (1992) and O'Connell (1997).
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for G7 real exchange rates mostly range between 2 and 3 years compared to the 3e5 years found in
Rogoff (1996). This might be seen as only a partial resolution of the PPP persistence puzzle given that
2e3 year half-lives are still too long to be easily reconciled with sticky goods prices alone. However,
when one considers the possibility of threshold effects, the 2e3 year unconditional half-lives become
much more economically plausible as exchange rates would not be expected to adjust quickly when
they are close to their PPP levels, which they often are in practice.

The remainder of this paper is organized as follows: Section 2 presents the linear and nonlinear
models of the real exchange rate considered in our analysis. Section 3 discusses practical issues for
Bayesian estimation for these models. Section 4 reports the empirical results for an application of these
models and Bayesian methods to real exchange rate data from the G7 countries. Section 5 concludes.

2. Models

There are many different time series models of exchange rates. The main distinction between them
is whether they assume linear or nonlinear dynamics. Within the realm of nonlinear models, the
emphasis for exchange rates has been on models that allow for nonlinear conditional mean dynamics.
However, exchange rates are asset prices, so there are also models that allow changing conditional
variances to help capture fat tails in the distribution of exchange rate returns. In our analysis, we focus
on the distinction between linear and nonlinear models of conditional mean dynamics. However, we
also consider the effects of accounting for heteroskedasticity and fat tails on inferences about nonlinear
mean dynamics and the persistence of exchange rate fluctuations.

The benchmark linear model that we consider is a finite-order autoregressive (AR) model:

fðLÞðqt � mÞ ¼ εt ; εt � i:i:d:N
�
0; s2

�
; (1)

Where qt is the log real exchange rate, fðLÞ ¼ 1� f1L�/� fpLp, and the roots of f(z) ¼ 0 lie on or
outside the unit circle. Roots outside the unit circle corresponds to the idea that PPP holds in the long
run.3 The Gaussian error assumption is driven by the need for a parametric structure in order to
conduct our Bayesian analysis.4

In termsof nonlinearmodels of conditionalmeandynamics for exchange rates, the existing literature
has emphasized so-called “self-exciting” threshold models with discrete transitions (TAR) and smooth
transitions (STAR) between different regimes for the AR dynamics (seeMichael et al.,1997; Obstfeld and
Taylor,1997; Taylor et al., 2001; Sarno et al., 2004). Buildingon this literature and inspired by Franses and
van Dijk (2000), Bec et al. (2010) develop a general multi-regime logistic STAR (MR-LSTAR) model that
nests both TAR and STAR dynamics. The model, which we adopt here, starts with a Dickey-Fuller
transformation of the benchmark linear AR model in (1) into an error-correction representation:

Dqt ¼ bðqt�1 � mÞ þ ut ; (1’)

where b ≡�f(1), ut≡
Pp�1

j¼1 f
*
j Dqt�j, and f*

j ≡�Pp
i¼jþ1fi. Nonlinear conditional mean dynamics are then

allowed for by letting the errorecorrection coefficient b be regime-dependent as follows:

Dqt ¼
X3
r¼1

Frðqt�1 � mjg; cÞbrðqt�1 � mÞ (2)

where
3 The strongest evidence for long-run PPP comes from the long samples of exchange rate data considered in Abuaf and Jorion
(1990) and Lothian and Taylor (1996), although it should always be acknowledged that long-run PPP may not strictly hold due
to the possible presence of a small random walk component (see Engel, 2000).

4 Given that exchange rates are asset prices, a Student t distribution with a low degree of freedom for the error term might
seem a more reasonable assumption. However, when we considered this alternative assumption, we found that our results
were highly robust. This robustness likely reflects the fact that we consider quarterly data and a Gaussian assumption for
exchange rates is somewhat more reasonable at lower frequencies than at high frequencies (i.e., accounting for fat tails would
be more important for daily or weekly data). For brevity, we only report results assuming Gaussian errors.
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F1 ¼ ½1þ expð � gðqt�1 � m� cÞ��1; (3)

F2 ¼ ½1þ expðgðqt�1 � mþ cÞ��1; (4)

F3 ¼ 1� F1 � F2; (5)

with the restriction b1 ¼ b2≡bout and, for notational convenience, b3≡bin. Inwords, the prevailing error
correction coefficient at any point of time depends on the level of the lagged exchange rate relative to
symmetric thresholds around the mean m, with the width of the threshold bands determined by the
threshold parameter c. The transition functions Frðqt�1 � mjg; cÞ determine the weights put on each
regime according to logistic specifications that depends on the smooth transition parameter g, which is
restricted to be positive in order to identify the regimes. Note that, as, g / ∞ the MR-LSTAR model
approximates a band-TAR model.

Given this setup, it is straightg0/∞ forward to allow other parameters to also depend on the
regime, including the variance of the shocks. Thus, in order to address the possibility of hetero-
skedasticity, we also consider whether augmenting the models discussed above with regime-
dependent variances, s2out and s2in, affects our inferences about exchange rate dynamics.
3. Bayesian estimation

We conduct our Bayesian estimation via a multi-block random-walk chain version of the Metro-
poliseHastings (MH) algorithm. The MH algorithm is a posterior simulator in which draws are first
made from an easy-to-simulate proposal distribution (e.g., a multivariate Normal distribution). Then
the draws are accepted or rejected as draws from a target distribution (i.e., the posterior distribution)
based on the relative densities of the draws for both the proposal and target distributions.

As with any importance-sampling algorithm, the success of the posterior simulator in providing an
accurate discrete approximation of the target distribution depends on the proposal distribution. We
follow a common approach in the applied literature of making our proposal a multivariate Student t
distribution based on the posterior mode and the curvature of the posterior around the mode. How-
ever, some issues arise in doing so for the nonlinear MR-LSTAR model. First, just as with maximum
likelihood estimation of nonlinear threshold models, there is a need for a grid search across the
threshold parameter c to find the posterior mode. However, it is important to emphasize that this only
applies to constructing the proposal distribution. Bayesian estimation of the threshold based on the
target distribution has the benefit that it does not involve discretization of the sample space for the
threshold parameter. Second, by using a grid search to estimate the threshold parameter, numerical
derivatives cannot be used to evaluate the curvature of the posterior with respect to the threshold
parameter. Thus, there is no guide from numerical optimization for the scale of the proposal density,
even if its location can be pinned down at the posterior mode.

In our analysis, we address the problem of determining a good proposal distribution for nonlinear
threshold models by considering an alternative measure of the curvature of the posterior with respect
to the threshold parameter c. First, we invert the “posterior ratio” for the threshold based on a critical
value of 3.84. Specifically, given diffuse priors, this is equivalent to inverting the likelihood ratio sta-
tistic for c to construct a 95% confidence interval (in a frequentist sense) under the assumption that the
statistic has a standard c2(1) asymptotic distribution. Note that, even if the actual distribution is not
c2(1), this approach will work because it will still capture the approximate curvature of the posterior
with respect to c. In particular, parameter estimates based on draws from the target distribution (i.e.,
the posterior) will be robust to different assumptions about the proposal distribution as long as the
proposal loosely captures the shape of the posterior. For example, if we use a critical value based on a
c2(2) distribution instead to determine our proposal, our posterior estimates are the same as whenwe
assume a c2(1) distribution. We just need to make a plausible assumption about the critical value, with
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3.84 providing a convenient benchmark. Then, given an interval based on the inverted “posterior ratio”,
we back out an implied standard error (again, in a frequentist sense) for the threshold parameter under
the assumption that the estimator has a standard asymptotic distribution. Again, our parameter esti-
mates will be robust to rescaling of the standard error, so it is not crucial that this assumption is literally
true.

To summarize, our approach for approximating the curvature of the posterior with respect to the
threshold parameter proceeds as follows:

1) Construct “confidence set” for c based on inverting the posterior ratio.5 Assuming the set is
contiguous, denote the estimated 95% confidence interval as ½bc0:025; bc0:975�.6

2) Note that, if a standard error were available and assuming asymptotic normality, another estimate
of the 95% confidence interval would be bc±1:96� SEðbcÞ, meaning thatbc±1:96� SEðbcÞz½bc0:025;bc0:975�:

3) Assuming an asymptotic equivalence of the two confidence interval estimators, construct an
approximate standard error as bsc ¼ 1

3:92 ðbc0:975 � bc0:025Þ:
In terms of the smooth transition parameter g, while it is possible to estimate it by numerical

optimization, there are practical difficulties with doing so. As g / ∞ (i.e., as the MR-LSTAR model
becomes more like a Band TAR model), g becomes unidentified (i.e., there is no impact on the likeli-
hood for changes in g when it is extremely large). Bayesian analysis helps to some extent because an
informative prior on g has the implication that the posterior will change even if the likelihood does not.
However, in practice, to allow for relatively diffuse priors and to aid in numerical optimization, we
follow the frequentist literature (see, for example, Franses and van Dijk, 2000) and conduct a grid
search for g to obtain bsg for the proposal distribution. Again, it should be emphasized that the grid
search is for the proposal distribution only and is only meant to loosely approximate the posterior. The
draws of g from the target distribution will be accurate even given the approximations in the proposal
distribution. Meanwhile, we check the robustness of posterior moments to different assumptions for
the proposal distribution for these nonlinear parameters.

Letting q denote the vector of model parameters, the overall proposal distribution is constructed as
follows:

q � MT
�
mq;Sq; nq

�
;

where mq is set to the previous draw for the random walk chain version of the MH algorithm and nq is
the degrees of freedom parameter that it set as T� k, where T is the sample size and k is the number of
parameters. The key aspect of the proposal density is the scale matrix Sq. Letting qL denote the “linear”
parameters and qNL denote the “nonlinear” parameters (i.e., c and g), where q ¼ ðqL; qNLÞ0, Sq is given as
follows:

Sq ¼ k

2
4 vbar�bqL� 0

0 vbar�bqNL�
3
5;

where k is a “tuning” parameter for theMH algorithm, vbarðbqLÞ is the variance-covariance of the “linear”
parameters based on the estimated inverse expected Hessian at the posterior mode conditional on the
“nonlinear” parameters and vbarðbqNLÞ ¼ ðbs2

c ; bs2
gÞ0I2�2 is based on the indirect estimated standard de-

viations discussed above. Results are robust to allowing for either positive or negative correlation
between the linear and nonlinear parameters. Meanwhile, we consider different parameter blocking
5 See Hansen (1996) for his detailed discussion of the method.
6 If the confidence set is not contiguous, we take the conservative approach of using the smallest and largest values in the set

to construct a 95% confidence interval.
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schemes (i.e., conditional drawing from subsets of q) andwe adjust k to attain an acceptance rate for the
MH algorithm of between 20 and 50%.

Model comparison and model weights for constructing a model-averaged measure of persistence
are based on marginal likelihoods. These are proportional to the probability that a model (including
priors on parameters) would have predicted the observed data. Following Chib and Jeliazkov (2001),
we calculate these using the Bayes identity and the MH output. We have confirmed that marginal
likelihood estimates and posterior moments are robust across multiple runs of the MH algorithm and
for different starting values of the random-walk chain. For each run, we consider 20,000 draws after
10,000 burn-in draws.
4. Empirical results

4.1. Data and priors

We consider quarterly real exchange rates for eight different country pairs from the G7; these
include non-euro currency exchange rates from 1974Q1 to 2014Q2 and euro currency exchange rates
from 1974Q1 to 1998Q4. We calculate the real exchange rate series using nominal exchange rates and
consumer price index (CPI) data from the IFS database.7 We convert the monthly series into a
quarterly frequency by taking the end-of-quarter values. When looking at long-horizon persistence
properties of exchange rates, there is little benefit of considering monthly data instead of quarterly
data, while there would be a cost in terms needing more complicated models to account for the fat
tails and volatility clustering that is more evident in higherefrequency exchange rate data. Also, the
computation, especially of marginal likelihoods, is much faster given quarterly data instead of
monthly data.8

Five of the real exchange rate series are vis-�a-vis the U.S. dollars; all are commonly examined in the
literature, but only the poundedollar exchange rate is included in Bec et al. (2010).9 To compare with
their results, we also include three series that do not involve the U.S. dollar. All real exchange rate series
are converted into logarithms and re-centered. The full sample period is separated into two: 1974Q1 to
1979Q4 provides a training sample to help us with the elicitation of priors for certain parameters that
depend on the scale of the data (e.g., the variance of shocks) and/or parameters for which model
comparison could potentially be sensitive to what might otherwise be arbitrary assumptions (e.g., the
nonlinear parameters); 1980Q1 to 2014Q2 (or 1998Q4 for the euro currency exchange rates) is used for
Bayesian estimation and model comparison. We consider up to four lags for the AR specification.
Because we use the error-correction and DickeyeFuller transformation given in (10) and (2), the AR(4)
model, for example, is specified with the regressand as the first difference of the log real exchange rate
and the regressors are the first lag of the log real exchange rate and three lags of the first differences.

For all of the models, the priors for the AR parameters have a truncated Normal distribution to rule
out an explosive process (i.e., a draw from the proposal density can only be accepted if the roots of the
characteristic equation f(z) ¼ 0 lie on or outside the unit circle). The mean of the underlying Normal
distribution for the errorecorrection coefficient on the lag of the log real exchange rate is set based on
the OLS estimate from an AR(1) model of the log real exchange rate for the training sample (or we set it
to 0 if the estimated AR(1) coefficient is greater than 1) and the standard deviation is 0.1. The mean of
the underlying Normal distribution for the coefficients on the lagged differences is set to 0 and the
standard deviation is 0.5. The implied mean of the prior distributions will depend on the effects of
truncation, but given the relatively tight prior on the errorecorrection coefficient, the implied mean
will be close to the OLS estimate. Meanwhile, the prior for the forecast-error variance has a Gamma
7 For the U.K. CPI, we obtain data from FRED for the pre-1988 sample period due to lack of availability from IFS. The IFS and
FRED data for U.K. CPI are very similar in the post-1988 sample.

8 Note, however, that we have confirmed that the posterior parameter inferences are qualitatively similar (adjusting for the
frequency) when considering similar models with monthly data.

9 We exclude the German real exchange rate because the interpretation of the CPI before and after the German unification is
problematic.
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distribution s2 � Gammaðn; dÞ where the Gamma distribution for variable x is parameterized as
follows:

f
�
xjn; d� ¼ ðd=2Þðn=2Þ

Gðn=2Þ xðn=2Þ�1e�ðd=2Þx:

For the prior on the forecast error variance, we set the rate parameter d ¼ 1 (i.e., the Gamma dis-
tribution collapses to is a Chi-squared distribution with n degrees of freedom) and we set the shape
parameter n to the sample variance of the forecast error in the training sample implied by the means of
underlying prior distributions for the errorecorrection coefficient and the coefficients on the lagged
differences. This implies that the prior mean for the forecast-error variance will be equal to its sample
value in the training sample, but the prior is relatively uninformative prior and is common to all
models, so it should not affect the model comparisons.

The elicitation of priors for the nonlinear parameters in the MR-LSTAR model is slightly more
involved and requires more discussion. For the threshold parameter c, we assume a Gamma distri-
bution and set the rate parameter d ¼ 0.25 and the shape parameter n to d times the median absolute
real exchange deviation (in logarithms) from the sample mean using data from the training sample
period, implying the prior mean for c is equal to the median deviation from the mean real exchange
rate in the training sample. For the smooth transition parameter g, we also assume a Gamma distri-
bution and set the shape parameter Db ≡ bin�bout and the rate parameter d to 0.25 � n times the mean
difference between ranked absolute deviations from the mean real exchange rate in the training
sample. This calibrates the prior on the transition function to be more precise and with moreweight on
a smooth transitionwhen there ismore information on the effects of small differences on real exchange
rate dynamics. If the mean difference is larger, implying less information about the effects of small
differences, the prior on the transition function becomes more diffuse and shifts more mass towards a
relatively discrete transition function. Meanwhile, it should be noted that, despite the use of training
sample information to calibrate the priors for both c and g, the priors are relatively uninformative given
low values for the rate parameter d in practice.

The remaining parameter for the nonlinear threshold models is the change in the error correction
coefficient across regimes: Db≡bin � bout . For this parameter, our prior is more informative than for
other parameters and is based on the transaction costs notion that the adjustment to PPP will be larger
when the exchange rate is far away from its PPP level. In particular, for Db, we again assume a Gamma
distribution and set the rate parameter d ¼ 50 and the shape parameter n ¼ 2, implying the mean for
the reduction in the error correction coefficient is 0.04, with a standard deviation of 0.04. To offset any
impact on the implied prior for the half-life of a shock to the real exchange rate, we add 0.04 to the prior
mean of the underlying Normal distribution for the errorecorrection coefficient bin (or we set it to 0 if
the adjusted value would otherwise be positive, which would correspond to an explosive process).

We justify an informative prior for the change in the error coefficient in two ways. First, we have
strong theoretical reasons based on transaction costs to believe the error correction effect is larger in
the outside regime when the real exchange rate is further from PPP. This is exactly the motivation for
using a threshold model for real exchange rates and the ability to specify an informative prior that
specifies the model according to that dynamic is a benefit of Bayesian analysis.10 Second, even though
an informative prior that places little weight onDbz 0might seem at first glance to push our empirical
findings towards finding evidence of nonlinearity, it does not in fact do so. This is because we also
consider linear models in our model comparison. Indeed, it is important for comparing linear and
nonlinear models with Bayesian model comparison that there is little or no prior weight on the portion
of the parameter space for the nonlinear models that corresponds to linearity. Only in this case will our
true prior odds for linearity and nonlinearity be equal when considering Bayes factors (see below) to
10 In Bayesian analysis, the prior and the model are closely related. As an example, it is possible to compare two priors given
the same model specification using marginal likelihoods. In essence, the comparison is between how well two prior models
predicted the sample data.



Table 1
Log marginal likelihoods and Bayes factors.

Model Autoregressive lag order (p)

1 2 3 4

British PoundeU.S. Dollar
Linear �418.56 (0.00) �417.55 (0.01) �418.87 (0.00) �419.94 (0.00)
Linear-h �417.51 (0.01) �416.70 (0.01) �418.12 (0.00) �419.11 (0.00)
MRLSTAR �417.10 (0.01) �415.81 (0.03) �417.14 (0.01) �418.08 (0.00)
MRLSTAR-h �415.87 (0.03) ¡412.44 �416.03 (0.03) �417.14 (0.01)
Canadian DollareU.S. Dollar
Linear �351.03 (0.00) �350.31 (0.00) �350.81 (0.00) �350.99 (0.00)
Linear-h �352.36 (0.00) �351.07 (0.00) �352.39 (0.00) �351.91 (0.00)
MRLSTAR �349.48 (0.00) �348.74 (0.00) �349.28 (0.00) ¡341.88
MRLSTAR-h �350.68 (0.00) �348.11 (0.00) �347.13 (0.01) �344.79 (0.05)
French FranceU.S. Dollar
Linear �240.49 (0.00) �239.43 (0.00) �240.73 (0.00) �240.13 (0.00)
Linear-h �240.96 (0.00) �240.03 (0.00) �241.26 (0.00) �240.74 (0.00)
MRLSTAR �238.55 (0.00) �234.00 (0.00) �233.58 (0.00) �238.30 (0.00)
MRLSTAR-h �238.89 (0.00) �236.28 (0.00) �235.77 (0.00) ¡226.95
Italian LiraeU.S. Dollar
Linear �243.35 (0.00) �242.51 (0.00) �243.32 (0.00) �242.26 (0.00)
Linear-h �243.26 (0.00) �242.69 (0.00) �243.36 (0.00) �242.26 (0.00)
MRLSTAR �239.95 (0.00) �240.69 (0.00) �236.25 (0.10) ¡233.99
MRLSTAR-h �242.08 (0.00) �239.17 (0.01) �241.53 (0.00) �234.72 (0.48)
Japanese YeneU.S. Dollar
Linear �437.69 (0.00) �438.67 (0.00) �439.69 (0.00) �436.49 (0.01)
Linear-h �438.06 (0.00) �439.07 (0.00) �440.06 (0.00) �436.54 (0.01)
MRLSTAR �435.65 (0.02) �436.64 (0.01) ¡431.89 �435.93 (0.02)
MRLSTAR-h �436.29 (0.01) �436.88 (0.01) �434.13 (0.11) �434.34 (0.09)
Canadian DollareBritish Pound
Linear �425.54 (0.02) �426.16 (0.01) �427.13 (0.00) �428.51 (0.00)
Linear-h �425.96 (0.01) �426.48 (0.01) �427.45 (0.00) �428.75 (0.00)
MRLSTAR �421.88 (0.62) �424.33 (0.05) �425.34 (0.02) �426.65 (0.01)
MRLSTAR-h �424.34 (0.05) �422.75 (0.26) �422.05 (0.52) ¡421.40
British PoundeFrench Franc
Linear �222.23 (0.23) �222.44 (0.19) �223.71 (0.05) �224.15 (0.03)
Linear-h �223.08 (0.10) �222.98 (0.11) �224.27 (0.03) �224.77 (0.02)
MRLSTAR �220.99 (0.80) �221.09 (0.72) �222.39 (0.20) �222.79 (0.13)
MRLSTAR-h �221.24 (0.62) ¡220.76 �222.22 (0.23) �222.65 (0.15)
Italian LiraeFrench Franc
Linear �188.95 (0.00) �188.69 (0.00) �189.89 (0.00) �190.31 (0.00)
Linear-h �189.04 (0.00) �188.57 (0.00) �189.77 (0.00) �189.91 (0.00)
MRLSTAR �187.15 (0.00) �183.82 (0.09) �188.33 (0.00) �182.65 (0.28)
MRLSTAR-h �186.63 (0.01) �184.11 (0.06) �184.56 (0.04) ¡181.38

Note: The largest log marginal likelihood value is in bold. The Bayes factor is reported in parentheses and is equal to themarginal
likelihood value of a particular specification divided by the largest overall marginal likelihood value for a given country pair.
Values smaller than (0.01) are reported as (0.00).

M.C. Lo, J. Morley / Journal of International Money and Finance 51 (2015) 285e302292
calculate posterior odds, while equal prior odds for a linear and nonlinear model would implicitly favor
linearity given less informative priors on parameters in the nonlinear models related to nonlinearity.

These priors on the parameters for the linear and nonlinear models have roughly similar implica-
tions for the half-life measure of persistence of a shock to the real exchange rate. For example,
assuming an autoregressive lag order of 1 and an OLS estimate of 0.85 for the AR(1) parameter in the
training sample, the implied prior means and standard deviations for the half-life for the linear and
nonlinear models are all about 2 years and the percentiles of the prior distributions are very similar.
4.2. Posteriors

Table 1 reports the log marginal likelihood for each model, with a corresponding Bayes factor in
parentheses. Each Bayes factor is calculated as the ratio between the marginal likelihood value of a



Table 2
Linearity tests.

Model Autoregressive lag order (p)

1 2 3 4

LM statistics
British PoundeU.S. Dollar 0.8008 1.1511 0.9972 1.3307
CanadianeU.S. Dollar 0.3142 0.6407 0.2820 0.6387
French FranceU.S. Dollar 3.3259 5.3360* 5.0672* 4.9502*

Italian LiraeU.S. Dollar 2.5983 3.4869 3.4183 2.9887
Japanese YeneU.S. Dollar 0.6581 0.8834 0.7586 0.6552
Canadian DollareBritish Pound 0.1362 0.1927 0.0926 0.1588
British-PoundeFrench Franc 4.7258* 5.9124* 6.2107** 5.8198*

Italian LiraeFrench Franc 5.3353* 8.4937** 8.1788** 7.6529**

Heteroskedasticity robust LM statistics
British PoundeU.S. Dollar 0.7672 1.1636 1.1029 1.3563
CanadianeU.S. Dollar 0.4344 0.9823 0.4470 0.9313
French FranceU.S. Dollar 3.0357 4.8462* 5.1359* 5.4650*

Italian LiraeU.S. Dollar 1.5188 2.1945 2.5005 2.4644
Japanese YeneU.S. Dollar 0.2244 0.2955 0.2581 0.2386
Canadian DollareBritish Pound 0.2212 0.3660 0.1809 0.3260
British PoundeFrench Franc 2.4456 3.1143 3.8321� 3.8346�

Italian LiraeFrench Franc 3.1241 4.3023� 4.6030� 5.1818*

Note: e, *, and ** denote level of statistical significance at 15%, 10%, and 5% respectively.
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particular specification and the largest marginal likelihood value among the sixteen specifications for a
given country pair. Based on these results, the MR-LSTAR models with and without heteroskedastic
disturbances are well supported for all eight real exchange rates. Moreover, in every one of these cases,
the second best model, using the Bayes factor as the measure, is also an MR-LSTAR specification. Linear
models only have nontrivial Bayes factors for the pound-franc real exchange rate. Meanwhile, our
results suggest that both nonlinear conditional mean dynamics and heteroskedasticity are often
important in understanding the exchange rate data. Indeed, the MR-LSTAR-h specification has the
highest Bayes factor in five out of eight cases.

It is illustrative to compare Table 1 with Table 2, which reports results for a frequentist LM-type test
of linearity that was also considered in Bec et al. (2010).11 Our sample periods are different than theirs,
so the results in Table 2 are not an exact replication of their results. However, the inferences are similar.
There are four series that are common in the two studies: pound-dollar, Canadian dollar-pound,
pound-franc and lira-franc. Note that they fix the number of lags to 2 and adopt a slightly uncon-
ventional set of significance levels from5% to 15%. As in their study, we find evidence of nonlinearity for
the pound-franc and lira franc, but not the Canadian dollar-pound. Our results for the pound-dollar
differ and this appears to be due to a difference in the sample period.

Table 2 illustrates a difficulty with frequentist hypothesis testing in this context. Based on a pre-
determined level of significance of even 15%, we fail to reject linearity for more than half of the se-
ries that we consider, including, for example, for the Italy/U.S. real exchange rate. Yet, we can reject
linearity for the France/U.S. and the Italy/France real exchange rates. Although transitivity may not
necessarily apply, this result suggests that the failure to reject may simply reflect low power of the test
in a small sample setting. Unfortunately, failure to reject due to lower power is highly problematic in
this setting because subsequent inferences about the persistence of shocks can be highly sensitive
across country pairs depending on whether we condition on a linear or nonlinear model. By contrast,
11 Bec et al. (2010) refer these tests as LML tests. The tests require an estimation procedure that grid searches for the maximal
LM statistics over a set of g and c in (3)e(5). The LM statistics are computed as Tð~ε0~ε� bε0bεÞ, where ~ε0~ε is the sum of squared
residuals for the linear model and bε0bε is the sum of squared residuals for the MR-LSTAR model. Full details of computation for
the LM test statistic can be found in Appendix B of Bec et al. (2010).



Table 3
Parameter estimates for preferred nonlinear models.

£/USD CN$/US$ FF/US$ ITL/US$ ¥/US$ CN$/£ £/FF ITL/FF

s2out 29.368
(5.807)

e 26.290
(4.969)

e e 28.615
(4.011)

14.178
(2.924)

8.736
(1.900)

s2in 19.608
(2.869)

8.448
(0.957)

22.272
(4.518)

27.326
(3.764)

31.762
(3.564)

37.355
(7.155)

20.273
(4.172)

6.543
(2.690)

bin
þ 1

0.917
(0.040)

0.972
(0.018)

0.922
(0.037)

0.936
(0.037)

0.960
(0.024)

0.949
(0.031)

0.857
(0.053)

0.907
(0.040)

bout
� bin

�0.039
(0.033)

�0.020
(0.016)

�0.027
(0.024)

�0.028
(0.024)

�0.021
(0.018)

�0.029
(0.023)

�0.034
(0.031)

�0.022
(0.020)

c 9.777
(5.228)

8.850
(4.446)

14.176
(4.936)

4.923
(3.046)

11.163
(6.969)

6.624
(3.405)

5.020
(2.817)

2.379
(1.936)

g 5.011
(4.807)

9.691
(9.628)

7.344
(7.261)

7.906
(7.616)

2.969
(2.802)

3.494
(3.712)

11.199
(10.509)

10.601
(10.519)

Note: Estimates are based on posterior means, with standard deviations in parentheses. For CN$/US$, ITL/US$ and ¥/US$, the
variance s2in prevails in both regimes.
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our subsequent Bayesian inferences about persistence are more consistent across country pairs by
allowing weight on both linear and nonlinear models.12

To provide a sense of the possible nonlinear features in the exchange rate data, we report the es-
timates and the empirical transition functions for the nonlinear model with the highest Bayes factor for
each country pair in Table 3 and Fig. 1 respectively. The posterior means for the sum of the autore-
gressive coefficients within the threshold bands (i.e., bin þ 1) range from 0.857 to 0.972. By allowing
nonlinearities, we find that the posterior means for the change in the sum of the autoregressive co-
efficients (i.e., bout � bin) ranges from �0.039 to �0.020, with posterior standard deviations generally
about half of the prior standard deviation of about 0.04. The data are informative, but not definitive
about the magnitude of the change in persistence across regimes. Meanwhile, Fig. 1 illustrates the
estimated transition functions based on posterior means. The mirrored logistic function imposed by
the MRLSTAR specification can converge to a discrete step function like a TAR model when g is large
enough. It can also mimic other functions, such as the exponential function. However, Fig. 1 clearly
suggests that the changes in the dynamics are discrete around a threshold. In many cases, there are
very few points in between 0 and 1. At the same time, it was important for a fair comparison to linear
models not to prespecify the form of nonlinearity in our estimation.

Interpretation of threshold estimates is seldom easy. An intuitive but not comprehensive view is to
see them as estimates for the cost of transportation in the “iceberg” form (see O'Connell and Wei,
2001). In their investigation of the “law of one price”, Obstfeld and Taylor (1997) find that threshold
estimates are positively related to the distance between two locations. Along these lines, our results
regarding the thresholds are revealing. The European country-pairs of U.K./France and Italy/France
have relatively small threshold estimates of 5.020 and 2.379, respectively. If thresholds represent the
cost of arbitrage, we would expect these European countries to enjoy smaller cost of transaction
amongst themselves. Not surprisingly, the Europe/U.S. pairs generally have larger threshold estimates,
with the pairs of U.K./U.S. and France/U.S. having threshold estimates of 9.777 and 13.176, respectively,
although Italy/U.S. has a relatively small threshold estimate of 4.923. The estimated threshold for the
Japan/U.S. real exchange rate is one of the largest at 11.163. Meanwhile, the most surprising results
involve the Canadian dollar. One would expect, because of geographical distances and historical trade
tie, the U.S. and the Canadian economies are the closest. But the threshold estimate for the real ex-
change rates of the two dollars is relatively high at 8.850 and is larger than the threshold estimate for
the Canadian dollar-pound real exchange rate at 6.624, which in turn is also smaller than that for the
12 Bayesian model averaging tends to put all weight on one model when models are “sparse” in the sense of being quite
different from each other. In our case, the models are similar, with the main distinction being between linear and nonlinear
specifications. As a result, we find that the various models all tend to receive nontrivial weight, especially across different lag
lengths, supporting the use of Bayesian model averaging as a way to combine models.



Fig. 1. Estimated transition functions for the preferred nonlinear models.
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Table 4
Half-life estimates in years (posterior means and weighted averages).

Model Autoregressive Lag order (p)

1 2 3 4 All Lags

British PoundeU.S. Dollar
Linear 2.50 2.25 2.25 2.25 2.25
Linear-h 2.50 2.25 2.50 2.25 2.25
MRLSTAR 2.25 2.00 2.25 2.25 2.00
MRLSTAR-h 2.50 2.25 2.25 2.25 2.25
All Models 2.50 2.25 2.25 2.25 2.25
Canadian DollareU.S. Dollar
Linear 7.25 6.50 7.00 6.50 6.75
Linear-h 7.25 6.75 7.00 6.50 6.75
MRLSTAR 5.75 5.50 5.75 5.50 5.50
MRLSTAR-h 5.75 5.50 5.50 5.25 5.25
All Models 6.00 5.50 5.50 5.50 5.50
French FranceU.S. Dollar
Linear 3.00 2.75 3.00 2.75 2.75
Linear-h 3.25 2.75 3.00 3.00 3.00
MRLSTAR 2.75 2.75 2.75 2.75 2.75
MRLSTAR-h 2.75 2.75 2.75 2.75 2.75
All Models 2.75 2.75 2.75 2.75 2.75
Italian LiraeU.S. Dollar
Linear 3.50 3.25 3.50 3.25 3.25
Linear-h 3.75 3.25 3.50 3.25 3.25
MRLSTAR 3.25 3.00 3.00 3.00 3.00
MRLSTAR-h 3.00 3.00 3.00 3.00 3.00
All Models 3.25 3.00 3.00 3.00 3.00
Japanese YeneU.S. Dollar
Linear 4.50 4.25 4.50 4.00 4.25
Linear-h 4.25 4.25 4.50 4.00 4.00
MRLSTAR 4.00 3.75 3.75 3.75 3.75
MRLSTAR-h 4.00 3.75 3.75 3.75 3.75
All Models 4.00 3.75 3.75 3.75 3.75
Canadian DollareBritish Pound
Linear 3.75 3.50 3.75 3.50 3.75
Linear-h 3.75 3.50 3.75 3.75 3.75
MRLSTAR 3.00 3.00 3.00 3.00 3.00
MRLSTAR-h 3.00 3.00 3.00 3.00 3.00
All Models 3.00 3.00 3.00 3.00 3.00
British PoundeFrench Franc
Linear 1.50 1.50 1.50 1.50 1.50
Linear-h 1.50 1.50 1.50 1.50 1.50
MRLSTAR 1.50 1.50 1.50 1.50 1.50
MRLSTAR-h 1.50 1.50 1.50 1.50 1.50
All Models 1.50 1.50 1.50 1.50 1.50
Italian LiraeFrench Franc
Linear 2.25 2.25 2.25 2.50 2.25
Linear-h 2.25 2.50 2.25 2.50 2.50
MRLSTAR 2.25 2.25 2.25 2.50 2.50
MRLSTAR-h 2.50 2.25 2.25 2.50 2.50
All Models 2.50 2.25 2.25 2.50 2.50
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U.S. dollar-pound, even though both North American countries are separated from the United Kingdom
by a similar distance. However, it should be noted that the standard deviations for the threshold pa-
rameters are fairly large relative to the magnitude of the posterior means. So it is difficult to draw
strong conclusions about the sources of the threshold effects from correlations between their esti-
mated values and geographical distances.

In Table 4, we report estimates expressed in years based on posterior means for the unconditional
half-life of real exchange rate deviations from PPP. Given parameter values, the computation of half-



Table 5
Half-life distributions in years (posterior percentiles).

Lag 5% 25% Median 75% 95%

British PoundeU.S. Dollar
Linear 1 1.25 1.75 2.00 2.50 6.00

2 1.25 1.75 2.00 2.50 4.50
3 1.25 1.75 2.00 2.50 5.25
4 1.50 1.75 2.00 2.50 4.25

Linear-h 1 1.25 1.75 2.00 2.75 7.50
2 1.25 1.75 2.00 2.50 5.00
3 1.25 1.75 2.00 2.50 6.25
4 1.50 1.75 2.00 2.50 5.00

MRLSTAR 1 1.25 1.75 2.00 2.50 5.00
2 1.25 1.75 2.00 2.25 4.00
3 1.25 1.75 2.00 2.50 4.50
4 1.25 1.75 2.00 2.50 4.25

MRLSTAR-h 1 1.00 1.75 2.00 2.75 6.00
2 1.25 1.75 2.00 2.50 4.50
3 1.00 1.75 2.00 2.50 5.25
4 1.25 1.75 2.00 2.50 4.75

Canadian DollareU.S. Dollar
Linear 1 2.75 4.25 5.75 9.25 ∞

2 2.75 4.00 5.25 7.75 ∞
3 2.75 4.00 5.50 9.00 ∞
4 2.75 4.00 5.25 7.75 ∞

Linear-h 1 2.75 4.00 6.00 9.75 ∞
2 2.75 4.00 5.50 8.50 ∞
3 2.75 4.00 5.50 8.50 ∞
4 2.75 4.00 5.25 7.75 ∞

MRLSTAR 1 2.25 3.50 4.75 6.75 ∞
2 2.25 3.50 4.50 6.25 ∞
3 2.25 3.50 4.75 6.75 ∞
4 2.25 3.50 4.50 6.50 ∞

MRLSTAR-h 1 2.25 3.50 4.75 6.75 ∞
2 2.25 3.50 4.50 6.25 ∞
3 2.50 3.50 4.50 6.25 ∞
4 2.50 3.50 4.50 6.00 14.50

French FranceU.S. Dollar
Linear 1 1.50 2.00 2.50 3.25 10.25

2 1.50 2.00 2.25 3.00 7.75
3 1.50 2.00 2.50 3.00 8.25
4 1.75 2.25 2.50 3.00 6.50

Linear-h 1 1.50 2.00 2.50 3.25 11.25
2 1.50 2.00 2.25 3.00 7.75
3 1.50 2.00 2.50 3.25 8.75
4 1.75 2.25 2.50 3.00 6.25

MRLSTAR 1 1.25 2.00 2.25 3.25 7.25
2 1.50 2.00 2.25 3.00 6.50
3 1.25 2.00 2.25 3.00 6.50
4 1.50 2.25 2.50 3.00 5.50

MRLSTAR-h 1 1.25 2.00 2.25 3.00 7.00
2 1.50 2.00 2.25 3.00 6.25
3 1.50 2.00 2.25 3.00 6.25
4 1.50 2.25 2.50 3.00 6.00

Italian LiraeU.S. Dollar
Linear 1 1.50 2.00 2.75 4.00 ∞

2 1.50 2.00 2.50 3.25 10.25
3 1.50 2.00 2.50 3.50 13.25
4 1.75 2.25 2.75 3.25 8.50

Linear-h 1 1.50 2.00 2.75 4.00 ∞
2 1.50 2.00 2.50 3.50 10.75
3 1.50 2.00 2.75 3.75 14.50
4 1.75 2.25 2.50 3.25 8.75

(continued on next page)
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Table 5 (continued )

Lag 5% 25% Median 75% 95%

MRLSTAR 1 1.50 2.00 2.50 3.50 9.25
2 1.50 2.00 2.50 3.25 7.25
3 1.25 2.00 2.50 3.25 8.50
4 1.75 2.25 2.50 3.25 7.00

MRLSTAR-h 1 1.50 2.00 2.50 3.50 8.50
2 1.50 2.00 2.50 3.25 7.75
3 1.25 2.00 2.50 3.50 8.50
4 1.75 2.25 2.50 3.25 6.50

Japanese YeneU.S. Dollar
Linear 1 2.00 2.75 3.50 5.00 ∞

2 2.00 2.75 3.25 4.50 13.50
3 2.00 2.75 3.50 5.00 ∞
4 2.25 2.75 3.25 4.25 10.50

Linear-h 1 2.00 2.75 3.50 4.75 ∞
2 2.00 2.75 3.25 4.50 ∞
3 2.00 2.75 3.50 5.00 ∞
4 2.25 2.75 3.25 4.25 10.50

MRLSTAR 1 1.75 2.50 3.25 4.50 10.75
2 1.75 2.50 3.25 4.25 9.75
3 1.75 2.50 3.25 4.50 10.00
4 2.00 2.75 3.25 4.00 8.75

MRLSTAR-h 1 1.75 2.50 3.25 4.50 11.75
2 1.75 2.50 3.25 4.25 10.25
3 1.75 2.50 3.25 4.25 10.75
4 2.00 2.75 3.25 4.25 8.50

Canadian DollareBritish Pound
Linear 1 1.75 2.25 3.00 4.00 14.75

2 1.75 2.25 2.75 3.75 11.25
3 1.75 2.25 2.75 4.00 ∞
4 1.50 2.25 2.75 3.75 ∞

Linear-h 1 1.75 2.25 3.00 4.00 ∞
2 1.75 2.25 2.75 3.75 11.75
3 1.75 2.25 3.00 4.00 14.25
4 1.75 2.25 3.00 4.00 ∞

MRLSTAR 1 1.50 2.00 2.75 3.50 8.00
2 1.50 2.00 2.50 3.25 7.50
3 1.50 2.00 2.50 3.50 8.00
4 1.25 2.00 2.50 3.25 7.25

MRLSTAR-h 1 1.50 2.00 2.75 3.50 7.50
2 1.50 2.00 2.50 3.25 6.75
3 1.50 2.00 2.50 3.50 7.75
4 1.25 2.25 2.50 3.50 7.25

British PoundeFrench Franc
Linear 1 1.00 1.25 1.25 1.75 3.00

2 1.00 1.25 1.50 1.50 2.50
3 1.00 1.25 1.25 1.50 2.50
4 1.00 1.25 1.50 1.75 2.50

Linear-h 1 1.00 1.25 1.50 1.75 2.75
2 1.00 1.25 1.50 1.50 2.50
3 1.00 1.25 1.50 1.50 2.50
4 1.00 1.25 1.50 1.75 2.50

MRLSTAR 1 1.00 1.25 1.50 1.75 3.25
2 1.00 1.25 1.50 1.75 2.75
3 0.75 1.25 1.50 1.75 3.00
4 0.75 1.25 1.50 1.75 2.75

MRLSTAR-h 1 1.00 1.25 1.50 1.75 3.00
2 1.00 1.25 1.50 1.75 2.75
3 1.00 1.25 1.50 1.75 2.75
4 0.75 1.25 1.50 1.75 2.75

Italian LiraeFrench Franc
Linear 1 1.25 1.75 2.00 2.50 5.75

2 1.25 1.75 2.00 2.50 4.75
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Table 5 (continued )

Lag 5% 25% Median 75% 95%

3 1.25 1.75 2.00 2.50 4.50
4 1.50 2.00 2.25 2.75 4.75

Linear-h 1 1.25 1.75 2.00 2.50 4.75
2 1.50 1.75 2.00 2.50 5.25
3 1.25 1.75 2.00 2.50 5.25
4 1.50 2.00 2.25 2.75 4.75

MRLSTAR 1 1.25 1.75 2.00 2.50 5.25
2 1.25 1.75 2.00 2.50 4.75
3 1.25 1.75 2.00 2.50 5.00
4 1.50 2.00 2.25 2.75 5.00

MRLSTAR-h 1 1.25 1.75 2.00 2.75 6.00
2 1.25 1.75 2.00 2.50 5.25
3 1.25 1.75 2.00 2.50 5.25
4 1.50 2.00 2.25 2.75 4.75

Note: Simulations of generalized impulse responses allow for a maximum of 15 years. Any simulation that hit the limit is
regarded as ∞.
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lives for the AR models is conventional. The computation for the MR-LSTAR models requires gener-
alized impulse response simulation as discussed in Koop et al. (1996, 2000). We randomize the initial
conditions and the properties (size and sign) of the shocks. This is different to many conditional ex-
ercises as in Taylor et al. (2001) and Bec et al. (2010), but is similar to Lo (2008), which provides full
details of the pros and cons of different approaches. We also use the marginal likelihood value to
determine relative weights in computing different model-averaged measures of the half-lives. In Table
4, the last row labeled “All Models” and the last column labeled “All Lags” in each panel reports such
measures. The former reports the weighted half-life between the linear and the nonlinear model given
the same lag order. The latter reports the weighted half-life among different lag orders for the same
model. The number where the “All Models” row and the “All Lags” column intersect indicate the
weighted half-life for all models with all lags. These are our overall model-averaged estimates of half-
lives. Because we use quarterly data, we round our estimates to the nearest 0.25 years for ease of
interpretation.

Rogoff (1996) surveyed a number of studies that make use of linear models and found that half-life
estimates range from 3 to 5 years for most real exchange rates between industrialized countries. From
our estimates, there is an extreme case of the Canadian dollaredollar for which the half-life estimates
for the linear models is always more 6 years. However, for the rest of the real exchange rates, the half-
life estimates for the linear models generally fall into Rogoff's range or a bit shorter. The results are
somewhat sensitive to the lag length; in general, the larger the number of lags, the smaller the level of
persistence. Using the Bayesianweighting scheme, we find that the model-averaged half-life measures
for the linear models (under “All Lags” corresponding to linear and linear-h) are almost all below 4.

When we examine the results for the nonlinear models, we find even smaller half-life estimates.
From the linear to the nonlinear models, the reductions are typically 0.25 years, but sometimes as
much as 1.25 years. The reason for relatively shorter half-lives for nonlinear models versus linear
models can be explained by the results in Table 5, which reports key percentiles from the posterior
distribution for the half-lives. It turns out that the difference between the posterior medians for the
linear and the nonlinear models is usually negligible. In a frequentist framework, Lo (2008) shows that
when the MR-LSTAR model is the true data generating process, the Monte Carlo median of the half-life
estimates from a linear model are not significantly different to the true unconditional half-life
generated from the nonlinear model. Our findings here match this result. However, a closer exami-
nation of the other percentiles shows that the distributions for all models are skewed, resulting in our
earlier finding that means are larger than medians. Importantly, the upper 95% bound for the linear
models is much higher than that for the nonlinear models and hits the level of “infinity” frequently.13
13 In our generalized impulse response simulations, we set a maximum of 15 years (60 quarters) horizon. When the simulated
half-life hits this limit, we label it as “infinity” to capture the idea that a large fraction of a shock may never completely die out.



Table 6
Implied weights from marginal likelihood values.

Model Autoregressive lag order (p)

1 2 3 4

British PoundeU.S. Dollar
Linear 0.0019 0.0052 0.0014 0.0005
Linear-h 0.0054 0.0123 0.0030 0.0011
MRLSTAR 0.0082 0.0297 0.0078 0.0031
MRLSTAR-h 0.0280 0.8609 0.0238 0.0078

Sum of all linear: 0.0307 Sum of all MRLSTARs: 0.9693
Canadian DollareU.S. Dollar
Linear 0.0001 0.0002 0.0001 0.0001
Linear-h 0.0000 0.0001 0.0000 0.0000
MRLSTAR 0.0005 0.0010 0.0006 0.9391
MRLSTAR-h 0.0001 0.0019 0.0049 0.0512

Sum of all linear: 0.0007 Sum of all MRLSTARs: 0.9993
French FranceU.S. Dollar
Linear 0.0000 0.0000 0.0000 0.0000
Linear-h 0.0000 0.0000 0.0000 0.0000
MRLSTAR 0.0000 0.0009 0.0013 0.0000
MRLSTAR-h 0.0000 0.0001 0.0001 0.9975

Sum of all linear: 0.0000 Sum of all MRLSTARs: 1.0000
Italian LiraeU.S. Dollar
Linear 0.0001 0.0001 0.0001 0.0002
Linear-h 0.0001 0.0001 0.0001 0.0002
MRLSTAR 0.0016 0.0008 0.0652 0.6264
MRLSTAR-h 0.0002 0.0035 0.0003 0.3012

Sum of all linear: 0.0008 Sum of all MRLSTARs: 0.9992
Japanese YeneU.S. Dollar
Linear 0.0024 0.0009 0.0003 0.0078
Linear-h 0.0016 0.0006 0.0002 0.0075
MRLSTAR (0.01)81 0.0068 0.7753 0.0136
MRLSTAR-h 0.0095 0.0053 0.0830 0.0671

Sum of all linear: 0.0213 Sum of all MRLSTARs: 0.9787
Canadian DollareBritish Pound
Linear 0.0061 0.0033 0.0013 0.0003
Linear-h 0.0040 0.0024 0.0009 0.0002
MRLSTAR 0.2406 0.0207 0.0076 0.0020
MRLSTAR-h 0.0205 0.1001 0.2029 0.3870

Sum of all linear: 0.0187 Sum of all MRLSTARs: 0.9813
British PoundeFrench Franc
Linear 0.0500 0.0405 0.0115 0.0073
Linear-h 0.0214 0.0238 0.0065 0.0040
MRLSTAR 0.1729 0.1560 0.0425 0.0285
MRLSTAR-h 0.1343 0.2175 0.0505 0.0328

Sum of all linear: 0.1650 Sum of all MRLSTARs: 0.8350
Italian LiraeFrench Franc
Linear 0.0003 0.0004 0.0001 0.0001
Linear-h 0.0003 0.0005 0.0002 0.0001
MRLSTAR 0.0021 0.0584 0.0006 0.1889
MRLSTAR-h 0.0035 0.0436 0.0278 0.6729

Sum of all linear: 0.0021 Sum of all MRLSTARs: 0.9979

Note: Weights smaller than 0.0001 are reported as 0.0000.
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This echoes the results in Murray and Pappell (2002) and Rossi (2005), which imply that estimation
uncertainty for linear models is large. What is new here is that the MR-LSTAR models manage to not
only generate smaller mean half-lives, but also less uncertainty about the range of possible half-lives.

Another new finding with our results compared to the previous literature is the overall model-
averaged half-life (at the far bottom right corner for each panel in Table 4). Although we have esti-
mates as low as 1.50 years, we also have an estimate as high as 5.50 years when Canada is involved.
These model-averaged estimates are based on the weights using the marginal likelihood value for all
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models and lags. These weights are reported in Table 6. For certain data series, weights for a specific
nonlinear model may reach above 90% (Canadian dollaredollar and franc-dollar). Overall, nonlinear
models always receive more than 80% of the weight in calculating model-averaged half-lives. The
consequence of this weight on the nonlinearmodels is that themodel-averaged half-lives are always as
low or lower than in the linear case. Thus, we obtain a stronger result about the PPP persistence than is
provided by the frequentist literature, which only finds less persistence when conditioning on a
nonlinear model.

5. Conclusion

In this paper, we have employed Bayesian analysis to re-examine the previous empirical findings on
real exchange rate persistence that were based on frequentist inferences. Our results strengthen some
previous results about the importance of nonlinearities, but add important new insights about the
general persistence of real exchange rates. In particular, in terms of uncertainty about half-lives, the
nonlinear models yield more accurate inferences than linear models. Also, even when there is a
nontrivial posterior probability for linear dynamics, there is clear evidence that the persistence of real
exchange rates is lower than reported in Rogoff (1996) based on linear models, with the estimated half-
life being 3 years or less for most country pairs. Thus, we confirm the frequentist results that condition
on a nonlinear model and find that exchange rates are not quite as persistent as suggested by possibly
misspecified linear models. Notably, however, our results imply less persistence, evenwhen frequentist
tests fail to reject linearity.

We conclude by noting that our analysis of exchange rate persistence is based on estimated models
for which purchasing power parity appears to hold in the long run. It is possible, however, that there is
a small random walk component in the real exchange rate (see, for example, Engel and Kim, 1999;
Engel, 2000) and that explicitly modeling it would affect our inferences about the persistence of
transitory deviations from the long-run equilibrium level of the real exchange rate. Incorporating
nonlinear transitory dynamics in an unobserved components model that allows for stochastic per-
manent movements in the real exchange rate is a complicated econometric problem that we leave for
future research. However, accounting for such movements should only serve to further reduce the
estimated persistence of the transitory component of the real exchange rate and reinforce the
empirical findings presented here.
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