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A state–space approach to calculating the Beveridge–Nelson
decomposition
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Abstract

A state–space approach provides a general unified framework for calculation of the Beveridge–Nelson
decomposition for a wide variety of time series models, including all univariate and vector ARIMA models.
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1. Introduction

The decomposition method introduced by Beveridge and Nelson (1981) provides a convenient way
to estimate the permanent and transitory components of an integrated time series. Given a forecasting
model for the first-differences of the series, the Beveridge–Nelson (BN) trend is the long-run forecast
of the level of the series (minus any deterministic drift) and the BN cycle is the gap between the
present level of the series and its long-run forecast.

In practice, calculation of the exact BN trend and cycle is often complicated by the presence of
infinite sums in the long-run forecast. This paper points out, however, that exact calculation of the BN
trend and cycle is relatively straightforward if the forecasting model can be cast into state–space form.
Examples include all univariate and vector ARIMA models. Thus, the state–space approach provides
a general unified framework for BN trend/cycle calculation for all of the cases discussed in the
previous literature, including Cuddington and Winters (1987), Miller (1988), Newbold (1990), and

˜Arino and Newbold (1998).
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2. Motivation

1`To motivate the state–space approach, first consider an integrated time series hY j that can bet 2`

most accurately forecast using a stationary univariate AR(1) model for its first differences:

(DY 2 m) 5 f(DY 2 m) 1 e (1)t t21 t

2where e | i.i.d.N(0, s ), f , 1, and DY ; Y 2 Y . By considering the implied Wold form from theu ut t t t21

AR(1) model, it is straightforward to show that, under the assumption of normality, the minimum
mean squared error (MSE) j-period-ahead forecast of the first difference is:

jE [(DY 2 m)] 5 f (Dy 2 m) (2)t t1j t

where lower-case Dy denotes the realized value of the random variable DY . The BN trend, denoted t ,t t t

is defined as the minimum MSE forecast of the long-run level of the series (minus the deterministic
drift) or, equivalently, the present level of the series plus the infinite sum of the minimum MSE
j-period-ahead first difference forecasts:

J

t ;lim E [Y 2 J ? m] 5 y 1lim O E [(DY 2 m)] (3)t t t1J t t t1j
J→` J→` j51

Thus, substituting (2) into (3), the BN trend of observation y for the AR(1) case is:t

f
]]t 5 y 1 (Dy 2 m) (4)t t t1 2 f

That is, the trend is the present level plus the long-run impact of the transitory momentum in the
series implied by the deviation of Dy from its steady-state level m ; E[DY ]. Meanwhile, the BNt t

cycle, denoted c , for the AR(1) case is:t

f
]]c 5 2 (Dy 2 m) (4)t t1 2 f

Note that the cycle is defined in the conventional way as the deviations from the trend (i.e.
1c ; y 2 t ). Then, as discussed in Morley et al. (2001), the BN trend and cycle provide estimates oft t t

the permanent and transitory components of y .t

3. A state–space approach

Given the BN trend/cycle decomposition for the AR(1) case, it is straightforward to generalize to
1`any case where the first differences of hY j can be most accurately forecast by a model that can bet 2`

cast into state–space form, including all univariate and vector ARMA models. In particular, suppose
(DY 2 m) is a linear combination of the elements of a kx1 state vector X :t t

1Beveridge and Nelson (1981) define the BN cycle as the trend minus the level.
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DY 2 m 5 h h ? ? ? h X (5)f gt 1 2 k t

where h , i 5 1, 2, . . . ,k, is the weight of the ith element of X in determining (DY 2 m). Furthermore,i t t

suppose state vector X evolves according to the following first-order stochastic difference equation:t

X 5 FX 1 v (6)t t21 t

where v | N(0, V) and the eigenvalues of F are less one in modulus. Then, it is straightforward tot

show that the minimum MSE j-period-ahead forecast of the first difference DY is:t1j

jE [DY ] 5 h h ? ? ? h F E [X ] (7)f gt t1j 1 2 k t t

Note that, since the state vector may contain unobserved elements (see, for example, the
ARIMA(2,1,2) example considered below), the expectation E [X ] may have to be obtained prior tot t

calculating (7). Fortunately, the Kalman filter, which can be employed to obtain exact maximum
2likelihood estimates for state–space models with unobserved elements, provides this expectation.

Thus, denoting the Kalman filtered calculation of the expected state vector X ; E [X ], the BN trendt ut t t

of observation y for the general case is:t

21
t 5 y 1 h h ? ? ? h F(I 2 F ) X (8)f gt t 1 2 k t ut

Meanwhile, the BN cycle of y for the general case is:t

21c 5 2 h h ? ? ? h F(I 2 F ) X (9)f gt 1 2 k t ut

Again, the BN trend and cycle provide estimates of the permanent and transitory components of y .t

4. Two examples

To illustrate the general usefulness of this approach, two examples are provided. The first example
is a bivariate vector error correction model (VECM) as used for aggregate income and consumption in
Cochrane (1994). The second example is a univariate ARIMA(2,1,2) model as used for real GDP in
Morley et al. (2001).

4.1. A bivariate VECM

Cochrane (1994) employs a special case of the approach proposed here to calculate the BN trend
and cycle of observed aggregate income ( y ) given a VECM forecasting model of aggregate incomet

1` c 1`hY j and consumption hY j . A slightly simplified form of his model has the following state–spacet 2` t 2`
3representation:

2See Harvey (1990) for the full details of the Kalman filter and state–space models. Technically, the Kalman filter
calculates the minimum MSE linear projection of the state vector on the observable data. This is equal to the expected value
under a Normality assumption.

3Cochrane (1994) considers second-order dynamics for the first differences of output and consumption.
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DY 2 m g g g DY 2 m vt 11 12 13 t21 yt
c c

DY 2 m g g g DY 2 m v5 1 (10)t 21 22 23 t21 ct
c c3 4 3 43 4 3 4Y 2 Y 2 a g 2 g g 2 g 1 1 g 2 g Y 2 Y 2 a v 2 vt t 11 21 12 22 13 23 t21 t21 yt ct

or, more compactly,

X 5 FX 1 v (109)t t21 t

where v | N(0, V) and the eigenvalues of F are less one in modulus, which corresponds tot

cointegration of aggregate income and consumption with cointegrating vector [1 21]. Then, noting
that (DY 2 m) 5 1 0 0 X , the BN trend of observed y is:f gt t t

21
t 5 y 1 1 0 0 F(I 2 F ) x (11)f gt t t

where the X term in (8) is set to the realized value of the state vector x since, in this example, itst ut t

elements are all observable at time t. The BN cycle of y is:t

21c 5 2 1 0 0 F(I 2 F ) x (12)f gt t

4.2. A univariate ARIMA(2,1,2)

Morley et al. (2001) employ the state–space approach proposed here to calculate the exact BN
trend and cycle of observed real GDP ( y ) given a reduced form ARMA(2,2) forecasting model of thet

1`first differences of hY j . It is important to note that the calculation of the exact BN trend and cycle ist 2`

nontrivial in this case due to the presence of unobservable moving average terms in the forecasting
equation. Also, it should be noted that there are multiple possible state–space representations for the
model. However, the companion form representation for an ARMA(2,2) is convenient since it has
(DY 2 m) as the first element of the state vector X :t t

DY 2 m f f u u DY 2 m et 1 2 1 2 t21 t

DY 2 m 1 0 0 0 DY 2 m 0t21 t225 1 (13)e 0 0 0 0 e et t21 t3 4 3 43 4 3 4
e 0 0 1 0 e 0t21 t22

or, more compactly:

X 5 FX 1 v (139)t t21 t

where v | N(0, V) and the eigenvalues of F are less one in modulus (equivalently, the roots oft
2(1 2 f z 2 f z ) 5 0 lie outside the unit circle). Then, the BN trend of observed y is:1 2 t

21
t 5 y 1 1 0 0 0 F(I 2 F ) X (14)f gt t t ut

Meanwhile, the BN cycle is:

21c 5 2 1 0 0 0 F(I 2 F ) X (15)f gt t ut
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Again, the problem of unobserved moving average terms in the forecasting equation is solved by
using the Kalman filter calculation of X 5 E [X ].t ut t t

5. Conclusion

A state–space approach provides a straightforward and general unified framework for BN
trend/cycle calculation for a wide variety of models, including all univariate and vector ARIMA
models.
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