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Glossary

Nonlinear time series in macroeconomics A field of
study in economics pertaining to the use of statistical
analysis of data in order tomake inferences about non-
linearities in the nature of aggregate phenomena in the
economy.

Time series A collection of data corresponding to the val-
ues of a variable at different points of time.

Linear Refers to a class of models for which the depen-
dence between two random variables can be com-
pletely described by a fixed correlation parameter.

Nonlinear Refers to the class of models for which the de-
pendence between two random variables has a more
general functional form than a linear equation and/or
can change over time.

Structural change A change in the model describing
a time series, with no expected reversal of the change.

Level Refers to a definition of the business cycle that links
the cycle to alternation between phases of expansion
and recession in the level of economic activity.

Deviations Refers to a definition of the business cycle that
links the cycle to transitory deviations of economic ac-
tivity from a trend level.

Fluctuations Refers to a definition of the business cycle
that links the cycle to any short-run changes in eco-
nomic activity.

Deepness A characteristic of a process with a skewed un-
conditional distribution.

Steepness A characteristic of a process with a skewed un-
conditional distribution for its first-differences.

Sharpness A characteristic of a process for which the
probability of a peak when increasing is different than
the probability of a trough when decreasing.

Time reversibility The ability to substitute�t and t in the
equations of motion for a process without changing
the process.

Markov-switching models Models that assume the pre-
vailing regime governing the conditional distribution
of a variable or variables beingmodeled depends on an
unobserved discrete Markov process.

Self-exciting threshold models Models that assume the
prevailing regime governing the conditional distribu-
tion of a variable or variables being modeled is ob-
servable and depends on whether realized values of the
time series being modeled exceed or fall below certain
“threshold” values.

Nuisance parameters Parameters that are not of direct
interest in a test, but influence the distribution of a test
statistic.

Pivotal Refers to the invariance of the distribution of

a test statistic with respect to values of parameters in
the data generating process under the null hypothesis.

Size Probability of false rejection of a null hypothesis in
repeated experiments.

Power Probability of correct rejection of a null hypothesis
in repeated experiments.

Definition of the Subject

Nonlinear time series in macroeconomics is a broad field
of study in economics. It refers to the use of statistical
analysis of data to make inferences about nonlinearities in
the nature of aggregate phenomena in the economy. This
analysis is relevant for forecasting, the formulation of eco-
nomic policy, and the development and testing of macro-
economic theories.

Introduction

In macroeconomics, the primary aggregate phenomenon
is the flow of total production for the entire economy over
the course of a year, which is measured by real gross do-
mestic product (GDP). A collection of data correspond-
ing to the values of a variable such as real GDP at differ-
ent points of time is referred to as a time series. Figure 1
presents the time series for US real GDP for each year from
1929 to 2006.

Time series analysis employs stochastic processes to
explain and predict the evolution of a time series. In partic-
ular, a process captures the idea that different observations
are in some way related to each other. The relationship
can simply be that the observations behave as if they are
drawn from random variables with the same distribution.
Or the relationship can be that the distribution assumed to
generate one observation depends on the values of other
observations. Either way, a relationship implies that the
observations can be used jointly to make inferences about
the parameters describing the distributions (a.k.a. “estima-
tion”).

Within the context of time series in macroeconomics,
the terms “linear” and “nonlinear” typically refer to classes
of models for processes, although other meanings arise in
the literature. For the purposes of this survey, a model that
assumes the dependence between two random variables in
a process can be completely captured by a fixed correla-
tion parameter is said to be linear. A very basic example
of a linear time series model is the workhorse first-order
autoregressive (AR(1)) model:

yt D c C � yt�1 C "t; "t � i.i.d. (0; �2) ; (1)

where j�j < 1. In words, the random variable yt that gen-
erates the observation in period t is a linear function of
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Macroeconomics, Non-linear Time Series in, Figure 1
US real GDP 1929–2006 (Source: St. Louis Fed website)

the random variable yt�1 that generates the observation
in period t � 1. The process fytg1�1 is stochastic because
it is driven by random “shocks”, such as "t in period t.
These shocks have the same distribution in every period,
meaning that, unlike with yt and yt�1, the distribution
of "t does not depend on the value of "t�1 or, for that
matter, any other shock in any other period (hence the
“i.i.d.” tag, which stands for “independently and identi-
cally distributed”). It is straightforward to show that the
correlation between yt and yt�1 is equal to � and this
correlation describes the entire dependence between the
two random variables. Indeed, for the basic AR(1) model,
the dependence and correlation between any two random
variables yt and yt� j , for all t and j, depends only on the
fixed parameter � according to the simple function � j and,
given j�j < 1, the process has finite memory in terms of
past shocks. For other time series models, the functions
relating parameters to correlations (i. e., “autocorrelation
generating functions”) are generally more complicated,
as are the restrictions on the parameters to ensure finite
memory of shocks. However, the models are still linear, as
long as the parameters and correlations are fixed.

In contrast to the linear AR(1) model in (1) and other
models with fixed correlations, any model that allows for
a more general functional form and/or time variation in
the dependence between random variables can be said to
be nonlinear. This nomenclature is obviously extremely
open-ended and examples are more revealing than gen-
eral definitions. Fortunately, macroeconomics provides
many examples, with “nonlinear” typically used to de-
scribemodels that are closely related to linearmodels, such

as the AR(1) model, but which relax one or two key as-
sumptions in order to capture some aspect of the data that
cannot be captured by a linear model. The focus of this
survey is on these types of nonlinear models.

It should be mentioned at the outset that, in addi-
tion to nonlinear models, “nonlinear time series” evokes
nonparametric and semiparametric methods (e. g., neural
networks). These methods tend to be data intensive and
so find more use in finance and other fields where sam-
ple sizes are larger than in macroeconomics. “Nonlinear
time series” also evokes the development and application
of tests for nonlinearity. However, these are the purview of
econometrics, not macroeconomics. Thus, tests for non-
linearity will only be discussed in the context of applica-
tions that are particularly relevant to the choice of appro-
priate models for macroeconomic data.

Types of NonlinearModels

Starting with the linear AR(1) model in (1), there aremany
ways to introduce nonlinearities. An obvious way is to
consider a nonlinear specification for the relationship be-
tween the random variables in the model. For example,
consider the simple bilinear model:

yt D c C � yt�1 C "t C �("t�1 � yt�1) ;

"t � i.i.d. (0; �2) : (2)

See Granger and Andersen [57] and Rao and Gabr [139]
on bilinear models. In macroeconomics at least, there are
relatively few applications of bilinear models, although
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see Peel and Davidson [119], Rothman [128], and Hris-
tova [71].

A more typical approach to introducing nonlinearities
in macroeconomics is to allow one (or more) of the pa-
rameters in a linear model to be driven by its own process.
For example, in a macroeconomics paper that was moti-
vated in part by bilinear models, Engle [46] assumed the
squares of shocks (i. e., "2t ) follow an AR process, with the
implication that the conditional variance of yt is no longer
a constant parameter. Given an AR(1) assumption for "2t ,
the conditional variance is

Et�1
�
�2t
�
D ˛0 C ˛1"

2
t�1 ; (3)

where Et�1 [ ] is the conditional expectations operator,
with expectations formed using information available in
period t � 1. Engle [46] applied this “autoregressive con-
ditional heteroskedasticity” (ARCH) model to U.K. infla-
tion, although in subsequent research, it has mostly been
applied to financial time series. In particular, asset re-
turns tend to display little dependence in the mean, but
high positive dependence in terms of the variance (a.k.a.
“volatility clustering”), which is exactly what the ARCH
model was designed to capture. Beyond Engle’s original
paper, ARCH models have found little use in macroeco-
nomics, although Bansal and Yaron [4] have recently at-
tempted to resolve the so-called “equity premium puz-
zle” in part by assuming that US aggregate consumption
growth follows a GARCH(1,1) process that generalizes En-
gle’s original ARCH process. However, Ma [104] shows
that estimates supporting a GARCH(1,1) model for ag-
gregate consumption growth are due to weak identifica-
tion, with an appropriate confidence interval suggesting
little or no conditional heteroskedasticity. Weak identifi-
cation is also likely a problem for the earlier application
of GARCHmodels to macroeconomic variables by French
and Sichel [49]. In general, because most macroeconomic
data series are highly aggregated, the central limit theorem
is relevant, at least in terms of eliminating “fat tails” due to
volatility clustering that may or may not be present at the
microeconomic level or at higher frequencies than macro-
economic data are typically measured.

The ARCH model begs the question of why not con-
sider a stochastic process directly for the variance, rather
than for the squares of the shocks. The short answer is
a practical one. Amodel with “stochastic volatility” is more
difficult to estimate than an ARCH model. In particular, it
can be classified as a state-spacemodel with an unobserved
non-Gaussian volatility process that has a nonlinear rela-
tionship to the observable time series being modeled. In
the simple case of no serial correlation in the underlying
series (e. g., no AR dynamics), a stochastic volatility model

can be transformed into a linear state-space model for the
squares of the series, although the model still has non-
Gaussian errors. However, the lack of serial correlation
means that this simple version of themodel would bemore
appropriate for applications in finance than macroeco-
nomics. In any event, while the Kalman filter can be em-
ployed to help estimate linear Gaussian state-space mod-
els, it is less suitable for non-Gaussian state-space models
and not at all suitable for nonlinear state-space models.
Recent advances in computing power have made simu-
lation-based techniques (the Gibbs sampler and the so-
called “particle filter”) available to estimate such models,
but these techniques are far from straightforward and are
highly computationally intensive. See Kim, Shephard, and
Chib [88] and Chib, Nardari, and Shephard [21] on esti-
mation of stochastic volatility models via the Gibbs sam-
pler and particle filtering. Meanwhile, such models have
rarely been applied to macroeconomic data due to the lack
of interesting volatility dynamics discussed above.

To the extent that stochastic volatility models have
been applied in macroeconomics, the focus has been on
capturing structural change (i. e., permanent variation) in
volatility rather than volatility clustering. For example,
Stock and Watson [138] investigate the so-called “Great
Moderation” using a stochastic volatility model and con-
firm the findings reported in Kim and Nelson [77] and
McConnell and Perez-Quiros [107] that there was a per-
manent reduction in the volatility of US real GDP growth
in the mid-1980s (see also [82,116,132]). This change in
volatility is fairly evident in Fig. 2, which presents the
time series for US real GDP growth for each quarter from
1947:Q2 to 2006:Q4.

Yet, while it is sometimes merely a matter of seman-
tics, it should be noted that “structural change” is a dis-
tinct concept from “nonlinearity”. In particular, structural
change can be thought of as a change in the model de-
scribing a time series, where the change is permanent in
the sense that it is not expected to be reversed. Then, if
the underlying structure of each model is linear, such as
for the AR(1) model in (1), there is nothing particularly
“nonlinear” about structural change. On the other hand,
Bayesian analysis of structural change blurs the distinction
between structural change and nonlinearity. In particular,
it treats parameters as random variables for the purposes
of making inferences about them. Thus, the distinction be-
tween a model that allows “parameters” to change accord-
ing to a stochastic process and a collection of models with
the same structure, but different parameters, is essentially
a matter of taste, even if the former setup is clearly nonlin-
ear, while the latter is not. For example, consider the clas-
sic time-varying parameter model (see, for example [29]).
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Macroeconomics, Non-linear Time Series in, Figure 2
US real GDP growth 1947–2006 (Source: St. Louis Fed website)

Macroeconomics, Non-linear Time Series in, Figure 3
US inflation 1960–2006 (Source: St. Louis Fed website)

Like the stochastic volatility model, it assumes a stochas-
tic process for the parameters in what would, otherwise,
be a linear process. Again, starting with the AR(1) model
in (1) and letting ˇ D (c; �)0, a time-varying parameter
model typically assumes that the parameter vector evolves
according to a multivariate random walk process:

ˇt D ˇt�1 C vt ; vt � i.i.d. (0; ˙) : (4)

Because the time-varying parameter model treats the evo-
lution of parameters as a stochastic process, it is clearly
a nonlinearmodel. At the same time, its application to data
provides an inherently Bayesian investigation of structural
change in the relationships between dependent and inde-
pendent variables, where those relationships may, in fact,
be linear. In general, then, analysis of structural change
in linear relationships should be considered an example
of nonlinear time series analysis when nonlinear models,
such as stochastic volatility models or time-varying pa-
rameter models, are used in the analysis, but structural
change should not be thought of as nonlinear in itself.

In terms of macroeconomics, time-varying parame-
ter models have recently been used to consider structural
change in vector autoregressive (VAR) models of the US
economy. Cogley and Sargent [26] employ such a model
to argue that US inflation dynamics have changed con-
siderably in the postwar period. Based on Sims’ [135] cri-
tique that evidence for structural change in time-varying
parameters may be the spurious consequence of ignoring
heteroskedasticity in the error processes for a VAR model,
Cogley and Sargent [27] augment their time-varying pa-
rameter model with stochastic volatility and find that their
results are robust. Primiceri [123] employs a structural
VAR with time-varying parameters and stochastic volatil-
ity and also finds evidence of structural changes in infla-
tion dynamics, although he questions the role of monetary
policy in driving these changes. Whether these structural
changes are evident in Fig. 3, which displays US consumer
price inflation for eachmonth from 1960:M1 to 2006:M12,
is debatable. However, it is fairly clear that a basic AR
process with constant parameters would be an inadequate
model for inflation.
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It is worth mentioning that there is a simpler time-
varying parameter model that has seen considerable use in
macroeconomics. It is the unobserved components (UC)
model used for trend/cycle decomposition. A standard
version of the model has the following form:

yt D �t C ct ; (5)

�t D �C �t�1 C �t ; �t � i.i.d.N
�
0; �2�


; (6)

�(L)ct D "t; "t � i.i.d.N
�
0; �2"


; (7)

where �(L) D 1 � �1L � � � � � �pLp , the roots of �(z) D
0 lie outside the unit circle, and corr (�t ; "t) D ��". It is
possible to think of the UC model as a time-varying pa-
rameter model in which the unconditional mean of the
process is equal to the trend � t , meaning that it under-
goes structural change, rather than remaining constant, as
it does for the AR(1) process described by (1). A glance
at the upward trajectory of real GDP in Fig. 1 makes it
clear that a basic AR process would be an extremely bad
model for the time series. Indeed, Morley, Nelson, and
Zivot [114] applied the model in (5)–(7) to 100 times the
natural logarithms of US real GDP under the assumption
that the lag order p D 2 and with no restrictions on the
correlation between �t and "t and found that most of the
variation in log real GDP was due to the trend rather than
the AR cycle ct (note that natural logarithms are more ap-
propriate for time series modeling than the raw data in
Fig. 1 because the “typical” scale of variation for real GDP
is more closely linked to percentage changes than to ab-
solute changes). Yet, while the UC model can be thought
of as a time-varying parameter model, it is not, in fact,
nonlinear. In particular, the UC model for log real GDP is
equivalent to an autoregressive moving-average (ARMA)
model for the first differences of log real GDP. Likewise,
the AR(1) model in (1) may be very sensible for real GDP
growth in Fig. 2, even though it would be a bad model for
real GDP in Fig. 1. In general, if it is possible to transform
a time series, such as going from Fig. 1 to Fig. 2, and em-
ploy a linear model for the transformed series, then the
time series analysis involved is linear. Likewise, under this
formulation, the simple version of the stochastic volatility
model for a series with no serial correlation also falls under
the purview of linear time series analysis. Only time-vary-
ing parameter and stochastic volatility models that cannot
be transformed into linear representations are nonlinear.

Of course, the semantics over “linear” and “nonlin-
ear” are hardly important on their own. What is impor-
tant is whether structural change is mistaken for recur-
ring changes in parameters or vice versa. In terms of
structural VAR models for the US economy, Sims and

Zha [136] argue that when parameters are allowed to un-
dergo large, infrequent changes, rather than the smaller,
more continuous changes implied by a time-varying pa-
rameter model, there is no evidence for changes in dy-
namic structure of postwar macroeconomic data. Instead,
there are only a few large, infrequent changes in the vari-
ance of shocks. Furthermore, among the models that as-
sume some change in dynamics, their Bayesian model
comparison favors a model in which only the monetary
policy rule changes. Among other things, these findings
have dramatic implications for the Lucas [100,101] cri-
tique, which suggests that correlations between macroec-
onomic variables should be highly sensitive to changes
in policy, thus leaving successful forecasting to “struc-
tural” models that capture optimizing behavior of eco-
nomic agents, rather than “reduced-form”models that rely
on correlations between macroeconomic structures. The
results in Sims and Zha [136] suggest that the Lucas cri-
tique, while an interesting theoretical proposition with the
virtue of being empirically testable, is not, in fact, sup-
ported by the data.

From the point of view of time series analysis, an inter-
esting aspect of the Sims and Zha [136] paper and earlier
papers on structural change in the US economy by Kim
and Nelson [77] and McConnell and Perez-Quiros [107]
is that they consider nonlinear regime-switching models
that allow for changes in parameters to be recurring. That
is, while the models can capture structural change, they do
not impose it. Using univariate regime-switching models
of US real GDP growth, Kim and Nelson [77] and Mc-
Connell and Perez-Quiros [107] find a one-time perma-
nent reduction in output growth volatility in 1984. How-
ever, using their regime-switching VAR model, Sims and
Zha [136] find that a small number of volatility regimes re-
cur multiple times in the postwar period. In terms of the
earlier discussion about the lack of volatility dynamics in
macroeconomic data, this finding suggests that there are
some volatility dynamics after all, but these dynamics cor-
respond to less frequent changes than would be implied by
ARCH or a continuous stochastic volatility process. More
generally, the allowance for recurring regime switches is
relevant because time series models with regime switches
have been the most successful form of nonlinear mod-
els in macroeconomics. However, for reasons discussed
in the next section, regime-switching models are typically
employed to capture changing dynamics in measures of
economic activity over different phases of the business cy-
cle, rather than structural change in inflation or recurring
changes in shock variances.

To summarize this section, there are different types of
nonlinear time series models employed in macroeconom-
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ics. While models that assume a nonlinear specification for
the relationship between observable variables exist (e. g.,
the bilinear model), they are rarely used in practice. By
contrast, models that allow some parameters to undergo
changes over time are much more common in macroeco-
nomics. The examples discussed here are ARCH models,
stochastic volatility models, time-varying parameter mod-
els, and regime-switching models.When examining struc-
tural change, there is a conceptual question of whether
the analysis is “linear” or “nonlinear”. However, as long
as the process of structural change is an explicit part of the
model (e. g., the time-varying parameter model), and ex-
cluding cases where it is possible to transform the model
to have a linear representation (e. g., the UC model to an
ARMA model), the analysis can be thought of as nonlin-
ear. Meanwhile, time series analysis of recurring regime
switches is unambiguously nonlinear. As discussed in the
next section, nonlinear regime-switching models come in
many versions and have found wide use in macroeconom-
ics modeling business cycle asymmetry.

Business Cycle Asymmetry

The topic of business cycle asymmetry is broad and the
literature on it extensive. As a result, it is useful to divide
the discussion in this section into four areas: i) concepts of
business cycle asymmetry and their relationships to non-
linearity; ii) nonlinear models of business cycle asymme-
try; iii) evidence for nonlinear forms of business cycle
asymmetry; and iv) the relevance of nonlinear forms of
business cycle asymmetry for macroeconomics.

Concepts

Notions of business cycle asymmetry have a long tradi-
tion in macroeconomics. Classic references to the idea
that recessions are shorter, sharper, and generally more
volatile than expansions are Mitchell [109], Keynes [72],
and Burns and Mitchell [13]. For example, in his charac-
teristic style, John Maynard Keynes writes, “. . . the substi-
tution of a downward for an upward tendency often takes
place suddenly and violently, whereas there is, as a rule,
no such sharp turning point when an upward is substi-
tuted for a downward tendency.” (see p. 314 in [72]). Sim-
ilarly, albeit more tersely, Wesley Mitchell writes, “. . . the
most violent declines exceed the most considerable ad-
vances. The abrupt declines usually occur in crises; the
greatest gains occur in periods of revival. . . Business con-
tractions appear to be a briefer and more violent process
than business expansions.” (see p. 290 in [109]). Milton
Friedman also saw business cycle asymmetry in the form
of a strong relationship between the depth of recession and

the strength of a recovery, with no corresponding relation-
ship between the strength of an expansionwith the severity
of the subsequent recession (see [50,51]).

The link between business cycle asymmetry and non-
linearity depends, in part, on the definition of “business
cycle”. Harding and Pagan [67] discuss three possible defi-
nitions that are presented here using slightly modified ter-
minology. Based on the work of Burns and Mitchell [13],
the first definition is that the business cycle is the alter-
nation between phases of expansion and recession in the
level of economic activity. The second definition, which
is often left implicit when considered, is that the business
cycle represents transitory deviations in economic activity
from a permanent or “trend” level. The third definition,
which is also often only implicitly considered, is that the
business cycle corresponds to any short-run fluctuations
in economic activity, regardless of whether they are per-
manent or transitory.

Under the “level” definition of the business cycle, there
is nothing inherently nonlinear about asymmetry in terms
of the duration of expansions and recessions. Positive drift
in the level of economic activity implies longer expan-
sions than recessions, even if the underlying process is lin-
ear. Even asymmetry in the form of relative sharpness and
steepness of a recession alluded to in the above quote from
Keynes does not necessarily indicate nonlinearity. Again,
given positive drift, an outright decline in economic ac-
tivity only occurs when there are large negative shocks
to the underlying process, while an expansion occurs for
all positive shocks and small negative shocks. Thus, a re-
cession is likely to look like a relatively sharp reversal in
the level. Furthermore, with positive serial correlation in
growth, such as implied by a linear AR(1) process as in (1)
with � > 0, recessions will appear steeper than expansions
due to the dynamic effects of large negative shocks. On
the other hand, as discussed in more detail later, nonlin-
ear models are much more successful than linear models
at reproducing business cycle asymmetry in the form of
a strong link between recessions and their recoveries ver-
sus a weak link between expansions and subsequent reces-
sions noted by Friedman [50].

Under the “deviations” definition of the business cy-
cle, asymmetry is closely linked to nonlinearity. While it is
possible for asymmetry in the independent and identical
distribution of the underlying shocks to generate asymme-
try in a linear process, any persistence in the process would
severely dampen the asymmetries in the unconditional
distribution. Thus, under the assumption that the transi-
tory component of economic activity is at least somewhat
persistent, asymmetries such as differences in the dura-
tions of positive and negative deviations from trend or rel-
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ative sharpness and steepness in negative deviations com-
pared to positive deviations are more suggestive of nonlin-
ear dynamics (i. e., changing correlations) than underlying
asymmetric shocks.

Under the “fluctuations” definition of the business cy-
cle, the link between nonlinearity and asymmetry also de-
pends on the relative roles of shocks and dynamics in gen-
erating asymmetries. However, because growth rates are
less persistent than most measures of the transitory com-
ponent of economic activity and because theymix together
permanent and transitory shocks that may have different
means and variances, it is quite plausible that asymmetry
in the distribution of shocks is responsible for asymme-
try in growth rates. Of course, nonlinear dynamics are also
a plausible source of asymmetry for growth rates.

In terms of asymmetries, it is useful to consider the
formal classifications developed and discussed in Sichel
[133], McQueen and Thorley [108], Ramsey and Roth-
man [124], Clements and Krolzig [24], and Korenok,
Mizrach, and Radchenko [95] of “deepness”, “steepness”,
and “sharpness”. Following Sichel [133], a process is said
to have deepness if its unconditional distribution is skewed
and steepness if the distribution of its first-differences is
skewed. Following McQueen and Thorley [108], a process
is said to have sharpness if the probability of a peak occur-
ring when it has been increasing is different than the prob-
ability of a trough occurring when it has been decreasing.
However, despite these definitions, the different types of
asymmetries are most easily understood with visual exam-
ples.

Figure 4 presents an example of a simulated time series
with deepness, with the distance from peak of the cycle to
the mean less than the distance from the mean to trough
of the cycle (see [124], for the details of the process gen-
erating this time series). In addition to deepness, the series

Macroeconomics, Non-linear Time Series in, Figure 4
A “deep” cycle (Source: Author’s calculations based on Ramsey and Rothman [124])

appears to display sharpness in recessions, with the peak of
the cycle more rounded than the trough, although the fact
that the simulated series is deterministic means it cannot
be directly related to the definition of sharpness in Mc-
Queen and Thorley [108] mentioned above. Meanwhile,
there is no steepness because the slope from peak to trough
is the same magnitude as the slope from trough to peak.

As discussed in Ramsey and Rothman [124], these dif-
ferent types of asymmetry can be classified in two broader
categories of “time reversible” and “time irreversible”.
Time reversibility means that the substitution of �t for t
in the equations of motion for a process leaves the pro-
cess unchanged. The upward drift that is present in many
macroeconomic time series (such as real GDP) is clearly
time irreversible. More generally, the issue of time re-
versibility is relevant for determining whether business
cycle asymmetry corresponds to deepness and sharpness,
which are time reversible, or steepness, which is time ir-
reversible. For example, the time series in Fig. 4 can be
flipped on the vertical axis without any resulting change.
Thus, it is time reversible. By contrast, consider the sim-
ulated time series with “steepness” in Fig. 5. The series is
generated from a regime-switching process with asymmet-
ric shocks across two regimes and different persistence for
shocks in each regime. In this case, flipping the series on
the vertical axis would produce flat inclines and steep de-
clines. Thus, it is time irreversible.

The relevance of the distinction between time re-
versible and time irreversible processes is obvious from
Fig. 6, which presents the time series for the US civil-
ian unemployment rate for each month from 1960:M1 to
2006:M12. The inclines are steep relative to the declines.
Thus, there is a clear visual suggestion of the steepness
form of asymmetry. Indeed, themodern literature on busi-
ness cycle asymmetry begins with Neftçi’s [115] investi-
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Macroeconomics, Non-linear Time Series in, Figure 5
A “steep” cycle (Source: Author’s calculations)

Macroeconomics, Non-linear Time Series in, Figure 6
US civilian unemployment rate 1960–2006 (Source: St. Louis Fed website)

gation of this issue using a nonlinear regime-switching
model in which the prevailing “business cycle” regime in
a given period is assumed to depend on a discrete Markov
process driven by whether the US unemployment rate is
rising or falling in that period. Given the link to the first
differences of the unemployment rate, his finding that the
continuation probabilities for the two regimes are differ-
ent, with declines more likely to persist than increases,
provides formal support for the presence of the steep-
ness forms of asymmetry in the unemployment rate (also,
see [127]). It should also be noted that, while not related
to time irreversibility, the different continuation probabil-
ities also directly imply sharpness.

Models

The subsequent literature on regime-switching models in
macroeconomics can be usefully divided into two cat-
egories that are both related to Neftçi’s [115] model.
First,Markov-switching models assume that the prevailing
regime depends on an unobserved discrete Markov pro-
cess. The main distinction from Neftçi [115] is that the
Markov process is unobserved (hence, these models are

sometimes referred to as a “hidden Markov models”). Sec-
ond, self-exciting threshold models assume that the prevail-
ing regime is observable and depends on whether realized
values of the time series being modeled exceed or fall be-
low certain “threshold” values, much like the regime in
Neftçi’s [115] model depends on whether the change in
the unemployment rate was positive or negative.

Hamilton [59] is the seminal paper in terms of Mar-
kov-switching models. His model has a basic AR structure,
like in (1), but for the first-differences of the time series of
interest:

�(L)
�

yt � �t


D "t; "t � i.i.d. (0; �2) ; (8)

where
yt is 100 times the change in the natural logarithm
of real Gross National Product (GNP). The only difference
from a linear AR model is that the mean follows a stochas-
tic process:

�t D �1 � I (St D 1)C �2 � I (St D 2) ; (9)

with the indicator function I(St D j) equal to 1 if St D j
and 0 otherwise and St D f1; 2g following an unobserved
discrete Markov state variable that evolves according to
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the following fixed transition matrix:
�

p11 p21
p12 p22

�
;

where pi j � Pr[St D j jSt�1 D i ] and the columns sum
to one.

There are two aspects of Hamilton’s [59] model that
should be mentioned. First, while the demeaned speci-
fication is equivalent to a regression model specification
(e. g., (1)) in the linear setting, with � D c/(1 � �), the
two specifications are no longer equivalent in the nonlin-
ear setting. In particular, if the intercept c were switching
instead of the mean �, then past regime switches would
be propagated by the AR dynamics (see [61], for an ex-
ample of such a model). By contrast, with � switching,
there is a clear separation between the “nonlinear” dynam-
ics due to the evolution of the state variable (which does
alter the correlations between 
yt and its lags) and the
“linear” dynamics due to the "t shocks and the AR param-
eters. Second, in order to eliminate arbitrariness in the la-
beling of states, it is necessary to impose a restriction such
as �1 > �2, which corresponds to higher mean growth in
state 1 than in state 2. Furthermore, given the application
to output growth, if �1 > 0 and �2 < 0, the states 1 and 2
can be labeled “expansion” and “recession”, respectively.

Hamilton’s [59] paper had a big impact on econo-
metrics and macroeconomics for two reasons. First, it in-
cluded an elegant filter that could be used to help esti-
mate Markov-switching models via maximum likelihood
and, along with a smoother, calculate the posterior dis-
tribution of the unobserved state variable (filters and
smoothers are recursive algorithms that make inferences
about unobserved state variables, with filters consider-
ing only information available at the time the state vari-
able is realized and smoothers incorporating any subse-
quent available information). Second, the resulting pos-
terior probability of the “recession” regime corresponded
closely to the National Bureau of Economic Research
(NBER) dating of recessions. The NBER dating is based
on non-structural and subjective analysis of a wide vari-
ety of indicators. The official line from its website is “The
NBER does not define a recession in terms of two consec-
utive quarters of decline in real GDP. Rather, a recession
is a significant decline in economic activity spread across
the economy, lasting more than a few months, normally
visible in real GDP, real income, employment, industrial
production, and wholesale-retail sales.” (www.nber.org/
cycles/cyclesmain.html). Thus, it is, perhaps, remarkable
that a simple time series model using only information in
real GNP could find such similar dates for recessions. Of
course, as emphasized by Harding and Pagan [66], a sim-

ple rule like “two consecutive quarters of decline in real
GDP” also does extremely well in matching the NBER re-
cessions, regardless of NBER claims that it is not follow-
ing such a rule. Yet, more important is the notion implied
by Hamilton’s [59] results that the NBER is identifying
a meaningful structure in the economy, rather than simply
reporting (sometimeswith considerable lag) that the econ-
omy had an episode of prolonged negative growth. Specif-
ically, “recession” appears to be an indicator of a different
state for the dynamics of the economy, rather than a label
for particular realizations of linear process. (As an aside,
the fact that the popular press pays so much attention to
NBER pronouncements on recessions also supports the
idea that it is identifying a meaningful macroeconomic
structure).

Numerous modifications and extensions of Hamil-
ton’s [59] model have been applied to macroeconomic
data. For example, while estimates for Hamilton’s [59]
model imply that the linear "t shocks have large perma-
nent effects on the level of real GDP, Lam [96] consid-
ers a model in which the only permanent shocks to real
GNP are due to regime switches. Despite this very differ-
ent assumption, he also finds that the regime probabili-
ties implied by his model correspond closely to NBER dat-
ing of expansions and recessions. Kim [74] develops a fil-
ter that can be used for maximum likelihood estimation
of state-space models with Markov-switching parameters
and confirms the results for Lam’s [96] model. Motivated
by Diebold and Rudebusch’s [38] application of Hamil-
ton’s [59] model to the Commerce Department’s coinci-
dent index of economic activity instead of measures of ag-
gregate output such as real GNP or real GDP, Chauvet
[19] employs Kim’s [74] filter to estimate an unobserved
components model of a coincident index using Hamil-
ton’s [59] model as the specification for its first differences.
Other multivariate extensions include Kim and Yoo [87],
Ravn and Sola [125], Kim and Nelson [76], Kim and Mur-
ray [75], Kim and Piger [81], Leamer and Potter [97], Ca-
macho [14], and Kim, Piger, and Startz [84]. The general
theme of these studies is that the multivariate information,
such as coincident indicators or aggregate consumption
and investment, helps to strongly identify the nonlinear-
ity in economic activity, with regimes corresponding even
more closely to NBER dates than for univariate analysis
based on real GNP or real GDP.

In terms of business cycle asymmetry, an important
extension of Hamilton’s [59] model involves allowing for
three regimes to capture three phases of the business cy-
cle: “expansion”, “recession”, and “recovery” (see [134]).
Papers with three-regime models include Boldin [8],
Clements and Krolzig [23], and Leyton and Smith [98].

http://www.nber.org/cycles/cyclesmain.html
http://www.nber.org/cycles/cyclesmain.html
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The specification in Boldin [8] modifies the time-varying
mean in Hamilton’s [59] model as follows:

�t D �1 �I (St D 1)C�2 �I (St D 2)C�3 �I (St D 3) ; (10)

where St D f1; 2; 3g has fixed transition matrix:
2

4
p11 0 p31
p12 p22 0
0 p23 p33

3

5 :

The zeros in the transition matrix restrict the state se-
quence to follow the pattern of fStg D � � � 1 ! 2 !
3 ! 1 � � � . Given the normalization �1 > �2, the restric-
tion on the transitional matrix implies that the economy
goes from expansion to recession to recovery and back to
expansion. While there is no restriction on �3, Boldin [8]
finds it is greater than �1, which means that the third
regime corresponds to a high-growth recovery. As dis-
cussed in Clements and Krolzig [24], this third regime al-
lows for steepness in output growth, while the basic two-
regime Hamilton [59] model can only capture deepness
and sharpness (the two are inextricably linked for a two-
regime model) in growth. Note, however, from the defini-
tions presented earlier, deepness in growth implies steep-
ness the level of output.

It is possible to capture high-growth recoveries with-
out resorting to three regimes. For example, Kim and Nel-
son [79] develop an unobserved components model that
assumes two regimes in the transitory component of US
real GDP. A slightly simplified version of their model is
given as follows:

yt D �t C ct ; (11)

�t D �C �t�1 C �t ; �t � i.i.d.N
�
0; �2�


; (12)

�(L)ct D  � I (St D 2)C"t ; "t � i.i.d.N
�
0; �2"


; (13)

where yt is 100 times log real GDP, St D f1; 2g is specified
as in Hamilton’s [59] model, and state 2 is identified as the
recession regime by the restriction  < 0 (see [112,113],
on the need for and implications of this restriction). Un-
like Morley, Nelson, and Zivot [114], Kim and Nelson [79]
impose the restriction that ��" D 0 in estimation, which
they conduct via approximate maximum likelihood using
the Kim [74] filter. As with Hamilton [59] and Lam [96],
the regimes correspond closely to NBER-dated expansions
and recessions. However, because the regime switching
is in the transitory component only, the transition from
state 1 to state 2 corresponds to a downward “pluck” in
economic activity that is followed by a full recovery to

trend after the transition from state 2 to state 1. Kim
and Nelson [79] motivate their model as nesting Fried-
man’s [50,51] plucking model, which assumes output can-
not exceed a ceiling level, but is occasionally plucked below
full capacity by recessionary shocks resulting from activist
monetary policy. In line with Friedman’s observations,
Kim and Nelson’s [79] model relates the strength of a re-
covery to the severity of the preceding recession, with no
corresponding link between the strength of an expansion
and the severity of a recession (see also [2,134,150]). No-
tably, the transitory component for their estimated model
achieves the trifecta of business cycle asymmetries in the
form of deepness, steepness, and sharpness.

Another model that captures three phases of the
business cycle with only two underlying regimes is the
“bounceback” model of Kim, Morley, and Piger [83]. The
model modifies the time-varying mean in Hamilton’s [59]
model as follows:

�t D �1 �I (St D 1)C�2 �I (St D 2)C�
mX

jD1

I
�
St� j D 2


;

(14)

where the number of lagged regimes to consider in the
third term on the right hand side of (14) is determined by
the discrete “memory” parameterm, which is estimated to
be six quarters for US postwar quarterly real GDP. Given
the restriction �1 > �2, the third term can be interpreted
as a pressure variable that builds up the longer a recession
persists (up to m periods, where m D 6 quarters is long
enough to capture all postwar recessions) and is motivated
by the “current depth of recession” variable of Beaudry
and Koop [6] discussed later. Then, if  > 0, growth will
be above�1 for up to the first six quarters of an expansion.
That is, there is a post-recession “bounceback” effect, as
in Kim and Nelson’s [79] plucking model. Meanwhile, the
specification in (14) can be thought of as a “u-shaped re-
cession” version of themodel because the pressure variable
starts mitigating the effects of a recession the longer the
regime persists. Morley and Piger [111] consider a slightly
modified “v-shaped recession” version of the model that
assumes the pressure variable only affects growth after the
recession ends, thus producing a sharper trough:

�t D �1 � I (St D 1)C �2 � I (St D 2)

C  �

mX

jD1

I (St D 1) � I
�
St� j D 2


: (15)

This version of the model is identical to Hamilton’s [59]
model in all but the first m periods of an expansion. Fi-
nally, Morley and Piger [113] consider a “depth” version
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Simulated paths for “Output” (Source: Author’s calculations)

of the model that relates the pressure variable to both the
length and severity of a recession:

�t D �1 � I (St D 1)C �2 � I (St D 2)

C  �

mX

jD1

�
�1 � �2 �
yt� j


� I
�
St� j D 2


: (16)

In this case, the post-recession bounceback effect depends
on the relative severity of a recession. Regardless of the
specification, the estimated bounceback effect for US real
GDP based on maximum likelihood estimation via the
Hamilton [59] filter is large (see [83,111,113]).

While Kim, Morley, and Piger’s [83] bounceback
model can capture “plucking” dynamics, there is no re-
striction that regime switches have only transitory effects.
Instead, the model nests both the Hamilton [59] model as-
sumption that recessions have large permanent effects in
the case that  D 0 and Kim and Nelson’s [79] “plucking”
model assumption that recessions have no permanent ef-
fects in the case that  D (�1 � �2)/m (for the specifica-
tion in (14)). Figure 7 presents examples of simulated time
series for the plucking model, the bounceback model, and
the Hamilton model. In each case, “output” is subject to
a recession regime that lasts for six periods. For the pluck-
ing model, output returns to the level it would have been in
the absence of the recession. For the Hamiltonmodel, out-
put is permanently lower as a result of the recession. For
the bounceback model, recessions can have permanent ef-
fects, but they will be less than for the Hamilton model
if  > 0 (indeed, if  > (�1 � �2)/m, the long-run path
of the economy can be increased by recessions, a notion
related to the “creative destruction” hypothesis of Schum-
peter [131]). In practice, Kim, Morley, and Piger [83] find

a very small negative long-run impact of US recessions,
providing support for the plucking model dynamics and
implying considerably lower economic costs of recessions
than the Hamilton model.

Another extension of Hamilton’s [59] model involves
relaxing the assumption that the transition probabilities
for the unobserved state variable are fixed over time
(see [39]). Filardo [48] considers time-varying transition
probabilities for a regime-switching model of industrial
production growth where the transition probabilities de-
pend on leading indicators of economic activity. Durland
and McCurdy [40] allow the transition probabilities for
real GNP growth to depend on the duration of the pre-
vailing regime. DeJong, Liesenfeld, and Richard [34] al-
low the transition probabilities for real GDP growth de-
pend on an observed “tension index” that is determined
by the difference between recent growth and a “sustain-
able” rate that corresponds to growth in potential output.
Kim, Piger, and Startz [84] allow for a dynamic relation-
ship between multiple unobserved discrete state variables
in a multivariate setting and find that regime-switches in
the permanent component of economic activity tend to
lead regime-switches in the transitory component when
the economy heads into recessions.

The distinction between Markov-switching models
and threshold models is blurred somewhat by time-vary-
ing transition probabilities. A standard demarcation is
that Markov-switching models typically assume the dis-
crete state variables driving changes in regimes are ex-
ogenous, while threshold models allow for endogenous
switching. However, this exogenous/endogenous demar-
cation is less useful than it may at first appear. First, as
is always the problem in macroeconomics, it is unlikely
that the variables affecting time-varying transition prob-
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abilities are actually strictly exogenous, even if they are
predetermined. Second, Kim, Piger and Startz [85] have
developed an approach for maximum likelihood estima-
tion of Markov-switching models that explicitly allow for
endogenous switching. In terms of macroeconomics, Sin-
clair [137] applies their approach to estimate a version
of the regime-switching UC model in (11)–(13) for US
real GDP that allows for a non-zero correlation between
the regular shocks �t and "t , as in Morley, Nelson, and
Zivot [114], as well as dependence between these shocks
and the unobserved state variable St that generates down-
ward plucks in output. She finds that permanent shocks
are more important than suggested by Kim and Nel-
son’s [79] estimates. However, she confirms the impor-
tance of the plucking dynamic, with a test supporting the
standard exogeneity assumption for the discrete Markov-
switching state variable.

Another demarcation that would seem to provide
a possible means of distinguishing between Markov-
switching models and threshold models arises from the
fact that, starting from an AR specification, threshold
models typically extend the basic model by allowing for
changes in AR parameters, while, as discussed earlier,
Markov-switching models typically extend the model by
allowing for changes in the mean. However, this de-
marcation is also less useful than it may at first appear
since Markov-switching models have alternative repre-
sentations as autoregressive processes (see [59]). Further-
more, some threshold models assume constant AR param-
eters (e. g., [120]). In particular, regardless of presentation,
both types of models capture nonlinear dynamics in the
conditional mean.

The more general and useful demarcation between
Markov-switching models and threshold models is that
the prevailing regime is unobservable in the former, while
it is observed in the latter. Meanwhile, the observable
regimes in threshold models make it feasible to con-
sider more complicated transitions between regimes than
Markov switching models. In particular, it is possible with
a threshold model to allow a mixture of regimes to prevail
in a given time period.

Tong [145] introduced the basic threshold autoregres-
sive (TAR) model. In a “self-exciting” TAR model, the au-
toregressive coefficient depends on lagged values of the
time series. For example, a simple two-regime AR(1) TAR
model is given as follows:

yt D c C �(1) � I
�
yt�m < �


� yt�1

C�(2) � I
�
yt�m > �


� yt�1C"t ; "t � i.i.d.(0; �2) ;

(17)

where �(1) and �(2) are the AR(1) parameters associ-
ated with the two regimes, � is the threshold, and m is
the discrete delay parameter. A variant of the basic TAR
model that allows multiple regimes to prevail to different
degrees is the smooth transition autoregressive (STAR)
model (see [18,58,140,142]). For STAR models, the indi-
cator function is replaced by transition functions bounded
between zero and one. The STAR model corresponding
to (17) is

yt D c C �(1) � F1
�
yt�mj�; �


� yt�1

C �(2) � F2
�
yt�mj�; �


� yt�1 C "t;

"t � i.i.d. (0; �2) ; (18)

where F2(yt�m j�; � ) D 1 � F1(yt�m j�; � ) and � is a pa-
rameter that determines the shape of the transition func-
tion (in general, the larger � , the closer the STAR model is
to the TARmodel). The twomost popular transition func-
tions are exponential (ESTAR) and logistic (LSTAR). The
exponential transition function is

Fe
1 D 1 � exp

�
�� (yt�m � �)2


; � > 0 ; (19)

while the logistic transition function is

F l
1 D

�
1C exp

�
�� (yt�m � �)

��1
; � > 0 : (20)

For STAR models the transition functions are such that
the prevailing autoregressive dynamics are based on
a weighted average of the autoregressive parameters for
each regime, rather than reflecting only one or the other,
as in TAR models.

In terms of macroeconomics, both TAR and STAR
models have been employed to capture business cycle
asymmetry. A key question is what observed threshold
might be relevant. On this issue, a highly influential paper
is Beaudry and Koop [6]. Related to the notion discussed
above that recessions represent a meaningful macroeco-
nomic structure, they consider whether real GDP falls be-
low a threshold defined by its historical maximum. Specif-
ically, they define a “current depth of recession” (CDR)
variable as follows:

CDRt D max
˚
yt� j

�
j>0 � yt : (21)

Figure 8 presents the current depth of recession using US
real GDP for each quarter from 1947:Q1 to 2006:Q4.

Beaudry and Koop [6] augment a basic linear ARMA
model of US real GNP growth with lags of the CDR vari-
able. They find that the inclusion of the CDR variable im-
plies much less persistence for large negative shocks than



5338 M Macroeconomics, Non-linear Time Series in

Macroeconomics, Non-linear Time Series in, Figure 8
Current depth of recession 1947–2006 (Source: Author’s calculations based on Beaudry and Koop [6])

for small negative shocks or positive shocks. The asym-
metry in terms of the response of the economy to shocks
corresponds closely to the idea discussed earlier that deep
recessions produce strong recoveries. Indeed, the Beaudry
and Koop [6] paper provided a major motivation for most
of the extensions of Hamilton’s [59] model discussed ear-
lier that allow for high-growth recoveries.

In terms of threshold models in macroeconomics,
Beaudry and Koop [6] initiated a large literature. Tiao and
Tsay [144], Potter [121], and Clements and Krolzig [23]
consider two-regime TAR models with the threshold ei-
ther fixed at zero or estimated to be close to zero. Pe-
saran and Potter [120] and Koop and Potter [91] con-
sider a three-regime TAR model (with many restrictions
for tractability) that incorporates the CDR variable and an
“overheating” (OH) variable reflecting cumulated growth
following large positive shocks. Specifically, a simple ho-
moskedastic, AR(1) version of Pesaran and Potter’s [120]
“floor and ceiling” model is given as follows:


yt D c C �
yt�1 C 1CDRt�1 C 2OHt�1 C "t ;

"t � N(0; �2) ; (22)

where

CDRt D �(
yt � �F ) � Ft � (1 � Ft�1)

C (CDRt�1 �
yt) � Ft � Ft�1 ; (23)

Ft D I
�

yt < �F


� (1 � Ft�1)

C I
�
CDRt�1 �
yt > 0


� Ft�1 ; (24)

OHt D (OHt�1 C
yt � �C ) � Ct ; (25)

Ct D (1 � Ft) � I
�

yt > �C


� I
�

yt�1 > �C


: (26)

The indicator variable Ft D f0; 1g denotes whether the
economy is in the “floor” regime, while Ct D f0; 1g de-
notes whether the economy is in the “ceiling” regime. The
CDR variable is the same as in (20) if the threshold �F D 0.
Thus, a high-growth post-recession recovery is implied by
1 > 0. In particular, with �F D 0, the “floor” regime is
activated when real GDP falls below its historical maxi-
mum at the onset of a recession and remains activated un-
til output recovers back to its pre-recession level. The OH
variable captures whether real GDP is above a sustainable
level based on the threshold level �C of growth. A capac-
ity-constraint effect is implied by 2 < 0. Note, however,
that the “ceiling” regime that underlies the OH variable
can be activated only when the “floor” regime is off, rul-
ing out the possibility that a high-growth recovery from
the trough of a recession is labeled as “overheating”. There
is also a requirement of two consecutive quarters of fast
growth above the threshold level �C in order to avoid label-
ing a single quarter of fast growth as “overheating”. Mean-
while, a heteroskedastic version of the model allows the
variance of the shocks to evolve as follows:

�2t D �
2
1 � I (Ft�1 C Ct�1 D 0)C�22 Ft�1C�

2
3Ct�1 : (27)

Also, in a triumph of controlled complexity, Koop and
Potter [92] develop a multivariate version of this model,
discussed later.
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A related literature on STAR models of business cy-
cle asymmetry includes Teräsvirta and Anderson [143],
Teräsvirta [141], van Dijk and Franses [148], and Öcal
and Osborn [117]. Similar to the development of Markov-
switching models and TAR models, van Dijk and
Franses [148] develop a multi-regime STAR model and
find evidence for more than two regimes in economic ac-
tivity. Likewise, using U.K. data on industrial production,
Öcal and Osborn [117] find evidence for three regimes
corresponding to recessions, normal growth, and high
growth. Rothman, van Dijk, and Franses [130] develop
a multivariate STAR model to examine nonlinearities in
the relationship between money and output.

While there are many different nonlinear models of
economic activity, it should be noted that, in a general
sense,Markov-switchingmodels and thresholdmodels are
close substitutes for each other in terms of their abilities to
forecast (see [23]) and their abilities to capture business
cycle asymmetries such as deepness, steepness, and sharp-
ness (see [24]). On the other hand, specific models are par-
ticularly useful for capturing specific asymmetries and, as
discussed next, for testing the presence of nonlinear dy-
namics in macroeconomic time series.

Evidence

While estimates for regime-switching models often im-
ply the presence of business cycle asymmetries, it must be
acknowledged that the estimates may be more the con-
sequence of the flexibility of nonlinear models in fitting
the data than any underlying nonlinear dynamics. In the
regime-switching model context, an extreme example of
over-fitting comes from a basic i.i.d. mixture model. If
the mean and variance are allowed to be different across
regimes, the sample likelihood will approach infinity as the
estimated variance approaches zero in a regime for which
the estimated mean is equal to a sample observation. (It
should be noted, however, that the highest local maximum
of the sample likelihood for this model produces consis-
tent estimates of the model parameters. See [73]). Thus, it
is wise to be skeptical of estimates from nonlinear models
and to seek out a correct sense of their precision. Having
said this, the case for nonlinear dynamics that correspond
to business cycle asymmetries is much stronger than it is
often made out to be, although it would be a mistake to
claim the issue is settled.

From the classical perspective, the formal problem
of testing for nonlinearity with regime-switching mod-
els is that the models involve nuisance parameters that
are not identified under the null hypothesis of linearity,
but influence the distributions of test statistics. For exam-

ple, Hamilton’s [59] model outlined in (8)–(9) collapses
to a linear AR model if �1 D �2. However, under this
null hypothesis, the two independent transition probabil-
ities p11 and p22 in the transition matrix will no longer be
identified (i. e., they can take on different values without
changing the fit of the model). The lack of identification of
these nuisance parameters is referred to as the Davies [32]
problem and it means that test statistics of the null hypoth-
esis such as a t-statistic or a likelihood ratio (LR) statistic
will not have their standard distributions, even asymptot-
ically. An additional problem for Markov-switching mod-
els is that the null hypothesis of linearity often corresponds
to a local maximum for the likelihood, meaning that the
score is identically zero for some parameters, thus violat-
ing a standard assumption in classical testing theory. The
problem of an identically zero score is easily seen by not-
ing that one of the fundamental tests in classical statis-
tics, the Lagrange multiplier (LM) test, is based on de-
termining whether the score is significantly different than
zero when imposing the null hypothesis in a more general
model. For Hamilton’s [59] model, the scores are zero for
�d D �2 � �1, p11, and p22. Again, identically zero scores
imply nonstandard distributions for a t-statistic or an LR
statistic. In practice, these nonstandard distributions mean
that, if researchers were to apply standard critical values,
they would over-reject linearity.

Hansen [61] derives a bound for the asymptotic dis-
tribution of a likelihood ratio statistic in the setting of
unidentified nuisance parameters and identically zero
scores. The bound is application-specific as it depends on
the covariance function of an empirical process associated
with the likelihood surface in a given setting (i. e., it is
model and data dependent). The distribution of the em-
pirical process can be obtained via simulation. In his ap-
plication, Hansen [61] tests linearity in US real GNP using
Hamilton’s [59] model. His upper bound for the p-value
of the likelihood ratio test statistic is far higher than con-
ventional levels of significance. Thus, he is unable to reject
linearity with Hamilton’s [59] model. However, when he
proposes an extended version of the model that assumes
switching in the intercept and AR coefficients, rather than
the mean as in (8)–(9), he is able to reject linearity with an
upper bound for the p-value of 0.02.

In a subsequent paper, Hansen [62] develops a differ-
ent method for testing in the presence of unidentified nui-
sance parameters that yields an exact critical value rather
than an upper bound for a p-value. Again, the method
requires simulation, as the critical value is model and
data dependent. However, this approach assumes non-
zero scores and is, therefore, more appropriate for testing
threshold models than Markov-switching models. In his
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application for this approach, Hansen [62] tests linearity in
US real GNP using Potter’s [121] TAR model mentioned
earlier (see also [17,63,146,147], on testing TAR models
and [140], on testing STAR models). Referring back to the
TAR model in (17), the threshold � and the delay parame-
ter m are unidentified nuisance parameters under the null
of linearity (i. e., the case where the AR parameters and any
other parameters that are allowed to switch in the model
are actually the same across regimes). Hansen [62] finds
that the p-values for a variety of test statistics are above
conventional levels of significance, although the p-value
for the supLM (i. e., the largest LM statistic for different
values of the nuisance parameters) under the hypothesis
of homoskedastic errors is 0.04, thus providing some sup-
port for nonlinearity.

Garcia [53] reformulates the problem of testing for
Markov-switching considered in Hansen [61] by proceed-
ing as if the score with respect to the change in Markov-
switching parameters (e. g., �d D �2 � �1 for Hamil-
ton’s [59], model) is not identically zero and examining
whether the resulting asymptotic distribution for a likeli-
hood ratio test statistic is approximately correct. The big
advantage of this approach over Hansen [61] is that the
distribution is no longer sample-dependent, although it
is still model-dependent. Also, it yields an exact critical
value instead of an upper bound for the p-value. Gar-
cia [53] reports asymptotic critical values for some basic
Markov-switching models with either no linear dynamics
or a mild degree of AR(1) linear dynamics (� D 0:337)
and compares these to critical values based on a simu-
lated distribution of the LR statistic under the null of lin-
earity and a sample size of 100. He finds that his asymp-
totic critical values are similar to the simulated critical val-
ues for the simple models, suggesting that they may be
approximately correct despite the problem of an identi-
cally zero score. The asymptotic critical values are consid-
erably smaller than the simulated critical values in the case
of Hamilton’s [59] model with an AR(4) specification, al-
though this is perhaps due to small sample issues rather
than approximation error for the asymptotic distribution.
Regardless, even with the asymptotic critical values, Gar-
cia [53] is unable to reject linearity for US real GNP using
Hamilton’s [59] model at standard levels of significance,
although the p-value is around 0.3 instead of the upper
bound of around 0.7 for Hansen [61].

It is worth mentioning that the simulated critical val-
ues in Garcia’s [53] study depend on the values of param-
eters used to simulate data under the null hypothesis. That
is, the LR statistic is not pivotal. Thus, the approach of
using the simulated critical values to test linearity would
correspond to a parametric bootstrap test (see [105,106],

for excellent overviews of bootstrap methods). The use
of bootstrap tests (sometimes referred to as Monte Carlo
tests, although see MacKinnon [105,106], for the distinc-
tion) for Markov-switching models has been limited (al-
though see [96], for an early example) for a couple of rea-
sons. First, the local maximum at the null hypothesis that
is so problematic for asymptotic theory is also problem-
atic for estimation. While a researcher is likely to re-esti-
mate a nonlinear model using different starting values for
the parameters when an optimization routine converges
to this or another local maximum in an application, it is
harder to do an exhaustive search for the global maximum
for each bootstrap sample. Thus, the bootstrapped critical
valuemay be much lower than the true critical value (note,
however, that Garcia’s [53], bootstrapped critical values
were considerably higher than his asymptotic critical val-
ues). Second, given the unidentified nuisance parameters,
the test statistic may not even be asymptotically pivotal.
Thus, it is unclear how well the bootstrapped distribution
approximates the true finite sample distribution. Despite
this, bootstrap tests have often performed better in terms
of size (the probability of false rejection of the null hypoth-
esis in repeated experiments) than asymptotic tests in the
presence of unidentified nuisance parameters. For exam-
ple, Diebold and Chen [37] consider Monte Carlo analy-
sis of bootstrap and asymptotic tests for structural change
with an unknown breakpoint that is a nuisance parameter
and find that the bootstrap tests perform well in terms of
size and better than the asymptotic tests. Enders, Falk, and
Siklos [44] find that bootstrap and asymptotic tests both
have size problems for TAR models, although bootstrap
LR tests perform better than the asymptotic tests or other
bootstrap tests. In terms of testing for nonlinearity with
Markov-switching models, Kim, Morley, and Piger [83]
bootstrap the distribution of the LR statistic testing linear-
ity for the bounceback model discussed above and reject
linearity with a p-value of less than 0.01. The local max-
imum problem is addressed by conducting a grid search
across transition probabilities.

In a recent paper, Carrasco, Hu, and Ploberger [15]
develop an information matrix-type test for Markov-
switching that is asymptotically optimal and only re-
quires estimation under the null of no Markov-switch-
ing (their null allows for other forms of nonlinearity such
as ARCH). At this point, there is little known about
the finite sample properties of the test. However, Car-
rasco, Hu, and Ploberger [15] show that it has higher
power (probability of correct rejection of the null hypoth-
esis in repeated experiments) than Garcia’s [53] approach
for a basic Markov-switching model with no autoregres-
sive dynamics. Hamilton [60] applies Carrasco, Hu, and
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Ploberger’s [15] method to test for Markov switching in
the US unemployment rate (he also provides a very help-
ful appendix describing how to conduct the test). The null
hypothesis is a linear AR(4) model with student t errors.
The alternative is an AR(4) with student t errors where the
intercept is Markov-switching with three regimes. The test
statistic is 26.02, while the 5 percent critical value is 4.01.
Thus, linearity can be rejected for the unemployment rate.
Meanwhile, the estimated Markov-switching model im-
plies asymmetry in the form of steepness (the unemploy-
ment rate rises above its average more quickly than it falls
below its average rate).

In contrast to Markov-switching models or threshold
models, Beaudry and Koop’s [6] ARMA model with the
CDR variable provides a very simple test of nonlinearity.
In particular, for their preferred specification, Beaudry and
Koop [6] find support for nonlinearity with a t-statistic
of 3.39 for the CDR variable. Hess and Iwata [68] ques-
tion the significance of this statistic on the basis of Monte
Carlo analysis. However, the data generating process in
their Monte Carlo study assumed no drift in the simulated
“output” series, meaning that the simulated CDR variable
behaves much like a unit root process. By contrast, given
drift, the CDR variable can be expected to revert to zero
over a fairly short horizon, as it does in the real world (see
Fig. 8). Elwood [43] develops an unobserved components
model with a threshold process for the transitory compo-
nent and argues that there is no evidence for asymmetry
in the responses to positive and negative shocks. However,
his model does not confront the key distinction between
large negative shocks versus other shocks that Beaudry
and Koop [6] address directly with the inclusion of the
CDR variable in their model. A more fundamental issue
is whether the CDR variable is merely a proxy for an-
other variable such as the unemployment rate or interest
rates and the apparent nonlinearity is simply the result of
an omitted variable. However, as discussed in more detail
later, the results in Clarida and Taylor [22] andMorley and
Piger [113] suggest that Beaudry and Koop’s [6] model is
capturing a nonlinear dynamic that is fundamentally dif-
ferent than what would be implied by any linear model.

Hess and Iwata [69] provide a more formidable chal-
lenge to Beaudry and Koop’s [6] model, and, indeed, to
many of the regime-switching models discussed earlier,
by examining the relative abilities of linear and nonlin-
ear models to reproduce particular features of US real
GDP. This alternative form of model evaluation is related
to encompassing tests for non-nested models (see [110],
on encompassing tests and [9], on the use of encompass-
ing tests to evaluate Markov-switching models). In par-
ticular, Hess and Iwata [69] simulate data from a va-

riety of models of output growth, including an AR(1)
model, an ARMA(2,2) model, Beaudry and Koop’s [6]
model, Potter’s [121] two-regime TARmodel, Pesaran and
Potter’s [120] “floor and ceiling” model, Hamilton’s [59]
two-regime Markov-switching model, and a three-regime
Markov-switching model with restrictions on the transi-
tion matrix as in Boldin [8]. They then consider whether
the simulated data for each model can successfully repro-
duce “business cycle” features in terms of the duration and
amplitude of expansions and recessions. Their definition
of the business cycle is related to the level of real GDP.
However, they label any switch between positive and nega-
tive growth, nomatter how short-lived, to be a business cy-
cle turning point. For US real GDP, their approach identi-
fies twice as many turning points as reported by the NBER.
Under this definition, Hess and Iwata [69] find that the
linear AR(1) model is better than the nonlinear models at
reproducing the duration and amplitude of “expansions”
and “recessions” in US real GDP.

Harding and Pagan [65] and Engel, Haugh, and Pa-
gan [45] confirm Hess and Iwata’s [69] findings of little or
no “value-added” for nonlinear models over linear models
using a business cycle dating procedure that more closely
matches NBER dates. The procedure is a quarterly ver-
sion of an algorithm by Bry and Broschan [12] and iden-
tifies recessions as being related to two consecutive quar-
ters of decline in real GDP. In terms of nonlinear mod-
els, Engel, Haugh, and Pagan [45] move beyond Hess and
Iwata [69] by considering van Dijk and Franses’ [149] ver-
sion of the floor and ceiling model with ARCH errors,
Kim, Morley, and Piger’s [83] bounceback model, and De-
Jong, Liesenfeld, and Richard’s [34] tension index model.
Meanwhile, Clements and Krolzig [25] find that multi-
variate two-regime Markov-switching models provide lit-
tle improvement over linear models in capturing business
cycle features.

However, beyond the issue of how to define a busi-
ness cycle, the major question in the literature on repro-
ducing business cycle features is which features to con-
sider. Galvão [52], Kim, Morley, and Piger [83], and Mor-
ley and Piger [111] examine the ability of linear and non-
linear models to capture high-growth recoveries that are
related to the severity of the preceding recessions, which is
the asymmetry emphasized by Friedman [50], Wynne and
Balke [150], Sichel [134], and Balke andWynne [2]. When
considering this feature, there is strong support for Kim
and Nelson’s [79] plucking model and Kim, Morley, and
Piger’s [83] bounceback model over linear models. Inter-
estingly, the three-regime Markov-switching model does
not reproduce this feature. In particular, even though it
implies high-growth recoveries, the fixed transition prob-
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abilities mean that the strength of the recovery is indepen-
dent of the severity of the preceding recession. However,
the strong support for the pluckingmodel and bounceback
model over linear models when considering the relation-
ship between recessions and their recoveries represents
a major reversal of the earlier findings for linear models
by Hess and Iwata [69] and others.

In terms of directly testing business cycle asymmetries,
DeLong and Summers [35] consider a nonparametric test
for steepness in real GNP and unemployment rates for
eight countries (including the US). In particular, they test
for skewness in output growth rates and changes in un-
employment rates. With the exception of changes in the
US unemployment rate, the measures of economic activity
produce no statistically significant evidence of skewness,
although the point estimates are generally large and neg-
ative for output growth and large and positive for the un-
employment rates. Of course, given that the nonparamet-
ric test of skewness is unlikely to have much power for the
relatively small sample sizes available in macroeconomics,
it is hard to treat the non-rejections as particularly deci-
sive. In amore parametric setting, Goodwin [56] considers
a likelihood ratio test for sharpness using Hamilton’s [59]
model. Applying the model and test to real GNP for eight
countries (including the US), he is able to reject non-
sharpness in every country except Germany. In a more
general setting, Clements and Krolzig [24] develop tests
of deepness, steepness, and sharpness that are conditional
on the number of regimes. For a three-regime model, they
are able to reject the null hypotheses of no steepness and
no sharpness in US real GDP growth, although the test
results are somewhat sensitive to the sample period con-
sidered. Meanwhile, Ramsey and Rothman [124] develop
a test of time reversibility and find that many measures
of economic activity are irreversible and asymmetric, al-
though the nature of the irreversibility does not always
provide evidence for nonlinearity.

In addition to classical tests of nonlinear models and
the encompassing-style approach discussed above, there
are two other approaches to testing nonlinearity that
should be briefly mentioned: nonparametric tests and
Bayesian model comparison. In terms of nonparametric
tests, there is some evidence for nonlinearity in macroec-
onomic time series. For example, Brock and Sayers [11]
apply the nonparametric test for independence (of “pre-
whitened” residuals using a linear AR model) developed
by Brock, Dechert, and Schienkman [10] and are able to
reject linearity for the US unemployment rate and in-
dustrial production. However, as is always the case with
such general tests, it is not clear what alternative is be-
ing supported (i. e., is it nonlinearity in the conditional

mean or time-variation in the conditional variance?). Also,
again, the nonparametric approach is hampered in macro-
economics by relatively small sample sizes. In terms of
Bayesian analysis, there is some support for nonlinear-
ity related to business cycle asymmetry using Bayes fac-
tors for multivariate models (see [80]). Bayes factors cor-
respond to the posterior odds of one model versus another
given equal prior odds. In essence, they compare the rela-
tive abilities of two models to predict the data given the
stated priors for the model parameters. Obviously, Bayes
factors can be sensitive to these priors. However, given
diffuse priors, they have a tendency to favor more tightly
parametrized models, as some of the prior predictions
from the more complicated models can be wildly at odds
with the data. Thus, because the findings in favor of non-
linear models correspond to relatively more complicated
models, evidence for nonlinearity using Bayes factors is
fairly compelling.

Relevance

Even accepting the presence of nonlinear dynamics related
to business cycle asymmetry, there is still a question of eco-
nomic relevance. Following the literature, the case can be
made for relevance in three broad, but related areas: fore-
casting, macroeconomic policy, and macroeconomic the-
ory.

In terms of forecasting, the nonlinear time series mod-
els discussed earlier directly imply different conditional
forecasts than linear models. Beaudry and Koop’s [6]
model provides a simple example with a different implied
persistence for large negative shocks than for other shocks.
By contrast, linear models imply that the persistence of
shocks is invariant to their sign or size. Koop, Pesaran, and
Potter [94] develop “generalized impulse response func-
tions” to examine shock dynamics for nonlinear models.
Their approach involves simulating artificial time series
both in the presence of the shock and in the absence of
the shock, holding all else (e. g., other shocks) equal, and
comparing the paths of the two simulated time series. This
simulation can be done repeatedly for different values of
other shocks in order to integrate out their impact on the
difference in conditional expectations of the time series
implied by presence and absence of a shock. Clarida and
Taylor [22] use related simulated forecasts to carry out the
Beveridge–Nelson (BN) decomposition (see [7]) for US
real GNP using Beaudry and Koop’s [6] model. The BN
decomposition produces estimates of the permanent and
transitory components of a time series based on long-hori-
zon conditional forecasts. Importantly, the estimated cycle
(under the “deviations” definition of the business cycle)
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“Bounceback” cycle and NBER recessions (Source: Author’s calculations based on Morley and Piger [113], and NBER website)

for Beaudry and Koop’s [6] model displays deepness that
would be difficult to replicate with any linear forecasting
model, even with multivariate information. Thus, there is
a direct sense in which Beaudry and Koop’s [6] model is
not just approximating a linear multivariate model.

In a recent paper, Morley and Piger [112] develop an
extension of the BN decomposition that produces optimal
(in a “minimum mean squared error” sense) estimates of
the cyclical component of an integrated time series when
the series can be characterized by a regime-switching pro-
cess such as for a Markov-switching model with fixed
transition probabilities. The approach, which is labeled
the “regime-dependent steady-state” (RDSS) decomposi-
tion, extracts the trend by constructing a long-horizon
forecast conditional on remaining in a particular regime
(hence, “regime-dependent”). In Morley and Piger [113],
the RDSS decomposition is applied to US real GDP us-
ing the “depth” version of Kim, Morley, and Piger’s [83]
bounceback model given by (8) and (16). Figure 9 presents
the estimated cycle for a version of the model with a struc-
tural break in �2,�1, and�2 in 1984:Q2 to account for the
Great Moderation. The figure also displays an indicator
variable for NBER-dated recessions for each quarter from
1949:Q2 to 2006:4. (For visual ease, the indicator variable
is � 8 in expansions and � 6 in recessions).

There are three particularly notable features of the cy-
cle in Fig. 9. First, there is a close correspondence between
the big negative movements in it and the NBER-dated pe-
riods of recession. Thus, in practice, there is a direct rela-
tionship between the level and deviations definitions of the
business cycle discussed earlier. Also, this correspondence
directly implies that the NBER is identifying a meaning-
ful macroeconomic structure (i. e., it is capturing a phase

that is closely related to large movements in the transitory
component of economic activity), rather than merely not-
ing negative movements in economic activity. Second, it is
fairly evident from Fig. 9 that the cycle displays all three
business cycle asymmetries in the form of deepness, steep-
ness, and sharpness. Third, the unconditional mean of the
cycle is negative. As discussed in Morley and Piger [113],
this finding stands in contrast to cyclical estimates for all
linear models, whether univariate or multivariate.

The negative mean of the cycle in US real GDP has
strong implications for the potential benefits of macro-
economic stabilization policy. Lucas [102,103] famously
argued that the elimination of all business cycle fluctua-
tions would produce a benefit equivalent to less than one-
tenth of one percent of lifetime consumption. One rea-
son for this extraordinarily low estimate is that his calcu-
lation assumes business cycle fluctuations are symmetric.
However, as discussed in DeLong and Summers [36], Co-
hen [28], Barlevy [5], and Yellen and Akerlof [151], a non-
zero mean cyclical component of economic activity di-
rectly implies that stabilization policies, if effective, could
raise the average level of output and lower the average level
of the unemployment rate. In this setting, the potential
benefits of stabilization policy are much larger than cal-
culated by Lucas [102,103]. (In deference to Milton Fried-
man and his plucking model, it is worth mentioning that
the optimal “stabilization” policy might be a passive rule
that prevents policymakers from generating recessionary
shocks in the first place. Regardless, the point is that, given
a negativemean for the cycle in real GDP, the costs of busi-
ness cycles are high and can be affected by policy).

A related issue is asymmetry in terms of the effects of
macroeconomic policy on economic activity. For example,
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DeLong and Summers [36] and Cover [31] find that nega-
tive monetary policy shocks have a larger effect on output
than positive shocks of the same size (the so-called “push-
ing on a string” hypothesis). This form of asymmetry re-
presents a third type of nonlinearity in macroeconomics
beyond structural change and business cycle asymmetry,
although it is clearly related to business cycle asymmetry.
Indeed, Garcia and Schaller [54] and Lo and Piger [99]
considerMarkov-switchingmodels and find that asymme-
try in the effects of monetary policy shocks is more closely
related to whether the economy is in an expansion or a re-
cession, rather thanwhether the shock was positive or neg-
ative. In particular, positive shocks can have large effects
on output, but only in recessions. There is an obvious link
between this result, which is suggestive of a convex short-
run aggregate supply curve rather than the “pushing on
a string” hypothesis, and the business cycle displayed in
Fig. 9, which is also highly suggestive of a convex short-
run aggregate supply curve.

In addition to the implications for more traditional
theoretical notions in macroeconomics such as the shape
of the short-run aggregate supply curve, the findings
for business cycle asymmetry are important for modern
macroeconomic theory because dynamic stochastic gen-
eral equilibrium (DSGE) models are often evaluated and
compared based on their ability to generate internal prop-
agation that matches what would be implied by linear AR
and VAR models of US real GDP (see, for example [126]).
These linear models imply a time-invariant propagation
structure for shocks, while the business cycle presented in
Fig. 9 suggests that theory-based models should instead be
evaluated on their ability to generate levels of propagation
that vary over business cycle regimes, at least if they are
claimed to be “business cycle” models.

Future Directions

There are several interesting avenues for future research in
nonlinear time series in macroeconomics. However, two
follow directly from the findings on nonlinearities sum-
marized in this survey. First, in terms of structural change,
it would be useful to determine whether the process of
change is gradual or abrupt and the extent to which it is
predictable. Second, in terms of business cycle asymme-
tries, it would be useful to pin down the extent to which
they reflect nonlinearities in conditional mean dynamics,
conditional variance dynamics, and/or the contemporane-
ous relationship between macroeconomic variables.

The issue of whether structural change is gradual
or abrupt is only meaningful when structural change is
thought of as a form of nonlinearity in a time series

model. In particular, formal classical tests of structural
change based on asymptotic theory make no distinction
between whether there are many small change or a few
large changes. All that matters is the cumulative mag-
nitude of changes over the long horizon (see [42], on
this point). Of course, a time-varying parameter model
and a regime-switching model with permanent changes in
regimes can fit the data in very different ways in finite sam-
ples. Thus, it is possible to use finite-sample model com-
parison (e. g., Bayes factors) to discriminate between these
two behaviors. It is even possible to use a particle filter to
estimate a nonlinear state-space model that nests large, in-
frequent changes and small, frequent changes (see [90]).
In terms of predicting structural change, Koop and Pot-
ter [93] develop a flexible model that allows the number
of structural breaks in a given sample and the duration of
structural regimes to be stochastic processes and discuss
estimation of the model via Bayesian methods.

The issue of the relative importance of different types
of recurring nonlinearities is brought up by the findings
in Sims and Zha [136], discussed earlier, that there are
no changes in the conditional mean dynamics, but only
changes in the conditional variance of shocks for a struc-
tural VAR model of the US economy. Likewise, in their
multivariate three-regime TAR model, Koop and Pot-
ter [92] consider a VAR structure, and find that a lin-
ear VAR structure with heteroskedastic errors is preferred
over a “vector floor and ceiling” structure for the condi-
tional mean dynamics. The question is how to reconcile
these results with the large body of evidence supporting
nonlinearity in conditional mean dynamics discussed at
length in this survey. A short answer is that VAR models
are highly parametrized in terms of the conditional mean.
Thus, it may be hard to identify regime shifts or nonlin-
ear forms of time-variation in conditional means using
a VAR model, even if they are present. On the other hand,
even for their nonlinear model, Koop and Potter [92] find
stronger evidence for nonlinearity in the contemporane-
ous relationship between variables than in the conditional
mean dynamics. Meanwhile, in terms of multivariate anal-
ysis, consideration of more parsimonious factor models
has typically increased the support for nonlinear models
over linear models (e. g. [80]). Thus, a full comparison of
different types of nonlinearity in the context of a parsimo-
nious nonlinear model would be useful.

Another important avenue for future research in
macroeconomics is an increased integration of the find-
ings in nonlinear time series into macroeconomic theory.
In terms of structural change, there has been considerable
progress in recent years. In particular, some of the papers
on changes in policy regimes discussed earlier (e. g. [123,
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136]) can be classified as “theory-oriented” given their
consideration of structural VAR models. Another non-
linear time series paper on changing policy regimes with
a structural model is Owyang and Ramey [118], which
considers the interaction between regime switching in the
Phillips curve and the policy rule. Meanwhile, Fernández-
Villaverde and Rubio-Ramírez [47] and King [89] directly
incorporate structural change (of the gradual form) in the-
ory-based DSGE models, which they proceed to estimate
with the aid of particle filters. In terms of Bayesian anal-
ysis of the sources of the Great Moderation, Chauvet and
Potter [20] and Kim, Nelson, and Piger [82] consider dis-
aggregated data (in a joint model and separately, respec-
tively) and find that the decline in volatility of economic
activity is a broadly-based phenomenon, rather than cor-
responding to particular sectors, while Kim, Morley, and
Piger [86] employ structural VAR models and find that
the decline in volatility cannot be explained by changes
in aggregate demand shocks, monetary policy shocks, or
the response of the private sector or policymakers to
shocks.

In terms of the integration of business cycle asym-
metries into macroeconomic theory, there has been less
progress in recent years, perhaps due the obviously
greater difficulty in modeling endogenous regime switch-
ing than in simply assuming exogenous structural change.
However, the theoretical literature contains some work
on asymmetries. In particular, mechanisms for regime
switching in the aggregate data that have been considered
in the past include spillovers and strategic complementar-
ities [41], animal spirits [70], a history-dependent selec-
tion criterion in an economy with multiple Nash equilib-
ria corresponding to different levels of productivity [30],
and intertemporal increasing returns [1]. However, Pot-
ter [122] notes that, while these mechanisms can gener-
ate regime switching in the aggregate data, they cannot
explain asymmetry in the form of high-growth recover-
ies following large negative shocks. He proposes a model
with Bayesian learning and an information externality
(see [16]) that can generate such dynamics. Meanwhile, in
terms of business cycle asymmetry more generally, obvi-
ous mechanisms are investment irreversibilities [55] and
capacity constraints [64]. More promisingly for future de-
velopments in macroeconomic theory, there is a grow-
ing empirical literature on the sources of business cycle
asymmetries. For example, Korenok, Mizrach, and Rad-
chenko [95] use disaggregated data and find that asymme-
tries are more pronounced in durable goods manufactur-
ing sectors than nondurable goods manufacturing sectors
(also see [129]) and appear to be related to variation across
sectors in credit conditions and reliance on raw material

inventories, while they do not appear to be related to oil
price shocks [33] or adjustment costs [3].
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