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THE TWO INTERPRETATIONS OF
THE BEVERIDGE–NELSON
DECOMPOSITION

JAMES C. MORLEY
Washington University in St. Louis

The Beveridge–Nelson decomposition calculates trend and cycle for an integrated time
series. However, there are two ways to interpret the results from the decomposition. One
interpretation is that the optimal long-run forecast (minus any deterministic drift) used to
calculate the Beveridge–Nelson trend corresponds to an estimate of an unobserved
permanent component. The other interpretation is that the optimal long-run forecast
defines an observable permanent component. This paper examines some issues
surrounding these two interpretations and provides empirical support for interpreting the
Beveridge–Nelson trend as an estimate when considering macroeconomic data.
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The Beveridge–Nelson decomposition can be seen as an ingenious decomposition
of an I(1) variable, but it does not properly fit into the unobserved components
framework, since the components are, in fact, observable. . . . The assumption . . .
that the permanent and transitory component share, at every period, the same
innovation is a strong assumption, of limited appeal.

—Maravall (1995)

1. INTRODUCTION

In the literature on trend/cycle decomposition, the Beveridge–Nelson decompo-
sition has been subject to two very distinct interpretations. One interpretation,
emphasized by Watson (1986) and Morley et al. (2003), is that the long-horizon
conditional forecast used to calculate the Beveridge–Nelson trend corresponds
to an estimate of the permanent component of an integrated time series. The
Beveridge–Nelson decomposition provides a sensible estimate because, under the
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assumption that the permanent component follows a random walk (with drift)
and the transitory component is stationary with an unconditional mean of zero,
the optimal long-horizon forecast (in a minimum–mean squared error sense) will
be equal to the conditional expectation of the permanent component. A second
interpretation, emphasized in the original paper by Beveridge and Nelson (1981),
is that the Beveridge–Nelson trend provides a definition of the permanent com-
ponent of an integrated time series. In this case, given the optimal long-horizon
forecast, the permanent component does not need to be estimated, but instead
is directly observable by an econometrician for the simple reason that it is the
Beveridge–Nelson trend.

In this paper, I compare the two interpretations of the Beveridge–Nelson de-
composition. Although many other studies, including Watson (1986), Maravall
(1995), Harvey and Koopman (2000), Proietti and Harvey (2000), Proietti (2006),
and Oh et al. (2008), have alluded to two interpretations of the Beveridge–Nelson
decomposition, I consider exactly how the interpretations are related to each other
and whether there is any empirical reason to prefer one interpretation over the
other. In particular, I demonstrate that, even though the two interpretations can
be observationally equivalent in a univariate setting for an econometrician, they
are empirically distinguishable in a multivariate setting. Notably, this empirical
distinction is possible even if the autocovariance structures of the series under
examination can be completely captured by univariate time series models. In
an application to U.S. macroeconomic data, I find support for interpreting the
Beveridge–Nelson decomposition as providing estimates of trend and cycle. This
finding is important because the view that the Beveridge–Nelson decomposition
defines the trend persists in many applied studies [e.g., Clarida and Taylor (2003)
and Anderson et al. (2006)] and forms the basis for skepticism about its general
relevance (see, for example, the quotation from Maravall at the beginning of this
paper). In contrast, the view that the Beveridge–Nelson decomposition provides
estimates of trend and cycle suggests that it is a highly general and practical
method for trend/cycle decomposition.

2. THE BEVERIDGE–NELSON DECOMPOSITION

The Beveridge–Nelson (BN) trend of an integrated time series yt is given as
follows:

BNt = lim
M→∞

E[yt+M − Mµ | �t ], (1)

where µ = E[�yt ] is the deterministic drift and �t is the information set used
to calculate the conditional expectation. In words, the BN trend is the optimal
long-horizon conditional point forecast of the time series process {yt }, with any
future drift removed. Meanwhile, the BN cycle is simply the difference between
the series and the BN trend.

In practice, the BN decomposition is often calculated using an autore-
gressive moving-average (ARMA) model that is designed to capture the au-
tocovariance structure of {�yt }. For example, assuming an AR(1) model
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�yt = µ + φ(�yt − µ) + et , where |φ| < 1 and et ∼ i.i.d.N(0, σ 2), the
BN trend is BNt = yt + φ

1−φ
(�yt − µ) [see Morley (2002)]. Note that, given

known parameter values (φ and µ) and the data (yt and �yt ), the BN trend for yt

is observed by an econometrician at time t.
To compare the two interpretations of the BN decomposition within a unified

framework, I consider a state-space representation for yt . In particular, assuming
a known Gaussian ARMA structure for the first differences {�yt }, the level yt can
be thought of as made up of a permanent component, denoted τt , and a transitory
component, denoted ct :

yt = τt + ct , (2a)

τt = µ + τt−1 + ηt , ηt ∼ i.i.d.N
(
0, σ 2

η

)
, (2b)

φ(L)ct = θ(L)εt , εt ∼ i.i.d.N
(
0, σ 2

ε

)
, (2c)

Corr(ηt , εt ) = ρηε. (2d)

According to (2b), the permanent component follows a random walk with drift and,
according to (2c), the transitory component follows a stationary ARMA process
with a mean of zero.

Within the context of the state-space representation in (2), the two interpretations
of the BN decomposition can be understood as follows:

INTERPRETATION 1 (BN-as-estimate). Under this interpretation, the perma-
nent component of a time series is unobservable because of the assumed presence
of transitory shocks that have no impact on the permanent component. In par-
ticular, the serially uncorrelated innovation to ct in (2c) can be rewritten in the
following way:

εt = αηt + ε∗
t , ε∗

t ∼ i.i.d.N
(
0, σ 2

ε∗
)
. (3a)

Then, as long as the variance of the transitory shocks is positive (i.e., σ 2
ε∗ > 0),

there will be imperfect correlation between the innovations to the permanent and
transitory components:

|ρηε| < 1. (3b)

With imperfect correlation, (2) becomes an unobserved-components (UC) repre-
sentation and, following the analysis in Watson (1986) and Morley et al. (2003),
the BN trend provides an optimal estimate of the permanent component under the
assumption that it follows a random walk and the unconditional expectation of
{ct } is zero.

INTERPRETATION 2 (BN-as-definition). Under this interpretation, the BN
trend is the permanent component of a time series because there is assumed
to be only one type of shock driving {yt }. Specifically, the serially uncorrelated
innovation to ct in (2c) can be rewritten in the following way:

εt = αηt , (4a)
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where α is a scalar that allows permanent and transitory innovations to have
different signs and variances despite being driven by the same underlying shock.
With only one underlying shock, the innovations to the permanent and transitory
components will be perfectly correlated:

|ρηε| = 1. (4b)

In this case, the permanent and transitory innovations are observable and can be
measured using the forecast error from the reduced-form ARMA representation
for {�yt }, with the resulting permanent component equal to the BN trend.1

It should be noted that these two interpretations still apply even if the structure of
{�yt } is better captured by a multivariate time series model, rather than a univariate
ARMA model. In such a case, the BN-as-estimate interpretation would correspond
to the idea that the permanent and transitory innovations are imperfectly correlated
across series, as well as with each other. Meanwhile, the BN-as-definition interpre-
tation would correspond to the idea there are as many underlying shocks as there
are series under examination, with the shocks being observable and proportional
to the forecast errors from the multivariate model. In particular, for a given series,
the permanent and transitory innovations would be proportional to the same linear
combination of forecast errors and, therefore, would remain perfectly correlated.

3. UNIVARIATE OBSERVATIONAL EQUIVALENCE

One problem in distinguishing between the two interpretations of the BN decom-
position presented in the preceding section is that, despite the apparent restric-
tiveness of the correlation in (4b) compared to (3b), the two interpretations can
be observationally equivalent in terms of their implied univariate autocovariance
structure for {�yt }.

An empirical example may help clarify the distinction between the two inter-
pretations and illustrate the problem of observational equivalence in the univariate
setting. Based on the state-space representation in (2), Morley et al. (2003) es-
timate an UC model for 100 times the natural logarithms of quarterly U.S. real
GDP under the assumption of an AR(2) structure for the transitory component and
with no restriction on the correlation between the innovations to the permanent
and transitory components. Using data from the St. Louis Fed database for the
updated sample period of 1947Q1 to 2009Q3, the maximum-likelihood estimates
for this UC model are as follows:

yt = τt + ct , (5a)

τt = 0.80
(0.08)

+ τt−1 + ηt , ηt ∼ N(0, 1.19
(0.06)

2), (5b)

ct = 1.31
(0.05)

ct−1 − 0.70
(0.04)

ct−2 + εt , εt ∼ N(0, 0.74
(0.02)

2), (5c)

Corr(ηt , εt ) = −0.93
(0.04)

, (5d)
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where standard errors are in parentheses and the log likelihood value is −331.30.
Because of the assumed UC structure, the permanent component is not observable
and must be estimated. Given the parameter estimates, this can be done with the
Kalman filter, which calculates E[τt | �t ], where �t = (y1, . . . , yt ).

The estimated UC model in (5) places no binding restrictions on the autoco-
variance structure of {�yt } beyond those implied by an estimated reduced-form
ARMA(2,2) model. As shown in Morley et al. (2003), the equivalent autoco-
variance structure implies that E[τt | �t ] from the Kalman filter is identical to
the BN trend given the ARMA(2,2) model. Meanwhile, any restriction on the
correlation parameter in (5d) would place implicit restrictions on the parameters
for the reduced-form ARMA(2,2) model, resulting in a BN trend different from
that implied by the unrestricted ARMA(2,2) model. For example, it is possible
to consider a restricted version of the state-space model in which the correlation
between permanent and transitory innovations is restricted to be −1 instead of
its estimated value of −0.91 in (5d). Although it might seem that this version of
the state-space model corresponds to the BN-as-definition interpretation, it would
actually produce a different permanent component than the unrestricted UC model
in (5).

Given that imposing a perfect negative correlation would meaningfully restrict
the model in (5), the obvious question is why there is an observational equivalence
between the two interpretations of the BN decomposition. The answer lies in
Anderson et al.’s (2006) insight that reduced-form ARMA models are equiva-
lent to state-space models with only one type of shock, but comparatively more
complicated dynamics. For example, they show that an unrestricted ARMA(2,2)
model for {�yt } is equivalent to a state-space model for {yt } in which innova-
tions between permanent and transitory components are perfectly correlated and
the transitory component follows an ARMA(2,1) process, instead of the AR(2)
process in (5c). Using the same data as before, the maximum-likelihood estimates
for this alternative state-space model are given as follows:

yt = τt + ct , (6a)

τt = 0.80
(0.08)

+ τt−1 + ηt , ηt ∼ N(0, 1.19
(0.06)

2), (6b)

ct = 1.31
(0.05)

ct−1 − 0.70
(0.04)

ct−2 − 0.24
(0.01)

ηt + 0.31
(0.03)

ηt−1, (6c)

where the log likelihood value is −331.30. Note that the log likelihood is the same
as for the model in (5), meaning that the models in (5) and (6) are observationally
equivalent in terms of fitting the sample data.2

Regarding the observation equivalence, a few issues should be mentioned. First,
given the same ARMA model for {yt }, the BN trend is the same under either in-
terpretation. Thus, inferences about the variability of the permanent component
are not sensitive to the interpretation. This robustness to interpretation stands in
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contrast to the sensitivity of inferences to different assumptions about the cor-
relation between permanent and transitory innovations for a given UC model.
Second, despite implying the same variability of the permanent component, the
observational equivalence does not mean that deciding between the two interpre-
tations is merely a matter of normalization. The two interpretations have very
different implications in terms of subsequent econometric analysis. Under the BN-
as-definition interpretation, the BN trend and the implied transitory component are
observable and, therefore, can be treated as regular data in any regression analysis,
at least assuming a reasonable model of the autocovariance structure and precise
parameter estimates. However, under the BN-as-estimate interpretation, the esti-
mated components will contain a large degree of measurement error, even given
the correct model of the autocovariance structure and as parameter uncertainty
goes away asymptotically.

4. MEASUREMENT ERROR IN THE MULTIVARIATE SETTING

The different implications for the presence of measurement error suggest that
it should be possible to distinguish between the two interpretations in a multi-
variate setting. Specifically, if there is a sizable amount of measurement error,
subsequent estimates of relationships between BN trends and/or cycles for dif-
ferent variables will be strongly biased and inconsistent due to the endogeneity
that arises from measurement error. Thus, in principle, the two interpretations
can be compared using a Hausman (1978) test, with evidence for endogeneity
supporting the BN-as-estimate interpretation.3 On the other hand, the practical
applicability of an endogeneity test is not entirely obvious. First, any apparent
evidence of measurement error based on a particular set of instruments may,
in fact, be due to a mistaken exclusion of these variables from the forecasting
model used to construct the BN trend and cycle. Thus, one purpose of this sec-
tion is to demonstrate that it is possible to test for measurement error even if
the forecasting model used for the BN decomposition includes an instrument
used in the subsequent Hausman test for endogeneity. Second, parameter uncer-
tainty potentially mitigates the ability to use measurement error to test the BN-as-
definition interpretation. Thus, another purpose of this section is to demonstrate
that the Hausman test can still be informative about the two interpretations in finite
samples.

Monte Carlo analysis provides an ideal means of illustrating the key issues
related to the BN decomposition and measurement error because it allows direct
consideration of what would happen when one of the two interpretations is true,
but the econometrician does not know which one. For the analysis, I consider
two stylized data-generating processes (DGPs) corresponding to the two inter-
pretations of the BN decomposition. For each DGP, I consider two series that
are related to each other and examine the ability to empirically detect the true
relationship between the series in different circumstances. The DGPs are given as
follows:
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DGP 1 (Permanent and transitory components are unobservable). For this
DGP, the two underlying series have the same general structure as the model
in (5):

yit = τit + cit , (7a)

τit = 1 + τi,t−1 + ηit , ηit ∼ N(0, 1), (7b)

cit = 1.25ci,t−1 − 0.75ci,t−2 + εit , εit ∼ N(0, 0.52), (7c)

Corr(ηit , εit ) = 0, (7d)

where i = 1, 2. In this case, the two series are related to each other through the
following correlation:

Corr(ε1t , ε2t ) = 0.5. (7e)

That is, only the transitory innovations are positively correlated across the two
series.

DGP 2 (Permanent and transitory components are BN trend/cycle). For this
DGP, the two underlying series have the same general structure as the model in
(6):

yit = τit + cit , (8a)

τit = 1 + τi,t−1 + ηit , ηit ∼ N(0, 1), (8b)

cit = 1.25ci,t−1 − 0.75ci,t−2 − 0.2ηit + 0.3ηi,t−1, (8c)

where i = 1, 2. Meanwhile, the two series are related to each other through the
following correlation:

Corr(η1t , η2t ) = 0.5. (8d)

That is, permanent and transitory innovations are positively correlated across the
two series.

For each DGP, I replicate a large number of samples of simulated observations
and then calculate the BN trends and cycles for each sample. Initially, the BN
calculations are made under the assumption of known parameters in order to
illustrate the key role of the two interpretations when looking at characteristics of
the BN trends and cycles, although I also consider the role of parameter uncertainty
below.

Table 1 reports results for Monte Carlo experiments about various estimators
of interest assuming known parameter values and given 10,000 replications and
sample sizes of 200 and 1,000 observations. Starting with inferences about vari-
ation in permanent and transitory components and, for the time being, focusing
on the results given BN calculations based on univariate forecasting models, the
first thing to notice is that, even when the BN trend is only an estimate, the
OLS estimator of the standard deviation of the BN trend innovations appears to
provide an unbiased estimator of the standard deviation of the true permanent
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TABLE 1. Monte Carlo analysis of estimators

Mean (std. dev.) Mean (std. dev.)
True Sample of estimator for of estimator for
value size Estimator univariate BN multivariate BN

A. DGP # 1—BN is estimate
Std. dev. of 1 200 OLS 1.00 (0.05) 1.00 (0.05)

permanent 1,000 OLS 1.00 (0.02) 1.00 (0.02)
innovations

Std. dev. of 2.15 200 OLS 1.71 (0.17) 1.74/1.81 (0.18)
transitory 1,000 OLS 1.72 (0.08) 1.75/1.82 (0.08)
components

Slope of 0.5 200 OLS 0.39 (0.13) 0.57 (0.11)
relationship IV 0.50 (0.23) 0.50 (0.12)
between 1,000 OLS 0.39 (0.06) 0.57 (0.05)
transitory IV 0.50 (0.10) 0.50 (0.05)
components

B. DGP # 2—BN is true value
Std. dev. of 1 200 OLS 1.00 (0.05) 1.00 (0.05)

permanent 1,000 OLS 1.00 (0.02) 1.00 (0.02)
innovations

Std. dev. of 0.45 200 OLS 0.45 (0.04) 0.45 (0.04)
transitory 1,000 OLS 0.45 (0.02) 0.45 (0.02)
components

Slope of 0.5 200 OLS 0.50 (0.12) 0.50 (0.12)
relationship IV 0.50 (0.16) 0.05 (0.16)
between 1,000 OLS 0.50 (0.05) 0.50 (0.05)
transitory IV 0.50 (0.07) 0.50 (0.07)
components

Notes: Each Monte Carlo experiment consists of 10,000 replications. For each experiment, three series were
generated for the specified sample sizes, with the first two series generated from either (7) or (8) and the
third series generated from (9). Then the BN decompositions were calculated for the first and second series
given known parameters. “Univariate BN” and “multivariate BN” denote whether the BN decomposition was
calculated given a univariate forecasting model or a multivariate forecasting model that includes all three
variables. Experiment results separated by a slash (“/”) correspond to different means/standard deviations for
the first and the second series.

innovations.4 Of course, the i.i.d. structure of the trend innovations means that the
OLS estimator of the standard deviation is unbiased and consistent when the BN
trend is the true permanent component. However, it is interesting to note that the
estimator appears to be equally precise for both DGPs. The second thing to notice
is that, when the BN cycle is only an estimate, the OLS estimator of its standard
deviation appears to provide a biased estimator of the true standard deviation of
the transitory component, with the BN cycle understating the variability of the true
transitory component. This result presents the first instance of why it matters which
interpretation of the BN decomposition is considered in practice. Although the
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estimated trend behaves like the true permanent component, meaning that infer-
ences about it are robust to interpretation, the estimated cycle does not, meaning
that inferences depend on the interpretation, with estimated cycles displaying
variation different from that of the true transitory components because of the
presence of measurement error.

The next thing to notice is the OLS inferences about the relationship between
transitory components for two related series. As with inferences about variation of
the transitory components, the OLS estimator appears biased when the BN cycles
are estimates rather than true values. This result is a simple example of the classic
errors-in-variables problem. For BN calculations based on univariate forecasting
models, the measurement error in the estimated cycles produces downward-biased
estimates of the true relationship between the transitory components. Meanwhile,
not surprisingly, the OLS estimator appears unbiased when the BN cycles are the
true transitory components.

The results thus far suggest that the reliability of OLS inferences about the
variation of the transitory components and their relationship across series de-
pends crucially on which interpretation of the BN decomposition is appropriate.
As mentioned above, models corresponding to the two interpretations have the
same in-sample fit, so it might appear to be completely a matter of identification
regarding the nature of the permanent and transitory components of a time series
process. However, the errors-in-variables problem for the estimated trend and cycle
directly implies a way to move beyond the problem of observational equivalence in
the univariate setting, although it requires the existence of an additional time se-
ries that can serve as an instrument for the transitory component in one of the
original two series. For the errors-in-variables problem, a good instrument will be
correlated with the transitory component, but uncorrelated with the measurement
error in the BN cycle. For the Monte Carlo analysis, I add a third series to each
DGP that is stationary and imperfectly correlated with the transitory component
of the second series according to the structure

y3t = c2t + ut , ut ∼ N
(
0, σ 2

u

)
, (9)

where the variance of the error ut is calibrated to produce a correlation of 50%
between the instrument y3t and the transitory component c2t (the variance is
different for the two DGPs).

The results for the IV inferences suggest that, given a good instrument, IV
estimation of the relationship between transitory components works well. The
IV estimator appears unbiased, even for the DGP in which the permanent and
transitory components are unobservable. Thus, in principle, it should be possible
to compare OLS and IV inferences in order to determine which interpretation of
the BN decomposition is more appropriate for a given set of time series. If the
OLS and IV inferences are significantly different, it supports the BN-as-estimate
interpretation. If the OLS and IV inferences are essentially the same, with the
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IV estimates only being somewhat less precise, it supports the BN-as-definition
interpretation.

The results above do not merely reflect implicitly different DGPs when a third
variable is introduced into the system via IV analysis. Even given BN decompo-
sitions based on multivariate forecasting models that take into account the true
joint autocovariance structure of all three series, the Monte Carlo results display
the same overall pattern as for the univariate forecasting models.5 To be sure,
there are some quantitative differences in the findings for the multivariate case
when the BN trends and cycles are estimates. The apparent bias in the inferences
about the standard deviation of the transitory components is smaller than in the
univariate case, especially for the transitory component of the second series, which
is estimated more precisely because of the information in the third series. There
is also less apparent bias in the OLS inferences about the relationship between
the transitory components, with the direction of the bias switching from before.6

However, the important result is that there is still a difference between the OLS
and IV inferences when the BN trends and cycles are estimates, with only the IV
estimator appearing to be unbiased.

The difference between OLS and IV inferences is the key because, in practice,
whether or not there is a change in certain inferences (e.g., the variability of the
cycle) as a result of switching between univariate and multivariate forecasting
models is not sufficient to distinguish between the two interpretations of the BN
decomposition. It only raises possible doubts about the relevance of the univariate
forecasting model (or, on the contrary, whether the multivariate model is overfitting
the data). For example, for the DGP where the BN trends and cycles are only
estimates, the multivariate BN decomposition is different from the univariate BN
decomposition because the third series Granger-causes the second series (i.e., it
contains marginal predictive information) and it requires a multivariate model
to fully capture the joint autocovariance structure of the three series. However,
the measurement error was still evident when the less efficient univariate models
were considered. Meanwhile, for the DGP where the BN trends and cycles are the
true permanent and transitory components, the multivariate BN decomposition is
actually the same as the univariate BN decomposition because there is no marginal
predictive information in the third series, meaning that the univariate model is
sufficient for summarizing the autocovariance structures of the first and second
series. However, as discussed in Section 2, it would always be possible to consider
a DGP for which observable shocks to the permanent and transitory components
are proportional to the forecast errors from a multivariate model. Thus, although
consideration of univariate versus multivariate models is important for capturing
the autocovariance structure of the time series under examination, a test of one
model versus another has no direct implications for the correct interpretation of
the BN decomposition.

Up to this point, the Monte Carlo analysis has abstracted from parameter uncer-
tainty in order to illustrate that the two interpretations of the BN decomposition
are no longer observationally equivalent in a multivariate setting. However, the
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TABLE 2. Monte Carlo analysis of rejection frequencies for the Hausman test

Sample size Known parameters Estimated parameters

A. DGP # 1: BN is estimate
100 11% 12%
200 13% 14%
500 23% 24%

1,000 44% 44%

B. DGP # 2: BN is true value
100 5% 14%
200 5% 13%
500 5% 11%

1,000 5% 8%

Notes: Each Monte Carlo experiment consists of 1,000 replications. For each experiment, three series were generated
for the specified sample sizes, with the first two series generated from either (7) or (8) and the third series generated
from (9). Then the BN decompositions were calculated for the first and second series based on known and estimated
parameters, respectively. The rejection frequencies correspond to the fraction of Monte Carlo replications for which
the Hausman test rejects based on a 5% critical value.

practical relevance of using a Hausman test to distinguish between the two interpre-
tations might seem questionable given that there will always be some measurement
error in finite samples due to model and parameter uncertainty. I address the ef-
fects of parameter uncertainty by repeating the above Monte Carlo analysis, but
estimating parameters prior to calculating the BN decompositions.7

Table 2 reports results for Monte Carlo experiments about the Hausman test
assuming unknown parameter values and given 1,000 replications and sample sizes
of 100, 200, 500, and 1,000 observations. I focus on results for BN calculations
based on univariate forecasting models and calculate the rejection frequencies for
the Hausman test with a 5% level, comparing them to the rejection frequencies
for the same simulated data given known parameter values.8 First, under the BN-
as-estimate interpretation, the rejection frequency increases with the sample size,
corresponding to increasing power of the test. For the smaller sample sizes, the
rejection frequency is slightly higher when parameter uncertainty is taken into
account. However, it is striking that most of the Hausman test’s power appears to
arise from measurement error due to the fact that the transitory components are
unobserved rather than parameter uncertainty. Second, under the BN-as-definition
interpretation, parameter uncertainty generates somewhat higher rejection fre-
quencies than the 5% level of the test. However, in contrast to the BN-as-estimate
case, the rejection frequencies become smaller as the sample size increases. Thus,
the two interpretations are still distinguishable in the sense that, as the sample size
increases, the evidence for measurement error should typically get stronger under
the BN-as-estimate interpretation, whereas it should typically get weaker under
the BN-as-definition interpretation.
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5. APPLICATION TO MACROECONOMIC DATA

Given that it is possible to distinguish empirically between the two interpretations
of the BN decomposition, an immediate question is which interpretation is more
appropriate in practice when dealing with macroeconomic data. In this section,
I consider an application of the OLS and IV analysis in the preceding section to
U.S. real GDP and the Industrial Production Index, with capacity utilization for
manufacturing serving as an instrument. The raw data were obtained from the St.
Louis Fed database for the sample period of 1972Q1 to 2009Q3 and converted
into 100 times natural logarithms.9

As a first step in motivating the analysis, I test for the presence of stochastic
trends in the data series using the basic augmented Dickey–Fuller unit root test
with lag selection based on the Schwarz information criterion (BIC). At the 5%
significance level, I am unable to reject the null of a unit root against the trend
stationary alternative for either log real GDP (t = −2.10 for one lag of difference
terms, with a p-value of 0.54) or log industrial production (t = −2.89 for one lag
of difference terms, with a p-value of 0.17). For log capacity utilization, I am able
to reject the null of a unit root in favor of a level stationary alternative (t = −3.68
for one lag of difference terms, with a p-value of <0.01). Thus, I consider applying
the BN decomposition to the real GDP and industrial production series, but not to
the capacity utilization series. At the same time, the fact that capacity utilization
appears to be stationary suggests that it could be a good instrument for the transitory
component of industrial production.

The main practical issue in applying the BN decomposition is determining which
forecasting model to use. In this paper, I attempt to remain agnostic about which
model is most appropriate for the variables under consideration and check the
robustness of my findings to different modeling assumptions. The most important
difference between models is in terms of their implied long-horizon predictability
of real economic activity. For example, estimates for low-order ARMA models
of U.S. output growth imply positive serial correlation at short horizons, but little
long-horizon predictability. Meanwhile, estimates for higher-order ARMA models
and some multivariate models imply a large degree of negative serial correlation
at long horizons. In terms of the BN decomposition, these two competing views
about long-horizon predictability produce very different looking cycles. Thus, I
consider models that accommodate both of these views.

I first consider AR(12) models for the growth rates of real GDP and industrial
production.10 Figure 1 displays the implied BN cycles, along with capacity uti-
lization. These BN cycles reflect negative serial correlation in the growth rates at
long horizons and display a strong correspondence to the NBER reference cycle.
The two BN cycles also appear to be related to each other. This relationship is
not particularly surprising, given the large role manufacturing plays in overall
economic activity. However, it is an interesting empirical question how closely the
manufacturing sector moves with the overall economy. To quantify the relation-
ship, I regress the real GDP BN cycle on the industrial production BN cycle using
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FIGURE 1. Beveridge–Nelson cycles for U.S. real GDP and industrial production based on
AR(12) models and capacity utilization (NBER recessions shaded).

OLS:

yt − BNy,t = 0.04
(0.08)

+ 0.53
(0.03)

(ipt − BNip,t ) + et , R2 = 0.58. (10)

Given the standard errors reported in parentheses, the estimates suggest a strong
relationship, but it is clearly less than one-for-one.11

The main question raised in this paper is whether estimates such as those in (10)
are reliable, even assuming that the forecasting models used in the BN decompo-
sitions are reasonable approximations of the true autocovariance structures of the
time series under examination. In particular, if the BN trend is an estimate for these
series, then the true transitory components will be measured with error and the
OLS estimate of their relationship will be biased and inconsistent. To examine this
issue, I consider capacity utilization as an instrument for the transitory component
of industrial production. Economic considerations suggest that capacity utilization
should be strongly correlated with the true transitory component, but presumably
it should be unrelated to any measurement error in the BN cycle. Meanwhile, if the
BN cycle is the true transitory component, IV estimates should not be significantly
different from the OLS estimates reported in (10).12 Figure 1 suggests that there
is a strong relationship between the transitory component in industrial production
and the capacity utilization series. Indeed, the sample correlation between the BN
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cycle for industrial production and capacity utilization is 58%. Thus, there is little
concern about a weak instrument.

The IV regression results for the BN cycles based on AR(12) models and
capacity utilization as an instrument are given as follows:

yt − BNy,t = 0.01
(0.09)

+ 0.78
(0.09)

(ipt − BNip,t ) − 0.37
(0.10)

ût + et , R2 = 0.65, (11)

where ût = ipt − BNip,t + 54.74(9.34) − 0.13(0.02)caput is the residual based on
a first-stage regression of the BN cycle for industrial production on the capacity
utilization series. The first thing to notice is the coefficient on ût . A t-test for this
coefficient is equivalent to the Hausman test for endogeneity. Thus, the t-statistic
of −3.85 corresponds to a strong rejection of the null hypothesis of no endogeneity
at the 1% level, which suggests that measurement error is a problem for the BN
cycles. That is, this test supports the BN-as-estimate interpretation. The second
thing to notice is that the measurement error has meaningful and predictable effects
on estimates of relationship between the transitory components. In particular,
the larger coefficient on the BN cycle for industrial production in (11) than in
(10) suggests a stronger relationship between the true transitory components than
between the BN cycles.

As discussed in the preceding section, evidence of measurement error could
simply reflect sampling variability for the parameters used to construct the BN
decomposition. However, if this is the case, the evidence should weaken as the
sample size increases and the parameter estimates become more precise. Figure 2
plots the expanding-sample Hausman test statistics for the BN cycles based on
AR(12) models and the sample periods of 1972Q2–1983Q4 through 1972Q2–
2009Q3. It is clear from the figure that the evidence generally strengthens as the
sample size increases. Furthermore, the changes in the t-statistics appear to reflect
information from variation in the BN cycles and capacity utilization (see Figure 1)
rather than parameter uncertainty.13

Typically, model selection procedures favor low-order ARMA models for
growth rates of real economic activity. Thus, to check on the robustness of the
above results, I also consider AR(2) models for the growth rates of real GDP
and industrial production.14 Figure 3 displays the implied BN cycles, along with
the change in the capacity utilization series. These BN cycles display much less
persistence and amplitude than those in Figure 1. Also, consistent with the findings
in the original paper by Beveridge and Nelson (1981), the cycles, when defined
as the difference between the series and the BN trend, are typically positive
during NBER recessions, reflecting the positive momentum structure implicit in
the AR(2) models. In this case, the OLS results for the relationship between cycles
are given as follows:

yt − BNy,t = 0.00
(0.05)

+ 0.41
(0.03)

(ipt − BNip,t ) + et , R2 = 0.57. (12)
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FIGURE 2. Expanding-sample Hausman test statistics from 1972Q2–1983Q4 to 1972Q2–
2009Q3 for cycles based on AR(12) models (x-axis denotes end of sample).

As before, the results suggest a positive relationship between the transitory com-
ponents and the relationship is far below one-for-one.

The IV results for the cycles based on AR(2) models and using the capacity
utilization series as an instrument are given as follows:

yt − BNy,t = 0.00
(0.05)

+ 0.65
(0.13)

(ipt − BNip,t ) − 0.25
(0.13)

ût + et , R2 = 0.59, (13)

where ût = ipt − BNip, t − 29.85(11.37) + 0.07(0.03)caput is the residual based on
a first-stage regression of the BN cycle for industrial production on the capacity
utilization series. The t-statistic of −1.95 for the Hausman test is significant at the
10% level, although it is just shy of the 5% level. As in the AR(12) case, the IV
estimates imply a stronger relationship between the transitory components than
do the OLS estimates.

Figure 4 plots the expanding-sample Hausman test statistics for the BN cycles
based on AR(2) models and the sample periods of 1972Q2–1983Q4 through
1972Q2–2009Q3. Contrary to the idea that the evidence of measurement error
is driven by parameter uncertainty, the test statistics are insignificant for smaller
subsamples and only become significant when the sample is extended to include
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FIGURE 3. Beveridge–Nelson cycles for U.S. real GDP and industrial production based on
AR(2) models and the change in capacity utilization (NBER recessions shaded).

the last couple of years of data. As in the AR(12) case, the changes in the t-
statistics appear to reflect information from variation in the BN cycles and capacity
utilization (see Figure 3), rather than parameter uncertainty.15

One possible concern is that capacity utilization may be a weak instrument for
the transitory component in industrial production. Its sample correlation with the
BN cycle based on the AR(2) model is only −14%. Meanwhile, if the AR(2)
model is more appropriate for the growth rate of industrial production than an
AR(12) model, it may not make sense to think of the capacity utilization series
as stationary, despite the unit root test result reported above. From Figure 3, it
is clear that the change in the capacity utilization series is stationary and highly
(negatively) correlated with the BN cycle for industrial production. The sample
correlation is −93%. Thus, I also consider the change in the capacity utilization
series as an instrument, with the following results:

yt − BNy,t = 0.00
(0.05)

+ 0.46
(0.03)

(ipt − BNip,t ) − 0.32
(0.08)

ût + et , R2 = 0.62, (14)

where ût = ipt −BNip,t +0.01(0.06) + 0.73(0.03) �caput . In this case, the t-statistic
of −3.89 for the Hausman test is significant at the 1% level. As before, accounting
for endogeneity produces a larger estimate of the relationship between transitory
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FIGURE 4. Expanding-sample Hausman test statistics from 1972Q2–1983Q4 to 1972Q2–
2009Q3 for cycles based on AR(2) models (x-axis denotes end of sample).

components than OLS, although the magnitude of the increase is not as large in
this case.

Another possible concern is that the univariate results are driven by the omission
of useful multivariate forecasting information, including that from the instrument,
in calculating the BN cycles. Thus, I also consider a vector autoregressive (VAR)
model that includes information from real GDP, industrial production, and capacity
utilization. Specifically, I consider a VAR(2) model for the growth rates for real
GDP, industrial production, and log capacity utilization.16 The OLS regression
results for the relationship between the cycles are given as follows:

yt − BNy,t = 0.00
(0.05)

+ 0.52
(0.01)

(ipt − BNip,t ) + et , R2 = 0.94. (15)

As before, the estimated relationship is positive, but clearly less than one-for-one.
Given that the VAR(2) model nests the univariate AR(2) models and includes

capacity utilization, the main question is whether there is still any evidence for
endogeneity using the BN cycles based on the VAR(2) model and using capacity
utilization as an instrument. The IV regression results are given as follows:

yt − BNy,t = 0.01
(0.02)

+ 0.58
(0.01)

(ipt − BNip,t ) − 0.29
(0.01)

ût + et , R2 = 0.99, (16)
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where ût = ipt − BNip,t + 167.58(11.47) + 0.38(0.03)caput . The increase in the
estimated relationship is less than that in the univariate case. However, the t-statistic
for the Hausman test of endogeneity is a huge −31.31, which is significant at much
better than the 1% level. Thus, consistent with the Monte Carlo analysis in the
preceding section, the exclusion of forecasting information from the instrument
does not appear to explain univariate evidence of measurement error. Instead,
inclusion of this information mostly appears to increase the power to detect the
measurement error.

As a last robustness check, I consider whether the inclusion of information
inherent in the capacity utilization series is actually identifying a structural rela-
tionship, instead of accounting for measurement error in estimating a reduced-form
relationship between transitory components. To examine this possibility, I consider
the reduced-form relationship between the growth rates of real GDP and industrial
production.17 The OLS results for this relationship are given as follows:

�yt = 0.48
(0.04)

+ 0.42
(0.03)

�ipt + et , R2 = 0.62. (17)

Because the growth rates behave similarly to the BN cycles for the AR(2) case,
I consider the change in the capacity utilization series as an instrument (the
correlation with industrial production growth is 94%) and obtain the following
results for IV estimation:

�yt = 0.48
(0.04)

+ 0.43
(0.03)

�ipt − 0.05
(0.08)

ût + et , R2 = 0.62, (18)

where ût = �ipt − 0.62(0.12) − 0.82(0.02)�caput . In this case, the t-statistic of
−0.62 for the Hausman test means that I cannot reject the null of no endogeneity
at even the 10% level. This result is telling because, if the rejection in (14) for BN
cycles based on AR(2) models and using the change in capacity utilization as an in-
strument were driven by structural identification instead of measurement error, this
would presumably show up as a rejection in (18), given that the regressions are very
similar in every dimension, except that there is presumably much less measurement
error in the real GDP and industrial production data than in their BN cycles.

6. CONCLUSIONS

Given a particular autocovariance structure for the growth rate of an integrated
time series, there can be multiple state-space representations for the permanent
and transitory components of the level of the series.18 In one case, the time series
is subject to permanent and transitory innovations with imperfect correlation and
the permanent and transitory components are unobservable. In another case, the
time series is subject to observable shocks only, directly implying that the per-
manent and transitory components are observable. In a univariate setting, which
representation should be assumed is a matter of identification. However, although
both representations correspond to identical inferences about the variability of
the permanent component, they have very different implications in terms of the
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uncertainty about the measure of the permanent component. Meanwhile, the pos-
sibility of measurement error suggests that the two interpretations are testable in a
multivariate setting. In particular, Monte Carlo analysis suggests that instrumental
variables analysis can be used to detect the presence or absence of errors in vari-
ables, even if the instrument is included in the forecasting model used to calculate
the Beveridge–Nelson decomposition. An application of the instrumental vari-
ables analysis to U.S. real GDP, industrial production, and capacity utilization in
manufacturing provides support for the practical relevance of the BN-as-estimate
interpretation for macroeconomic data.

NOTES

1. The notion that the permanent and transitory components for the state-space representation
are either unobservable or observable can be related to the formal literature on “observability” and
state-space models [see, for example, Harvey (1989, pp. 113–115)]. In particular, when (2) is cast into
the standard state-space form used in control engineering, the transition and loading matrices under
both interpretations satisfy the necessary and sufficient rank conditions for observability. However, the
values of the “control vector” (i.e., the shocks to the state variables) are unknown to the econometrician
under the first interpretation, but known under the second interpretation (because they are proportional
to the forecast error from the reduced-form ARMA representation).

2. Proietti (2006) and Oh et al. (2008) also consider the observational equivalence between different
state-space models related to a reduced-form model ARMA(2,2) for the first differences. Oh et al.
specifically discuss how the reduced-form model is consistent with a continuum of state-space models
with ARMA(2,1) transitory dynamics and imperfect correlation. However, the two extreme cases from
that continuum considered here are of particular interest because the model in Morley et al. (2003) is
fundamentally distinct from the other state-space models in terms of what, in principle, should be a
testable assumption about the dynamic structure of the transitory component, whereas the model with
perfect correlation is the only one that is consistent with the BN-as-definition interpretation.

3. In the related setting of trend/cycle decomposition based on UC models, Watson (1986) compared
ordinary least squares (OLS) and instrumental variable (IV) estimates for a test of the permanent
income hypothesis using filtered and smoothed estimates of transitory components from UC models,
with lagged data serving as instruments. He found that filtered estimates, which condition on data up
to and including the period in which the inferences about trend and cycle are being made, were subject
to measurement error in the sense that they were different from smoothed estimates, which condition
on the full available sample of data. Thus, given the link between the BN decomposition and filtered
estimates discussed in Morley et al. (2003), there is a direct suggestion from Watson’s analysis that
the BN-as-estimate interpretation is more appropriate in terms of thinking about “permanent income”
as a structural quantity that has a relationship with other macroeconomic variables.

4. For the Monte Carlo analysis with the univariate BN decompositions, the BN trend and cycle
are calculated by directly applying the Kalman filter to separate state-space models for each series in
(7) and (8). Given the DGPs, this approach is equivalent to solving for the reduced-form forecasting
model for each series, casting it into state-space form, and applying the state-space approach to the
BN decomposition presented in Morley (2002) to obtain the corresponding BN trend and cycle. Also,
because the two series for each DGP have the same variance parameters, I make no distinction between
the two series for a given DGP when discussing inferences about variation in their permanent and
transitory components.

5. For the Monte Carlo analysis with the multivariate BN decompositions, the BN trend and cycle
are calculated by applying the Kalman filter to a multivariate state-space model that incorporates
all three series for each DGP. Again, this approach is equivalent to solving for the reduced-form
multivariate forecasting model, casting it into state-space form, and applying the state-space approach
to the BN decomposition.
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6. The change in the direction of the bias reflects taking the correlation between transitory com-
ponents into account when calculating the BN decompositions by applying the Kalman filter to a
multivariate state-space model. Specifically, the filtered inferences for the transitory components have
a stronger correlation than the true correlation between the transitory components. This is analogous to
the perfect negative correlation between filtered inferences about permanent and transitory innovations
for a UC model, even when the true innovations are imperfectly correlated [see Morley et al. (2003)].

7. Model uncertainty is related to parameter uncertainty as long as an econometrician considers
a broad enough class of models to nest the true DGP and follows consistent testing and estimation
procedures.

8. The focus on univariate models and the consideration of 1,000 Monte Carlo replications per
experiment reflect the computational burden of maximum-likelihood estimation of the state-space
models via numerical optimization given many different initial values for the parameters.

9. The sample period is determined by the availability of the capacity utilization series. The
industrial production series is monthly and is converted to a quarterly series by taking averages.
Growth rates are measured using first-differences of log values.

10. For the AR(12) models, the 12th lag is significant at the 1% level for real GDP and at the
5% level for industrial production. Also, for both series, the AR(12) model is chosen by the Akaike
information criterion (AIC) among AR models up to AR(14) for the common adjusted evaluation
sample period of 1975Q4–2009Q3.

11. Because of some possible autoregressive correlation in the residuals, the standard errors are
based on a first-order Cochrane–Orcutt correction throughout this section, although the OLS standard
errors are generally similar.

12. There are two other possible sources of endogeneity in a regression of one transitory component
on the other: omitted variables and simultaneity. However, these sources have to do with a failure to
identify a structural relationship in which one transitory component causes the other. In contrast, I
am interested in measuring the reduced-form correlation between the transitory components rather
than any structural relationships. Capacity utilization is a good instrument for this purpose, not only
because it should be uncorrelated with measurement error in the BN cycles, but also because it would
not be a good instrument or omitted variable for identifying a structural relationship between the two
transitory components. In particular, it should be subject to all of the same structural shocks as the two
transitory components. I provide a test of this assumption below.

13. There is little evidence of parameter instability for the AR(12) models used to calculate the
BN cycles. For both series, standard tests for a structural break with an unknown break date [e.g.,
Andrews (1993) and Andrews and Ploberger (1994)] are highly insignificant for a break in all of the
AR(12) model parameters. Meanwhile, in terms of individual parameters, out of 26 parameters for the
two series, only the AR(1) coefficient for industrial production growth tested positively for a structural
break with an unknown break at better than a 10% level. In this case, the estimated break date that
maximized the “sup”-versions of test statistics was 1982Q1, which does not correspond to the timing of
the increasing evidence of measurement error. Of course, a test rejection for only one of 26 parameters
at the 10% level does not really suggest there was any parameter instability in the first place.

14. For the AR(2) models, the second lag is close to, but not quite significant at the 10% level for
real GDP and at the 5% level for industrial production. For both series, an AR(1) model is chosen by
BIC among AR models up to AR(14) for the common adjusted evaluation sample period of 1975Q4–
2009Q3. However, the AR(2) model is a close second in both cases and inferences about the BN cycles
are very similar whether an AR(1) or AR(2) model is considered. Given the borderline evidence for the
significance of the second lags and a preference for parameter consistency over efficiency, the results
for AR(2) models are reported.

15. Again, there is little evidence of parameter instability for the AR(2) models used to calculate
the BN cycles. Indeed, for both series, standard tests for a structural break with an unknown break date
in the AR(2) model parameters, including in individual parameters, are all insignificant.

16. For the VAR(2) model, the second lag of real GDP growth is significant at the 1% level for
industrial production growth and vice versa. The VAR(2) model is chosen by both AIC and BIC among
VAR models up to VAR(14) for the common adjusted evaluation sample period of 1975Q4–2009Q3.
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Also, the results are generally robust, including for the Hausman test, to the consideration of the change
in the capacity utilization series instead of the level.

17. The relationship between the growth rates mixes the underlying relationships between changes
in permanent components and changes in transitory components. However, as long as there is a stable
relationship between the relative importance of permanent and transitory components, there should be
a stable relationship between the growth rates.

18. Beyond the two representations considered here, there can be additional representations if more
general specifications for the permanent component are considered. See Blanchard and Quah (1989),
Quah (1992), and Proietti (1995, 2006).
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