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WHY ARE THE BEVERIDGE-NELSON AND UNOBSERVED-COMPONENTS
DECOMPOSITIONS OF GDP SO DIFFERENT?

James C. Morley, Charles R. Nelson, and Eric Zivot*

Abstract—This paper reconciles two widely used decompositions of GDP
into trend and cycle that yield starkly different results. The Beveridge-
Nelson (BN) decomposition implies that a stochastic trend accounts for
most of the variation in output, whereas the unobserved-components (UC)
implies cyclical variation is dominant. Which is correct has broad impli-
cations for the relative importance of real versus nominal shocks. We
show the difference arises from the restriction imposed in UC that trend
and cycle innovations are uncorrelated. When this restriction is relaxed,
the UC decomposition is identical to the BN decomposition. Furthermore,
the zero-correlation restriction can be rejected for U.S. quarterly GDP,
with the estimated correlation being�0.9.

I. Introduction

THE decomposition of real GDP into trend and cycle is
of considerable practical importance, but two widely

used methods yield starkly different results. The unobserved-
component (UC) approach, introduced by Harvey (1985)
and Clark (1987), implies a very smooth trend and a cycle
that is large in amplitude and highly persistent. In contrast,
the approach of Beveridge and Nelson (1981) (BN) implies
that much of the variation in GDP is variation in trend,
whereas the cycle component is small and noisy. This
contrast is apparent in figures 1 and 2, where the two cycle
components are plotted respectively, and it has been widely
noted; see Watson (1986) and Stock and Watson (1988),
among others.

It should surprise us that the two decompositions are so
different, since both are model-based, each letting the data
“speak for themselves.” Neither imposes smoothness in
trend a priori as does a polynomial or the smoother of
Hodrick and Prescott (1997). Although it is often stated that
BN assumes a perfect negative correlation between trend
and cycle innovations, that is a property of theestimated
trend and cycle, not the unobserved components, and it is a
property shared with the UC decomposition. This paper

attempts to find out why we do not, after decades of
research, have a consistent picture of how variation in a
series like real GDP should be allocated between trend and
cycle.

Briefly, section II demonstrates the theoretical equiva-
lence between the approaches. Section III investigates the
source of the difference observed in practice. Section IV
concludes.

II. Theoretical Equivalence of the Beveridge-Nelson
and Unobserved-Component Estimates

of Trend and Cycle

Trend-cycle decomposition is motivated by the idea that
the log of aggregate output is usefully thought of as the sum
of a component that accounts for long-term growth and a
stationary, transitory deviation from trend. We follow cus-
tom in referring to the latter as thecycle even if it is not
periodic. The UC representation takes the form

yt � �t � ct, (1a)

�t � �t�1 � � � �t, � � i.i.d. N�0, ��
2�, (1b)

ct is stationary and ergodic, (1c)

where {yt} is the observed series, {�t} is the unobserved
trend, assumed to be a random walk with mean growth rate
�, and {ct} is the unobserved stationary cycle.1

What we refer to as the UC-ARMA model adds the
condition that {ct} is a stationary and invertible ARMA(p, q)
process with innovations that may be contemporaneously
cross-correlated with trend innovations,

�p�L�ct � 	q�L�
t, 
 � i.i.d. N�0, �

2�,

(1d)

Cov ��t, 
t�k� � ���
 for k � 0,
0 otherwise.
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In some implementations the rate of drift � is also allowed
to evolve as a random walk and sometimes an additional
irregular term is added, although these changes have little
influence on the estimated cycle component for U.S. GDP.
Harvey (1985), Clark (1987), and Harvey and Jaeger (1993)
suggest specifying p � 2, which allows the cycle process to
be periodic in the sense of having a peak in its spectral
density function. They and others then cast the model in
state-space form with equation (1a) as the measurement
equation along with the cycle (1d) as an error term, while
equation (1b) is the state transition equation. This setup
implies that trend and cycle innovations are uncorrelated.
Thus the model is augmented to include the condition

�
� � 0. (1e)

We denote this zero-covariance constrained UC-ARMA
model as UC-0. This setup remains the standard treatment
of trend-cycle decomposition in the state-space framework,
as in Proietti (2002), although recent work considers the
possibility of nonzero correlation; see Koopman (1997).

In practice, the parameters are estimated from data
( y1, . . . , yn) by the maximum likelihood method of Harvey
(1981) based on the prediction error decomposition. Given
estimated parameters, the Kalman filter generates the ex-
pectation of the trend component conditional on data
through time t:

�̂t�t � E�t��t�, where �t � �y1, . . . , yt�.

Smoothed estimates of the components condition on
future as well as past data. For U.S. real GDP, smoothed and
filtered estimates are qualitatively similar. Harvey and
Koopman (2000) show that zero covariance implies sym-
metry in the weights of the smoother, a property they argue
has inherent appeal.

The BN estimate of trend for an I(1) time series { yt} is
defined to be the limiting forecast as horizon goes to infinity,
adjusted for the mean rate of growth; so

BNt � lim
M3�

E yt�M � M���t�.

BN showed that the time series {BNt} will be a random
walk with the same mean growth rate as the observed series,
that the deviation from trend is a stationary process, and that
the innovations of {BNt} and { yt � BNt} are perfectly
negatively correlated. The series {BNt} is calculated from
an estimated ARIMA representation of { yt}, which in
principle is unique after cancellation of any redundant AR
and MA factors.2

It is well known that the UC-ARMA model implies an
equivalent univariate ARIMA representation for { yt}. Two

representations are equivalent for our purposes if they have
the same autocovariance structure, thereby implying the
same joint distribution of the data under normality. Nerlove,
Grether, and Carvalho (1979) refer to the ARIMA represen-
tation as the canonical form of the UC model, and it may be
useful to think of it as the reduced form. It is obtained by
substituting equations (1b) and (1d) into equation (1a),
taking first differences, and rearranging:

�p�L��1 � L� yt � �p�1�� � �p�L��t
(2a)

� 	q�L��1 � L�
t.

Recognizing that the right-hand side will have nonzero
autocovariances through lag max ( p, q � 1), Granger’s
lemma (see Granger & Newbold, 1986, p. 29) implies that
the univariate representation will be

�p�L��1 � L� yt � �* � 	q*�L�ut,

u � i.i.d. N�0, �u
2�, q* � max �p, q � 1�,

(2b)

where the coefficients of 	*q*(L) and �u
2 are obtained by

matching the autocovariances of the right-hand sides of
equations (2a) and (2b); see Watson (1986). This ARIMA
reduced form fully describes the joint distribution of the
{ yt} and therefore the conditional distribution of future
observations given the past, and is unique.

Note that the BN trend for the reduced-form ARIMA
model (2b) may be derived from the Wold representation of
equation (2b) and expressed as

BNt � BNt�1 � ��1�ut � ��1� �
j�1

t

uj, (2c)

where �(1) � 	*q*(1)/�p(1) and BN0 � 0; thus the
variance of the innovation to the BN trend is �(1)2�u

2. The
BN cycle is obtained by subtracting from yt the BN trend.

Correspondingly, there is always at least one UC repre-
sentation of any given ARIMA process; as Cochrane (1988)
pointed out, the existence of the BN decomposition guar-
antees this. In general, however, there will not be a unique
UC representation, because all the parameters may not be
identified. For example, consider the ARIMA(0, 1, 1) pro-
cess, so that in the notation of equation (2b) the orders are
p � 0 and q* � 1. By inspection of equation (2a) it is clear
that this implies q � 0; hence the UC representation is a
random walk plus noise. The relations between the two
nonzero autocovariances �j at lags 0 and 1 (values of which
can be inferred from data) and the UC parameters are as
follows:

�0 � ��
2 � 2�


2 � 2��
,

�1 � ��

2 � ��
,

�j � 0, j � 2.

2 The theoretical justification for the BN decomposition and its relation-
ship to martingale decompositions is given in Phillips and Solo (1992). A
corresponding decomposition for seasonal time series is given in Box,
Pierce, and Newbold (1987).
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Whereas there are three UC parameters, there are only two
pieces of information. Note that the variance of the trend
innovations may be inferred by adding 2�1 to �0. However,
the variance of the cycle innovations and the covariance are
not separately identified; only their sum is. This reflects a
basic theme of this paper: the trend process is always
identified from the univariate properties of the series,
though the cycle process may not be. In the case of random
walk plus noise, the zero-covariance restriction is an iden-
tifying restriction. If �1 � 0, however, then it is easy to see
that there is no UC-0 representation. It is also possible to
infer inequalities in this case; see Nelson and Plosser
(1982).

More generally, it is easily shown that there will be at
least as many nonzero autocovariance relations as parame-
ters if p � q � 2, a result that we use later to identify the
covariance in the UC-ARMA model for GDP.

Given that a time series will not in general have a unique
UC representation, the following result may seem surpris-
ing:

The BN trend is the conditional expectation of the ran-
dom walk component for any UC representation of an
I(1) process.

As pointed out by Watson (1986), this is true regardless of
the covariance structure of the unobserved components. To
see why, consider any unrestricted UC representation de-
fined by (1a)–(1c), so cycle and trend innovations may be
cross-correlated. The conditional expectation of the trend
component at time t is

E�t��t� � lim
M3�

E �t � ct�M � �t�

since for large enough M, the cycle, by its ergodicity, has an
expectation of zero. Further, the expected value of any
future innovation in the trend is zero. Thus we have

E�t��t� � lim
M3�

E��t � �
j�1

M

�t�j � ct�M � �t�.

Recognizing that the terms of the right include all the
elements of yt�M except the accumulated drift, we have

E�t��t� � lim
M3�

E��t � �
j�1

M

�t�j � ct�M � �t�
� lim

M3�

E yt�M � M� � �t� � BNt.

Then the conditional expectation of the cycle at time t is
simply

Ect��t� � yt � E�t��t� � yt � BNt.

Thus, we can always compute the conditional expectation
estimates of trend and cycle at any point in time from the
ARIMA reduced form. The following two assumptions are
sufficient to identify the components: (1) the trend is a
random walk, and (2) the cycle is ergodic. This result does
not depend on knowing the covariance between trend and
cycle innovations, nor does it depend on the existence of a
unique UC representation. Intuitively, the forecast at a long
enough horizon reflects only the random-walk component.
Stronger assumptions may be needed to identify the param-
eters of a UC representation, but they are irrelevant if the
only objective is to estimate trend and cycle at a point in
time.

It follows that the Kalman filter estimates of trend and
cycle from the Clark-Harvey UC-0 model of GDP must be
the same as BN estimates, if the parameters of the ARIMA
reduced form are those implied by the UC-0 model. In that
case, BN is just an alternative to the Kalman filter for
computing �̂t�t and ĉt�t; the estimates will be numerically
identical. UC-0 and BN decompositions thus share an often
noted property of the latter, namely that the innovations of
the estimated trend and cycle series are perfectly correlated.
Further, the equivalence holds between UC and BN decom-
positions in general; the corresponding ARIMA representa-
tion will always contain sufficient information to estimate
the trend.

The fact that the two approaches have produced such
different estimates of trend and cycle in practice implies that
they must be based on conflicting representations of the
data. Identifying the source of the conflict is the subject of
the next section.

III. In What Way Do UC and ARIMA Models
of U.S. Real GDP Conflict?

The results of section II imply that the differing results
obtained in practice must be traceable to a conflict between
the reduced form ARIMA implied by the Clark-Harvey UC
model and the unrestricted ARIMA model used in the BN
approach. To isolate the source of conflict we begin by
estimating the UC-0 model for U.S. real GDP 1947:1–
1998:2 in logs, following Clark (1987) in setting p � 2 to
allow for cyclical dynamics, and q � 0.3

In accord with the literature, the estimated UC-0 cycle
seen in figure 1 is large in amplitude and very persistent,
while the trend is smooth. The scale in all figures is log
times 100 and so may be read as the percentage deviation
from trend. This is the one-sided or “fi ltered” estimate; the
two-sided or Kalman-smoothing estimate often presented in
the literature is even smoother. It is qualitatively similar to
the deviation of the log of GDP from the least squares trend
line, and both imply that the economy was well below

3 The data series used is gdpq from the DRI databank. Clark (1987)
allowed the drift parameter to evolve as a random walk, but estimates of
the variance are small. We have assumed that this parameter remains
constant, implying that output is I(1).
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trend during most of the 1990s. Declines in the UC-0 cycle
agree reasonably well with the NBER dating of recessions
(shaded), though they lead the NBER dating at peaks. We
note that the NBER dating procedure draws on a much
larger information set and the methodology is largely sub-
jective, in contrast to the model-based univariate decompo-
sitions presented here. Although agreement with the NBER
dating is not a requirement for a valid decomposition of
output into permanent and transitory components, the com-
parison is illustrative.

Table 1 reports the maximum likelihood estimates of the
parameters and their standard errors for the UC-0 model.
Detail of the estimation technique used is given in the
technical appendix. The roots of the estimated autoregres-
sive polynomial are complex, implying that the business
cycle has a period of almost 8 years with a standard
deviation of about 3 percentage points around trend, con-
firming the visual impression of persistence, periodicity, and
amplitude from figure 1. By contrast, the trend process
innovation has a standard deviation of only about 0.7
percentage points.

The reduced-form ARIMA representation (2b) for this
UC-0 model is obtained as follows. Taking first differences
gives

�yt � �1 � L��t � �1 � L�ct

� � � �t � �1 � L��1 � �1L � �2L
2��1
t.

Next, multiply both sides by 1 � �1L � �2L2 to obtain

�1 � �1L � �2L
2� �yt � �* � �t � �1�t�1

� �2�t�2 � 
t � 
t�1

� �* � ut � 	*1ut�1 � 	*2ut�2.

(3)

The result in (3) uses the fact that the right-hand side has a
representation as an MA(2) by Granger’s lemma with the
univariate innovations ut being i.i.d. N(0, �u

2), and �* is
�(1 � �1 � �2). It is important to recognize that the
assumption ��
 � 0 places complicated nonlinear restric-
tions on the parameters of the ARIMA(2, 1, 2) model (3). In
particular, Lippi and Reichlin (1992) show that the long-run
persistence measure, �(1) � 	*(1)/�(1), will be less than or
equal to one. Proietti and Harvey (2000) give further re-
strictions on the autoregressive parameters. These restric-
tions are testable implications of the UC-0 model but in
empirical work they are almost never tested.

While the reduced form of the UC-0 model is a restricted
ARIMA(2, 1, 2), when we estimate the unrestricted form of
that model by exact maximum likelihood and compute the
BN cycle component from it, we get the very different
results seen in figure 2.4 As reported in the literature, the
estimated BN cycle is small in amplitude compared to the
UC-0 cycle and much less persistent. Table 2 reports the
maximum likelihood estimates of the parameters for the
unrestricted reduced-form ARIMA(2, 1, 2) model. Confirm-
ing one’s visual impression, the period of the cycle implied
by the AR parameters here is much shorter, only 2.4 years

4 We follow Morley (2002) in our computation of the BN decomposi-
tion.

FIGURE 1.—UC-0 CYCLE, U.S. REAL GDP

Percentage deviation from trend. NBER recessions shaded.

TABLE 1.—MAXIMUM LIKELIHOOD ESTIMATES OF UC-0 PARAMETERS

Estimate Standard Error

Trend process:
Drift � 0.8119 (0.0500)
Innovation �� 0.6893 (0.1038)

Cycle process:
�1 1.5303 (0.1012)
�2 �0.6097 (0.1140)
Innovation �
 0.6199 (0.1319)

AR roots (inverted): 0.7652 � 0.1558i
Implied period: 7.7 years; standard deviation: 0.03.

Log likelihood: �286.6053

FIGURE 2.—BEVERIDGE-NELSON CYCLE, U.S. REAL GDP

Percentage deviation from trend, NBER recessions shaded.
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instead of nearly 8. The fact that the value of the log
likelihood is greater by roughly 2 for the unrestricted
ARIMA must reflect restrictions in the UC-0 model not
imposed in the reduced form, in particular the zero corre-
lation between trend and cycle innovations. Another indi-
cation that the zero-correlation restriction may not be sup-
ported by the data is that the estimated value of persistence,
�(1), is greater than one.

To see what correlation is implied by the ARIMA param-
eters, we next solve for the parameters of the unrestricted
UC-ARMA model of equations (1a)–(1d) that correspond to
the estimated unrestricted ARIMA parameters in Table 2.
First note that the AR parameters are the same in both the
UC and ARIMA reduced form, because the AR polynomial
on the left side of equation (2a) is the AR polynomial of the
UC cycle. Now the observable moments on the MA side of
equation (2a) are the mean, which identifies �, and the
autocovariances:

�0 � �1 � �1
2 � �2

2���
2 � 2�


2 � 2�1 � �1���
,

�1 � ��1�1 � �2���
2 � �


2 � �1 � �2 � �1���
,

�2 � ��2��
2 � �2��
,

(4)

�j � 0, j � 3.

The autocovariances on the left-hand side of equation (4)
are

�0 � �u
2�1 � 	1

2 � 	2
2�,

�1 � �u
2	1�1 � 	2�,

�2 � �u
2	2.

The system of equations (4) can be written in matrix form as

��0

�1

�2

	 � �1 � �1 � �2 2 2�1 � �1�
��1�1 � �2� �1 ��1 � �2 � �1�

��2 0 ��2

	���
2

�

2

��


	
or

� � ��.

Assuming � is invertible, for which a necessary condition is
�2 � 0, we have

� � ��1�. (5)

Hence, the three nonzero autocovariance from the MA(2)
are just sufficient to identify the three remaining parameters
of the UC representation, namely ��

2, �

2, and ��
. We note

that in a particular case the solution to (4) might not imply
a positive definite covariance matrix for the trend and cycle
innovations, in which case there would not exist a corre-
sponding UC-ARMA(2, 0) representation.

Table 3 compares the estimates from Table 1 for the UC-0
model with the implied estimates from the unrestricted
ARIMA(2, 1, 2) reduced form obtained from equation (5).
Although the parameters for the cycle component are some-
what similar, the unrestricted reduced form implies a stan-
dard deviation for the trend innovation that is almost twice
as large as the UC-0 estimate, and a correlation between
trend and cycle innovations that is large and negative
instead of 0. It is important to note that the correlation
presented in Table 3 is the estimated correlation between
unobserved innovations, not the correlation between inno-
vations in the observed estimated series �̂t�t and ĉt�t. The
UC-0 model restricts the correlation between unobserved
innovations to be 0, whereas the unrestricted ARIMA re-
duced form estimates that correlation implicitly. Thus, the
difference in correlation estimates seen in Table 3 reflects a
difference between the two models, not a difference in
detrending methods.

In contrast, innovations in the estimated components �̂t�t
and ĉt�t are perfectly negatively correlated in both the UC
and BN approaches. Recall from section II that the esti-
mated components obtained by BN and Kalman filter pro-
cedures are numerically equivalent if the underlying models
have the same reduced form. This implies that the well-
known perfect negative correlation of estimated BN com-
ponents is a property shared by UC filtered estimates.
Another way to see why UC estimates have the perfect
negative correlation property is to inspect the updating
equations for the Kalman filter (see Harvey, 1981, chapter
4), noting that the random-walk property of the trend

TABLE 3.—PARAMETERS OF UC-0 MODEL AND THOSE IMPLIED

BY THE UNRESTRICTED ARIMA(2, 1, 2) REDUCED FORM

UC-0 Model
UC Model

Implied by ARIMA

Trend process:
Drift � 0.8119 0.8156
Innovation �� 0.6893 1.2368

Cycle process:
�1 1.5303 1.3418
�2 �0.6098 �0.7059
Innovation �
 0.6199 0.7487

Covariance ��
 0 (constrained) �0.8391
Correlation ��
 0 (constrained) �0.9062

TABLE 2.—MAXIMUM LIKELIHOOD ESTIMATES FOR ARIMA(2, 1, 2)

Estimate Standard Error

Drift � 0.8156 (0.0864)
�1 1.3418 (0.1519)
�2 �0.7059 (0.1730)
	1 �1.0543 (0.1959)
	2 0.5188 (0.2250)
SE of regression 0.9694 (0.0478)
�(1) 1.2759 (0.1543)

AR roots (inverted) 0.6709 � 0.5057i
Implied period � 2.4 years.

MA roots (inverted) 0.5271 � 0.4908i

Log likelihood �284.6507
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component implies that the innovation in the estimated
trend component is proportional to the forecast error in
predicted yt, just as for the BN estimate of trend. As pointed
out by Wallis (1995), the distinction between assumptions
(unobserved innovations may be uncorrelated) and proper-
ties of estimates (estimated innovations are perfectly corre-
lated) is entirely consistent with least squares estimation,
but nevertheless has been a source of frequent confusion in
the literature.

The fact that ��
 is identified in the UC-ARMA(2, 0) case
implies that we can relax the restriction that it is zero in the
UC model and estimate it directly by maximum likelihood.
We denote the unrestricted UC-ARMA(2, 0) model as
UC-UR. It may be cast in state-space form by including the
cycle component along with the trend in the state equations
as noted by Canova (1998); see the appendix for details of
the representation we use. Again, the order condition for
identification of the unrestricted UC-ARMA( p, q) model,
in the sense of having at least as many moment equations as
parameters, is p � q � 2, and it is just satisfied with p �
2, q � 0. Intuitively, increasing p increases the number of
moment equations corresponding to equation (4) on the MA
side of the univariate ARIMA representation without in-
creasing the number of parameters to solve for, since those
are always identified by the AR side.

The resulting filtered estimate of the cycle from the
UC-UR model is shown in figure 3. This estimated cycle is
identical to the estimated cycle from the BN decomposition
except for the first observation, that being due to the need to
provide the Kalman filter with an initial guess for the value
of the random walk. This equivalence verifies that the
filtered estimates from the UC model and the BN estimates
are the same and does not relate to the particular value of the
estimated correlation.

Table 4 reports the maximum likelihood estimates of the
parameters for the UC-UR model. We parameterized the
model alternatively in terms of the covariance ��
 and the
correlation ��
; both estimations produce the same numeri-

cal results, and both are strongly negative. A striking feature
of these estimates is that they are all essentially the same as
the implied estimates from the unrestricted ARIMA model
reported in Table 3. Note also that the estimated variance of
the permanent component, �̂�

2 � 1.5296, is essentially equal
to the variance of the innovation to the BN trend from the
unrestricted ARIMA(2, 1, 2) model, �̂u

2�̂(1)2 � 1.5297.
The estimated value of �2 is several times its standard error,
supporting the p � 2 specification, although we note that
this is not a standard testing situation, for the model is not
identified if the null hypothesis that �2 � 0 is true.

Note that the log likelihood for the UC-UR model is also
the same as for the ARIMA model, and significantly larger
than for the restricted UC-0 model, thus confirming identi-
fication of the covariance between trend and cycle innova-
tions. The likelihood ratio statistic for testing the restriction
��
 � 0, which may be interpreted as a test of overidenti-
fication, is 3.909, with a corresponding p-value of 0.048. As
a check on the small-sample properties of this test, partic-
ularly to determine whether this test rejects zero correlation
too often, we generated data from the UC model calibrated
to the UC-0 estimates, tested the null hypothesis ��
 � 0,
and found the size to be approximately correct. Thus, we
can reject the restriction of a zero correlation between
permanent and transitory shocks by comparing the results
for the UC-0 model with either the results for the reduced-
form ARIMA model or the unrestricted UC model.

Note too that the estimate of ��
 is �0.906 with an
estimated standard error of 0.073, so a Wald-type t-test
implies a far smaller p-value than the likelihood ratio test
reported above. Because the estimated value of ��
 is near
the boundary of admissible values, the small estimated
standard error might give a misleading impression of pre-
cision. To reconcile the two tests, we estimated the UC-
ARIMA model for fixed values of ��
 � �0.95, �0.9, . . . ,
0.9, 0.95 and, for each model computed the likelihood ratio
statistic for the hypothesis that ��
 is equal to the imposed
value. Figure 4 is a plot of these likelihood ratio statistics as
a function of the hypothetical ��
. The horizontal line
indicates the 95% quantile from the chi-squared distribution

TABLE 4.—MAXIMUM LIKELIHOOD ESTIMATES FOR THE UC-UR MODEL

Estimate Standard Error

Trend process:
Drift � 0.8156 (0.0865)
Innovation �� 1.2368 (0.1518)

Cycle process:
�1 1.3419 (0.1456)
�2 �0.7060 (0.0822)
Innovation �
 0.7485 (0.1614)

Roots of AR process 0.6710 � 0.5058i
0.6710 � 0.5058i

Covariance ��
 �0.8389 (0.1096)
Correlation ��
 �0.9063 (0.0728)

Log likelihood value �284.6507

FIGURE 3.—UC-UR CYCLE, U.S. REAL GDP

Percentage deviation from trend, NBER recessions shaded.
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with 1 degree of freedom. The shape of the plot clearly
indicates a global maximum of the likelihood at the esti-
mated value of ��
 and the sharpness of the likelihood
around that point is reflected in the small standard error. The
implied 95% confidence interval for ��
 obtained by invert-
ing the likelihood ratio statistic is fairly wide but just barely
excludes ��
 � 0. Thus, the difference between the Wald
and likelihood ratio test results is traced to local versus
global behavior of the likelihood function.

One way of summarizing the information we have about
the nature of the trend-cycle decomposition of GDP in the
context of these univariate models is to compare results
across the range implied by the confidence interval for the
innovation correlation. To be conservative, we use the much
wider interval implied by the likelihood ratio. At the nega-
tive end we use the point estimate �0.906, because it is
close to the �1 boundary; at the upper end we use 0,
because it is the value assumed in the UC-0 model though
it is just outside the 95% critical boundary; and we use two
values spaced between, �0.6 and �0.3. This grid gives the
range of results for the cycle, trend differences, and trend
seen in figure 5. Heuristically, we may think of these as a
confidence interval on the decomposition itself. As we move
from the lowest value in the positive direction, the variation
in GDP associated with the NBER recessions shifts from the
cycle component to the trend component. This reflects the
contrasting interpretation of recessions in the UC-0 and
UC-UR models. In the former they are largely transitory
(the trend component only pauses in its growth, but the
cycle falls sharply) while in the latter recessions are largely
permanent (the trend component falls in accord with NBER
recessions, while the cycle is largely noise). Though the data
favor the latter interpretation, intermediate outcomes are
also well within the confidence interval.

IV. Summary and Conclusions

We have shown that trend-cycle decompositions based on
unobserved component models cast in state-space form and
on the long-run forecast implied by an ARIMA model are at
odds not because they differ in principle but because the
underlying empirical models differ. In particular, a testable
restriction that innovations in the unobserved trend and
cycle are uncorrelated has been imposed in the former, but
not in the latter. We note that when this restriction is relaxed
in the state-space model, the two approaches lead to iden-
tical trend-cycle decompositions and identical univariate
representations. Further, the restriction of zero correlation is
rejected at the 0.05 level by the data for U.S. real GDP,
quarterly 1947–1998.

If we accept the implication that innovations to trend are
strongly negatively correlated with innovations to the cycle,
then the case for the importance of real shocks in the macro
economy is strengthened. As pointed out by Stock and
Watson (1988) in their influential paper, real shocks tend to
shift the long-run path of output, so short-term fluctuations
will largely reflect adjustments toward a shifting trend if
real shocks play a dominant role. For example, a positive
productivity shock, such as the invention of the Internet,
will immediately shift the long-run path of output upward,
leaving actual output below trend until it catches up. This
implies a negative contemporaneous correlation, for this
positive trend shock is associated with a negative shock to
the transitory component of output. By contrast, a positive
nominal shock, say a shift in Fed policy towards stimulus,
will be a positive innovation to the cycle without any impact
on trend.

Closing with a few caveats, we note that the decomposi-
tions considered here share a common restriction, that the
cycle process is symmetric. Recent business cycle research

FIGURE 4.—LIKELIHOOD RATIO STATISTICS FOR TESTING ��
 � ��
,0
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suggests that asymmetry has been an important feature of
postwar U.S. experience—recessions being characterized as
an occasional sharp drop followed by more gradual recov-
ery; see Neftci (1984), Hamilton (1989), Sichel (1993,
1994), Beaudry and Koop (1993), and Kim and Nelson
(1999). The inference that variation in GDP is dominated by
variation in trend may reflect primarily the long periods of
expansion when actual output is relatively close to potential
and any cycle is short-lived and small in amplitude. Finally,
the decompositions considered here are univariate with only
two sources of shocks. Additional information introduced in
a multivariate setting may affect estimates of trend and
cycle.
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APPENDIX

State-Space Representation of Unrestricted UC Model

The unrestricted UC model is cast in state-space form by making the
observation equation an identity and treating both trend and cycle as state
variables:

Observation equation:

yt 
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State equation:

� �t

ct

ct�1

� � ��
0
0
� � �1 0 0

0 �1 �2

0 1 0
���t�1

ct�1

ct�2

� � �1 0
0 1
0 0

���t


t
� . (A2)

Allowing trend and cycle innovations to be correlated, we have

Q 
 Evtv�t� � ���
2 ��
 0
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2 0

0 0 0
�. (A3)

The standard Kalman filter equations are then be applied, given initial
values for the expectation of the state vector and its variance. For the
random-walk component we use the initial data value, but assign it an
extremely large variance. For the transitory component, we use the
unconditional mean and variance of the AR(2) process. In maximizing the
log-likelihood function we impose stationarity constraints on the autore-
gressive parameters and a positive definiteness constraint on the innova-
tion covariance matrix. The UC-0 model is estimated as a special case
with the restriction ��
 � 0.
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