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Abstract 
  
We consider a model-averaged forecast-based estimate of the output gap to measure economic 
slack for ten industrialized economies. Our measure takes changes in the long-run growth rate 
into account and, by accounting for model uncertainty using equal weights on different forecast-
based estimates, is robust to different assumptions about the underlying structure of the 
economy. For each country, we find that the estimated output gap is highly asymmetric, with 
much larger negative movements during recessions than positive movements in expansions, 
suggesting that this particular form of business cycle asymmetry is an intrinsic characteristic of 
industrialized economies. Furthermore, the estimated output gap is strongly negatively correlated 
with future output growth and unemployment and positively correlated with capacity utilization 
in each case. It also implies a convex Phillips Curve in many cases. 
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1. Introduction 

There is relatively little consensus in macroeconomics about how best to measure economic 

slack. Even settling on the output gap (i.e., the difference between actual and potential log real 

GDP for an economy) as the preferred measure, there remains the challenge of defining and 

calculating “potential”. Widely-used decomposition methods that assume a linear structure for 

the economy, such as the Hodrick-Prescott (1997) filter, an unobserved components (UC) model 

with uncorrelated components (Clark, 1987), and a UC model with correlated components 

(Morley, Nelson, and Zivot, 2003), can lead to very different estimates of the output gap, as 

shown by, for example, Morley, Nelson, and Zivot (2003) or Perron and Wada (2015). 

Furthermore, there is a vast literature that documents a possible nonlinear structure for the 

economy (see, for example, Hamilton, 1989, Kim, 1994, Kim and Nelson, 1999, Kim, Morley 

and Piger, 2005, and Sinclair, 2010). However, as discussed in detail in Section 3, formal 

hypothesis tests provide only mixed evidence that nonlinear models of aggregate output are 

preferable to linear models. Given a lack of strong evidence for a single empirical specification 

of the economy that outperforms all other models, we argue in this paper for a model-averaged 

forecast-based estimate of the output gap as the appropriate measure of economic slack.  

In terms of the forecast-based approach that we adopt in this paper, it is based on the idea that the 

presence or absence of economic slack directly implies whether an economy can or cannot grow 

faster than its long-run average growth rate without necessarily leading to subpar growth in the 

future. In particular, if the optimal forecast of future output growth is above/below average, then 

output will be estimated to be below/above potential. This approach implicitly defines 

“potential” as the stochastic trend of log real GDP and has its origins in the influential study by 

Beveridge and Nelson (1981, BN hereafter), with this particular interpretation of the BN 

decomposition discussed in Morley (2011). 

Given a forecast-based approach to estimating the output gap, we need to confront the question 

of how to construct an optimal forecast of future output growth. BN consider low-order ARMA 

models, which result in small output gaps, often with counterintuitive sign (e.g., the estimated 

gap is often positive during recessions). Motivated by the different results and mixed evidence 

for different models discussed above, as well as the forecasting literature and recent studies on 

estimating the output gap by Garratt, Mitchell, and Vahey (2014) and Morley and Piger (2012), 
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we consider model-averaged forecasts instead of relying on one particular time series model or 

class of models. Importantly, we follow Morley and Piger (2012) by including nonlinear time 

series models in the model set under consideration. Notably, this approach does not necessarily 

result in output gap estimates of counterintuitive sign as long as the model-averaged forecasts 

imply negative serial correlation in economic growth at longer horizons.  

For our analysis, we investigate economic slack for a group of ten industrialized economies.2 

Importantly, our analysis takes into account structural breaks in long-run growth. The resulting 

measure of economic slack is a modified version of the model-averaged estimate of the output 

gap used by Morley and Piger (2012) for US real GDP. In particular, we consider the same broad 

set of both linear and nonlinear models from Morley and Piger (2012), but we place equal 

weights on all models considered and we incorporate some prior beliefs from previous analysis 

in Bayesian estimation of some model parameters. Given the diverse set of linear and nonlinear 

models, the simpler approach of using equal weights produces similar results to estimating 

optimal weights, while equal weights and Bayesian estimation are much easier to implement for 

a broad range of economies than the approach to model averaging and maximum likelihood 

estimation of the nonlinear models taken in Morley and Piger (2012).3 

Our main finding is that model-averaged estimates of the output gap are highly asymmetric for 

all economies, regardless of the underlying statistical evidence supporting nonlinearity. This is 

notable because it suggests this form of business cycle asymmetry is not just a characteristic of 

the US economy, as previously established by Morley and Piger (2012), but is intrinsic in 

industrialized economies more generally. Furthermore, the estimated output gaps have strong 

negative forecasting relationships with future output growth in all cases and are closely related to 

narrower measures of slack given by the unemployment rate and capacity utilization. These 

results support the accuracy of the model-averaged estimates in comparison with model-specific 

estimates of the output gap. The results for a Phillips curve relationship with inflation are more 

mixed, but there is evidence in favor of a convex relationship for a number of economies, 

																																																								
2 We are motivated to consider industrialized economies to determine whether there are any intrinsic characteristics 
of their output gaps, much like Levin and Piger (2006) investigated intrinsic characteristics of inflation rates for 
industrialized economies. 
3 GAUSS code for calculation of the model-averaged estimate of the output gap is available at 
https://sites.google.com/site/jamescmorley/research/code. 
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arguing against the imposition of a linear relationship when estimating output gaps, such as is 

done by Kuttner (1994) and in many other studies. Finally, we find very strong correlations 

between the measures of slack across economies, including dynamic linkages based on pairwise 

Granger Causality tests, and some evidence of an “English-speaking” business cycle or “Euro-

only” business cycle.  

The rest of this paper is organized as follows. Section 2 discusses the data, including the possible 

presence of structural breaks in long-run output growth for each economy. Section 3 motivates 

the model-averaging approach by demonstrating the sensitivity of the estimate of the output gap 

to the time series model under consideration. Section 4 presents the empirical models and 

methods used in the analysis. Section 5 reports the results first for the benchmark US case and 

then for a group of other industrialized economies. Section 6 concludes. The technical details are 

relegated to an appendix.  

2. Data  

We consider macroeconomic data for the United States (US) and nine other industrialized 

economies: Australia (AU), Canada (CA), France (FRA), Germany (DEU), Italy (IT), Japan (JP), 

Korea (KR), New Zealand (NZ), and the United Kingdom (UK). Our sample was selected with 

the intention of examining a representative set of industrialized economies. In particular, we 

include the large to medium-sized G7 economies, an additional medium-sized economy with 

many similar characteristics to the G7 economies (i.e., Australia), a somewhat smaller economy 

that also has many similar characteristics to the G7 economies (i.e., New Zealand), and an 

emergent medium-sized industrialized economy that has undergone several structural changes, 

but has reliable data (i.e., Korea). Data series for real GDP, the price level, the unemployment 

rate, and capacity utilization were sourced from OECD databases and from relevant national data 

sources. See Table A.1 in the appendix for full details. 

For quarterly real GDP, we use the available seasonally-adjusted series and construct quarterly 

growth rates by taking first differences of 100 times the natural logs of the levels. The available 

sample periods for quarterly growth rates of real GDP are listed in Table 1. 
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For the price level, we use the core PCE deflator for the United States, core CPI for Canada, 

Germany, France, and the United Kingdom, and headline CPI for the remaining economies. 

These choices were determined by a general preference for core measures, but only when they 

are available for a relatively long sample period in comparison to real GDP. We calculate 

inflation as the year-on-year percentage change in the price level and then construct 4-quarter-

ahead changes in inflation. The relevant sample periods based on common availability of both 

real GDP and price level data are listed in Table 3 in the next section. 

The relevant sample periods based on common availability of the unemployment rate data with 

real GDP are listed in Table 6 in Section 4, and the relevant sample periods based on common 

availability of capacity utilization data with real GDP are listed in Table 7 in Section 4. 

In addition to sample periods for the real GDP growth rate data, Table 1 reports estimated 

structural break dates for long-run growth rates—i.e., expected growth in the absence of shocks. 

Perron and Wada (2009) argue that it is crucial to account for a structural break in the long-run 

growth rate of US real GDP when measuring economic slack for the US economy using 

unobserved components models. They impose a break date of 1973Q1 based on the notion of a 

productivity growth slowdown at that time. Similarly, Perron and Wada (2015) show that that the 

popular Hodrick-Prescott (HP) filter is sensitive to the treatment of structural breaks. In 

particular, they show that that accounting for structural breaks can lead to very different 

inference about the output cycle in G7 economies. Thus, we follow Perron and Wada (2009, 

2015) and allow for structural breaks in long-run growth rates. The full structural break test 

results are presented in Table A.2 in the Appendix. 

Applying Bai and Perron’s (1998, 2003) sequential testing procedure for structural breaks in the 

mean growth rate of US real GDP, we do not detect any break in the early 1970s. Instead, we 

find the estimated break date is 2000Q3. This break is significant at the 1% level and 

corresponds to a reduction in the mean growth rate. There is only weak evidence in favor of a 

second structural break in 1973Q1 (p-value is 0.13). However, following much of the literature, 

including Perron and Wada (2009, 2015), and allowing for the possibility of power and size 
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distortions in finite samples, we also allow for a second structural break in 1973Q1.4 We discuss 

the consequences of imposing different break dates when measuring economic slack for the US 

economy in Section 5 below.  It also turns out also to be important to account for structural 

breaks in long-run expected growth for the other economies as well. With the exception of 

Australia and New Zealand, we find structural breaks in the expected long-run growth rates for 

all other economies. The estimated break dates and the corresponding sequence of mean growth 

regimes are reported in Table 1. We find evidence of one structural break for Canada, France, 

Italy, Korea, and the UK and evidence in favor of two structural breaks for Germany and Japan.5 

To account for structural breaks in subsequent analysis, the output growth series are mean-

adjusted based on the estimated average growth rate in each regime until there is no remaining 

evidence of additional breaks. 

3. Motivation 

We motivate the model-averaging approach to measuring economic slack described in the next 

section by first considering forecast-based estimates of the output gap based on two commonly 

used models: an AR(1) model and Harvey and Jaeger’s (1993) unobserved components (UC) 

																																																								
4 Following much of the applied literature, we consider trimming of 15% of the sample from its end points and 
between breaks for admissible break dates. But even when using 5% trimming, we find no evidence of an additional 
structural break for the US in the mid-1970s at even the 10% level. As discussed in more detail in Section 5, not 
allowing for a second break in 1973 leads to estimates of output slack that are very strongly at odds with measures 
of slack from the previous literature and with more narrowly defined measures of slack, such as the unemployment 
rate. Given the broad evidence in favor of a break in 1973 from the previous literature, we impose a second break in 
1973Q1. In general, we find that it is more problematic to underestimate than to overestimate the number of 
structural breaks when calculating forecast-based output gaps. Specifically, forecast-based output gaps can display 
permanent movements that proxy for large structural breaks in growth rates when these are not directly accounted 
for in the data, while accounting for smaller or possibly misspecified structural breaks tends to have little impact on 
forecast-based output gaps.   
5 The regression model for testing structural breaks includes only a constant. The evidence for structural breaks is 
generally weaker when allowing for serial correlation. In addition, the p-value for the test statistics for the second 
structural break in Germany in 1991Q2 was only significant at the 0.11 level. Similarly, the test statistics for the 
structural break in the UK in 1973Q1 was only significant at the 0.15 level. The OEDC series for German GDP is 
adjusted for the reunification level shift, but there is still evidence, albeit somewhat weak, in favor of a slope shift. 
However, previous studies for Germany that use a different set of empirical models (see, inter alia, Klinger and 
Weber, 2016, and Perron and Wada, 2015) find evidence of a break in the early 1990s following the reunification. In 
addition, when using year-on-year growth rates, we find stronger evidence in favor of a structural break in the UK 
and of second structural break in Germany. For the UK, when the 1973Q2 break is not taken into account, almost all 
measures of slack considered here imply that the UK output gap was below trend from 1973Q1 throughout 2016Q1. 
We therefore impose a structural break in the UK in 1973Q1 and a second structural break in 1991Q2 for Germany. 
All other breaks reported in Table 1 were significant at the 10% level.  Allowing for additional structural breaks led 
to model-averaged estimates of the output gap that are very similar to those reported in the paper.  
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model that corresponds to the commonly used Hodrick-Prescott (HP) filter with a smoothing 

parameter of 1,600 (denoted UC-HP hereafter). The AR(1) model is estimated for quarterly real 

GDP growth and the output gap is estimated using the BN decomposition for an AR(1) model 

(see Morley, 2002, for details of this calculation). The UC-HP model is estimated for 100 times 

the natural logs of quarterly real GDP and the output gap is estimated using the Kalman filter. 

Although it is specified in terms of log levels, the UC-HP model provides an implicit forecast of 

future output growth, with the Kalman filter calculating the long-horizon conditional forecast of 

future output at each point of time.  

Figure 1 plots the estimated output gaps based on the AR(1) and UC-HP models for US real 

GDP. As discussed in Morley and Piger (2012), these estimates are very different from each 

other, with the output gap based on the AR(1) model being of small amplitude and positive 

during NBER-dated recessions, while the output gap based on the UC-HP being of much larger 

amplitude and negative during NBER-dated recessions.  

At first sight, it might seem obvious that the UC-HP output gap is preferable, especially given its 

more intuitive relationship with recessions. However,  the AR(1) model fits the data much better 

than the UC-HP model by any standard metric used for model comparison, including AIC and 

SIC, a result that was highlighted in Morley and Piger (2012).6  

Furthermore, as pointed out by Nelson (2008), the notion of an output gap as a measure 

economic slack directly implies that it should have a negative forecasting relationship with future 

output growth. Specifically, when the economy is above trend and the output gap is positive, 

future growth should be below average as the economy returns to trend and vice versa. 

Motivated by the analysis in Nelson (2008), we calculate the correlation between a given 

estimate of the output gap and the subsequent 4-quarter output growth.7 Table 2 reports these 

																																																								
6 We follow the approach in Morley and Piger (2012) to ensure the adjusted sample periods are equivalent for all 
models under consideration. For the linear and nonlinear AR models discussed below, this involves backcasting 
sufficient observations based on the long-run growth rate to condition on in estimation. For the UC models 
discussed below, it involves placing a highly diffuse prior on the initial level of the stochastic trend and evaluating 
the likelihood for the same observations as for the models of growth rates. In the case of the US, the AIC for the 
AR(1) model is -357.207 and the AIC for the UC model is -599.478, where the AIC is rescaled as in Morley and 
Piger (2012), with larger values being preferred. See the original study for details on the rescaling.  
7 Nelson (2008) considers regressions that capture the correlation between a given estimate of the output gap and 1-
quarter-ahead US output growth. Our results for the US data are qualitatively similar to his even though we consider 
4-quarter-ahead output growth, which arguably provides a better sense of forecasting ability at a policy-relevant 
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correlations and, consistent with the findings in Nelson (2008), the correlation for the US output 

gap based on the AR(1) model is negative, while the correlation for the UC-HP model is 

positive. This result directly suggests that the output gap based on the AR(1) model provides a 

more accurate measure of economic slack than the UC-HP model, even if its relationship with 

recessions seems counterintuitive. 

Figure 2 plots the estimated output gaps based on the AR(1) and UC-HP models for real GDP 

data for the other nine industrialized economies. The figure makes it clear that the very different 

implications of the two models for the estimated output gap are not just a quirk of the US data. 

As in Figure 1, the output gap based on the AR(1) model is always smaller in amplitude than the 

output gap based on the UC-HP model and often of the opposite sign. The correlation results for 

these other economies in Table 2 are a bit more mixed, but the correlation with future output 

growth is still negative for more of the AR(1) model output gaps than the UC-HP model output 

gaps. Finally, any formal model comparison, including based on AIC or SIC, strongly favors the 

AR(1) model in every case.  

More favorable to the UC-HP model is the forecasting relationship between the competing 

model-based output gaps and future inflation. Table 3 reports correlations between output gap 

estimates and subsequent 4-quarter changes in inflation. Consistent with most conceptions of the 

Phillips curve, the correlation is always positive for the UC-HP model output gap. By contrast, it 

is negative for 8 out of 10 economies when considering the AR (1) model output gap. 

Taken together, the results in Tables 2 and 3 suggest that neither forecast-based estimate of the 

output gap provides a particularly accurate measure of economic slack. Put another way, even if 

we restrict ourselves only to two widely-used linear models, there is considerable uncertainty 

about the appropriate measure of economic slack. The AR(1) model fits the data better and its 

corresponding output gap generally provides a better forecast of future real GDP growth. But the 
																																																																																																																																																																																			
horizon. Also, Nelson (2008) conducts a pseudo out-of-sample forecasting analysis by estimating models and output 
gaps using data only up to when the forecast is made (it is a pseudo out-of-sample forecast because the data are 
revised, although Orphanides and van Norden, 2002, find that using revised or real-time data matters much less than 
incorporating future data in estimation of the output gap at any point in time). However, even though we use the 
whole sample to estimate models, we are implicitly using data only up to when the forecast is made to estimate 
output gaps. This is straightforward for the Harvey and Jaeger (1993) UC-HP model, which directly allows for 
filtered inferences, as opposed to the traditional HP filter, which is a two-sided filter, explaining why Nelson (2008) 
considers the out-of-sample forecasting analysis when evaluating the forecasting properties the output gap based on 
the traditional HP filter. 
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UC-HP model output gap is more consistent with widely-held beliefs about the relationship 

between economic slack and recessions, as well as generally providing a better forecast of future 

changes in inflation.   

Given the fact that both the AR(1) and the UC-HP models are linear, a natural question that 

arises is whether accounting for any potential nonlinearities would provide a better measure of 

the business cycle and output slack. While nonlinear are more highly parametrized, there is some 

evidence that nonlinear models fit US output growth better than the corresponding linear AR(p) 

models (see, for example, Hamilton, 1989, or Kim, Morley, and Piger, 2005). Table 4 presents 

the results of the Carrasco, Hu, and Ploberger (2014) test for the Hamilton and bounceback 

Markov-switching models with normal and t-distributed errors versus a linear AR(2) model and 

a Monte-Carlo based likelihood ratio (LR) test for a depth-based bounceback model versus an 

AR(2) model (discussed in more detail in the next subsection). Again, the results are 

inconclusive in many cases, with the test statistics being right around the threshold critical values 

in many cases and the results sensitive to the assumptions about the distribution of the 

disturbances. For example, we can reject the null of linearity against a Markov-switching model 

for Australia, but the critical values are right around the 10% threshold. Similarly, we can reject 

the null of linearity against a depth-based bounceback model for the US, but the critical values 

are right around the 5% critical value.  

These mixed results motivate the methods outlined in the next section. In particular, drawing 

from an insight going back at least to Bates and Granger (1969) that combined forecasts can 

outperform even the best individual forecast, we follow Morley and Piger (2012) and construct a 

model-averaged estimate of the output gap, averaging over a range of linear and nonlinear 

forecasting models.  

4. Methods 

The analysis used here closely follows the approach to estimating a model-averaged output gap 

(MAOG) developed in Morley and Piger (2012) for US real GDP. However, we consider a few 

modifications that make the approach more easily applicable to data from other economies. The 

approach, including the modifications, is outlined in this section. The full details of the approach 

are in the original study and are also set out in the appendix. 
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Morley and Piger (2012) focus on univariate models of real GDP, which includes the AR(1) and 

UC-HP models discussed in the previous section. As is evident from Figures 1 and 2, the 

univariate models capture a range of possibilities about the nature of the output gap. Also, 

univariate analysis allows us to test multivariate relationships rather than assume the answer a 

priori. The benefits of this approach for the relationship with inflation in particular will become 

evident when the results are presented below. 

All of the models allow for a stochastic trend in real GDP, which is motivated by standard unit 

root and stationarity tests, even when allowing for structural breaks in long-run growth. The 

results for all countries for the standard unit root tests (Augmented Dickey-Fuller and Elliott-

Rothenberg-Stock point-optimal Dickey Fuller), the standard stationarity tests (Leybourne and 

McCabe, 1992, and the KPSS test proposed by Kwiatkowski et al., 1992), and the unobserved-

components based stationarity test based on Morley, Panovska, and Sinclair (2016) are presented 

in Table 5.8 This is important because many off-the-shelf methods such as linear detrending, 

traditional HP filtering, and Bandpass filtering produce large spurious cycles when applied to 

time series with stochastic trends (see Nelson and Kang, 1981, Cogley and  Nason, 1995, and 

Murray, 2003). By contrast, as long as the models under consideration avoid overfitting the data, 

the forecast-based approach will not produce large spurious cycles. 

Following Morley and Piger (2012), we consider linear AR(p) models of orders p = 1, 2, 4, 8, 

and 12 with Gaussian errors or Student t errors, the linear UC-HP model due to Harvey and 

Jaeger (1993), the linear UC0 and UCUR models with AR(2) cycles from Morley, Nelson, and 

Zivot (2003), the nonlinear bounceback (BB) models from Kim, Morley, and Piger (2005) with 

BBU, BBV, and BBD specifications and AR(0) or AR(2) dynamics, the nonlinear UC0-FP 

model with an AR(2) cycle from Kim and Nelson (1999), and the nonlinear UCUR-FP model 

with an AR(2) cycle from Sinclair (2010).9 Again, see the appendix and the original studies for 

more details of these models. 

																																																								
8 Based on the Monte Carlo analysis in Morley, Panovska, and Sinclair (2016), we consider the bootstrapped p-
values for all stationarity tests to correct for potential size distortions in finite samples. 
9 As a minor modification to Morley and Piger (2012), we drop the linear AR(0) models and nonlinear Markov-
switching model from Hamilton (1989) with AR(0) and AR(2) dynamics. In the former case, the output gap is 
always zero by construction, so its inclusion merely serves to shrink the model-averaged output gaps towards zero. 
In the latter case, the output gap is linear by construction, so its inclusion as a nonlinear model puts additional prior 
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The first major modification from Morley and Piger (2012) is that models are estimated using 

Bayesian methods instead of maximum likelihood estimation (MLE). This allows incorporation 

of informative priors in the estimation. The priors we used here are not particularly strong, with 

estimates based on the posterior mode virtually identical to MLE for many of the models.10 

However, for economies with relatively short samples for real GDP or other quirks in the data 

such as large outliers, there is some tendency for MLE of the UC models and the nonlinear 

models to overfit the data. By incorporating more informative priors about the persistence of the 

autoregressive dynamics or the persistence of Markov-switching regimes based on US estimates 

from Morley and Piger (2012), we are able to avoid problems associated with shorter samples 

and outliers, while obviating the need to undertake a long, protracted search for the best model 

specifications for each economy.11 The full details of the priors are presented in the appendix. 

The second major modification from Morley and Piger (2012) is that we consider equal-weights 

on the models when constructing MAOGs rather than weights based on Bayesian model 

averaging (BMA). Although a number of models receive nontrivial weight based on the SIC 

approximation of BMA when considering the US data in Morley and Piger (2012), this is not 

always the case for other economies. For example, a simple AR(0) model would receive all 

weight for Australian real GDP based on SIC if it were included in the model set. However, such 

																																																																																																																																																																																			
weight on a linear output gap. As demonstrated below, dropping these models has very little practical impact on the 
model-averaged estimate of the output gap for US real GDP. If the Hamilton model is included in the set of models, 
the correlation between the MAOG computed using equal weights that includes the Hamilton Model and the MAOG 
that does not include the Hamilton model is 0.99995. Furthermore, as shown in Table 5, the Carrasco et al. (2014) 
bootstrap test for Markov-Switching parameters cannot reject the null of no switching for all economies except New 
Zealand, Italy, and Australia, with p-values higher than 10% in all cases except for Italy. However, the null of 
linearity can be strongly rejected in favor of the BBD model for those three economies. The null of linearity can also 
be rejected in favor of the BBU model for Germany, Japan, Korea, New Zealand, and the UK, and in favor of the 
BBD model for all economies except Italy and New Zealand. Therefore, our set of models does not lose empirical 
relevance by excluding the Hamilton models.  
10 The AR(1) and UC-HP models discussed in previous section were estimated using the posterior mode. But the 
estimated output gaps for these models are indistinguishable from those based on MLE. For example, for the US 
data, the correlation between the Bayesian and MLE output gaps is >0.999999. 
11 In principle, this setup would also make it possible to apply the approach outlined in this paper even given severe 
data limitations or a desire to impose tighter priors based on strongly held beliefs. For example, in an earlier version 
of this study, Morley (2014) estimated the output gap for a set of 13 economies in the Asia and Pacific, many with 
very short sample periods and extreme outliers. In terms of imposing tighter priors on characteristics such as the 
smoothness of trend, see the approaches outlined in Harvey, Trimbur, and van Dijk (2007) for UC models and 
Kamber, Morley, and Wong (2016) for AR models. However, given the strong evidence for a volatile stochastic 
trend in Morley, Panovska, and Sinclair (2016) and in Table 5 of this paper, we avoid imposing smoothness priors as 
it could potentially lead to spurious cycles. 
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a model implies the output gap is always exactly zero by construction (not just zero on average), 

which clearly runs contrary to widely and strongly held beliefs and, as will be seen below, would 

produce inferior forecasts of future output growth and changes in inflation in comparison to the 

Australian MAOG.  

The problem of BMA putting too much weight (from a forecasting perspective) on one model 

has been highlighted by Geweke and Amisano (2011). They find that linear pooling of models 

produces better density forecasts than BMA and discuss the calculation of optimal weights for 

linear pooling of models. However, as long as the model set is relatively diverse, applying equal 

weights to models works almost as well as optimal weights and is much easier to implement in 

practice. Thus, we take this simple approach of using equal weights for the reasonably diverse 

set of linear and nonlinear models discussed above.12 Again, see the appendix for more details of 

the model averaging. 

5. Results 

We first consider the United States as a benchmark case in order to provide perspective on the 

impact of the modifications to Morley and Piger (2012) described in the previous section, as well 

as providing context for the other results.  

To begin, we compare the updated MAOG based on the US real GDP data described in Section 

2, equal weights, and Bayesian estimation to the original MAOG reported in Morley and Piger 

(2012) based on a shorter sample period, a different vintage of data, BMA weights, and MLE. 

We also consider the updated MAOG based on the Morley and Piger (2012) BMA weights and 

MLE for the full sample. Figure 3 plots these three MOAGs together. The most noticeable thing 

is their similarity, with the major finding in Morley and Piger (2012) of a highly asymmetric 

shape holding for the updated MAOGs. The correlation between the updated MAOG based on 

BMA weights and MLE and the updated MAOG based on equal weights and Bayesian 

estimation is 0.96.  

																																																								
12 To be specific, we place equal weights on linear and nonlinear classes of models and divide those equal weights 
up evenly amongst the models within the classes. Because the nonlinear models nest linear dynamics in their 
parameter space, there is still more implicit prior weight on linear than nonlinear dynamics, although this is 
addressed somewhat by the somewhat informative priors for parameters in the nonlinear models. 
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The impact of incorporating prior information about parameters may be obscured in Figure 3 

given that the priors were calibrated based on the estimates for US data in Morley and Piger 

(2012). However, it is important to emphasize that the asymmetric shape of the output gap is in 

no way driven by the priors on the nonlinear models. The priors for the Markov-switching 

parameters favor regime shifts in the mean growth rate corresponding to business cycle phases, 

along the lines of Hamilton (1989), but there is no prior that shocks have more temporary effects 

in recessions than in expansions. Figure 4 makes this clear by applying the modified approach to 

data simulated from a simple random walk with drift.13 For this data, the true output gap is 

always zero. The estimated MAOG is not always zero, but, unlike what would be the case for the 

HP filter given a random walk, the spurious cycle is quite small in magnitude relative to the US 

MAOG and, importantly, it fluctuates symmetrically around zero. Thus, any finding of 

asymmetry for the MAOGs reflects the data, not the incorporation of prior information in 

estimating model parameters.14 

As displayed in Figures 3 and 4, our results indicate that there is little remaining economic slack 

for the US economy at the end of the sample in 2016Q1. This result is consistent with the 

Federal Reserve’s views (see, for example, Yellen, 2015). These results, however, turn out to be 

sensitive to allowing for a structural break in long-run growth in 2000Q3. Figure 5 plots the 

updated US MAOG (allowing for a structural break in 1973Q1 and 2000Q3) against a version 

under the assumption of no structural break and a version that imposes only one break in 1973Q1 

based on previous literature. Assuming no change in the long-run growth, the US economy 

appears to still be below trend at the end of the sample. Given uncertainty about the structural 

break, it might make sense to average across these two scenarios, which would still imply the 

economy remains slightly below trend at the end of the sample, although not by as much as in 

the no break case. If we assume that the US economy was at trend at the end of the sample, this 

would clearly imply that recessions can permanently shift the trend path of output downwards, 

which is the implication of many forecasting models for US real GDP, including low-order 

																																																								
13 The drift and standard deviation of shocks are both set to 1, which is a surprisingly reasonable calibration for 100 
times the natural logs of quarterly US real GDP. 
14 Indeed, model averaging would tend to understate asymmetry if it were present in the data generating process 
(e.g., suppose Kim and Nelson’s, 1999, UC0-FP model was the true model) by shrinking the mean of the estimated 
MAOG towards zero given that the mean of the estimated output gap is zero by construction for all of the linear 
models under consideration. 
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AR(p) models, Hamilton’s (1989) Markov-switching model, and, to some extent, the 

bounceback models of Kim, Morley, and Piger (2005).  In a recent paper, Huang, Luo, and Startz 

(2016) find that recessions prior to 1984 can be described as U-shaped, but recessions after 1984 

can be better described using Hamilton’s (1989) L-shaped model.  Figure 6 plots the estimated 

trend in US real GDP based on the model-averaged output gap. A permanent negative effect of 

the Great Recession of the trend path is quite evident for this estimate of trend and is much larger 

than for previous recessions.15  

One way to judge the plausibility of the US economy being at trend at the end of the sample is to 

compare the US MAOG to other narrower measures of slack. Figure 7 plots the US MAOG 

against the US unemployment rate and US capacity utilization. Similar to the findings in Morley 

and Piger (2012), there is a clear relationship between the MAOG and these variables. More 

supportive of relatively little remaining slack at the end of the sample is the simple fact that the 

MAOG in the no break case would imply relatively fast growth and downward pressure on 

inflation in the period immediately after the Great Recession. In particular, returning to Tables 2 

and 3, the US MAOG has a negative correlation of -0.38 with future output growth and positive 

correlation of 0.46 with future changes in inflation. These results are much stronger than those 

for the output gaps based on the AR(1) and UC-HP models and support the MAOG as a highly 

relevant measure of economic slack. But, given lacklustre growth and stable inflation after the 

Great Recession, these results also support the MAOG allowing for a structural break and the 

idea that the US economy is actually close to trend at the end of the sample, noting that the trend 

path is lower than before the recession, as suggested in Figure 6. 

Having demonstrated how the modified approach works in the benchmark US case, at least when 

liberally allowing for structural breaks in long-run growth, we now apply the approach to the 

remaining G7 economies, Australia, New Zealand, and Korea. 

Figure 8 plots MAOGs for the various economies. For all cases considered, the MAOGs are 

highly asymmetric, similar to the US results. Specifically, the output gaps take on much larger 
																																																								
15 Allowing for one structural break in 1973Q1 leads to similar results. Similarly, allowing for a structural break in 
2000Q3 but not in 1973Q1 leads to an estimated MAOG that is large and negative during the 1990-1991 recession 
and very deep during 2001 recession, which is at odds with previous estimates of output slack, and with more 
narrow measures of slack, such as unemployment and capacity utilization, where both the 1990 and 2001 recession 
were relatively shallow. This further motivates our inclusion of a second structural break in 1973Q1. 
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negative values than positive ones.16 The only possible exception is Italy, where the output 

fluctuations are relatively more symmetric, but there is still strong evidence that a couple of the 

contractions in 1969 and 2008-2009 caused highly asymmetric movements. The ubiquity of this 

form of business cycle asymmetry across the ten economies under consideration suggest that it is 

an intrinsic characteristic in industrialized economies, not just a feature of the US economy in 

particular. This is a potentially important result for theory-based modeling of the business cycle, 

which tends to focus on linear dynamics for convenience, although there are many exceptions.17  

How plausible are the MAOGs as measures of economic slack? As with the US benchmark, we 

compare the MAOGs to other narrower measures of slack. Table 6 reports the correlation of each 

MAOG with the corresponding unemployment rate. For comparison, we also report correlations 

for output gaps based on AR(1) and UC-HP models. Corresponding to an Okun’s Law 

relationship, the MAOG has the most negative correlation with the unemployment rate in all 10 

cases (including the US benchmark), with many of the correlations being quite large in 

magnitude.  

Table 7 reports the corresponding correlations with capacity utilization. The MAOG has the most 

positive correlation with capacity utilization in 7 out of 10 cases (including the US benchmark) 

and has very high correlations in two of the other cases (Germany and the United Kingdom).  

Overall, the strong coherence with other measures of slack lends credence to the MAOGs. The 

coherence is particularly notable given that the MAOGs are estimated using only univariate 

																																																								
16 Perron and Wada (2015) emphasize the importance of large outlier shocks in their paper, and use the 1968 strike 
as one example that causes distortions and large discrepancies between the HP estimate and their UC estimate of the 
output gap. The MAOG identifies the 1968Q2 strike in France as a temporary large deviation, with output returning 
to trend the subsequent quarter. Treating the 1968Q2 strike in France as a one-time event using a dummy variable 
before estimating the MAOG does not change the results, with the only difference being that the estimated MAOG 
in 1968Q2 (during the strike). By including models with t-errors in our set of models, we indirectly allow for the 
possibility of occasional large shocks such as strikes. Furthermore, it is not implausible to assume that output would 
be below trend during a strike.  
17 For example, Diebold, Schorfheide, and Shin (2016) find that incorporating nonlinearities in the exogenous 
driving processes and allowing for stochastic volatility in a DSGE model markedly improves the density forecast 
performance of the model. Auroba, Bocola and Schorfheide (2013) highlight the fact that asymmetric wage and 
price adjustments lead to inherent nonlinearity in DSGE models, and argue in favor of using a nonlinear time-series 
model to evaluate the performance and predictive ability of DSGE models. Guerrieri and Iacoviello (2016) find that 
collateral constraints in a DSGE model lead to macroeconomic asymmetries—in particular, when constraints are 
slack, expanding wealth makes small contribution to consumption growth, but tightened constraints can sharply 
exacerbate recessions. 
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models of real GDP. At the same time, the MAOGs provide a broad and useful measure of slack, 

even when unemployment rate or capacity utilization data are distorted as measures of slack by 

long-run structural factors. 

Revisiting Table 2, the MAOGs provide a stronger signal about future economic growth than the 

two other output gap estimates for all economies in our sample. This result provides the most 

direct support of the MAOGs as measures of economic slack based on the definition considered 

in this paper. It also confirms the possibility that output growth can be somewhat predictable 

even when standard model comparison metrics would select a random walk model, as the SIC 

would in the case of Australia. 

Looking back at Table 3, the results for the MAOGs in terms of correlation with future changes 

in inflation are more mixed. The MAOGs provide a stronger signal than the UC-HP model 

output gap in only 4 of the 10 cases (including the US benchmark). However, a correlation 

coefficient may be too simplistic as a measure of the relationship between the output gap and 

inflation. Figure 9 displays a scatterplot of the US MAOG (x-axis) against the subsequent 4-

quarter change in US inflation (y-axis) and there is a clear nonlinear, convex Phillips Curve 

relationship between the output gap and future changes in inflation that would only be partially 

captured by a correlation coefficient.  

Figure 10 displays the corresponding scatterplots for the nine other industrialized economies. 

The same convex relationship as for the US data is evident for Australia, France, Japan, and 

Korea. For some of the other cases, such as Canada and New Zealand, the Phillips Curve 

relationships look more linear. However, a clear implication of Figures 9 and 10 is that it is 

important not to impose a linear (or any other) specification for the Phillips Curve relationship a 

priori, as is done in some other approaches to estimating output gaps (e.g., Kuttner, 1994). In 

particular, if the imposed relationship is incorrectly specified, then the resulting output gap 

estimate will necessarily be distorted and cannot be used to determine a better specification of a 

Phillips Curve relationship. The convexity of the Phillips Curve in some cases argues against a 

linear specification. Also, there is some evidence that the relationship between the output gap 

and inflation has evolved over time, with many of the observations of stable inflation following 

large negative output gaps corresponding to the recent Global Financial Crisis. Consistent with 

the Lucas’s (1976) famous critique that reduced-form Phillips Curve relationships should change 
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with policy regimes, this apparent breakdown in the previous pattern near the end of the sample 

could be due to an anchoring of inflation expectations (see IMF, 2013) and argues strongly 

against imposing a fixed relationship with inflation when estimating the output gap.  

Given general support for the MAOGs as measures of economic slack, especially in terms of the 

crucial definitional sense of forecasting future economic growth, the last question considered in 

this paper is whether the MAOGs are related across economies.18  For example, Mitra and 

Sinclair (2012) find that cycles for G-7 economies obtained using a correlated UC model are 

highly correlated across economies. Using a time-varying framework, Del Negro and Otrok 

(2008) find that Japan has been decoupling from other G-7 countries since the 1970s. Similarly, 

several other studies, including Canova et al. (2007) and Stock and Watson (2005) find evidence 

of co-movement across cycles, such as “English-speaking business cycle” or “Euro business 

cycle”—that is, high correlation across groups of economies that has increased over time (in 

particular, after the mid-1980s and early 1990s).  While there are a lot of studies that attempt to 

explain movements in business cycles in a multi-country setting and quantify the importance of 

world and regional or group shocks, our goal here is to simply evaluate whether cross-country 

links between MAOGs are in line with the previous literature. There is strong within-country 

support in favor of the MAOG as a measure of slack from Tables 1, 2, 3, 6, and 7, and we are 

interested in evaluating if the MAOGs are also supported by cross-country comparisons.  To 

answer this question, we consider the correlations between the MAOGs for all 10 economies, 

and conduct pairwise Granger Causality tests. 

Table 8 reports correlations for output gaps across countries. The correlations are positive in 

most cases, indicating that the MAOGs tend to move together. The correlations also become 

stronger post 1984 for the US, Australia, Canada, and the UK, and France, Italy, and Germany, 

thus lending informal support to the “English-speaking business cycle” and “Euro-cycle”. 

However, there is no evidence of decoupling between Japan and the rest of the world.  

Table 9 presents the results for the Granger Causality tests. At the 10% level, the output gaps 

appear to be related across many of the economies, with 24 rejections of no Granger Causality. 

																																																								
18 In principle, we could also consider whether the estimated trend shocks are correlated, as in Blonigen et al. 
(2014), but our focus is on output gaps and leave analysis of trends for future research. 
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The patterns are generally sensible, although the 10% may include some rejections of the null 

merely due to random sampling given that a total of 90 tests were conducted. At the same time, 

the fact that the number of rejections holds up at 19 for the tests at the 5% level and 10 for tests 

at the 1% level suggests that many of rejections are simply because the null hypothesis is false.  

In terms of general patterns for cross-economy spillovers and focusing on the results at the 5% 

level, the output gaps for Canada and the US appear to Granger-cause the largest number of 

other economies, while the output gaps for France and the United Kingdom are Granger-caused 

by the largest number of other economies. Furthermore, there is evidence of an “English-

speaking” cycle both before and after 1984, and some evidence of an “Euro-cycle” after 1984.  

6. Conclusions 

There is much more uncertainty about the degree of economic slack than is commonly 

acknowledged in academic and policy discussions, which often treat the output gap as if is 

directly observed. Canova (1998) argues that this uncertainty has huge implications in terms of 

“stylized facts” about the business cycle used to motivate theoretical analysis. Also, Orphanides 

(2002) argues that this uncertainty is responsible for huge policy mistakes in the past, especially 

in terms of the high inflation in the 1970s.  

In light of this uncertainty about the degree of economic slack prevailing in an economy at any 

given point of time and its importance for policy, we argue for a model-averaged forecast-based 

estimate of the output gap. For all industrialized economies considered here, the model-averaged 

estimate is closely related to the narrower measures of slack given by the unemployment rate 

and, consistent with the notion of an output gap as a measure economic slack, has a strong 

negative forecasting relationship with future output growth. Most importantly, the model-

averaged output gap estimates are all highly asymmetric, as was found for US real GDP in 

Morley and Piger (2012). This directly suggests that this particular form of business cycle 

asymmetry is intrinsic in industrialized economies and should be addressed in theoretical models 

of the economy.19 

																																																								
19 As emphasized in Kiley (2013) and noted by many others, theory-oriented DSGE models imply reduced-form 
VAR, VECM, or VARMA models. Thus, forecast-based output gap estimates provide robust measures of economic 
slack across a wide range of different economic assumptions used to identify a structural model, at least as long as 
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Evidence for a Phillips Curve relationship between the model-averaged output gap and inflation 

is more mixed. But the overall results strongly argue against imposing a linear relationship in 

estimating output gaps. As an example of why imposing a fixed relationship is so problematic, 

consider Stock and Watson (2009, 2010). Their analysis suggests that inflation is difficult to 

forecast using standard measures of economic slack, except when the estimated output gap (or 

unemployment gap) is large in magnitude. This directly suggests possible mismeasurement due 

to imposition of symmetry and/or a nonlinear Phillips Curve relationship (see Dupasquier and 

Ricketts, 1998, and Meier, 2010). Our measure of economic slack allows for a full investigation 

of the nature of the relationship between the output gap and inflation, including the possibility of 

a nonlinear relationship.  

Finally, there are notable dynamic linkages between the model-averaged output gaps across 

many economies and some evidence of an “English-speaking” business cycle or “Euro-only” 

business cycle. In general, as with inflation, our estimates allow us to explore possible cross-

economy relationships without imposing them a priori. 

 

 

 

 

 

 

 

 

 

																																																																																																																																																																																			
the reduced-form model or models used to calculate the optimal forecast capture the dynamics in the data (this point 
relates back to Sims, 1980—also see Fernandez-Villaverde et al., 2007). 
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Appendix 1: Empirical Models 

Following Morley and Piger (2012), we define the output gap, tc , as the deviation of log real 

GDP, yt , from its stochastic trend, tt , as implied by the following trend/cycle process: 

 ttt cy +=t , (1) 

 *
- += ttt htt 1 , (2) 

 å
¥
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where 10 =y , tt hµh +=* , and tt www +=* , with th  and tw  following martingale difference 

sequences. The trend, tt , is the permanent component of ty  in the sense that the effects of the 

realized trend innovations, *
th , on the level of the time series are not expected to be reversed. By 

contrast, the cycle, tc , which captures the output gap, is the transitory component of ty  in the 

sense that the Wold coefficients, jy , are assumed to be absolutely summable such that the 

realized cycle innovations, *
tw , have finite memory. The parameter µ  allows for non-zero drift 

in the trend, while the parameter w  allows for a non-zero mean in the cycle, although the mean 

of the cycle is not identified from the behaviour of the time series alone, as different values for 

w  all imply the same reduced-form dynamics for tyD , with the standard identification 

assumption being that 0=w . 

The optimal estimate (in a minimum mean-squared-error sense) of trend for a range of 

trend/cycle processes as in (1)-(3), including those with regime-switching parameters, can be 

calculated using the regime-dependent steady-state (RDSS) approach developed in Morley and 

Piger (2008). The RDSS approach involves constructing long-horizon forecasts using a given 

time series model to capture the dynamics of the process. Importantly, the long-horizon forecasts 

are conditional on sequences of regimes and then marginalized over the distribution of the 

unknown regimes. Specifically, the RDSS measure of trend is 
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where },...,{~ ¢= -mttt SSS  is a vector of relevant current and past regimes for forecasting a time 

series, ( )×Mp  is the probability distribution with respect to the forecasting model, tS  is an 

unobserved state variable that takes on N discrete values according to a fixed transition matrix, 

and *i  is the “normal” regime in which the mean of the transitory component is assumed to be 

zero. The choice of “normal” regime *i  is necessary for identification. Meanwhile, for a given 

forecasting model with Markov-switching parameters, the probability weights in (4), ( )tt
M Sp W
~ , 

can be obtained from the filter given in Hamilton (1989). Note that the RDSS trend simplifies to 

the Beveridge and Nelson (1981) trend in the absence of regime switching. 

In practice, the correct model for the dynamics of the time series process is unknown. Thus, 

following Morley and Piger (2012), we consider a range of models, as listed in the main text. 

The linear and nonlinear AR(p) models are specified as follows: 

 ( ) ttt eyL =-D µf )(  (6) 

 ),...,( mttt SS -= µµ , (7) 

where )(Lf  is pth order. We consider versions of the AR(p) models with Gaussian errors (i.e., 

),0(~ 2
et Ne s ) or Student t errors (i.e., ),0,(~ 2

et te sn ). { }1,0=tS  is a Markov state variable 

with fixed continuation probabilities 001 ]0|0Pr[ pSS tt === -  and 111 ]1|1Pr[ pSS tt === - . In 

the linear case, µt = µ , while there are three different specifications of µt  in the nonlinear case 

that correspond to the BB models developed by Kim, Morley, and Piger (2005): 

1.  “U”-Shaped Recessions (BBU) 
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1
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2. “V”-Shaped Recessions (BBV) 
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3. Recovery based on “Depth” (BBD) 
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where the state 1=tS  is labeled as the low-growth regime by assuming 01 <g . Following Kim, 

Morley, and Piger (2005), we assume

€ 

m = 6 . See the original study for the full motivation of 

these specifications. 

The linear and nonlinear UC models are based on (1)-(3), with the following parametric 

specification of the transitory component in (3): 

 *
-= jttcL wf )( , (11) 

where 0=w  for the linear UC0 and UCUR models and tStw =  for the nonlinear UC0-FP and 

UCUR-FP models, with the state 1=tS  labeled by assuming 

€ 

τ < 0 . The shocks to the trend and 

cycle are Gaussian (i.e., ),0(~ 2
hsh Nt , ),0(~ 2

wsw Nt  for the UC0 and UC0-FP models and 

( ) ),0(~, hwwh S¢ Ntt  for the UCUR and UCUR-FP models). Given an AR(2) cycle, the 

covariance for the UCUR and UCUR-FP models is identified (see Morley, Nelson, and Zivot, 

2003). 

As mentioned in the main text, Bayesian estimates for these models are based on the posterior 

mode. The priors for the various model parameters are set out in Table A.3. Note that the prior 

for bounceback coefficient has zero mean, implying a prior mean of zero for the output gap. The 

prior for the mean of the transitory shock for the UC-FP models has a negative mean, but this has 

very little impact on the prior mean of the model-averaged output gap given the small weights on 

any given model. The prior on the AR coefficients clearly places them in the stationary region. 

Finally, the prior for the continuation probabilities is centered at 0.95 for the expansion regime 
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and 0.75 for the other regime. This is calibrated based on the results for US data in Morley and 

Piger (2012). 

In practice, given parameter estimates, we use the BN decomposition or, in the case of the UC 

models, the Kalman filter to estimate the output gap for the linear models. Note that the filtered 

inferences from the Kalman filter are equivalent to the BN decomposition using the 

corresponding reduced-form of the UC model, while the BN decomposition is equivalent to the 

RDSS approach in (4)-(5) in the absence of regime-switching parameters. To estimate the output 

gap for the nonlinear forecasting models, we use the RDSS approach or, in the case of the 

nonlinear UC models, the Kim (1994) filter, which combines the Kalman filter with Hamilton’s 

(1989) filter for Markov-switching models. For the nonlinear models, we follow Kim and Nelson 

(1999) and Sinclair (2010) by assuming the “normal” regime 

€ 

i∗ = 0, which corresponds to an 

assumption that the cycle is mean zero in expansions. 

Finally, the MAOG is calculated as follows:  

 ct = ci,t Pr Mi( )
i=1

N

∑ , (12) 

where i indexes the N models under consideration, 

€ 

ci,t  is the estimated output gap for model i, 

€ 

Mi is an indicator for model i, and Pr Mi( )  denotes the weight placed on model i. As discussed 

in footnote 11, we place equal weights on linear and nonlinear classes of models and divide those 

equal weights up evenly amongst the models within the classes. Given 13 linear models (five 

linear AR models with two types of errors and three linear UC models) and 14 nonlinear models 

(two nonlinear AR models with three BB specifications and two types of errors and two 

nonlinear UC models), the weight on each linear model is 3.9% and the weight on each nonlinear 

model is 3.6%. 
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Table 1 

Structural Breaks in Long-Run Growth Rates of Real GDP 
 Sample Period Break Dates Sequence of 

Growth Regimes 
United States 1947Q2-2016Q1 1973Q1, 2000Q3 H, M, L 

Australia 1959Q4-2015Q4 - - 
Canada 1960Q2-2015Q4 1974Q2 H, L 
France 1949Q2-2016Q1 1974Q2 H,L 

Germany 1960Q2-2016Q1 1973Q1,1991Q2 H,M,L 
Italy 1960Q2-2016Q1 1974Q1 H, L 
Japan 1955Q2-2016Q1 1973Q1,1991Q3 H,M,L 
Korea 1970Q2-2016Q1 1997Q3 H,L 

New Zealand 1977Q2-2016Q1 - - 
United Kingdom 1955Q2-2016Q1 1973Q2 H,L 

Notes: Estimated break dates are based on Bai and Perron’s (1998, 2003) sequential procedure. 
Breaks are significant at least at 10% level. “H”, “M”, “L” denote high, medium, and low mean 

growth regimes, respectively. 
 
 

Table 2 
Correlation with Subsequent 4-Quarter Output Growth  

 Sample Period AR(1) Model  
Output Gap 

UC-HP Model  
Output Gap 

Model-Avg. 
Output Gap 

United States 1947Q2-2015Q1 -0.15 0.08 -0.38 
Australia 1959Q1-2014Q4 -0.04 -0.01 -0.27 
Canada 1960Q1-2014Q4 -0.16 -0.18 -0.27 
Germany 1960Q1-2015Q1 -0.07 -0.001 -0.08 
France 1949Q1-2015Q1 -0.11 0.13 -0.18 
Italy 1960Q1-2015Q1 -0.18 0.03 -0.33 
Japan 1955Q2-2015Q1 0.02 0.05 -0.14 
Korea 1970Q2-2015Q1 -0.04 -0.03 -0.20 
New Zealand 1977Q3-2015Q1 0.03 0.04 -0.22 
United Kingdom 1955Q2-2015Q1 0.21 -0.22  -0.35 

Note: Bold denotes the most negative correlation for each economy. 
 
 
 
 
 
 
 

 
 
 
 



29	
	

 
Table 3 

Correlation with Subsequent 4-Quarter Change in Inflation 
 Sample Period AR(1) Model 

Output Gap 
UC-HP Model 

Output Gap 
Model-Avg. 
Output Gap 

United States 1960Q1-2015Q1 -0.11 0.32 0.46 
Australia 1959Q4-2014Q4 0.20 0.35 0.38 
Canada 1960Q1-2014Q4 -0.25 0.44 0.35 

Germany 1963Q1-2015Q1 -0.21 0.49 0.04 
France 1971Q1-2015Q1 -0.17 0.11 -0.05 
Italy 1961Q1-2015Q1 -0.26 0.19 -0.29 
Japan 1961Q2-2015Q1 0.22 0.29 0.33 
Korea 1970Q2-2015Q1 -0.12 0.31 0.33 

New Zealand 1977Q3-2015Q1 -0.32 0.39 0.25 
United Kingdom 1957Q4-2015Q1 -0.14 0.22 0.08 

Note: Bold denotes the most positive correlation for each economy. 
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Table 4 
Tests For Markov-Switching Models 

  Alternatives 
 Null L-shaped U-shaped Depth  

United States AR(2) 0.151 
(0.409) 
1.213 

2.516 
(0.166) 
4.272 

8.401 
(0.055) 
9.243 

 AR(2)-t 0.307 
(0.164) 
0.721 

1.373 
(0.161) 
2.797 

9.554 
(0.035) 
9.022 

Australia AR(2) 0.880 
(0.116) 
1.833 

0.197 
(0.688) 
3.270 

14.826 
(0.005) 
9.218 

 AR(2)-t 0.637 
(0.070) 
0.904 

0.020 
0.999 
2.814 

10.686 
(0.045) 
9.195 

Canada AR(2) 0.003 
(0.989) 
0.932 

1.914 
0.221 
3.516 

24.122 
(0.000) 
9.224 

 AR(2)-t 0.003 
(0.689) 
0.932 

1.914 
(0.221) 
3.516 

17.825 
(0.000) 
9.575 

Germany AR(2) 0.974 
(0.210) 
1.109 

3.688 
(0.030) 
3.376 

59.000 
(0.000) 
8.846 

 AR(2)-t 0.030 
(0.437) 
0.885 

6.250 
(0.000) 
2.2886 

108.344 
(0.000) 
10.756 

France AR(2) 0.001 
(1.000) 
1.223 

1.220 
(0.432) 
3.915 

2.803 
(0.825) 
27.829 

 AR(2)-t 0.000 
(1.000) 
1.507 

0.673 
(0.236) 
2.458 

50.794 
(0.000) 
9.826 

Italy AR(2) 1.962 
(0.035) 
1.736 

1.065 
(0.452) 
4.641 

1.827 
(0.800) 
10.903 

 AR(2)-t 0.057 
(0.462) 
1.356 

1.171 
(0.201) 
2.255 

0.473 
(0.960) 
10.732 

Japan AR(2) 0.492 
(0.146) 
1.353 

2.752 
(0.121) 
4.177 

36.310 
(0.081) 
54.323 

 AR(2)-t 3.774 
0.000 
1.315 

2.527 
(0.040) 
2.397 

15.378 
(0.011) 
10.137 

Korea AR(2) 0.027 
(0.389) 
1.172 

0.369 
(0.382) 
2.251 

17.964 
(0.290) 
27.062 

 AR(2)-t 0.026 
(0.527) 
1.449 

0.0940 
(0.537) 
3.896 

2.079 
(0.825) 
11.332 

New Zealand AR(2) 1.231 
(0.085) 
1.458 

0.138 
(0.758) 
4.036 

6.198 
(0.265) 
11.115 

 AR(2)-t 1.235 
(0.030) 
0.917 

0.206 
(0.462) 
2.157 

2.974 
(0.570) 
10.055 

 
United Kingdom AR(2) 0.001 

(1.000) 
1.158 

2.969 
(0.075) 
3.399 

16.000 
(0.002) 
9.914 

 AR(2)-t 0.001 
(1.000) 
0.993 

0.065 
(0.708) 
2.440 

6.592 
(0.260) 
11.464 

 
The test statistics for the L-shaped and U-shaped Recessions are based on Carrasco et al. (2014) The test statistics for the depth-based recovery 

alternatives are based on estimation using a grid for the continuous probabilities. All p-values and critical values are based on parametric 

bootstrap experiments with 499 simulations. All tests accounted for structural breaks in the long-run growth rate. 
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Table 5 

Unit Root and Stationarity Tests 
 

  Test 
 Adjustment for structural breaks  ADF 

(asymptotic p-
value) 

DF 
ERS* 

LMC 
(bootstrapped p-

value) 

KPSS 
(bootstrapped p-

value) 

MPS 
(bootstrapped p-

value) 
US 1973Q1,2000Q3 -3.201 

(0.085) 
8.903 0.085 

(0.362) 
0.163 

(0.182) 
1.634 

(0.065) 
AU None 

 
-1.834 
(0.363) 

3.209 2.088 
(0.330) 

0.211 
(0545) 

10.876 
(0.015) 

CA 1974Q2 
 

-2.289 
(0.438) 

2.404 3.411 
(0.010) 

0.378 
(0.116) 

3.698 
(0.201) 

FRA 1974Q2 
 

-1.585 
(0.796) 

2.575 1.897 
(0.377) 

0.186 
(0.683) 

7.835 
(0.000) 

DEU 1973Q1,1991Q2 
 

-2.696 
(0.239) 

2.889 2.564 
(0.025) 

0.274 
(0.055) 

12.440 
(0.000) 

IT 1974Q1 
 

0.525 
(0.993) 

2.686 1.502 
(0.151) 

0.318 
(0.729) 

3.080 
(0.101) 

JP 1973Q1,1991Q3 
 

-3.147 
(0.098) 

2.461 0.063 
(0.603) 

0.152 
(0.357) 

0.030 
(0.537) 

KR 1997Q3 
 

-3.055 
(0.120) 

3.078 0.071 
(0.839) 

0.574 
(0.386) 

0.430 
(0.307) 

NZ None 
 

-2.618 
(0.273) 

4.072 1.573 
(0.261) 

0.182 
(0.407) 

6.432 
(0.100) 

UK 1973Q2 -2.448 
(0.353) 

2.981 1.225 
(0.256) 

0.139 
(0.708) 

12.294 
(0.005) 

 
The 5% asymptotic critical value for the DF-ERS unit root tests is -1.941. We also performed unit root and stationarity tests that allowed for 
structural breaks in the variance, and unit root tests that did not allow for structural breaks in the long-term drift. The results for the different 
specifications that allow for breaks in the variance and specifications that do not allow for structural breaks in means are available upon request. 
Allowing for structural breaks in the variance did not alter the p-values of any of the tests substantially. 
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Table 6 
Correlation with the Unemployment Rate  

 Sample Period AR(1) Model 
Output Gap 

UC-HP Model 
Output Gap 

Model-Avg. 
Output Gap 

United States 1948Q1-2016Q1 0.05 -0.14 -0.64 
Australia 1978Q1-2015Q4 0.06 -0.01 -0.43 
Canada 1960Q1-2015Q4 -0.01 -0.02 -0.34 
Germany 1991Q1-2016Q1 -0.03 -0.11 -0.24 
France 1978Q1-2016Q1 -0.01 0.05 -0.25 
Italy 1983Q1-2016Q1 -0.07 0.27 -0.20 
Japan 1955Q3-2016Q1 0.02 -0.05 -0.06 
Korea 1990Q1-2016Q1 -0.21 0.08 -0.69 
New Zealand 1977Q3-2016Q1 0.00 0.19 -0.47 
United Kingdom 1983Q1-2016Q1 -0.16 0.20 -0.44 

Note: Bold denotes the most negative correlation for each economy. 
 
 
 
 
 
 
 

Table 7 
Correlation with Capacity Utilization  

 Sample Period AR(1) Model 
Output Gap 

UC-HP Model 
Output Gap 

Model-Avg. 
Output Gap 

United States 1967Q1-2016Q1 -0.08 0.27 0.49 
Australia 1989Q3-2016Q4 0.14 0.39 0.65 
Canada 1987Q1-2015Q4 -0.47 0.54 0.76 
Germany 1960Q1-2016Q1 -0.19 0.64 0.37 
France 1976Q1-2016Q1 -0.20 0.33 0.71 
Italy 1968Q4-2016Q1 -0.21 0.47 0.03 
Japan 1978Q1-2016Q1 0.17 0.39 0.53 
Korea 1980Q1-2016Q1 -0.26 0.37 0.74 
New Zealand 1977Q3-2016Q1 -0.25 0.28 0.57 
United Kingdom 1985Q1-2015Q1 -0.26 0.56 0.45  

Note: Bold denotes the most positive correlation for each economy. 
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The pairwise correlations in each case are based on the shorter available sample period in Table 1.	

	
	

Table 8a 
Correlation Between Model Averaged Output Gaps 

Longest Available Sample (Full Sample) 
 US AU CA DEU FRA IT JP KR NZ UK 
US •          
AU 0.451 •         
CA 0.660 0.628 •        
DEU 0.297 0.040 0.033 •       
FRA 0.074 0.033 0.232 0.115 •      
IT 0.193 0.066 0.117 0.229 0.374 •     
JP 0.468 0.128 0.314 0.314 0.384 0.137 •    
KR 0.317 -0.082 0.006 0.313 -0.010 -0.017 0.203 •   
NZ 0.254 0.530 0.282 0.003 -0.174 0.201 0.098 0.034 •  
UK 0.283 0.144 0.400 0.219 0.451 0.101 0.493 0.043 0.033 • 

Table 8b 
Correlation Between Model Averaged Output Gaps 

Before 1984 
 US AU CA DEU FRA IT JP KR NZ UK 
US •          
AU 0.354 •         
CA 0.591 0.605 •        
DEU 0.269 0.070 -0.056 •       
FRA -0.201 0.001 -0.111 -0.188 •      
IT -0.010 -0.112 -0.131 0.047 0.209 •     
JP 0.357 0.141 0.093 0.153 -0.239 -0.136 •    
KR 0.218 -0.196 -0.197 0.349 -0.416 -0.352 -0.123 •   
NZ -0.123 0.499 0.191 0.294 0.151 0.293 0.335 -0.524 •  
UK 0.232 0.195 0.070 0.356 0.152 -0.045 0.331 -0.024 -0.029 • 

Table 8c  
Correlation Between Model Averaged Output Gaps 

1984Q1-2016Q1 
 US AU CA DEU FRA IT JP KR NZ UK 
US •          
AU 0.532 •         
CA 0.796 0.686 •        
DEU 0.167 -0.210 0.018 •       
FRA 0.514 0.048 0.431 0.331 •      
IT 0.292 0.056 0.194 0.239 0.560 •     
JP 0.731 0.117 0.446 0.441 0.657 0.316 •    
KR 0.175 -0.135 0.082 0.106 0.133 -0.042 0.328 •   
NZ 0.288 0.485 0.291 0.049 -0.253 0.016 0.060 0.188 •  
UK 0.657 0.239 0.680 0.293 0.595 0.378 0.614 0.090 0.046 • 
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Notes: Results are based on pairwise Granger Causality tests with 2 lags of quarterly data. A checkmark denotes that the output gap in the row 

economy “causes” the output gap in the column economy. One checkmark denotes significance at the 10% level, two checkmarks denote 

significance at the 5% level, and three checkmarks denote significance at the 1% level. See the data description in the text for details on economy 

abbreviations. The pairwise regressions in each case are based on the shorter available sample period in Table 1. 

Table 9a 
Granger Causality Tests for Model-Averaged Output Gaps 

Longest Available Sample (Full Sample) 
 US AU CA DEU FRA IT JP KR NZ UK 
US • üüü üüü      ü üüü 
AU  •       üüü  
CA üüü üüü •  üüü    üüü üü 
DEU    • üü üü  üüü   
FRA ü    •  üü    
IT     üü •     
JP üü   ü üüü üü •   üüü 
KR ü       •   
NZ  üü       •  
UK     üüü   üü  • 

Table 9b  
Granger Causality Tests for Model-Averaged Output Gaps 

Before 1984 
 US AU CA DEU FRA IT JP KR NZ UK 
US • üüü üüü      ü ü 
AU  • ü      üüü  
CA  üüü •      ü  
DEU    •    üüü   
FRA     •  üü    
IT      •     
JP  ü     •   üü 
KR        •   
NZ  üü       •  
UK          • 

Table 9c 
Granger Causality Tests for Model-Averaged Output Gaps 

1984Q1-2016Q1 
 US AU CA DEU FRA IT JP KR NZ UK 
US • üüü üüü  üüü üü    üüü 
AU  • ü  üü    üüü ü 
CA üüü üüü •  üüü üüü    üüü 
DEU ü   • üü üü  üü   
FRA ü    • üüü     
IT   üüü  üüü •     
JP üüü  üüü  üüü üüü •   üüü 
KR     ü   •   
NZ  üü       •  
UK 

üüü ü üüü  üüü üüü    • 
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Table A.1 

Summary of Data and Data Sources 

Economy Gross Domestic 
Product 

Inflation Unemployment Capacity 

United States Quarterly, real, 
SAGDPC1 FRED 

Quarterly, SA 
JCXFE FRED 

Monthly, SA 
UNRATE FRED 

Monthly, SA 
TCU FRED 

AU Quarterly, real, SA 
OECD LNBRQSA 
(ABS) 

Quarterly, SA 
OECD 
 

Monthly, SA 
GLFSURSA, ABS 

Monthly, SA 
National bank survey 
NAB Data  

CA Quarterly, real SA 
OECD VOBARSA 

CPI, CPI Core 
Monthly (SA, NSA) 
 StatCan 

Monthly, SA 
OECD MEI  
 

Quarterly, SA 
StatCan (NAICS) 
Series Code 029-002 

DEU Quarterly, Real, SA 
OECD LBRQRSA 

CPI, CPI Core 
Monthly (SA, NSA) 
OECD MEI 

Monthly, SA 
OECD MEI 

Quarterly, SA 
OECD MEI 

FRA Quarterly, real, SA 
OECD LBRQRSA 

CPI, CPI Core 
Monthly (SA, NSA) 
OECD MEI 

Monthly, SA 
OECD MEI 

Quarterly, SA 
OECD MEI 

IT Quarterly, real, SA 
OECD VOBARSA 

CPI, CPI Core 
Monthly (SA, NSA) 
OECD MEI 

Monthly, SA 
OECD MEI 

Quarterly, SA 
OECD MEI 

JP Quarterly, Real, 
NSA 
Cabinet Office 

CPI, CPI Core 
Monthly, NSA 
OECD MEI 

Monthly, SA 
Cabinet Office 

Quarterly, SA 
Japan Ministry of 
Economy 

KR Quarterly, Real, SA 

OECD VOBARSA 

CPI, CPI Core 
(NSA, SA) 

Monthly, SA 

OECD MEI 

Quarterly, SA 

KOSTAT 

UK Quarterly, Real, SA 

OECD VOBARSA 

CPI, CPI Core, SA 

OECD MEI 

Monthly, SA 

OECD MEI 

Quarterly, SA 

Office of National 
Statistics (Business 
Tendency Survey) 

All monthly series were converted to quarterly frequency using arithmetic averages. The series that were not seasonally adjusted by the source 

were seasonally adjusted using the X12 filter. To facilitate comparison with previous studies, we had a preference for OECD VOBARSA GDP 

series, except when an alternative measure was available for a much longer sample. In all cases when we used a series other than the VOBARSA 

measure, the correlation with the VOBARSA measure for the overlapping sample periods was above 0.97. Similarly, we had a preference for the 

OECD Main Economic Indicator (MEI) harmonized unemployment rate, except when an alternative measure was available for a much longer 

sample. In the case of the US, the FRED series match the preferred OECD measures. 
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Table A.2 
Structural Break Tests 

Economy Number of 
breaks 

Break Dates  
(Test Statistics and significance 

level) 
US 1 (2) 2000Q3 

(19.10***) 
1973Q1 
(6.88) 

p-value =0.13 
Australia 0 - 
Canada 1 1974Q2 

(20.278***) 
France 1 1974Q2 

(65.82***) 
Germany 1 (2) 1973Q2 

(15.871***) 
 

1991Q2 
(4.95) 

p-value=0.11 
Italy 1 1974Q1 

(48.127***) 
Japan 2 1973Q2 

(131.695***) 
 

1991Q3 
(19.87***) 

Korea 1 1997Q3 
(26.07***) 

New 
Zealand 

0 - 

UK 0 (1) 1973Q1 
(6.07) 

p-value=0.15 
 

Note: The table reports the results of the Bai-Perron (1998,2003) sequential test. We consider trimming of 15% of the sample from its 

end points and between breaks for admissible break dates. The table reports the number of breaks, the test statistics and the 

significance level (with three stars corresponding to significance at the 1% level, two starts corresponding to significance at the 5% 

level, and one star corresponding to significance at the 10% level). In the cases when the Bai-Perron test selected a smaller number of 

breaks than the number of breaks commonly imposed in the literature, we list the maximum number of breaks we considered in 

parenthesis, and the p-value for the additional break dates below the test statistics. 
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Table A.3 
Prior Distributions for Model Parameters 

 Parameter Description Model(s) Prior 

µ  Unconditional mean 
growth 

All except  
UC-HP and BB N (1,32 )  

γ0  Growth in expansion 
regime BB N (2.5,32 )  

−γ1  Impact of other regime BB Gamma(15
2
, 5
2
)  

λ  Bounceback coefficient BB N (0, 0.252 )  

−τ  Mean of transitory shocks 
in other regime UC-FP Gamma(15

2
, 5
2
)  

φ j  AR parameter at lag j All except  
UC-HP 

TN (0, (0.25 j)2 ) z>1,φ (z)=0!" #$
 

p00  Expansion regime 
continuation probability 

BB,  
UC-FP 

Beta(1, 20)  

p11  Other regime continuation 
probability 

BB,  
UC-FP 

Beta(5,15)  

ν  Degree of freedom for 
Student t errors 

All except  
UC  Gamma(1

2
, 0.1
2
)  

1
σ e

, 1
ση

, 1
σω

 Precision for independent 
shocks 

All except  
UCUR and UCUR-FP Gamma(5

2
, 2
2
)  

Σηω
−1  Precision for correlated 

shocks UCUR and UCUR-FP Wishart(5, 2× I2 )  
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Fig. 1 – Output gaps based on competing models of US real GDP (NBER recessions shaded) 
 
Note: The output gap for an AR(1) model for 1947Q2-2016Q1 is in blue and the output gap for a UC-HP model for 
the corresponding sample period is in red.  
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Fig. 2 – Output gaps based on competing models of real GDP for selected industrialized 

economies 
 
Notes: From the top left and by row, the economies are Australia, Canada, Germany, France, Italy, Japan, Korea, 
New Zealand, and the UK. The output gap for an AR(1) model is in blue (left axes) and the output gap for a UC-HP 
model is in red (right axes). The horizontal axis runs from 1947Q2-2016Q1. See Table 1 for details of the available 
sample period for each economy. 
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Fig. 3 – Model-averaged output gap for US real GDP for different weighting schemes, estimation 

methods, and sample periods (NBER recessions shaded) 
 
Note: The model-averaged output gap for the 1947Q2-2016Q1 sample based on equal weights and Bayesian 
estimation is in blue, the model-averaged output gap for the vintage 1947Q2-2006Q4 sample from Morley and Piger 
(2012) based on BMA weights and MLE is in red, and the model-averaged output gap for the 1947-2016Q1 sample  
based  on BMA weights and MLE is in green. 
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Fig. 4 – Model-averaged output gaps for a simulated random walk 
 

Note: The model-averaged output gap for a simulated random walk of a sample length corresponding to the length 
of the observed sample for U.S. GDP is in blue and the output gap for a UC-HP model for the same simulated 

random walk is in red. 
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Fig. 5 – Model-averaged output gap for US real GDP with and without structural break in long-
run growth (NBER recessions shaded) 
 
Note: The model-averaged output gap for US real GDP for 1947Q2-2016Q1 allowing for structural breaks in long-
run growth in 1973Q1 and 2000Q3 is in blue, the model-averaged output gap for US real GDP for the corresponding 
period assuming a break in 2000Q3 only is in red, the model-averaged output gap for US real GDP for the 
corresponding period assuming a structural break in 1973Q1 only is in green, and the  model-averaged output gap 
for US real GDP for the corresponding sample period, but assuming no structural breaks is in black. 
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Fig. 6 – Estimated trend in US real GDP based on model-averaged output gap (NBER recessions 
shaded) 
 
Note: The trend estimate is calculated as the difference between 100 times log US real GDP and the US model-
averaged output gap for 1947Q2-2016Q1. 
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Fig. 7 – Model-averaged output gap for US real GDP and other measures of economic slack 
(NBER recessions shaded) 
 
Notes: In the top panel, the model-averaged output gap for US real GDP for 1948Q1-2016Q1 is in blue and the 
unemployment rate for the corresponding sample period is in red. In the bottom panel, the model-averaged output 
gap for US real GDP for 1967Q1-2016Q1 is in blue and capacity utilization for the corresponding sample period is 
in red. 
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Fig. 8 – Model-averaged output gaps for real GDP from selected industrialized economies 
 
Notes: From the top left and by row, the economies are Australia, Canada, Germany, France, Italy, Japan, Korea, 
New Zealand, and the United Kingdom. The horizontal axis runs from 1947Q2-2016Q1. See Table 1 for details of 
the available sample period for each economy. 
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Fig. 9 – US Phillips Curve based on model-averaged output gap 
 
Note: The scatterplot is for the sample period of 1960Q1-2015Q1 based on availability of the core PCE deflator 
measure of US inflation. 
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Fig. 10 –Phillips Curves based on model-averaged output gaps for selected industrialized 
economies 
 
Notes: From the top left and by row, the economies are Australia, Canada, Germany, France, Italy, Japan, Korea, 
New Zealand, and the United Kingdom. See Table 3 for details of the sample period for each economy and the data 
description in the text for the corresponding inflation measure. 
 


