
Chapter 5
Testing for a Markov-Switching Mean in Serially
Correlated Data

James Morley and Zohra Rabah

Abstract When testing for Markov switching in mean or intercept of an au-
toregressive process, it is important to allow for serial correlation under the null
hypothesis of linearity. Otherwise, a rejection of linearity could merely reflect
misspecification of the persistence properties of the data, rather than any inherent
nonlinearity. However, Monte Carlo analysis reveals that the Carrasco, Hu, and
Ploberger (Optimal test for Markov Switching parameters, conditionally accepted
at Econometrica, 2012) test for Markov switching has low power for empirically
relevant data-generating processes when allowing for serial correlation under the
null. By contrast, a parametric bootstrap likelihood ratio test of Markov switching
has higher power in the same setting. Correspondingly, the bootstrap likelihood ratio
test provides stronger support for a Markov-switching mean in an application to an
autoregressive model of quarterly US real GDP growth.

Keywords Nonlinearity tests • Autoregressive processes • Markov switching •
Parametric bootstrap • Real GDP dynamics

5.1 Introduction

Many macroeconomic time series such as the quarterly growth rate of US real GDP
display positive serial correlation. An important question is what role nonlinear
dynamics play in generating this persistence in the data. For example, estimates
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for the Markov-switching model of Hamilton (1989) suggest that much of the
persistence in output growth is due to discrete changes in the mean growth rate
that correspond to expansion and recession phases of the business cycle, rather than
gradual changes in the conditional mean according to a simple linear time series
process.

Formal tests of Markov switching are hindered by the presence of nuisance
parameters that are only identified under the alternative hypothesis and by the
problem of identically zero scores at the null hypothesis (see Hansen, 1992).
However, Carrasco, Hu, and Ploberger (2012) (CHP hereafter) have recently
proposed an information-matrix-based test that addresses these problems. The CHP
test has been applied to macroeconomic data by Hamilton (2005) and Morley and
Piger (2012), amongst others. Meanwhile, Kim, Morley, and Piger (2005) and
Morley and Piger (2012) have considered a parametric bootstrap likelihood ratio
(BLR) test of Markov switching. Di Sanzo (2009) conducts Monte Carlo analysis
of tests for Markov switching and finds that a related semi-parametric BLR test
has much higher power than the CHP test for some basic data-generating processes
(DGPs), although the full theoretical justification for the BLR test remains to be
established.

In this paper, we argue that, regardless of which test for Markov switching is
being applied, it is crucial to allow for serial correlation under the null hypothesis of
linearity when considering the alternative hypothesis of a Markov-switching mean
for a stationary time series process. In particular, a Markov-switching mean implies
autoregressive dynamics, albeit with highly nonstandard errors. Thus, any apparent
evidence for Markov switching may just reflect the ability of the model under the
alternative hypothesis to proxy for serial correlation omitted from the model under
the null hypothesis of linearity. Specifically, tests for nonlinearity are based on a
composite null hypothesis of linear dynamics and a particular model specification.
To the extent that a Markov-switching mean is even considered in the first place,
there is likely to be serial correlation in the data. Therefore, it is important to allow
for serial correlation under the null hypothesis.

The point about the importance of allowing for serial correlation under the null
hypothesis when testing for nonlinearity is straightforward enough. But it has the
surprising and notable consequence that the CHP test discussed above can have
very low power to detect nonlinearity in empirically relevant settings. Similar to
Di Sanzo (2009), we employ Monte Carlo analysis to consider the small sample
properties of the CHP test and find that it does not perform well in detecting Markov
switching in mean or intercept of an autoregressive process when allowing for
serial correlation under the null hypothesis. By contrast, the parametric BLR test
considered in Kim, Morley, and Piger (2005) and Morley and Piger (2012) retains
considerable power in this setting. We use these results to explain some previous
findings in the empirical literature. Then we apply the tests to quarterly US real GDP
growth and, corresponding to the Monte Carlo analysis, we find stronger support for
nonlinearity based on the BLR test than the CHP test when taking serial correlation
into account under the linear null hypothesis.
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5.2 Markov-Switching Models in Mean

In this section, we discuss two variants of Markov-switching models. The first
specification is the popular model of Hamilton (1989), denoted as MSM-AR, which
allows the mean of an autoregressive process to switch between regimes. The second
model is denoted as MSI-AR, which allows the intercept of an autoregressive
process to switch between regimes. See Krolzig (1997) for a full discussion of this
subclass of models. For simplicity, we focus our discussion on the particular case of
specifications with two regimes and an autoregressive order of one.

5.2.1 The MSM(2)-AR(1) Model

Let xt denote a stationary time series such as the first difference of log real GDP.
An MSM(2)-AR(1) model is given by

xt D �t C �.xt�1 � �t�1/ C et ; (5.1)

where et QNID.0; �2
e /. The time-varying mean �t is allowed to switch between

regimes as follows:

�t D �0 C �1St (5.2)

with St D f0; 1g denoting a two-state Markov-switching state variable with constant
transition probabilities Pr ŒSt D 0jSt�1 D 0� D p00 and Pr ŒSt D 1jSt�1 D 1� D
p11. The regime-dependent mean of xt is �0 if St D 0 and �0 C �1 otherwise.

Now, let �t denote the zero-mean Markov state variable such that � � St � �

where � � E.St/ D .1 � p00/=.2 � p00 � p11/ is the unconditional probability of
being in the St D 1 regime. The dynamics of the Markov chain can be expressed as

�t D 	�t�1 C vt ; (5.3)

where 	 D p00 C p11 � 1 represents the persistence parameter and vt follows a
martingale difference sequence. Consistent with positive persistence in regimes such
as expansions and recessions, we assume 	 > 0.

Given (5.1)–(5.3), the MSM-AR model can be rewritten as the sum of two
independent processes as follows:

xt � � D �1�t C zt ; (5.4)

where � is the unconditional mean of xt such that � D �0 C�1� . While the process
zt D �zt�1 C et is Gaussian, the term �1�t reflects the contribution of the Markov
process. The variances of the two terms depend on �2

e and �2
1 , respectively.
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The first thing to notice from (5.4) is that, even if the Gaussian process zt displays
no persistence (i.e., � D 0) or its variance is trivially small (i.e., �2

e

ı
�2

1 ! 0), the
time series xt will still display serial correlation due to the Markov process �t . Thus,
a necessary condition for even considering a Markov-switching mean should be that
a time series displays some serial correlation. Meanwhile, given that a time series
displays serial correlation, it is crucial to allow for serial correlation under the null
hypothesis of linearity when testing for the presence of a Markov-switching mean.
Otherwise, any apparent evidence of nonlinearity may simply reflect omitted linear
dynamics under the null hypothesis.

5.2.2 The MSI(2)-AR(1) Model

Next, we consider a first-order autoregressive process with a switching intercept.
The MSI(2)-AR(1) is given as follows:

xt D �t C �xt�1 C et : (5.5)

To simplify notation, we use the same function �t for the switching intercept
term as was used for the switching mean in the previous subsection.

Similar to before, the dynamics of an MSI(2)-AR(1) can be rewritten as follows:

xt � � D �1�t C �.xt�1 � �/ C et ; (5.6)

where �, the unconditional mean of xt , is .�0 C �1�/.1 � �/�1.
Again, even if � D 0 or �2

e

ı
�2

1 ! 0, the time series xt will display first-
order serial correlation due to the Markov process �t . So, as before, it is crucial to
allow for serial correlation under the null hypothesis of linearity when testing for a
Markov-switching intercept.

5.2.3 ARMA Representations and Forecasts

As shown by Krolzig (1997), the subclass of Markov-switching autoregressive
models given above can be represented as ARMA processes. Consider again the
MSM(2)-AR(1) model, temporarily setting the unconditional mean to zero for
simplicity and using lag notation:

.1 � �L/xt D .1 � �L/.1 � 	L/�1�1vt C et : (5.7)
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Multiplying both sides by .1 � 	L/ gives the following:

.1 � 	L/.1 � �L/xt D .1 � �L/�1vt C .1 � 	L/et ; (5.8)

which is an ARMA(2,1) process with highly nonstandard errors as long as � ¤ 	.
Otherwise, if � D 	, it is just an AR(1) process with highly nonstandard errors:

.1 � 	L/xt D �1vt C et : (5.9)

Meanwhile, consider the MSI(2)-AR(1) model in lag notation:

.1 � �L/xt D �1.1 � 	L/�1vt C et : (5.10)

Multiplying both sides with .1 � 	L/ gives the following:

.1 � 	L/.1 � �L/xt D �1vt C .1 � 	L/et ; (5.11)

which is an ARMA(2,1) process with highly nonstandard errors as long as 	 ¤ 0.
Otherwise, if 	 D 0, it is an AR(1) process with highly nonstandard errors:

.1 � �L/xt D �1vt C et : (5.12)

What this analysis reveals is that part of the reason why standard Markov-
switching models are different from a linear AR(1) model is that they have
more complicated autocorrelation structures. As shown by Krolzig (1997), the
autocorrelation function (ACF) of an MSM(2)-AR(1) process is given by


x.h/ D 	h�1�.1 � �/ C �h.1 � �2/
�1

�2
e (5.13)

for h � 0 and 
x.h/ D 
x.�h/ for h < 0. If � ¤ 0, 	 ¤ 0, and � ¤ 	, (5.13)
corresponds to the ACF of an ARMA(2,1) process. Also, consider the ACF of order
one of an MSI(2)-AR(1) model:


x.1/ D � C 	

1 C �	

x.0/ � 	

1 C �	
�2

e ; (5.14)

with 
x.0/ D 1
1��2

�
�.1 � �/ C �2

e

�
. For h > 1, the ACF can be calculated

recursively as follows:


x.h/ D .� C 	/
x.h � 1/ � �	
x.h � 2/: (5.15)

These ACFs are clearly more complicated than for an AR(1) model, where


x.h/ D �h.1 � �2/
�1

�2
e : (5.16)
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They are also different from each other, with the ACF for the switching intercept
model being the most complicated.

To be more concrete about the differences between the models, it is illustrative
to consider their implied point forecasts. Following Krolzig (2000), the MSM(2)-
AR(1) optimal h-step predictor is given by

xtChjt � � D �h.xt � �/ C �1.	
h � �h/�t jt ; (5.17)

where xtChjt D Et ŒxtCh� and �t jt D Et Œ�t �. The first term on the right-hand side
of (5.17) represents the optimal linear predictor for an AR(1) model and the second
one reflects the Markov chain prediction. The latter depends on both the magnitude
of shift �1 and on the persistence of the regimes, 	, relative to the persistence of
the Gaussian process, �. Of course, when �1 D 0 or 	 D �, the optimal prediction
rule reduces to the linear predictor. Meanwhile, the MSI(2)-AR(1) optimal h-step
predictor can be written as follows:

xtChjt � � D �h.xt � �/ C �1

 
hX

iD1

	i �h�i

!

�t jt : (5.18)

As before, the second term on the right-hand side of (5.18) reflects the nonlinear-
ity, which depends on the magnitude of the parameter change �1, on the persistence
parameters � and 	. It collapses to a linear predictor if there is no intercept change,
�1 D 0, or the regimes are not persistent, 	 D 0. Note that, as long as the persistence
of the Gaussian and Markov processes are similar, the MSI-AR model will differ
more from the linear AR model than the MSM-AR model in terms of the implied
point forecast.

The above analysis implies that it is important to test for a Markov-switching
mean rather than simply comparing out-of-sample predictive accuracy of point fore-
casts for linear and nonlinear autoregressive models. Specifically, point forecasts
may be quite similar for the linear and nonlinear models, with the linear models
having the advantage of tighter parameterization. Indeed, several studies have
reported that linear models produce better point forecasts than Markov-switching
models (see, for example, Clements and Krolzig, 1998, Clements et al., 2004,
Siliverstovs and van Dijk, 2003, and Ferrara, Marcellino, and Mogliani 2012).
Also, studies such as Dacco and Satchell (1999) and Teräsvirta (2006) show that,
even when nonlinear models such as those with Markov-switching parameters are
consistent with the DGP, a linear model can produce more accurate point forecasts
out of sample.

Density forecasts will differ more than point forecasts given the highly non-
standard distributional assumption about the errors in the ARMA representation of
the Markov-switching model versus the standard assumption underlying the nested
linear model. Indeed, this difference provides motivation for why we would care
about testing for nonlinearity in the first place given similar point forecasts between
linear and nonlinear models. Here, the literature is somewhat more supportive of
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nonlinearity (see, for example, Siliverstovs and van Dijk, 2003). However, out-
of-sample comparisons are likely to be somewhat sensitive to the holdout sample
considered, suggesting the importance of testing nonlinearity using the whole
available sample. Yet, despite the importance of testing for Markov switching when
considering serially correlated data, it turns out that the recently proposed CHP test
can have very little power to detect nonlinearity in this setting. Fortunately, the BLR
test performs much better. We turn to the issue of testing for Markov switching next.

5.3 Monte Carlo Analysis

In this section, we present the results of several Monte Carlo experiments that are
designed to compare the small sample performance of the CHP test for Markov
switching with the performance of the BLR test for Markov switching. To fully
assess the effect of allowing for serial correlation under the null hypothesis, we
also consider the case with no serial correlation for both specifications discussed in
Section 5.2 (i.e., MSM(2)-AR(0) and MSI(2)-AR(0), which are equivalent given the
AR(0) specification).

In all cases, we generate 1,000 artificial series of length T C 50 with T 2
f100; 200; 300g to assess the small sample properties of the tests. The 50 initial
observations are thrown out to minimize the effect of initial conditions. The
parameters we use are the maximum likelihood estimates (MLE) obtained by fitting
the models to the quarterly US real GDP growth rate data (measured as 100 times
the first differences of the natural logarithms of the level data) for the sample
period of 1984Q2 to 2010Q3. Then, both tests are applied to the artificial series
generated under the null and alternative hypotheses. For the CHP test, parametric
bootstrap experiments are required to compute the critical values. Thus, B D 1; 000

bootstrap samples are generated based on the MLE under the null hypothesis. For
each bootstrap sample, the MLE are calculated under the null and the statistic
is maximized numerically with respect to 	 2 .0:02; 0:98/ to capture persistent
business cycle phases. The bootstrap critical value for a nominal size ˛ can be
found by sorting the bootstrap test statistics from smallest to largest and finding
the .1 � ˛/B test statistic. For the BLR test, B D 500 experiments are conducted.
Following Kim, Morley, and Piger (2005), we address the problems of numerous
local optima and unstable estimation under the alternative in conducting simulation
experiments by considering a grid of possible values for the transition probabilities.
In what follows, all tests are evaluated for a nominal 5% significance level.

We start with the case where the DGP has no linear autoregressive dynamics and
analyze the size and power of the tests. To evaluate the rejection rates when the null
is true, the data are generated according to a linear DGP as follows:

DGP0 W xt D � C et with � D 0:681 and � D 0:607:



92 J. Morley and Z. Rabah

Table 5.1 Rejection rates, 5% nominal level

DGP0 DGPMSj0

T D 100 T D 200 T D 300 T D 100 T D 200 T D 300

BLR test 3.8 3.6 3.5 74.2 93.9 98.2
CHP test 5.1 5.0 5.7 54.1 74.1 87.6

To investigate the power of the tests, we generate the data under the alternative
hypothesis of nonlinearity. We use the following MSM(2)-AR(0) model:

DGPMSj0 W xt D �0 C �1St C et with �0 D �0:744; �1 D 1:532; p00 D 0:698;

p11 D 0:978; and � D 0:465:

Rejection rates obtained from DGP0 andDGPMSj0 are reported in Table 5.1. The
results suggest that the CHP test has an empirical size close to the nominal level,
while the BLR test is slightly undersized for each sample size. The low rejection
rates for the BLR test could be due to the coarseness of the grid search, which
serves to keep the computational burden manageable.

Both tests have a good power. However, the BLR test has a slightly higher power
than the CHP test for this DGP.

So far, both tests work well when the null is no serial correlation. Of course, it
seems unlikely that a researcher would actually consider a Markov-switching mean
if the data appear serially uncorrelated, as they would under DGP0. At the same
time, given serial correlation under DGPMSj0, a researcher might also be hesitant
to impose no serial correlation under the null hypothesis when testing for Markov
switching, as the imposed null would clearly be at odds with the apparent serial
correlation in the data.

Next, we consider the more realistic scenario of data with serial correlation under
both the null and alternative hypotheses. We explore the size and power of the tests
for both specifications already mentioned, MSM(2)-AR(1) and MSI(2)-AR(1). We
evaluate empirical size when the DGP is a linear AR(1) process in demeaned form
as follows:

DGPMj1 W xt D � C �.xt�1 � �/ C et with � D 0:663; � D 0:442; and � D 0:537;

and when the DGP is a linear AR(1) process with an intercept term given by

DGPIj1 W xt D � C �xt�1 C et with � D 0:370; � D 0:442; and � D 0:537:

To compute the empirical power, we generate the data according to the MSM(2)-
AR(1) process:
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Table 5.2 Monte Carlo size, 5% nominal level

DGPMj1 DGPIj1

T D 100 T D 200 T D 300 T D 100 T D 200 T D 300

BLR test 4.6 3.9 4.7 1.8 1.9 2.3
CHP test 5.0 2.1 1.4 6.3 5.1 3.8

Table 5.3 Monte Carlo power, 5% nominal level

DGPMSMj1 DGPMSIj1

T D 100 T D 200 T D 300 T D 100 T D 200 T D 300

BLR test 65.4 90.0 97.1 56.5 83.3 94.9
CHP test 6.3 2.7 3.0 7.2 8.5 12.4

DGPMSMj1 W xt D �0 C �1St C �.xt�1 � �0 � �1St�1/ C et

with �0 D �0:737; �1 D 1:507; � D 0:101;

p00 D 0:684; p11 D 0:979; and � D 0:458;

and the MSI(2)-AR(1) process:

DGPMSIj1 W xt D �0 C �1St C �xt�1 C et

with �0 D �0:718; �1 D 1:347; � D 0:186; p00 D 0:648;

p11 D 0:977; and � D 0:455:

We report the empirical size and power provided by the different DGPs in Tables
Table 5.2 and Table 5.3. It appears from Table 5.2 that the size is less than or close
to the nominal level for both tests. In terms of power, the results in Table 5.3 suggest
that the BLR test has a reasonable power across different specifications. Its power
increases as the sample size increases. However, the CHP test has a very little
power when the null involves autoregressive terms. It is particularly poor in the
case of a switching mean, as the power is remarkably close to the size (i.e., the
test is uninformative). Although the CHP test does better in the case of a switching
intercept, it still suffers a significant loss of power compared to the case of no serial
correlation.

As already mentioned in Section 5.2, the MSM version of the model corresponds
to an AR(1) process with highly nonstandard errors when 	 D � and the MSI
version corresponds to an AR(1) process when 	 D 0, so we might not expect
power in these cases. Note, however, that there is considerable difference in the
persistence parameter 	 and the persistence of either the autoregressive process �

or zero in the DGPs considered here. Despite this, there is little power for the CHP
test, similar to how Bessec and Bouabdallah (2005) found that different persistence
parameters did not significantly affect the forecasting performance of the Markov-
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switching models compared to a linear benchmark. By contrast, it should also be
noted that, according to the results in Di Sanzo (2009), the CHP test has much
better power when the alternative allows for Markov switching in the autoregressive
and variance parameters.

To summarize, the BLR test works well in all cases. But the CHP test only has
power when the tested null assumes no serial correlation. If instead serial correlation
is allowed for under the null, as we argue it should be when testing for Markov
switching, the CHP test is particularly poor at finding evidence of nonlinearity. In
the case of switching intercept, it has a little more power, but is still much less
powerful than the BLR test.

5.4 Discussion

The preceding analysis can be used to better understand some previous findings
in the empirical literature. Here, we consider the previously mentioned studies by
Hamilton (2005) and Morley and Piger (2012). We also discuss why these results
might be expected.

Hamilton (2005) employs the CHP test to check for Markov-switching nonlin-
earity in the US monthly unemployment rate for 1948–2004, the US short-term
commercial paper interest rate for 1957–1913, and the US 6-month Treasury
bill interest rate for 1957–2004. He is able to reject linearity in all three cases.
However, the test statistics are much larger for the interest rate series than for the
unemployment rate. One reason for the difference in the size of the test statistics
is that the AR(2) model for the interest rates assumes a Markov-switching variance
rather than a Markov-switching mean and the CHP test clearly has higher power
in the context of Markov-switching variance (again, see the Monte Carlo results
in Di Sanzo, 2009). By contrast, Hamilton considers an MSI-AR(2) model with
t-distributed errors for the unemployment rate. Given the results in the previous
section, we might expect the power to be much lower for this model, although there
appears to be such strong nonlinearity in the unemployment rate that he is still able
to reject despite the relatively low power of the CHP test in this setting. It is notable,
however, that an MSM-AR model was not considered and it is possible that the
CHP test would not have been significant for the specification given the results in
the previous section.

Morley and Piger (2012) apply the CHP test for the US quarterly real GDP from
1947 to 2006 for the alternative hypotheses of Hamilton’s (1989) model with an
MSM-AR(2) specification and Kim, Morley, and Piger’s (2005) bounceback model
with a linear AR(2) component. They consider both Gaussian and t-distributed
errors and are unable to reject linearity for the MSM-AR(2) model alternative,
consistent with the low power of the CHP test reported in the previous section. By
contrast, they are able to reject linearity for bounceback model alternative, which
represents a more fundamental departure from linearity than the basic MSM model
(for example, the point forecasts will be considerably more complicated for the
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bounceback model and much more different than the linear case than with the MSM
model). They are also able to reject linearity based on a BLR test for an alternative
bounceback model that links the strength of recovery to the depth of recession.

In terms of why the CHP test has lower power when allowing for serial
correlation under the null, one issue is that the test does not actually distinguish
between whether the time-varying mean under the alternative follows a discrete
Markov-switching process or a continuous AR(1) process with Gaussian or t-
distributed errors. This point is discussed in Section 6.1 of Carrasco, Hu, and
Ploberger (2012). By contrast, a likelihood ratio test definitely makes this distinction
in the sense that the likelihood of the alternative model will differ depending on the
specification of a Markov-switching time-varying mean or a Gaussian time-varying
mean. Then, following our analysis in Section 5.2, the CHP test really amounts
to a test of whether an AR(1) model can be rejected in favor of an ARMA(2,1)
model, with the alternative model being close to the null model in the case of an
MSM(2)-AR(1) when the time-varying mean and the deviations from it have similar
persistence (i.e., � � 	) or an MSI(2)-AR(1) model when there is little persistence
in the time-varying mean (i.e., 	 � 0). The BLR test will still have power in these
cases because the fit of the alternative models will still be better than the linear
null. Meanwhile, even when � ¤ 	 ¤ 0, the likelihood ratio test will have more
power against a Markov-switching alternative because it will take into account the
improved fit of the Markov-switching specification above and beyond any support
for more complicated dynamics than an AR(1) process.

5.5 Application

In addition to discussing some previous findings, we briefly consider an application
to the US real GDP growth for the sample period of 1984Q2 to 2010Q3, estimates
for which were used as the DGPs in the Monte Carlo analysis in Section 5.3.
The 1984Q2 start date for the sample period is designed to avoid any confusion
about whether a rejection of the linear null reflects a structural break in volatility
corresponding to the “Great Moderation” (see, for example, Kim and Nelson, 1999)
rather than a Markov-switching mean growth rate. Additionally, the short sample
makes it particularly important to consider a test with reasonable power. The test
results for the BLR and CHP tests are reported in Table 5.4.

As with the Monte Carlo analysis, we begin with the AR(0) null and an MS(2)-
AR(0) alternative. In this case, we can strongly reject the null of linearity for both
tests. However, it is not clear that the rejection of the AR(0) null actually reflects
the presence of nonlinearity or whether it reflects serial correlation in the data. If
we consider an AR(1) model, the autoregressive coefficient is 0.44, with a t-statistic
of 5.09. Thus, it is not surprising that the AR(0) model is rejected, regardless of
whether there are actually nonlinear dynamics.

When we consider the more realistic AR(1) linear null, we continue to reject
linearity when considering the BLR test. Meanwhile, the evidence is not as strong

http://dx.doi.org/10.1007/978-1-4614-8060-0_6#Sec00061
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Table 5.4 Tests for Markov-switching mean in the US real GDP growth (1984Q2–2010Q3)

AR(0)/MS(2)-AR(0) BLR statistic D 32.75 CHP statisticD20.63
1% 5% 1% 5%

Critical value 10.38 7.10 7.04 3.43

AR(1)/MSM(2)-AR(1) BLR statistic D 11.57 CHP statistic D 7.25 (p-value D 0.12)
1% 5% 1% 5%

Critical value 12.03 7.99 16.22 10.88

AR(1)/MSI(2)-AR(1) BLR statistic D 13.27 CHP statistic D 5.45
1% 5% 1% 5%

Critical value 11.74 8.53 8.14 4.73

for the CHP test, including a failure to reject at the conventional 5% level for the
MSM(2)-AR(1) alternative. These results are consistent with the power properties
of the CHP test discussed above. In particular, it appears that the persistence of the
Markov-switching mean is reasonably high (estimated to be around 0.66) and at
least somewhat closer to the persistence of the deviations from the mean (estimated
to be around 0.11–0.18) than to zero. Thus, we would expect the CHP test based
on the MSI(2)-AR(1) alternative to have higher power than the test based on the
MSM(2)-AR(1) alternative.

Based on these results, we conclude that there is support for nonlinearity in the
form of a Markov-switching mean in the US real GDP, with the powerful BLR
test providing the strongest support. Meanwhile, it should be mentioned that an
AR(1) model may still be insufficient to capture the serial correlation properties of
the data under the null hypothesis given statistical significance of the AR(2) and
AR(3) coefficients for this particular sample period. However, even for an AR(4)
model that has no apparent serial correlation in the residuals, we can still reject the
MSI(2)-AR(4) alternative at the 5% level when considering the BLR test, but not
for the CHP test. Meanwhile, we cannot reject the MSM(2)-AR(4) alternative with
either test, but the significance level is still much higher for the BLR test than it is
for the CHP test.

5.6 Conclusion

When testing for Markov switching in mean for an autoregressive process, it is
important to allow for serial correlation under the null hypothesis of linearity to
make sure that the power of a test actually reflects nonlinearity rather than a severe
misspecification of the persistence properties of the data. However, when allowing
for serial correlation under the linear null, we find that the Carrasco, Hu, and
Ploberger (2012) test has very little power to detect nonlinearity in small samples for
empirically relevant DGPs. By contrast, a parametric BLR test displays considerable
power in this setting. The power properties are related to the fact that the BLR test
takes into account the entire fit of a model, while the CHP test is related more
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narrowly to deviations from the autocorrelation structure implied by the null model.
These properties are confirmed in an empirical application that rejects linearity for
US real GDP growth with the BLR test, but not with the CHP test. Given these
properties, we recommend empirical researchers consider the BLR test when testing
for Markov switching in mean for autoregressive processes, although we note that
further work needs to be done on the full theoretical justification for this test.
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