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Background 
• Increasingly available transaction level data (e.g. supermarket 

scanner data) provides huge opportunities for national statistical 
offices.  
 

• CPI construction can move to theoretically preferred methods that 
use more information: 

– Actual transaction prices, rather than shelf prices 
– Information on quantities purchased at those prices  
 

• Can also help with more timely production of the CPI (more 
automation) 
 

• More accurate and timely information can help better inform policy 
 

• Big advantages from using such Big Data, but can be problems:  
• High frequency data can be very volatile 
• Standard bilateral index number theory can break down 



Volatility in Prices and Quantities Sold 



Chain Drift Bias 
Ivancic, Diewert and Fox (2011), J. of Econometrics 



• Ivancic, Diewert and Fox (2009)(2011) proposed using 
multilateral index numbers with transaction level data in 
order to avoid chain drift bias. 
 

• Multilateral indexes were developed for use in cross-country 
comparisons (e.g. ICP, Penn World Table).  
 

• Multilateral methods now used in the CPIs of The 
Netherlands, New Zealand and Australia. Belgium to 
implement the same method as the ABS from next year. 
 

• Australia: From the December 2017 quarter.  
• ABS (2017), “An implementation plan to maximise the use of 

transactions data in the CPI,” Information Paper 6401.0.60.004, 
Australian Bureau of Statistics, Canberra. 

http://www.abs.gov.au/ausstats/abs@.nsf/lookup/6401.0Media%20
Release1Dec%202017 
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Background 
 
 

 
“The international price statistics community has reached a 
consensus that multilateral methods are the most effective way 
to exploit the full amount of information provided in 
transactions datasets.” 

 
David Kalisch, The Australian Statistician (Head of ABS) 

 Preface to “An implementation plan to maximise the use of transactions data in the 
CPI,” Information Paper 6401.0.60.004, 2017, Australian Bureau of Statistics, 
Canberra.  

 
 

 
 

 
 



Our paper 
• Consensus on two key issues has yet to be achieved: 

1. The best multilateral method to use. 
2. The best way of extending the resulting series when new 

observations become available. 
 

• Present theoretical and simulation evidence on the extent of 
substitution biases from using alternative multilateral methods. 

 

• Examine GEKS, CCDI, Geary-Khamis, Weighted Time Product 
Dummy multilateral methods. 
 

• Examine alternative extension methods: movement splice, full 
window splice, half splice, similarity linking. 
 

• Also propose a new method, the “mean splice”. 
 

• Results suggest the use of the CCDI (or “GEKS-Törnqvist”) 
multilateral index used in combination with the mean splice. 



The Chain Drift Problem 
  

Circularity Test: P(p0,p1,q0,q1) P(p1,p2,q1,q2) = P(p0,p2,q0,q2). 
 
Multilateral indexes (for e.g. comparisons across countries) satisfy 
this test, but standard bilateral indexes do not. 
 
Consider this related test: 
 
Multiperiod Identity Test:  P(p0,p1,q0,q1)P(p1,p2,q1,q2)P(p2,p0,q2,q0)  = 1 
 
That is, if the prices in the third period revert back to period 0 prices, 
the product of all price changes should equal unity. 
 
Chain drift occurs when an index does not return to unity when prices 
in the current period return to their levels in the base period. 
 



The Chain Drift Problem 
  

There are at least three possible solutions: 
 

1. Stick to the usual Lowe index that uses (inflation adjusted) annual 
expenditure weights from a past year → substitution bias. 
 

2. Pick a base month and use fixed base superlative indexes relative 
to the chosen month → too much weight to the chosen base. Also, 
new and disappearing goods problem. 
 

3. Use a Rolling Window multilateral index number approach adapted 
to the time series context, as suggested by IDF.  

 
Focus on solution 3.  



Multilateral Methods: GEKS 
 • Method for making international index number comparisons 

between countries (Gini 1931). 
 

• Suppose we have price and quantity information for a component of 
the CPI on a monthly basis for a sequence of 13 consecutive 
months.  
 

• Pick one month (say k) in this augmented year as the base, 
construct Fisher price indexes for all 13 months relative to this base 
month.  
 

• Denote the resulting sequence of Fisher indexes as PF(1/k), PF(2/k), 
..., PF(13/k).  
 

• The final set of GEKS indexes for the 13 months is the geometric 
mean of all 13 of the specific month indexes. 



Multilateral Methods: CCDI 
 

• Caves, Christensen and Diewert (1982, EJ), Inklaar and Diewert 
(2016, J. Econometrics) 
 

• Same idea as GEKS, but replaces the Fisher bilateral index in GEKS 
with the Törnqvist bilateral index. 
 

• Turns out to have a nice interpretation.  
o Same as if the period t prices are compared to any base 

period’s prices through an artificial “average” period.   
 
• The algebra for this alternative form of the index is much simpler 

and can be analysed more simply.  



Multilateral Methods: WTPD 
 

• Suppose that prices vary in an approximately proportional manner 
from period to period: 
 
ptn = atbnetn ;                                                    t = 1,...,T; n = 1,...,N. 

  
• The parameter at can be interpreted as the price level for period t, 

bn can be interpreted as a commodity n quality adjustment factor 
and etn is a stochastic error term with mean 1.  
 

• Taking logarithms leads to the following linear regression model: 
  

ytn = αt + βn + εtn ;                                                 t = 1,...,T; n = 1,...,N.   
  

• The αt and βn can be estimated by solving a least squares 
minimization problem. 



Multilateral Methods: WTPD 
• Rao (1995) suggested a weighted-by-economic importance version. 

 
• Using expenditure shares, in our context, yields the Weighted Time 

Product Dummy (WTPD) approach suggested by IDF (2009).  
 

• The WTPD multilateral method is recommended from the viewpoint 
of the economic approach to index number theory if: 

 
o Purchaser preferences are well approximated by Cobb-Douglas 

preferences  
→ Elasticity of substitution equal to one. 

 
o Purchaser preferences are well approximated by linear preferences  

→ Perfect substitutability.  
(We show that it is an approximately additive multilateral 
method.) 

 
 
 

 



Multilateral Methods: Geary-Khamis 
Total consumption vector over a time period “window”: 
 

𝒒 ≡  �𝒒𝒕
𝑻

𝒕=𝟏

 

where q ≡ [q1,q2,...,qN]. 
 
Equations that determine price levels and quality adjustment factors: 
 

𝑷𝒕 =
𝒑𝒕 ∙ 𝒒𝒕
𝒃 ∙ 𝒒𝒕

 

 

𝒃𝒏 = �
𝒒𝒕𝒏
𝒒𝒏

𝑻

𝒕=𝟏

𝒑𝒕𝒏
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(Normalization required for a unique solution.) 
 



Multilateral Methods: Geary-Khamis 
Period t quantity is then: 

 
   Qt = pt⋅qt/Pt = b⋅qt  
 
• So it is an additive method, consistent with linear preferences  
 
• Can also show (surprisingly) that GK is consistent with Leontief  

preferences.  
 

• To summarize: the GK method is recommended from the viewpoint of 
the economic approach to index number theory if: 
 
o Purchaser preferences are well approximated by Leontief 

preferences  
→ Elasticity of substitution equal to zero. 

o Purchaser preferences are well approximated by linear preferences  
→ Perfect substitutability. 

 
 
 
 



Rolling Windows and the Linking Problem 
 
A headline CPI cannot be revised from month to month.  
 
What to do when another period’s data becomes available? IDF (2011):  

 
• Add the data for the new period (T+1)  and drop the oldest period 

(t=1).  
 

• Calculate multilateral indexes for the new time window (t=2,…, T+1). 
 

• Choose a linking period and extend the old window. IDF used the 
most recent overlapping observation (T) → “movement splice” 
 

• The resulting indexes are called Rolling Window indexes, or for a 
thirteen month window, Rolling Year indexes.  



Rolling Windows and the Linking Problem 
• IDF noted that there are other potential extension methods. 

 
• Krsinich (2016):  Link the windows at t=2 rather than T. 

→ “window splice” 
 

 

• de Haan (2015): Link period should be near the middle of the first 
window, i.e. t = T/2, or t = (T+1)/2 if T is odd.  
→ “half splice” 

 
 

• DF: Ex ante, each choice of linking period t = 2 to t = T is equally 
valid. Suggest taking the geometric mean of the period T+1 price 
levels obtained by using each linking period in turn. 

→ “mean splice” 
 

• NB: Linking method may introduce chain drift bias (but in practice, 
it is usually small) 
 



Rolling Windows and the Linking Problem 
• An alternative is to try to link through a “similar” period: leads to 

the Similarity Linking Method (see the work of Robert Hill)  
 

• If the price and quantity data for period T+1 are exactly equal to the 
data for period t, then linking the windows at observation t will 
preserve the identity test over the two windows 
 

• Also holds for the case for equal shares and proportional price 
vectors.  
 

• This is attractive, but need measures of “similarity” of the data 
between T+1 and t.  
 

• Diewert (2009) proposed: 
• Weighted Log Quadratic Index of Relative Price Dissimilarity 
• Asymptotically Linear Index of Relative Price Dissimilarity 

 
 

 



Rolling Windows and the Linking Problem 
 

• Can use these measures for linking windows in a rolling window 
approach. 
 

• Or can use these to create a new multilateral index, using the 
dissimilarity measures to determine a unique “path” for bilateral 
index comparisons that can then be linked. 
 

• For example:  
o Period 2 most similar to period 1 
o Period 3 most similar to period 1 
o Period 4 most similar to period 3 

 
 1, PF(p1,p2,q1,q2), PF(p1,p3,q1,q3), PF(p1,p3,q1,q3)PF(p3,p4,q3,q4),….  



Simulations: CES Preferences 
 

• A problem with existing comparisons of methods is that it is not 
known which method is closest to the “truth”. 
 

• We constructing an artificial data set that is exactly consistent with 
purchasers having CES preferences over a group of related items. 
 

 CES unit cost function has the following functional form:  
  
  c(p1,...,pN) ≡ [∑n=1 αnpn

1−σ]1/(1−σ)             if σ ≥ 0 and σ ≠ 1 
                          ≡ ∏n=1                                  if σ = 1 
  
 where σ and the αn are positive parameters, with ∑n=1 αn = 1.  
 
 The parameter σ is the elasticity of substitution. 

n
npα



Simulations: CES Preferences 
 

• T = 12 and N = 4 
 

• α ≡ [α1,α2,α3,α4] ≡ [0.2, 0.2, 0.2, 0.4] 
 

• σ will take on the values 0, 0.5, 1, 2, 4, 10 and 20 
 

• In the scanner data context, it is likely that σ is between 1 and 5. 
 

• Set up:  
• Prices of commodities 1 and 3 trend downward while the prices of 

commodities 2 and 4 trend upward.  
• The trends in commodities 1 and 4 are very smooth but the trends in 

commodities 2 and 3 are interrupted by sales: item 2 goes on sale in 
periods 2 and 8 and item 3 goes on sale in periods 5 and 10.  

• Total expenditures trend upwards except in the four periods after a sale 
when aggregate expenditures fall a bit. 

 



Table 3: Price and Expenditure Data for the Artificial Data Set 

 
t pt1 pt2 pt3 pt4 et 
1 2.00 1.00 1.00 0.50 10 
2 1.75 0.50 0.95 0.55 13 
3 1.60 1.05 0.90 0.60 11 
4 1.50 1.10 0.85 0.65 12 
5 1.45 1.12 0.40 0.70 15 
6 1.40 1.15 0.80 0.75 13 
7 1.35 1.18 0.75 0.70 14 
8 1.30 0.60 0.72 0.65 17 
9 1.25 1.20 0.70 0.70 15 

10 1.20 1.25 0.40 0.75 18 
11 1.15 1.28 0.70 0.75 16 
12 1.10 1.30 0.65 0.80 17 

 





Simulations: CES Preferences 
For elasticities of substitution in the most likely range of 1 to 4: 

 
• The four methods based on the use of bilateral superlative indexes 

approximate CES preferences reasonably well with the chained 
Törnqvist generally doing the best. (Consistent with the 2004 CPI 
Manual advice). 
 

• But the GK indexes have substantial upward biases in all cases. 
 

• WTPD indexes also have substantial upward biases when σ equals 
2 or 4, but they are unbiased when σ = 1.  
 

• The above results were derived when we knew the “truth” and the 
data were consistent with cost minimizing CES consumers. 
 

• In the following slides, consumers will move away from their CES 
preferences in periods following a sale of some products.  

 



Simulations: CES Preferences 
• The economic approach to index number theory assumes that the 

consumption of goods takes place within the period of purchase.  
 

• But consumers tend to stock up during sales to partially satisfy 
their needs for the subsequent period. 

 
• We adjust the data so that quantities in the periods following sales 

are half of the predicted levels generated by the CES model. 
 

• Hence, for these periods, have new total expenditures, new quantity 
vectors and new expenditure shares for each elasticity.  
 

• For periods 1,2,4,5,7,8,10 and 12, the Pt and πCES
t ≡ Pt/P1 for the new 

data set are the same as before.  
 

• For periods 3, 6, 9 and 11, there are no CES price levels but for 
convenience, in Figure 3 we simply use the old πCES

t . 
 





Simulations: CES Preferences 
 

• Chained superlative indexes are not useful target indexes for a CPI 
when dealing with aggregating scanner data where discounted prices 
are prevalent. They have substantial downward chain drift biases. 
 

• The CCDI multilateral method worked best overall for our numerical 
example for elasticities of substitution in the range 0 ≤ σ ≤ 4. 
 

• Similarity Linking also worked well. 
 

• GK indexes had substantial upward biases relative to the 
corresponding CES true cost of living price levels for elasticities of 
substitution in the range 1 ≤ σ ≤ 4. 
 

• Weighted Time Product Dummy indexes will work well if σ = 1 or if σ ≥ 
10 but for our example, they had substantial upward biases for 
elasticities of substitution in the range 2 ≤ σ ≤ 4. 
 



Simulations: Linking the Windows 
In what follows, three tables of simulation results are presented: 
 
1. Differences at Period 12 between the single window CCDI price 

levels and the linked CCDI price levels as functions of the linking 
period and the elasticity of substitution. 
o If these differences are large in magnitude, then this indicates a chain 

drift problem with the use of successive CCDI linked windows. 
 

2. Biases at Period 12 as a function of the linking period and the 
elasticity of substitution. 
o The bias in the various two window CCDI period 12 price levels 

compared to the corresponding period 12 true (CES) cost of living 
indexes. 
 

3. The mean absolute differences between our ten approximating 
indexes to the corresponding true CES cost of living indexes.  
o Exclude periods 3, 6, 9 and 11 from this comparison because the true 

cost of living is not defined for these observations.  
 

 



Table 4: Differences at Period 12, D(t,σ), between the Single Window 
CCDI Price Levels and the Linked CCDI Price Levels as Functions of 

the Linking Period t and the Elasticity of Substitution σ  
t D(t,0) D(t,0.5) D(t,1) D(t,2) D(t,4) D(t,10) 
2 0.00030 0.00014 0.00021 0.00067 0.00212 0.01004 
3 -0.00197 -0.00149 -0.00098 0.00050 0.00567 0.02197 
4 -0.00001 0.00011 0.00021 0.00098 0.00603 0.02640 
5 -0.00029 0.00000 0.00021 0.00006 -0.00222 0.01370 
6 0.00154 0.00206 0.00265 0.00442 0.01035 0.03114 
7 0.00002 0.00011 0.00021 0.00092 0.00537 0.02639 
8 0.00041 0.00022 0.00021 0.00125 0.00645 0.02581 
9 -0.00177 -0.00137 -0.00098 0.00014 0.00451 0.02312 

10 -0.00015 0.00003 0.00021 0.00010 -0.00202 0.01647 
11 0.00151 0.00204 0.00265 0.00432 0.00946 0.02675 

Mean -0.00004 0.00019 0.00046 0.00133 0.00457 0.02216 
 



Table 5: Biases at Period 12, B(t, σ), as Functions of the Linking Period 
t and the Elasticity of Substitution σ  

t B(t,0) B(t,0.5) B(t,1) B(t,2) B(t,4) B(t,10) 
2 -0.00002 0.00068 0.00249 0.00187 -0.03189 -0.11420 
3 -0.00230 -0.00094 0.00130 0.00169 -0.02833 -0.10227 
4 -0.00034 0.00065 0.00249 0.00218 -0.02797 -0.09784 
5 -0.00061 0.00054 0.00249 0.00126 -0.03622 -0.11054 
6 0.00122 0.00260 0.00494 0.00562 -0.02365 -0.09310 
7 -0.00031 0.00065 0.00249 0.00212 -0.02864 -0.09785 
8 0.00008 0.00076 0.00249 0.00244 -0.02756 -0.09843 
9 -0.00210 -0.00083 0.00130 0.00134 -0.02949 -0.10112 

10 -0.00048 0.00057 0.00249 0.00130 -0.03603 -0.10777 
11 0.00118 0.00258 0.00494 0.00551 -0.02455 -0.09749 

Mean -0.00037 0.00073 0.00274 0.00253 -0.02944 -0.10208 
 



Table 8: Mean Absolute Differences in Percentage Points between 
πCES

t(σ) and Ten Approximating Indexes as Functions of the Elasticity 
of Substitution σ  

σ BFCH BTCH BFFB BTFB BWTPD BGK BGEKS BCCDI BAL BLQ 
0 3.78 4.77  0.00 0.11 1.66 0.00 0.12 0.08 0.55 0.63 
0.5 3.89 4.84  0.12 0.04 0.89 1.19 0.05 0.17 0.47 0.43 
1 4.06 4.81  0.46 0.00 0.00 2.58 0.17 0.29 0.53 0.27 
2 4.81 4.75  1.91 0.37 2.19 5.68 1.40 0.10 1.07 0.47 
4 6.84 5.65  5.96 3.41 5.37 8.90 4.98 2.47 2.69 1.61 
10 9.08 7.68 10.83 9.19 4.91 5.01 9.57 7.83 6.05 5.08 

 



Summary 
• The Chained Fisher and Chained Törnqvist indexes performed poorly 

for all elasticities of substitution. 
 

• The Weighted Time Product Dummy indexes worked well for our 
numerical example when the elasticity of substitution σ was equal to 1 
or 10 but they did not work well when σ was equal to 2 or 4.  
 

• The Geary-Khamis indexes worked well when σ = 0 or 10 but poorly 
when σ = 1, 2 or 4.  
 

• For 0 ≤ σ ≤  0.5, the Fixed Base Fisher, Fixed Base Törnqvist, GEKS 
and CCDI indexes all worked well. However the cases where σ ≥ 1 are 
the cases of interest. 
 

• For 1 ≤ σ ≤ 2, the CCDI indexes performed well. 
 

• The LQ price similarity linked indexes performed the best for σ = 4 and 
the LQ generally performed well for 1 ≤ σ ≤ 10. 

 



Caveats and Conclusions 
• The conclusions of this study are based on only a single artificial data 

set example. More research into how the different multilateral methods 
perform under different conditions is needed. 
 

• We have assumed that all prices and quantities are positive over all 
periods, hence ignoring the problem of new and disappearing goods.  

 
• An important result in our study is that linking the price and quantity 

data for a new period to the data of previous periods by using a price 
dissimilarity measure is the only multilateral method that is consistent 
with Walsh’s powerful multiperiod identity test. 
 

• But similarity linking requires agreement on how to measure the 
degree of price and share dissimilarity. More research needed. 
 

• In the meantime, for elasticities of substitution in reasonable ranges 
that are expected to be found empirically, overall our results suggest 
the use of the CCDI index with the mean splice, for updating.  
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