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Abstract 
 
A method for decomposing nominal value added growth is presented, which identifies 
the contributions from efficiency change, growth of primary inputs, changes in output 
and input prices, technical progress and returns to scale. In order to implement the 
decomposition, an estimate of the relevant cost constrained value added function for the 
two periods under consideration is required. This is taken to be the free disposal hull of 
past observations. Aggregation over sectors is also considered. The methodology is 
illustrated using U.S. data for two sectors over the years 1960-2014. 
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1. Introduction 
 
Understanding sources of economic growth has long been of interest to academics and 
policy makers. A better understanding of the determinants of value added growth can 
provide insights into the potential for policies to address inefficiencies and a deeper 
understanding of the drivers of productivity, a topic of heightened recent interest given 
the slowdown in productivity growth across many developed countries; see e.g. Gordon 
(2016), Mokyr, Vickers and Ziebarth (2015), Byrne, Fernald and Reinsdorf (2016), and 
Syverson (2016).  
 
While there has been much attention to growth at the aggregate economy level, there has 
less at the sectoral level. To address this, we derive exact decompositions of nominal 
value added growth for sectors of an economy into explanatory factors, and illustrate 
these using data for the US Corporate Nonfinancial and the Noncorporate Nonfinancial 
sectors, 1960 to 2014.  
 
We take the explanatory factors of value added growth in a sector to be as follows: 
 

• efficiency changes,  
• changes in output prices, 
• changes in primary inputs,  
• changes in input prices,  
• technical progress, and 
• returns to scale. 

 
We start by decomposing value added growth in a single production sector into these 
components, before considering the relationship with aggregate (across sector) value 
added growth. In order to implement our decomposition, an estimate of the sector’s best 
practice technology for the two periods under consideration is required. This could be 
obtained using econometric techniques or nonparametric frontier modelling, such as Data 
Envelopment Analysis (DEA) type techniques; see e.g. Charnes and Cooper (1985) and 
Färe, Grosskopf and Lovell (1985). We do not make any of the convexity assumptions 
that are typical in this literature, and instead use the Free Disposal Hull (FDH) approach 
of Tulkens (1986)(1993) and his co-authors; see also Diewert and Fox (2014)(2016a). 
 
During recessions, it seems unlikely that production units are operating on their 
production frontiers (fixed capital stock components cannot be readily reduced in the 
light of reduced output demands) and thus it is important for a growth accounting 
methodology to allow for technical and allocative inefficiency. Our methodological 
approach does this. It has the advantages that it does not involve any econometric 
estimation, and involves only observable data on input and output prices and quantities 
for the sector. Thus it is simple enough to be implemented by statistical agencies.   
 
Another positive feature of our approach is that it rules out technical regress, which is a 
problematic concept for a broad range of economic models; see e.g. Aiyar, Dalgaard and 
Moav (2008) and Diewert and Fox (2016b). A consequence of ruling out technical 
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regress is that when there is a recession, for example, the loss of efficiency is gross loss 
of efficiency less any technical progress that occurs during recession years. Hence, in this 
case estimates of efficiency losses may be offset by technical progress, and what is 
measured as efficiency change is the net effect.  
 
The rest of the chapter is organized as follows. The core methodology is explained in the 
following section, where we introduce the cost constrained value added function which is 
used throughout. In section 3, the method for decomposing value added growth into our 
six components for each sector is derived. Section 4 describes our nonparametric 
approach to obtaining empirical estimates for the best practice cost constrained value 
added functions, which allows us to decompose TFP growth for a sector into explanatory 
components. Using our data on two major sectors of the U.S. economy, sections 5 and 6 
provide empirical applications of the approach, with the results shedding light on sources 
of value added and productivity growth for the U.S. over a 55 year period. Section 7 
presents results from one solution to the problem of aggregating over sectors, drawing on 
the results of Diewert and Fox (2016c), and section 8 concludes. 
 
2. The Cost Constrained Value Added Function for a Sector 
 
Suppose that a sector produces M net outputs,1 y ≡ [y1,...,yM], using N primary inputs x ≡ 
[x1,...,xN] ≥ 0N, while facing the strictly positive vector of net output prices p ≡ [p1,...,pM] 
>> 0M and the strictly positive vector of input prices w ≡ [w1,...,wN] >> 0N. The value of 
primary inputs used by the sector during period t is then w⋅x ≡ Σn=1

N wnxn. Denote the 
period t production possibilities set for the sector by St.2 Define the sector’s period t cost 
constrained value added function, Rt(p,w,x) as follows:3 
 

                                                 
1 Let (y,x)∈St where y = [y1,...,yM] and x ≡ [x1,...,xN] ≥ 0N. If ym > 0, then the sector produces the mth net 
output during period t while if ym < 0, then the sector uses the mth net output as an intermediate input.  
2 We assume that St satisfies the following regularity conditions: (i) St is a closed set; (ii) for every x ≥ 0N, 
(0M,x)∈St; (iii) if (y,x)∈St and y* ≤ y, then (y*,x)∈St (free disposability of net outputs); (iv) if (y,x)∈St and 
x* ≥ x, then (y,x*)∈St (free disposability of primary inputs); (v) if x ≥ 0N and (y,x)∈St, then y ≤ b(x) where 
the upper bounding vector b can depend on x (bounded primary inputs implies bounded from above net 
outputs). When applying our methodology, we will need somewhat stronger conditions that will imply that 
that the cost constrained value added function is positive when evaluated at observed data points.    
3 Note that Rt(p,w,x) is well defined even if there are increasing returns to scale in production; i.e., the 
constraint w⋅z ≤ w⋅x leads to a finite value for Rt(p,w,x). The cost constrained value added function is 
analogous to Diewert’s (1983; 1086) balance of trade restricted value added function and Diewert and 
Morrison’s (1986; 669) domestic sales function. However, the basic idea can be traced back to Shephard’s 
(1974) maximal return function, Fisher and Shell’s (1998; 48) cost restricted sales function and Balk’s 
(2003; 34) indirect revenue function. See also Färe, Grosskopf and Lovell (1992; 286) and Färe and 
Primont (1994; 203) on Shephard’s formulation. Shephard, Fisher and Shell and Balk defined their 
functions as IRt(p,w,c) ≡ max y,z {p⋅y : w⋅z ≤ c ; (y,z)∈St} where c > 0 is a scalar cost constraint. It can be 
seen that our cost constrained value added function replaces c in the above definition by w⋅x, a difference 
which will be important in forming our input indexes and hence our value added decompositions. Another 
difference is that our y vector is a net output vector; i.e., some components of y can be negative. Excluding 
Diewert and Morrison (1986) and Diewert (1983), the other authors required that y be nonnegative. This 
makes a difference to our analysis. Also, our regularity conditions are weaker than the ones that are usually 
used. 
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(1) Rt(p,w,x) ≡ max y,z {p⋅y : (y,z)∈St; w⋅z ≤ w⋅x}. 
 
If (y*,z*) solves the constrained maximization problem defined by (1), then sectoral value 
added p⋅y is maximized subject to the constraints that (y,z) is a feasible production vector 
and primary input expenditure w⋅z is equal to or less than “observed” primary input 
expenditure w⋅x. Thus if the sector faces the prices pt >> 0M and wt >> 0N during period t 
and (yt, xt) is the sector’s observed production vector, then production will be value 
added efficient if the observed value added, pt⋅yt, is equal to the optimal value added, 
Rt(pt,wt,xt). However, production may not be efficient and so the following inequality 
will hold: 
 
(2) pt⋅yt ≤ Rt(pt,wt,xt).    
 
Following the example of Balk (1998; 143), we define the value added or net revenue 
efficiency of the sector during period t, et, as follows: 
 
(3) et ≡ pt⋅yt/Rt(pt,wt,xt) ≤ 1 
 
where the inequality in (3) follows from (2). Thus if et = 1, then production is allocatively 
efficient in period t and if et < 1, then production for the sector during period t is 
allocatively inefficient. Note that the above definition of value added efficiency is a net 
revenue counterpart to Farrell’s (1957; 255) cost based measure of overall efficiency in 
the DEA context, which combined his measures of technical and (cost) allocative 
efficiency. DEA or Data Envelopment Analysis is the term used by Charnes and Cooper 
(1985) and their co-workers to denote an area of analysis which is called the 
nonparametric approach to production theory4 or the measurement of the efficiency of 
production5 by economists. 
 
The cost constrained value added function has some interesting mathematical properties. 
For fixed w and x, Rt(p,w,x) is a convex and linearly homogeneous function of p.6 For 
fixed p and w, Rt(p,w,x) is nondecreasing in x. If St is a convex set, then Rt(p,w,x) is also 
concave in x.  For fixed p and x, Rt(p,w,x) is homogeneous of degree 0 in w.        
 
It is possible to get more insight into the properties of Rt if we introduce the sector’s 
period t value added function Πt(p,x). Thus for p >> 0M and x ≥ 0N, define Πt(p,x) as 
follows:7 
                                                 
4 See Hanoch and Rothschild (1972), Diewert and Parkan (1983), Varian (1984) and Diewert and Mendoza 
(2007). 
5 See Farrell (1957), Afriat (1972), Färe and Lovell (1978), Färe, Grosskopf and Lovell (1985), Coelli, Rao 
and Battese (1997) and Balk (1998) (2003). 
6 A version of Hotelling’s Lemma also holds for Rt(p,w,x). Suppose y*,x* is a solution to the constrained 
maximization problem that defines Rt(p*,w*,x*) and ∇pRt(p*,w*,x*) exists. Then y* = ∇pRt(p*,w*,x*). See 
Diewert and Morrison (1986; 670) for the analogous properties for their sales function.      
7 This function is known as the GDP function or the national product function in the international trade 
literature; see Kohli (1978) (1990), Woodland (1982) and Feenstra (2004; 76). It is known as the gross, 
restricted or variable profit function in the duality literature; see Gorman (1968), McFadden (1978) and 
Diewert (1973) (1974). Sato (1976) called it a value added function. It was introduced into the economics 
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(4) Πt(p,x) ≡ max y {p⋅y: (y,x)∈St}.  
 
Using definitions (1) and (4), it can be seen that the cost constrained value added function 
Rt(p,w,x) has the following representation: 
 
(5) Rt(p,w,x) ≡ max y,z {p⋅y : (y,z)∈St; w⋅z ≤ w⋅x;} 
                      = max z {Πt(p,z) : w⋅z ≤ w⋅x; z ≥ 0N}. 
 
Holding p constant, we can define the period t “utility” function ft(z) ≡ Πt(p,z) and the 
second maximization problem in (5) becomes the following “utility” maximization 
problem: 
 
(6) max z {ft(z) : w⋅z ≤ w⋅x; z ≥ 0N} 
 
where w⋅x is the consumer’s “income”. For u in the range of Πt(p,z) over the set of 
nonnegative z vectors and for w >> 0N, we can define the cost function Ct(u,w) that 
corresponds to ft(z) as follows:8 
 
(7) Ct(u,w) ≡ min z {w⋅z : ft(z) ≥ u; z ≥ 0N} = min z {w⋅z : Πt(p,z) ≥ u; z ≥ 0N}. 
 
If Πt(p,z) increases as all components of z increase, then Ct(u,w) will be increasing in u 
and we can solve the following maximization problem for a unique u*: 
 
(8) max u {u: Ct(u,w) ≤ w⋅x}. 
 
 
Using the solution to (8), we will have the following solution for the maximization 
problem that defines Rt(p,w,x): 
 
(9) Rt(p,w,x) = u* 
 
with Ct(u*,w) = w⋅x. 
 
The above formulae simplify considerably if St is a cone, so that production is subject to 
constant returns to scale. If St is a cone, then Πt(p,z) is linearly homogeneous in z and 
hence, so is ft(z) ≡ Πt(p,z). Define the unit cost function ct that corresponds to ft as 
follows:9 
 
(10) ct(w,p) ≡ min z {w⋅z : Πt(p,z) ≥ 1; z ≥ 0N}. 
                                                                                                                                                 
literature by Samuelson (1953). We use the cost constrained value added function as our basic building 
block in this chapter rather than the conceptually simpler GDP function because the cost constrained value 
added function allows us to deal with technologies which exhibit global increasing returns to scale. 
8 Of course, ft(z) should be denoted as ft(z,p) and Ct(u,w) should be denoted as Ct(u,w,p).   
9 ct(w,p) will be linearly homogeneous and concave in w for fixed p and it will be homogeneous of degree 
minus one in p for fixed w. If Πt(p,z) is increasing in pm, then ct(w,p) will be decreasing in pm.   
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The total cost function, Ct(u,w) = Ct(u,w,p) is now equal to uct(w,p) and the solution to 
(8) is the following u*: 
 
(11) u* = Rt(p,w,x) ≡ w⋅x/ct(w,p).       
 
3. Decomposing Value Added Growth for a Sector into Explanatory Factors 
 
We assume that we can observe the net outputs and inputs used by the sector or 
production unit for two consecutive periods, say period t−1 and t. The observed net 
output and input vectors for the two periods are denoted by yt−1, yt, xt−1 >> 0N and xt >> 
0N. The observed output and input price vectors are the strictly positive vectors pt−1, pt, 
wt−1 and wt. We also assume that pi⋅yj > 0 and wi⋅xj > 0 for i = t−1,t and j = t−1,t. Our task 
in this section is to decompose (one plus) the growth in observed nominal value added 
over the two periods, pt⋅yt/pt−1⋅yt−1, into explanatory growth factors.  
 
One of the explanatory factors will be the growth in the value added efficiency of the 
sector or production unit. In the previous section, we defined the period t value added 
efficiency as et ≡ pt⋅yt/Rt(pt,wt,xt). Define the corresponding period t−1 efficiency as et−1 ≡ 
pt−1⋅yt−1/Rt−1(pt−1,wt−1,xt−1). Given the above definitions of revenue efficiency in periods 
t−1 and t, we can define an index of the change in value added efficiency εt for the sector 
over the two periods as follows: 
 
(12) εt ≡ et/et−1 = [pt⋅yt/Rt(pt,wt,xt)]/[pt−1⋅yt−1/Rt−1(pt−1,wt−1,xt−1)].                                         
 
Thus if εt > 1, then value added efficiency has improved going from period t−1 to t 
whereas it has fallen if εt < 1.  
 
Notice that the cost constrained value added function for the production unit in period t, 
Rt(p,w,x), depends on four sets of variables:  
 

• The time period t and this index t serves to indicate that the period t technology 
set St is used to define the period t value added function; 

• The vector of net output prices p that the production unit faces; 
• The vector of primary input prices w that the production unit faces and  
• The vector of primary inputs x which is available for use by the production unit 

during period t.  
 
At this point, we will follow the methodology that is used in the economic approach to 
index number theory that originated with Konüs (1939) and Allen (1949) and we will use 
the value added function to define various families of indexes that vary only one of the 
four sets of variables, t, p, w and x, between the two periods under consideration and hold 
constant the other sets of variables.10 
                                                 
10 The theory which follows is largely adapted from Diewert (1980a; 455-461) (1983, 1054-1076) (2014), 
Diewert and Morrison (1986), Kohli (1990), Fox and Kohli (1998) and the IMF, ILO, OECD, UN and the 
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Our first family of factors that explain sectoral value added growth is a family of net 
output price indexes, α(pt−1,pt,x,t): 
 
(13) α(pt−1,pt,w,x,s) ≡ Rs(pt,w,x)/Rs(pt−1,w,x). 
 
Thus the net output price index α(pt−1,pt,w,x,s) defined by (13) is equal to the 
(hypothetical) cost constrained value added Rs(pt,w,x) generated by the best practice 
technology of period s while facing the period t net output prices pt and the reference 
primary input prices w and using the reference primary input vector x, divided by the cost 
constrained value added Rs(pt−1,w,x) generated by the best practice technology of period s 
while facing the period t−1 net output prices pt−1 and the reference primary input prices w 
and using the same reference primary input vector x. Thus for each choice of technology 
(i.e., s could equal t−1 or t) and for each choice of reference vectors of input prices w and 
quantities x, we obtain a possibly different net output price index.  
 
Following the example of Konüs (1939) in his analysis of the true cost of living index, it 
is natural to single out two special cases of the family of net output price indexes defined 
by (13): one choice where we use the period t−1 technology and set the reference input 
prices and quantities equal to the period t−1 input prices and quantities wt−1 and xt−1 
(which gives rise to a Laspeyres type net output price index) and another choice where 
we use the period t technology and set the reference input prices and quantities equal to 
the period t prices and quantities wt and xt (which gives rise to a Paasche type net output 
price index). We define these special cases αL

t and αP
t as follows: 

 
(14) αL

t ≡ α(pt−1,pt,wt−1,xt−1,t−1) ≡ Rt−1(pt,wt−1,xt−1)/Rt−1(pt−1,wt−1,xt−1) ; 
(15) αP

t ≡ α(pt−1,pt,wt,xt,t)           ≡ Rt(pt,wt,xt)/Rt(pt−1,wt,xt). 
 
Since both output price indexes, αL

t and αP
t, are equally representative, a single estimate 

of net output price change should be set equal to a symmetric average of these two 
estimates.  We choose the geometric mean as our preferred symmetric average and thus 
our preferred overall measure of net output price growth is the following overall net 
output price index, αt:11 
 
(16) αt ≡ [αL

t αP
t]1/2 .  

 
Our second family of factors that explain value added growth is a family of input quantity 
indexes, β(xt−1,xt,w): 
 
                                                                                                                                                 
World Bank (2004; 455-456). This approach to the net output quantity and input price indexes is an 
adaptation of the earlier work on theoretical price and quantity indexes by Konüs (1939), Allen (1949), 
Fisher and Shell (1972) (1998), Samuelson and Swamy (1974), Archibald (1977) and Balk (1998). 
11 Choosing the geometric mean leads to a measure of net output price inflation that satisfies the time 
reversal test; i.e., the resulting index has the property that it is equal to the reciprocal of the corresponding 
index that measures price change going backwards in time rather than forward in time; see Diewert (1997) 
and Diewert and Fox (2017) on this point. 



 

7 
 

7 

(17) β(xt−1,xt,w) ≡ w⋅xt/w⋅xt−1. 
 
The input quantity index β(xt−1,xt,w) defined by (17) is equal to a ratio of simple linear 
aggregates of the observed input vectors for periods t−1 and t, xt−1 and xt, where we use 
the vector of strictly positive input prices w >> 0N as weights. We note that this family of 
input quantity index does not use the cost constrained value added function. An 
alternative definition for a family of input quantity indexes that uses the cost restricted 
value added function for period s and reference vectors p and w is β*(xt−1,xt,p,w,s) ≡ 
Rs(ps,ws,xt)/Rs(ps,ws,xt−1).12 If the period s technology set is a cone, then using (11), it can 
be seen that β*(xt−1,xt,p,w,s) = w⋅xt/w⋅xt−1 = β(xt−1,xt,w). In the general case where the 
period s technology is not a cone, the input growth measure β*(xt−1,xt,p,w,s) will also 
incorporate the effects of nonconstant returns to scale. In this general case, it seems 
preferable to isolate the effects of nonconstant returns to scale and the use of the simple 
input quantity indexes defined by (17) will allow us to do this as will be seen below.     
 
It is natural to single out two special cases of the family of input quantity indexes defined 
by (17): one choice where we use the period t−1 input prices wt which gives rise to the 
Laspeyres input quantity index βL

t and another choice where we set the reference input 
prices equal to wt (which gives rise to the Paasche input quantity index βP

t. Thus define 
these special cases βL

t and βP
t as follows: 

 
(18) βL

t ≡ wt−1⋅xt/wt−1⋅xt−1 ; 
(19) βP

t ≡ wt⋅xt/wt⋅xt−1 . 
 
Since both input quantity indexes, βL

t and βP
t, are equally representative, a single 

estimate of input quantity change should be set equal to a symmetric average of these two 
estimates. We choose the geometric mean as our preferred symmetric average and thus 
our preferred overall measure of input quantity growth is the following overall input 
quantity index, βt:13 
 
(20) βt ≡ [βL

t βP
t]1/2.  

 
Our next family of indexes will measure the effects on cost constrained value added of a 
change in input prices going from period t−1 to t. We consider a family of measures of 
the relative change in cost constrained value added of the form Rs(p,wt,x)/Rs(p,wt−1,x). 
Since Rs(p,w,x) is homogeneous of degree 0 in the components of w, it can be seen that 
we cannot interpret Rs(p,wt,x)/Rs(p,wt−1,x) as an input price index. If there is only one 
primary input, Rs(p,wt,x)/Rs(p,wt−1,x) is identically equal to unity and this measure of 
input price change will be independent of changes in the price of the single input. It is 
best to interpret Rs(p,wt,x)/Rs(p,wt−1,x) as measuring the effects on cost constrained value 
added of a change in the relative proportions of primary inputs used in production or in 
                                                 
12 The counterpart to this family of input quantity indexes was defined by Sato (1976; 438) and Diewert 
(1980a; 456) using value added functions (i.e., the functions Πs(p,x)) with the assumption that there was no 
technical progress between the two periods being compared. 
13 This index is Fisher’s (1922) ideal input quantity index. 
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the mix of inputs used in production that is induced by a change in relative input prices 
when there is more than one primary input. Thus define the family of input mix indexes 
γ(wt−1,wt,p,x,s) as follows:14 
 
(21) γ(wt−1,wt,p,x,s) ≡ Rs(p,wt,x)/Rs(p,wt−1,x). 
 
As usual, we will consider two special cases of the above family of input mix indexes, a 
Laspeyres case and a Paasche case. However, the Laspeyres case γLPP

t will use the period 
t cost constrained value added function and the period t−1 reference vectors pt−1 and xt−1 
while the Paasche case γPLL

t will use the use the period t−1 cost constrained value added 
function and the period t reference vectors pt and xt:  
 
(22) γLPP

t ≡ γ(wt−1,wt,pt−1,xt,t)     ≡ Rt(pt−1,wt,xt)/Rt(pt−1,wt−1,xt); 
(23) γPLL

t ≡ γ(wt−1,wt,pt,xt−1,t−1) ≡ Rt−1(pt,wt,xt−1)/Rt−1(pt,wt−1,xt−1). 
 
The reason for these rather odd looking choices for reference vectors will be justified 
below in more detail but, basically, we make these choices in order to have value added 
growth decompositions into explanatory factors that are exact without making restrictive 
assumptions on the technology sets. 
 
As usual, the above two indexes are equally representative and so it is natural to take an 
average of these two measures. We choose the geometric mean as our preferred 
symmetric average and thus our preferred overall measure of input mix change is the 
following overall input mix index, γt: 
 
(24) γt ≡ [γLPP

tγPLL
t]1/2.  

            
We turn now to the effects on cost constrained value added due to the effects of technical 
progress; i.e., as time marches on, new techniques are developed that allow increased net 
outputs using the same inputs or that allow the same net outputs to be produced by fewer 
inputs. Thus we use the cost constrained value added function in order to define a family 
of technical progress indexes going from period t−1 to t, τ(p,w,x), for reference vectors 
of output and input prices, p and w, and a reference vector of input quantities x as 
follows:15 

                                                 
14 It would be more accurate to say that γ(wt−1,wt,p,x,s) represents the hypothetical proportional change in 
cost constrained value added for the period s reference technology due to the effects of a change in the 
input price vector from wt−1 to wt when facing the reference net output prices p and the reference vector of 
inputs x. Thus we shorten this description to say that γ is an “input mix index”. If there is only one primary 
input, then since Rs(p,w,x) is homogeneous of degree 0 in w, it can be seen that γ(wt−1,wt,p,x,s) ≡ 
Rs(p,wt,x)/Rs(p,wt−1,x) = [(w1

t)0 Rs(p,1,x)]/[(w1
t−1)0 Rs(p,1,x)] = 1; i.e., if there is only one primary input, 

then the input mix index is identically equal to 1. For alternative mix definitions, see Balk (2001) and 
Diewert (2014; 62).   
15 This family of technical progress measures was defined by Diewert and Morrison (1986; 662) using the 
value added function Πt(p,x). A special case of the family was defined earlier by Diewert (1983; 1063). 
Balk (1998; 99) also used this definition and Balk (1998; 58), following the example of Salter (1960), also 
used the joint cost function to define a similar family of technical progress indexes. 



 

9 
 

9 

 
(25) τ(t−1,t,p,w,x) ≡ Rt(p,w,x)/Rt−1(p,w,x). 
 
Technical progress measures are usually defined in terms of upward shifts in production 
functions or outward shifts of production possibilities sets due to the discovery of new 
techniques or managerial innovations over time. If there is positive technical progress 
going from period t−1 to t, then Rt(p,w,x) will be greater than Rt−1(p,w,x) and hence 
τ(p,w,x) will be greater than one and this measure of technical progress is equal to the 
proportional increase in value added that results from the expansion of the underlying 
best practice technology sets due to the passage of time. For each choice of reference 
vectors of output and input prices, p and w, and reference vector of input quantities x, we 
obtain a possibly different measure of technical progress. 
 
Again, we will consider two special cases of the above family of technical progress 
indexes, a Laspeyres case and a Paasche case. However, the Laspeyres case τL

t will use 
the period t input vector xt as the reference input vector and the period t−1 reference 
output and input price vectors pt−1 and wt−1 while the Paasche case τP

t will use the use the 
period t−1 input vector xt−1 as the reference input and the period t reference output and 
input price vectors pt and wt:  
 
(26) τL

t ≡ τ(t−1,t,pt−1,wt−1,xt) ≡ Rt(pt−1,wt−1,xt)/Rt−1(pt−1,wt−1,xt). 
(27) τP

t ≡ τ(t−1,t,pt,wt,xt−1)    ≡ Rt(pt,wt,xt−1)/Rt−1(pt,wt,xt−1). 
 
Using (11), recall that if the reference technologies in periods t and t−1 are cones, then 
we have Rt(p,w,x) = w⋅x/ct(w,p) and Rt−1(p,w,x) = w⋅x/ct−1(w,p). Thus in the case where 
the reference technology is subject to constant returns to scale, τL

t ≡ τ(t−1,t,pt−1,wt−1,xt) 
turns out to be independent of xt and τP

t ≡ τ(t−1,t,pt,wt,xt−1) turns out to be independent of 
xt−1. These “mixed” indexes of technical progress are then true Laspeyres and Paasche 
type indexes. 
 
We have one more family of indexes to define and that is a family of returns to scale 
measures. Our measures are analogous to the global measures of returns to scale that 
were introduced by Diewert (2014; 62) using cost functions. Here we will use the cost 
restricted value added function in place of the cost function. Our returns to scale measure 
will be a measure of output growth divided by input growth from period t−1 to t but the 
technology is held constant when we compute the output growth measure. Our measure 
of input growth will be w⋅xt/w⋅xt−1

 where w is a positive vector of reference input prices. 
Now pick positive reference price vector p that will value our M net outputs. If we hold 
the technology constant at period t−1 levels, our measure of output growth will be 
Rt−1(p,w,xt)/Rt−1(p,w,xt−1). If we hold the technology constant at period t levels, our 
measure of output growth will be Rt(p,w,xt)/Rt(p,w,xt−1). Thus for the reference 
technology set indexed by s (equal to t−1 or t) and reference price vectors p and w, define 
the family of returns to scale measures δ(xt−1,xt,p,w,s) as follows: 
 
(28) δ(xt−1,xt,p,w,s) ≡ [Rs(p,w,xt)/Rs(p,w,xt−1)]/[w⋅xt/w⋅xt−1].    
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We define the Laspeyres and Paasche special cases of (28): 
 
(29) δL

t ≡ δ(xt−1,xt,pt−1,wt−1,t−1) ≡ [Rt−1(pt−1,wt−1,xt)/Rt−1(pt−1,wt−1,xt−1)]/[wt−1⋅xt/wt−1⋅xt−1]; 
(30) δP

t ≡ δ(xt−1,xt,pt,wt,t)           ≡ [Rt(pt,wt,xt)/Rt(pt,wt,xt−1)]/[wt⋅xt/wt⋅xt−1]. 
 
In the case where the period t−1 reference production possibilities set St−1 is a cone so 
that production is subject to constant returns to scale, then using (11), it can be seen that 
δL

t is equal to 1 and if St is a cone, then δP
t defined by (30) is also equal to 1.  

     
Our preferred measure of returns to scale to be used in empirical applications is the 
geometric mean of the above special cases: 
 
(31) δt ≡ [δL

t δP
t]1/2. 

 
We are now in a position to decompose (one plus) the growth in value added for the 
production unit going from period t−1 to t as the product of six explanatory growth 
factors: 
 

• The change in cost constrained value added efficiency over the two periods; i.e., 
εt ≡ et/et−1 defined by (12) above; 

• Growth (or changes) in net output prices; i.e., a factor of the form α(pt−1,pt,w,x,s) 
defined above by (13); 

• Growth (or changes) in input quantities; i.e., a factor of the form β(xt−1,xt,w) 
defined by (17); 

• Growth (or changes) in input prices; i.e., an input mix index of the form 
γ(wt−1,wt,p,x,s)  defined by (21); 

• Changes due to technical progress; i.e., a factor of the form τ(t−1,t,p,w,x)  defined 
by (25) and 

• A returns to scale measure δ(xt−1,xt,p,w,s) of the type defined by (28).  
 
Straightforward algebra using the above definitions shows that we have the following 
exact decompositions of the observed value added ratio going from period t−1 to t into 
explanatory factors of the above type:16 
 
(32) pt⋅yt/pt−1⋅yt−1 = εt αP

t βL
t γLPP

t δL
t τL

t ; 
(33) pt⋅yt/pt−1⋅yt−1 = εt αL

t βP
t γPLL

t δP
t τP

t. 
 
Now multiply the above decompositions together and take the geometric mean of both 
sides of the resulting equation. Using the above definitions, it can be seen that we obtain 

                                                 
16 Diewert (2011) obtained decompositions of cost growth analogous to (32) and (33) under the assumption 
that the production unit was cost efficient in each period.  
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the following exact decomposition of value added growth into the product of six 
explanatory growth factors:17 
 
(34) pt⋅yt/pt−1⋅yt−1 = εt αt βt γt δt τt . 
 
If the reference technology exhibits constant returns to scale in periods t−1 and t, then δL

t 
= δP

t = δt = 1 and the returns to scale factors drop out of the decompositions on the right 
hand sides of (32)-(34). 
 
Total Factor Productivity growth for the production unit under consideration going from 
period t−1 to t can be defined (following Jorgenson and Griliches (1967)) as an index of 
output growth divided by an index of input growth. An appropriate index of output 
growth is the value added ratio divided by the value added price index αt. An appropriate 
index of input growth is βt. Thus define the period t TFP growth rate, TFPGt, for the 
production unit as follows:18 
 
(35) TFPGt ≡ {[pt⋅yt/pt−1⋅yt−1]/αt}/βt = εt γt δt τt 
 
where the last equality in (35) follows from (34). Thus in general, period t TFP growth is 
equal to the product of period t value added efficiency change εt, a period t input mix 
index γt (which typically will be small in magnitude), period t technical progress τt and 
period t returns to scale for the best practice technology δt. If the reference best practice 
technologies are subject to constant returns to scale, then the returns to scale term is 
identically equal to 1 and drops out of the decomposition given by (35). 
 
We follow the example of Kohli (1990) and obtain a levels decomposition for the 
observed level of nominal value added in period t, pt⋅yt, relative to its observed value in 
period 1, p1⋅y1. We assume that we have price and quantity data for the primary inputs 
used and net outputs produced by the production unit (pt,wt,yt,xt) for periods t = 1, 2,...,T. 
We also assume that we have estimates for the cost constrained value added functions, 
Rt(p,w,x), that correspond to the best practice technology sets St for t = 1,2,...,T. Thus for 

                                                 
17 Balk (2003; 9-10) introduced the term “profitability” to describe the period t ratio of revenue to cost πt 
but he considered this concept earlier; see Balk (1998; 66) for historical references. Diewert and Nakamura 
(2003; 129) described the same concept by the term “margin”. If we divide both sides of (34) through by 
(one plus) the rate of cost growth, wt⋅xt/wt−1⋅xt−1, we obtain an expression for (one plus) the rate of growth 
of profitability, πt/πt−1, which will equal εt αt γt δt τt/βt** where βt** is the Fisher ideal input price index that 
matches up with the Fisher ideal input quantity index βt; i.e., βtβt** = wt⋅xt/wt−1⋅xt−1. This decomposition of 
profitability growth can be compared to the alternative profitability growth decompositions obtained by 
Balk (2003; 22), Diewert and Nakamura (2003), O’Donnell (2010; 531) and Diewert (2014; 63). Our 
present decomposition of profitability is closest to that derived by Diewert. The problem with Diewert’s 
decomposition is that his measure of returns to scale combined returns to scale with mix effects.  
18 There are similar decompositions for TFP growth using just quantity data and Malmquist gross output 
and input indexes; see Diewert and Fox (2014) (2017). For additional decompositions of TFP growth using 
both price and quantity data, see Balk (1998), (2001), (2003), Caves, Christensen and Diewert (1982), 
Diewert and Morrison (1986), Kohli (1990) and Diewert and Fox (2008) (2010). However, we believe that 
our present decomposition is the most comprehensive decomposition of TFP growth into explanatory 
factors that makes use of observable price and quantity data for both outputs and inputs.    
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t = 2,3,...,T, we can calculate the period to period growth factors εt, αt, βt, γt, τt and δt. 
Define the cumulated explanatory variables as follows: 
 
(36) E1 ≡ 1; A1 ≡ 1; B1 ≡ 1; C1 ≡ 1; D1 ≡ 1; T1 ≡ 1. 
 
For t = 2,3,...,T, define the above variables recursively as follows: 
 
(37) Et ≡ εtEt−1; At ≡ αtAt−1; Bt ≡ βtBt−1; Ct ≡ γtCt−1; Dt ≡ δtDt−1; Tt ≡ τtTt−1.                          
 
Using the above definitions and (34), it can be seen that we have the following levels 
decomposition for the level of period t observed value added relative to its period 1 level: 
 
(38) pt⋅yt/p1⋅y1 = At Bt Ct Dt Et Tt ;                                                                          t = 2,...,T.  
 
Define the period t level of Total Factor Productivity, TFPt, as follows: 
 
(39) TFP1 ≡ 1; for t = 2,...,T, define TFPt ≡ (TFPGt)(TFPt−1) 
 
where TFPGt is defined by (35) for t = 2,...,T. Using (35)-(39), it can be seen that we 
have the following levels decomposition for TFP using the cumulated explanatory factors 
defined by (36) and (37): 
 
(40) TFPt = [pt⋅yt/p1⋅y1]/[At Bt] =  Ct Dt Et Tt ;                                                       t = 2,...,T.  
 
In the following section, we explain a practical method for obtaining estimates for the 
cost constrained value added function for a sector. 
 
4. A Nonparametric Approximation to the Cost Constrained Value Added Function 
 
We assume that (yt,xt) is the production unit’s observed net output and primary input 
vector respectively, where xt > 0N and the observed vector of net output and primary 
input prices is (pt,wt), with pt >> 0M and wt >> 0N for t = 1,2,...,T.19 We assume that the 
production unit’s period t production possibilities set St is the conical free disposal hull of 
the period t actual production vector and past production vectors that are in our sample of 
time series observations for the unit.20 Using this assumption, for strictly positive price 
vectors p and w and nonnegative input quantity vector x, we define the period t cost 
constrained value added function Rt(p,w,x) for the production unit as follows: 
                                                 
19 We also assume that ps⋅yt > 0 for s = 1,...,T and t = 1,...,T. This will ensure that all of our explanatory 
factors are strictly positive. 
20 Diewert (1980b; 264) suggested that the convex, conical, free disposal hull of past and current production 
vectors be used as an approximation to the period t technology set St when measuring TFP growth. Tulkens 
(1993; 201-206), Tulkens and Vanden Eeckaut (1995a) (1995b) and Diewert and Fox (2014)(2017) 
dropped the convexity and constant returns to scale assumptions and used free disposal hulls of past and 
current production vectors to represent the period t technology sets. In this chapter, we also drop the 
convexity assumption but maintain the free disposal and constant returns to scale assumptions. We also 
follow Diewert and Parkan (1983; 153-157) and Balk (2003; 37) in introducing price data into the 
computations.   
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(41) Rt(p,w,x) ≡ max y,z {p⋅y : w⋅z ≤ w⋅x ; (y,z)∈St} 
                        ≥ max λ {p⋅λys : w⋅λxs ≤ w⋅x; λ ≥ 0}           since (λys,λxs)∈St for all λ ≥ 0 
                        = max λ {λp⋅ys : λw⋅xs ≤ w⋅x; λ ≥ 0} 
                        = (w⋅x/w⋅xs)p⋅ys. 
 
The inequality in (41) will hold for all s = 1,2,...,t. Thus we have: 
 
(42) Rt(p,w,x) ≥ max s {p⋅ys w⋅x/w⋅xs : s = 1,2,...,t}. 
 
The rays (λys,λxs)∈St for λ ≥ 0 generate the efficient points in the set St so the strict 
inequality in (42) cannot hold and so we have: 
 
(43) Rt(p,w,x) ≡ max y,z {p⋅y : w⋅z ≤ w⋅x ; (y,z)∈St} 
                        = max s {p⋅ys w⋅x/w⋅xs : s = 1,2,...,t} 
                        = 

tλλ ,...,1
max {p⋅(Σs=1

t ysλs) ; w⋅(Σs=1
t xsλs) ≤ w⋅x ; λ1 ≥ 0 ,..., λt ≥ 0} 

 
where the last line in (43) follows from the fact that the solution to the linear 
programming problem is an extreme point and thus its solution is equal to the second line 
in (43). Thus all three equalities in (43) can serve to define Rt(p,w,x). Our assumption 
that all inner products of the form p⋅ys and w⋅xs are positive rules out the possibility of a 
λs = 0 solution to the third line in (43). The last expression in (43) can be use to show that 
when we assume constant returns to scale for our nonparametric representation for St, the 
resulting Rt(p,w,x) is linear and nondecreasing in x, is convex and linearly homogeneous 
in p and is homogeneous of degree 0 in w.  
 
If t numbers, µ1,...,µt are all positive, then it can be seen that max s {µs: s = 1,...,t} = 
1/min s {1/µs: s = 1,...,t}. Using this equality and (43), it can be seen that we can rewrite 
Rt(p,w,x) as follows:   
 
(44) Rt(p,w,x) = w⋅x max s {p⋅ys/w⋅xs : s = 1,2,...,t} 
                        = w⋅x/min s {w⋅xs/p⋅ys : s = 1,2,...,t} 
                        = w⋅x/ct(w,p) 
 
where we define the period t nonparametric unit cost function ct(w,p)  as follows:  
 
(45) ct(w,p) ≡ min s {w⋅xs/p⋅ys : s = 1,2,...,t}. 
 
Thus we have an explicit functional form for the unit cost function ct(w,p) that was 
defined earlier by (10) above. It can be seen that ct(w,p) defined by (45) is a linear 
nondecreasing function of w (and hence is linearly homogeneous and concave in w which 
is a necessary property for unit cost functions) and is convex and homogeneous of degree 
minus one in p.  
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From (43) we can see that our cost constrained value added function defined by (41) 
(which did not involve the unit cost function) does in fact conform to equation (11), 
which we used to simplify our explanatory factors when we had technology sets which 
were cones. 
 
Now we are in a position to apply the decompositions of value added growth (34), of TFP 
growth (35) and for the level of TFP (40), using the specific functional form for a sector’s 
cost constrained value added function defined by (43). However, with the assumption of 
constant returns to scale in production, the returns to scale growth factor δt is identically 
equal to one and so this factor vanishes from the decompositions of value added and TFP 
growth defined by (34) and (35) above. The levels return to scale growth factor Dt in (40) 
is also identically equal to one and hence vanishes from the decomposition (40). 
 
In the following two sections, we apply our decomposition to two major sectors of the 
U.S. economy, the Corporate Nonfinancial Sector and the Noncorporate Nonfinancial 
Sector, respectively. 
 
5. The U.S. Corporate Nonfinancial Sector, 1960-2014 
 
The US Bureau of Economic Analysis (BEA), in conjunction with the Bureau of Labor 
Statistics (BLS) and the Board of Governors of the Federal Reserve, have developed a 
new set of production accounts (the Integrated Macroeconomic Accounts or IMA) for 
two major private sectors of the US economy: the Corporate Nonfinancial Sector and the 
Noncorporate Nonfinancial Sector. The Balance Sheet Accounts in the IMA cover the 
years 1960-2014 but do not provide a decomposition of output, input and asset values 
into price and quantity components. Diewert and Fox (2016a) provided such a 
decomposition and we will use their data in this study.  
 
In this section, we will use their output and input data for the U.S. Corporate 
Nonfinancial Sector (which we denote as Sector 1) for the 55 years 1960-2014. The year t 
output y1t is real value added 21 and the corresponding year t value added deflator is 
denoted as p1t. The ten inputs used by this sector are labour and the services of nine types 
of asset. 22 The output and input data are listed in Appendix A of Diewert and Fox 
(2016b). The year t input vector for this sector is x1t ≡ [x1

1t,x2
1t,...,x10

1t] where x1
1t is year 

t labour input measured in billions of 1960 dollars and x2
1t,...,x10

1t are capital service 
inputs measured in billions of 1960 capital stock dollars. The corresponding year t input 
price vector for Sector 1 is w1t ≡ [w1

1t,w2
1t,...,w10

1t] for t = 1960,...,2014. 
                                                 
21 There is only a single value added output for this sector. The published data for this sector did not allow 
Diewert and Fox (2016a) to decompose real value added into gross output and intermediate input 
components. 
22 The nine types of asset used in this sector and the corresponding input numbers are as follows: 2 = 
Equipment; 3 = Intellectual property products; 4 = Nonresidential structures; 5 = Residential structures; 6 = 
Residential land; 7 = Farm land; 8 = Commercial land; 9 = Beginning of year inventory stocks and 10 = 
Beginning of the year real holdings of currency and deposits. The prices are user costs that use predicted 
asset inflation rates rather than ex post inflation rates but balancing rates of return were used that make the 
value of input in each year equal to the corresponding value of output. 
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Our year t technology set for Sector 1, S1t, is defined as the free disposal cone spanned by 
the observed output and input vectors for the sector up to and including the year t 
observation. However, as was shown in the previous section, the free disposal cone can 
be replaced by the convex free disposal cone spanned by previous observations. For 
convenience, we label the years 1960-2014 as years 1-55 in definitions (46)-(50) below. 
Thus S1t is defined as follows: 
 
(46) S1t ≡ {(y,x): y ≤ Σs=1

t y1s λs; x ≥ Σs=1
t x1s λs; λ1 ≥ 0, ..., λs ≥ 0};                 t = 1,...,55.  

 
We adapt definition (43) of section 4 to the present situation and define the Sector 1 year 
t cost constrained value added function R1t(p,w,x) for p > 0, w >> 010 and x >> 010 as 
follows: 
 
(47) R1t(p,w,x) ≡ max y,z {py: (y,z)∈S1t; w⋅z ≤ w⋅x}                                  t = 1,...,55   
                         =

tλλ ,...,1
max {p(Σs=1

t y1sλs) ; w⋅(Σs=1
t x1sλs) ≤ w⋅x ; λ1 ≥ 0 ,..., λt ≥ 0} 

                         = max s {py1s w⋅x/w⋅x1s : s = 1,2,...,t} 
                         = w⋅x max s {py1s/w⋅x1s : s = 1,2,...,t}. 
 
Using the cost constrained value added functions defined by (47), we can readily 
calculate the Sector 1 counterparts to the year t generic value added growth 
decompositions (32)-(33) that we derived in section 3 above. Using our present notation 
for the Sector 1 prices and quantities, these decompositions can be written as follows for t 
= 2,...,55:23 
   
(48) v1t/v1,t−1 = p1ty1t/p1,t−1y1,t−1 = ε1t αP

1t βL
1t γLPP

1t τL
1t ; 

(49) v1t/v1,t−1 = ε1t αL
1t βP

1t γPLL
1t τP

1t ; 
(50) v1t/v1,t−1 = ε1t α1t β1t γ1t τ1t . 
 
As in section 3, we define year t Total Factor Productivity Growth for Sector 1 as value 
added growth divided by output price growth α1t times input quantity growth β1t:  
 
(51) TFPG1t ≡ [v1t/v1,t−1]/[α1tβ1t] = ε1t γ1t τ1t ;                                            t = 1961,...,2014. 
 
Since we have only a single value added output, α1t ≡ p1t/p1,t−1 can be interpreted as a 
Fisher output price index and [v1t/v1.t−1]/α1t can be interpreted as a Fisher output quantity 
index going from year t−1 to year t. β1t is the Fisher input quantity index going from year 
t−1 to year t. Thus TFPG1t is equal to a conventional Fisher productivity growth index in 
this one output case.  
 

                                                 
23 Since our Sector 1 technology sets are cones, our returns to scale explanatory factors are all equal to 
unity; i.e., δL

1t = δP
1t = δ1t = 1 for t =2,...,55. Thus these explanatory factors do not appear in the 

decompositions (48)-(50). Since there is only one output for Sector 1, we have αL
1t = αP

1t = α1t = p1t/p1,t−1. 
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The (one plus) growth factors for our Sector 1 that appear in the decomposition given by 
(51) are listed in Table 1. In addition, we list the cost constrained value added efficiency 
levels e1t that are the Sector 1 counterparts to the et defined by (3). 
 
It can be verified that the TFP growth decomposition defined by (51) holds; i.e., for each 
year t, nonparametric TFP growth TFPGt equals the product of value added efficiency 
growth ε1t times the year t input mix growth factor γ1t times the year t technical progress 
measure τ1t. It can be seen that the input mix factors are all very close to one. It can also 
be seen when value added efficiency in year t, e1t, is less than one, then the year t 
technical progress measure τ1t always equals one so that there is no technical progress in 
years where the value added efficiency is less than one. Our nonparametric measure of 
technical progress τ1t is always equal to or greater than one; i.e., our measure never 
indicates technological regress. Another important empirical regularity emerges from 
Table 1: since the input mix growth factors γ1t are always very close to one, then when 
the year t value added efficiency growth factor εt is equal to one, our nonparametric 
measure of TFP growth, TFPGt, is virtually equal to our year t measure of technical 
progress τ1t. Finally, the last row of Table 1 lists the arithmetic averages of the various 
growth factors. It can be seen that the arithmetic average rate of TFP growth (and of 
technical progress) for Sector 1 is 1.70% per year which is a very high average rate of 
TFP growth over 55 years.  
 
To conclude this section, apply the definitions (37)-(40) to Sector 1 in order to obtain the 
following levels decomposition for Total Factor Productivity in year t relative to the year 
1960, TFP1t: 
 
(52) TFP1t = [v1t/v1,1960]/[A1t B1t] =  C1t E1t T1t ;                                       t = 1960,...,2014. 
 
Table 2 lists the various levels that appear in (52). We note that the returns to scale level 
for Sector 1 in year t relative to 1960, D1t, is identically equal to one and so it does not 
appear in the decomposition defined by (52).  
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Table 1: U.S. Corporate Nonfinancial Value Added Growth v1t/v1,t−1, Output Price Growth 
α1t, Input Quantity Growth β1t, TFP Growth TFPG1t, Value Added Efficiency Growth ε1t, 
Input Mix Growth Factors γ1t and Technical Progress Growth Factors τ1t and Value Added 
Efficiency Factors e1t    
 

Year t v1t/v1,t−1 α1t β1t TFPG1t ε1t γ1t τ1t e1t 

1961 1.02696 1.00305 1.00469 1.01906 1.00000 1.00000 1.01906 1.00000 
1962 1.09170 1.00647 1.03460 1.04841 1.00000 1.00000 1.04842 1.00000 
1963 1.06692 1.00495 1.02435 1.03642 1.00000 1.00000 1.03641 1.00000 
1964 1.08005 1.00921 1.02752 1.04153 1.00000 1.00000 1.04154 1.00000 
1965 1.10313 1.01758 1.04519 1.03721 1.00000 1.00000 1.03722 1.00000 
1966 1.10528 1.02920 1.05110 1.02171 1.00000 1.00000 1.02172 1.00000 
1967 1.05161 1.02232 1.02739 1.00123 1.00000 1.00000 1.00123 1.00000 
1968 1.09790 1.03102 1.03470 1.02914 1.00000 1.00000 1.02914 1.00000 
1969 1.08381 1.04212 1.04058 0.99944 0.99950 0.99994 1.00000 0.99950 
1970 1.02816 1.03715 0.99899 0.99233 0.99337 0.99894 1.00000 0.99287 
1971 1.07692 1.03612 1.00738 1.03176 1.00718 1.00006 1.02436 1.00000 
1972 1.11407 1.03557 1.04114 1.03330 1.00000 1.00000 1.03330 1.00000 
1973 1.12293 1.05864 1.04779 1.01236 1.00000 1.00000 1.01235 1.00000 
1974 1.08158 1.09825 1.01129 0.97383 0.97416 0.99966 1.00000 0.97416 
1975 1.08256 1.09815 0.98241 1.00345 1.00312 1.00035 1.00000 0.97720 
1976 1.13447 1.04863 1.03550 1.04476 1.02333 1.00061 1.02032 1.00000 
1977 1.13447 1.05665 1.04253 1.02985 1.00000 1.00000 1.02985 1.00000 
1978 1.14104 1.07144 1.05167 1.01263 1.00000 1.00000 1.01262 1.00000 
1979 1.11671 1.08202 1.03863 0.99368 0.99367 1.00001 1.00000 0.99367 
1980 1.08280 1.09350 1.00423 0.98604 0.98644 0.99960 1.00000 0.98019 
1981 1.13011 1.08602 1.01929 1.02090 1.02021 1.00019 1.00048 1.00000 
1982 1.03636 1.05950 0.98579 0.99226 0.99289 0.99937 1.00000 0.99289 
1983 1.06824 1.01840 1.01903 1.02936 1.00716 1.00019 1.02185 1.00000 
1984 1.12268 1.03086 1.04890 1.03830 1.00000 1.00000 1.03830 1.00000 
1985 1.06489 1.01773 1.02518 1.02064 1.00000 1.00000 1.02064 1.00000 
1986 1.04040 1.01396 1.01493 1.01098 1.00000 1.00000 1.01099 1.00000 
1987 1.07299 1.01895 1.02831 1.02405 1.00000 1.00000 1.02404 1.00000 
1988 1.08863 1.02562 1.02632 1.03421 1.00000 1.00000 1.03422 1.00000 
1989 1.04995 1.03037 1.02506 0.99409 0.99408 1.00002 1.00000 0.99408 
1990 1.04513 1.03022 1.00733 1.00709 1.00596 1.00003 1.00108 1.00000 
1991 1.01671 1.02198 0.98427 1.01074 1.00000 1.00000 1.01073 1.00000 
1992 1.04361 1.01273 1.00954 1.02075 1.00000 1.00000 1.02077 1.00000 
1993 1.04598 1.02083 1.02097 1.00359 1.00000 1.00000 1.00360 1.00000 
1994 1.07768 1.01521 1.03256 1.02806 1.00000 1.00000 1.02807 1.00000 
1995 1.06258 1.01365 1.03237 1.01541 1.00000 1.00000 1.01541 1.00000 
1996 1.06562 1.00663 1.02243 1.03537 1.00000 1.00000 1.03538 1.00000 
1997 1.07519 1.00793 1.03774 1.02794 1.00000 1.00000 1.02795 1.00000 
1998 1.05955 1.00264 1.02397 1.03203 1.00000 1.00000 1.03204 1.00000 
1999 1.06140 1.00662 1.03224 1.02149 1.00000 1.00000 1.02148 1.00000 
2000 1.06697 1.01154 1.02730 1.02676 1.00000 1.00000 1.02677 1.00000 
2001 0.99271 1.01425 0.98433 0.99434 0.99529 0.99905 1.00000 0.99529 
2002 1.00792 0.99938 0.98456 1.02437 1.00473 0.99999 1.01955 1.00000 
2003 1.03213 1.01016 0.99016 1.03190 1.00000 1.00000 1.03189 1.00000 
2004 1.06661 1.02069 1.00978 1.03488 1.00000 1.00000 1.03488 1.00000 
2005 1.06847 1.03438 1.01215 1.02056 1.00000 1.00000 1.02057 1.00000 
2006 1.07032 1.03063 1.01851 1.01964 1.00000 1.00000 1.01964 1.00000 
2007 1.03033 1.02012 1.01042 0.99959 0.99969 0.99991 1.00000 0.99969 
2008 1.00803 1.02121 0.99622 0.99084 0.99113 0.99970 1.00000 0.99082 
2009 0.94412 1.01625 0.95309 0.97475 0.97620 0.99851 1.00000 0.96724 
2010 1.05625 1.00079 1.00150 1.05384 1.03387 1.00112 1.01818 1.00000 
2011 1.04785 1.02221 1.02168 1.00332 1.00000 1.00000 1.00332 1.00000 
2012 1.05777 1.01674 1.02335 1.01661 1.00000 1.00000 1.01660 1.00000 
2013 1.03693 1.00644 1.02162 1.00849 1.00000 1.00000 1.00849 1.00000 
2014 1.04003 1.00803 1.02686 1.00476 1.00000 1.00000 1.00476 1.00000 

Mean 1.06620      1.02880      1.01910      1.01700      1.00000      0.99995      1.01700      0.99736      
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Table 2: U.S. Corporate Nonfinancial Value Added Year t Levels v1t/v1,1960, Output Price 
Levels A1t, Input Quantity Levels B1t, TFP Levels TFP1t, Input Mix Levels C1t, Value Added 
Efficiency Levels E1t and Technical Progress Levels T1t where all Levels are Relative to 1960 
 

Year t v1t/v1,1960 A1t B1t TFP1t C1t E1t T1t 

1960 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
1961 1.02696 1.00305 1.00469 1.01906 1.00000 1.00000 1.01906 
1962 1.12113 1.00954 1.03945 1.06839 1.00000 1.00000 1.06840 
1963 1.19615 1.01454 1.06476 1.10730 1.00000 1.00000 1.10730 
1964 1.29190 1.02388 1.09407 1.15329 1.00000 1.00000 1.15330 
1965 1.42514 1.04188 1.14350 1.19620 1.00000 1.00000 1.19622 
1966 1.57518 1.07230 1.20194 1.22217 1.00000 1.00000 1.22220 
1967 1.65648 1.09623 1.23486 1.22368 1.00000 1.00000 1.22370 
1968 1.81864 1.13024 1.27771 1.25934 1.00000 1.00000 1.25937 
1969 1.97106 1.17785 1.32956 1.25864 0.99994 0.99950 1.25937 
1970 2.02656 1.22161 1.32822 1.24899 0.99888 0.99287 1.25937 
1971 2.18245 1.26574 1.33802 1.28866 0.99894 1.00000 1.29004 
1972 2.43141 1.31076 1.39306 1.33157 0.99894 1.00000 1.33300 
1973 2.73032 1.38762 1.45963 1.34803 0.99894 1.00000 1.34947 
1974 2.95307 1.52395 1.47611 1.31275 0.99860 0.97416 1.34947 
1975 3.19687 1.67352 1.45016 1.31728 0.99894 0.97720 1.34947 
1976 3.62675 1.75491 1.50164 1.37625 0.99955 1.00000 1.37689 
1977 4.11443 1.85432 1.56550 1.41733 0.99955 1.00000 1.41799 
1978 4.69473 1.98679 1.64640 1.43524 0.99955 1.00000 1.43590 
1979 5.24266 2.14974 1.70999 1.42617 0.99956 0.99367 1.43590 
1980 5.67676 2.35075 1.71722 1.40627 0.99916 0.98019 1.43590 
1981 6.41535 2.55297 1.75035 1.43566 0.99935 1.00000 1.43659 
1982 6.64861 2.70487 1.72548 1.42454 0.99872 0.99289 1.43659 
1983 7.10233 2.75464 1.75831 1.46636 0.99891 1.00000 1.46798 
1984 7.97366 2.83966 1.84429 1.52252 0.99891 1.00000 1.52421 
1985 8.49111 2.89001 1.89073 1.55395 0.99891 1.00000 1.55567 
1986 8.83418 2.93035 1.91896 1.57102 0.99891 1.00000 1.57276 
1987 9.47898 2.98587 1.97328 1.60880 0.99891 1.00000 1.61057 
1988 10.31908 3.06238 2.02521 1.66384 0.99891 1.00000 1.66569 
1989 10.83452 3.15539 2.07596 1.65401 0.99893 0.99408 1.66569 
1990 11.32345 3.25074 2.09118 1.66573 0.99896 1.00000 1.66748 
1991 11.51263 3.32219 2.05828 1.68363 0.99896 1.00000 1.68537 
1992 12.01468 3.36449 2.07791 1.71857 0.99896 1.00000 1.72038 
1993 12.56706 3.43456 2.12149 1.72473 0.99896 1.00000 1.72656 
1994 13.54323 3.48679 2.19055 1.77314 0.99896 1.00000 1.77502 
1995 14.39079 3.53437 2.26146 1.80046 0.99896 1.00000 1.80238 
1996 15.33507 3.55779 2.31219 1.86415 0.99896 1.00000 1.86615 
1997 16.48815 3.58599 2.39946 1.91624 0.99896 1.00000 1.91830 
1998 17.47003 3.59545 2.45697 1.97761 0.99896 1.00000 1.97976 
1999 18.54264 3.61926 2.53617 2.02010 0.99896 1.00000 2.02229 
2000 19.78448 3.66103 2.60542 2.07417 0.99896 1.00000 2.07642 
2001 19.64021 3.71320 2.56459 2.06243 0.99802 0.99529 2.07642 
2002 19.79580 3.71089 2.52498 2.11269 0.99801 1.00000 2.11702 
2003 20.43174 3.74861 2.50013 2.18008 0.99801 1.00000 2.18453 
2004 21.79279 3.82615 2.52457 2.25612 0.99801 1.00000 2.26072 
2005 23.28502 3.95768 2.55525 2.30252 0.99801 1.00000 2.30721 
2006 24.92242 4.07891 2.60254 2.34773 0.99801 1.00000 2.35252 
2007 25.67843 4.16098 2.62966 2.34678 0.99791 0.99969 2.35252 
2008 25.88458 4.24922 2.61973 2.32528 0.99762 0.99082 2.35252 
2009 24.43813 4.31825 2.49684 2.26658 0.99613 0.96724 2.35252 
2010 25.81284 4.32164 2.50058 2.38861 0.99725 1.00000 2.39529 
2011 27.04786 4.41763 2.55480 2.39655 0.99725 1.00000 2.40323 
2012 28.61031 4.49159 2.61446 2.43635 0.99725 1.00000 2.44312 
2013 29.66699 4.52053 2.67099 2.45703 0.99725 1.00000 2.46386 
2014 30.85463 4.55684 2.74273 2.46873 0.99725 1.00000 2.47559 
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Note that the final level of TFP in 2014, 2.46873, is slightly less than the level of 
technology in 2014, which is 2.47559. This small difference is explained by the fact that 
the cumulative input mix level, 0.99725, is slightly less than 1 in 2014. We plot TFP1t, 
C1t, E1t and T1t in Figure 1. 

 
It can be seen that there was a substantial decline in value added efficiency over the years 
2006-2009 and in fact, TFP has grown at a slower than average rate since 2006. The level 
of TFP also fell in the 1974, 1979, 1982, 1989 and 2001 recessions when efficiency 
growth dipped below one. However, on the whole, TFP growth in the U.S. Corporate 
Nonfinancial Sector has been satisfactory.  
 
We turn now to an analysis of the performance of the U.S. Noncorporate Nonfinancial 
Sector.  
 
6. The U.S. Noncorporate Nonfinancial Sector, 1960-2014 
 
In this section, we use the Diewert and Fox (2016b) output and input data for the U.S. 
Noncorporate Nonfinancial Sector (which we denote as Sector 2) for the 55 years 1960-
2014. The year t output y2t is real value added for this sector and the corresponding year t 
value added deflator is denoted as p2t. The 15 inputs used by this sector are labour and the 
services of 14 types of asset.24 The output and input data are listed in Appendix A of 
                                                 
24 The 14 types of asset used in this sector and the corresponding input numbers are as follows: 2 = 
Equipment held by sole proprietors; 3 = Equipment held by partners; 4 = Equipment held by cooperatives; 
5 = Intellectual property products held by sole proprietors; 6 = Intellectual property products held by 
partners; 7 = Nonresidential structures held by sole proprietors; 8 = Nonresidential structures held by 
partners; 9 = Nonresidential structures held by cooperatives; ; 10 = Residential structures held by the 
noncorporate nonfinancial sector; 11 = Residential land held by the noncorporate nonfinancial sector; 12 = 
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Diewert and Fox (2016b). The year t input vector for this sector is x2t ≡ [x1
2t,x2

2t,...,x15
2t] 

where x1
2t is year t labour input measured in billions of 1960 dollars and x2

2t,...,x15
2t are 

capital service inputs measured in billions of 1960 capital stock dollars. The 
corresponding year t input price vector for sector 2 is w2t ≡ [w1

2t,w2
2t,...,w15

2t] for t = 
1960,...,2014. 
 
Our year t technology set for Sector 2, S2t, is defined in an analogous manner as for 
Sector 1 in (46), as the free disposal cone spanned by the observed output and input 
vectors up to and including the year t observation. We adapt definition (46) to the present 
situation and the Sector 2 year t cost constrained value added function R2t(p,w,x) for p > 
0, w >> 015 and x >> 015 can be written as follows: 
 
(53) R2t(p,w,x) = w⋅x max s {py2s/w⋅x2s : s = 1,2,...,t}.   t = 1,...,55   
                         
Using the cost constrained value added functions defined by (53), we can readily 
calculate the Sector 2 counterparts to the year t generic value added growth 
decompositions (32)-(33) that we derived in section 3. Using our present notation for the 
Sector 2 prices and quantities, these decompositions can be written in the same manner as 
(48)-(50) except that the superscript 2 replaces the superscript 1. As in section 3, we 
define year t Total Factor Productivity Growth for Sector 2 as value added growth 
divided by output price growth α2t times input quantity growth β2t, which leads to the 
following year t decomposition of TFP growth for Sector 2:25   
 
(54) TFPG2t ≡ [v2t/v2,t−1]/[α2tβ2t] = ε2t γ2t τ2t ;                                            t = 1961,...,2014. 
 
Since we have only a single value added output, α2t ≡ p2t/p2,t−1 can be interpreted as a 
Fisher output price index and [v2t/v2.t−1]/α2t can be interpreted as a Fisher output quantity 
index going from year t−1 to year t. β2t is the Fisher input quantity index going from year 
t−1 to year t for Sector 2. Thus TFPG2t is equal to a conventional Fisher productivity 
growth index in this one output case.  
 
The growth factors for our Sector 2 that appear in the decomposition given by (54) are 
listed in Table 3. In addition, we list the cost constrained value added efficiency levels e2t 
that are the Sector 2 counterparts to the et defined by (3). 

                                                                                                                                                 
Farm land held by the noncorporate nonfinancial sector; 13 = Commercial land held by noncorporate 
nonfinancial sector; 14 = Beginning of the year inventories held by the noncorporate nonfinancial sector 
and 15 = Beginning of the year real holdings of currency and deposits by noncorporate nonfinancial sector..  
25 The returns to scale measures δ2t for Sector 2 are all equal to one and thus these growth factors do not 
appear in (53).  
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Table 3: U.S. Noncorporate Nonfinancial Value Added Growth v2t/v2,t−1, Output Price 
Growth α2t, Input Quantity Growth β2t, TFP Growth TFPG2t, Value Added Efficiency 
Growth Factors ε2t, Input Mix Growth Factors γ2t and Technical Progress Growth Factors 
τ2t and Value Added Efficiency Factors e2t    
 

Year t v2t/v2,t−1 α2t β2t TFPG2t ε2t γ2t τ2t e2t 

1961 1.02611 1.01608 0.98336 1.02696 1.00000 1.00000 1.02695 1.00000 
1962 1.03628 1.01432 0.99047 1.03148 1.00000 1.00000 1.03149 1.00000 
1963 1.02537 1.01138 0.98980 1.02428 1.00000 1.00000 1.02426 1.00000 
1964 1.05036 1.01681 1.00129 1.03166 1.00000 1.00000 1.03169 1.00000 
1965 1.05693 1.01991 0.99748 1.03891 1.00000 1.00000 1.03889 1.00000 
1966 1.06541 1.03070 1.00046 1.03319 1.00000 1.00000 1.03320 1.00000 
1967 1.02600 1.03158 0.99474 0.99984 1.00000 0.99976 1.00003 1.00000 
1968 1.05414 1.04532 0.99242 1.01614 1.00000 1.00000 1.01619 1.00000 
1969 1.05337 1.04377 1.00590 1.00327 1.00000 1.00000 1.00330 1.00000 
1970 1.03555 1.03923 0.99661 0.99986 1.00000 0.99959 1.00023 1.00000 
1971 1.05931 1.04708 0.99649 1.01525 1.00000 1.00000 1.01529 1.00000 
1972 1.10456 1.04810 1.01373 1.03960 1.00000 1.00000 1.03965 1.00000 
1973 1.16895 1.04374 1.03526 1.08181 1.00000 1.00000 1.08176 1.00000 
1974 1.05229 1.09421 1.02312 0.93996 0.94041 0.99956 1.00000 0.94041 
1975 1.07140 1.10309 0.99317 0.97796 0.97815 0.99985 1.00000 0.91986 
1976 1.09366 1.08706 1.00684 0.99924 0.99895 1.00030 1.00000 0.91889 
1977 1.09102 1.08397 1.01453 0.99208 0.99188 1.00024 1.00000 0.91143 
1978 1.13298 1.07146 1.02691 1.02970 1.02912 1.00063 1.00000 0.93797 
1979 1.11623 1.11798 1.02918 0.97012 0.97030 0.99984 1.00000 0.91011 
1980 1.05125 1.06681 1.01524 0.97062 0.97138 0.99923 1.00000 0.88406 
1981 1.08929 1.09691 1.00518 0.98793 0.98828 0.99960 1.00000 0.87370 
1982 1.04364 1.06451 1.00908 0.97157 0.97353 0.99798 1.00000 0.85057 
1983 1.05757 1.07541 1.01796 0.96606 0.96782 0.99826 1.00000 0.82319 
1984 1.15730 1.01282 1.02387 1.11602 1.11439 1.00148 1.00000 0.91736 
1985 1.07921 1.04855 1.01081 1.01823 1.01809 1.00017 1.00000 0.93396 
1986 1.05984 1.01768 1.01298 1.02808 1.03079 0.99734 1.00000 0.96272 
1987 1.04901 1.04904 1.01400 0.98616 0.98582 1.00038 1.00000 0.94906 
1988 1.08921 1.04848 1.01531 1.02319 1.02319 1.00004 1.00000 0.97107 
1989 1.06461 1.05355 1.02123 0.98950 0.99138 0.99813 1.00000 0.96269 
1990 1.04318 1.04174 1.01110 0.99039 0.99286 0.99751 1.00000 0.95582 
1991 1.00925 1.04153 1.00458 0.96459 0.96850 0.99596 1.00000 0.92571 
1992 1.06726 1.01569 0.98668 1.06495 1.06571 0.99930 1.00000 0.98654 
1993 1.03876 1.02356 1.02364 0.99141 0.99190 0.99947 1.00000 0.97855 
1994 1.05278 1.01154 1.01235 1.02807 1.02192 0.99940 1.00665 1.00000 
1995 1.04291 1.04735 1.00941 0.98649 0.98648 0.99999 1.00000 0.98648 
1996 1.07813 1.05142 1.00882 1.01645 1.01370 0.99997 1.00272 1.00000 
1997 1.06300 1.03341 1.01934 1.00912 1.00000 1.00000 1.00916 1.00000 
1998 1.08134 1.02197 1.00929 1.04836 1.00000 1.00000 1.04834 1.00000 
1999 1.06748 1.01844 1.00857 1.03925 1.00000 1.00000 1.03922 1.00000 
2000 1.08263 1.05231 1.01848 1.01015 1.00000 1.00000 1.01012 1.00000 
2001 1.15232 1.04426 1.08093 1.02086 1.00000 1.00000 1.02087 1.00000 
2002 1.04271 1.00449 1.01851 1.01918 1.00000 1.00000 1.01918 1.00000 
2003 1.05478 1.00840 1.02963 1.01589 1.00000 1.00000 1.01587 1.00000 
2004 1.08508 1.01994 1.03304 1.02984 1.00000 1.00000 1.02985 1.00000 
2005 1.06903 1.02104 1.03269 1.01386 1.00000 1.00000 1.01387 1.00000 
2006 1.09790 1.01809 1.03878 1.03814 1.00000 1.00000 1.03815 1.00000 
2007 1.02757 1.02451 1.02994 0.97382 0.97366 1.00015 1.00000 0.97366 
2008 1.05018 1.00395 1.00167 1.04431 1.02705 0.99990 1.01689 1.00000 
2009 0.93797 0.98063 0.98224 0.97379 0.97479 0.99898 1.00000 0.97479 
2010 1.03208 1.03383 0.99483 1.00349 1.00318 1.00033 1.00000 0.97788 
2011 1.08243 1.01786 1.00189 1.06143 1.02262 1.00079 1.03713 1.00000 
2012 1.05758 1.02064 1.01541 1.02047 1.00000 1.00000 1.02049 1.00000 
2013 1.03553 1.02191 1.01072 1.00258 1.00000 1.00000 1.00261 1.00000 
2014 1.04452 1.02358 1.01703 1.00338 1.00000 1.00000 1.00340 1.00000 

Mean 1.06400      1.03890      1.01180      1.01260      0.99971      1.00030      1.01250      0.97086   
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It can be verified that the TFP growth decomposition defined by (54) holds; i.e., for each 
year t, nonparametric TFP growth in Sector 2, TFPG2t, equals the product of value added 
efficiency growth ε2t times the year t input mix growth factor γ2t times the year t technical 
progress measure τ2t. The arithmetic average rate of TFP growth for Sector 2 was 1.26% 
per year, which is well below the 1.70% per year rate of TFP growth for Sector 1, but is 
still quite good. As was the case with Sector 1, the Sector 2 input mix growth factors are 
all close to one and hence are not a significant determinant of TFP growth for the 
Noncorporate Nonfinancial Sector of the U.S. economy. Again, we see that when the 
year t efficiency factor e2t is below one, then the year t rate of technological change τ2t is 
equal to one. Moreover, the rate of technological change τ2t is always greater than or 
equal to one. What is very surprising is the very large number of years where value added 
efficiency e2t is below unity, indicating that Sector 2 is operating well within the 
production frontier during those years.26 The mean level of the value added efficiency 
factors is equal to 0.97086. Compare this very low average level of efficiency with the 
corresponding average level of efficiency for Sector 1, which was 0.99736. 27 
Nevertheless, we see that the average rate of TFP growth for Sector 2 was 1.26% per year 
which is very close to the average rate of technical progress for Sector 2, which was 
1.25% per year.       
 
To conclude this section, we apply definitions (37)-(40) to our present Sector 2 in order 
to obtain the following levels decomposition for Total Factor Productivity in year t 
relative to the year 1960, TFP2t ≡ [v2t/v2,1960]/[A2t B2t] =  C2t E2t T2t. Table 4 lists these 
cumulative explanatory factors.  
 
Note that the final level of TFP for Sector 2 in 2014, 1.91416, is somewhat less than the 
level of technology in 2014, which is 1.94563. This small difference is explained by the 
fact that the cumulative input mix level, 0.98424, is 1.5% less than 1 in 2014.28 Note also 
that the final level of TFP in Sector 2, 1.91416, is much lower than the final level of TFP 
for Sector 1, which is 2.46873. We plot TFP2t, C2t, E2t and T2t in Figure 2. 

                                                 
26 Recall that as we our approach rules out technical regress, loss of efficiency is gross loss of efficiency 
less any technical progress that occurs during recession years. Hence estimates of efficiency loss are a bit 
too low in magnitude, and our estimates of technical progress are biased downward. 
27 The efficiency level e2t was below unity for the years 1974-1993, 1995, 2007, 2009 and 2010, which is a 
total of 24 years. A possible explanation for the long stretch of inefficient years 1974-1993 is that Sector 2 
uses a high proportion of structures and land to produce its net outputs and there may have been a boom in 
these investments prior to 1974. Once the recession of 1974 occurred, these relatively fixed inputs could 
not be contracted in line with the net outputs produced by this sector, leading to the long string of 
inefficient years. An alternative explanation is that there are measurement errors in our data for Sector 2.  
28 For most observations, γ2t is only slightly less than one. But over time, the product of these γ2t cumulate 
to 0.984 which is significantly below one.  
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Table 4: U.S. Noncorporate Nonfinancial Value Added Year t Levels v2t/v2,1960, Output Price 
Levels A2t, Input Quantity Levels B2t, TFP Levels TFP2t, Input Mix Levels C2t, Value Added 
Efficiency Levels E2t and Technical Progress Levels T2t where all Levels are Relative to 1960 
 

Year t v2t/v2,1960 A2t B2t TFP2t C2t E2t T2t 

1960 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
1961 1.02611 1.01608 0.98336 1.02696 1.00000 1.00000 1.02695 
1962 1.06334 1.03063 0.97399 1.05928 1.00000 1.00000 1.05930 
1963 1.09031 1.04236 0.96406 1.08500 1.00000 1.00000 1.08499 
1964 1.14522 1.05988 0.96531 1.11935 1.00000 1.00000 1.11938 
1965 1.21041 1.08098 0.96288 1.16291 1.00000 1.00000 1.16291 
1966 1.28958 1.11417 0.96332 1.20151 1.00000 1.00000 1.20152 
1967 1.32310 1.14936 0.95825 1.20132 0.99976 1.00000 1.20156 
1968 1.39474 1.20145 0.95099 1.22070 0.99976 1.00000 1.22102 
1969 1.46917 1.25404 0.95660 1.22470 0.99976 1.00000 1.22505 
1970 1.52140 1.30323 0.95336 1.22452 0.99935 1.00000 1.22532 
1971 1.61164 1.36458 0.95001 1.24320 0.99935 1.00000 1.24406 
1972 1.78014 1.43021 0.96305 1.29243 0.99935 1.00000 1.29339 
1973 2.08089 1.49277 0.99701 1.39816 0.99935 1.00000 1.39913 
1974 2.18970 1.63340 1.02006 1.31422 0.99891 0.94041 1.39913 
1975 2.34606 1.80178 1.01309 1.28526 0.99877 0.91986 1.39913 
1976 2.56580 1.95864 1.02002 1.28428 0.99906 0.91889 1.39913 
1977 2.79932 2.12311 1.03484 1.27411 0.99930 0.91143 1.39913 
1978 3.17157 2.27483 1.06269 1.31196 0.99993 0.93797 1.39913 
1979 3.54018 2.54321 1.09370 1.27276 0.99977 0.91011 1.39913 
1980 3.72163 2.71313 1.11037 1.23536 0.99900 0.88406 1.39913 
1981 4.05393 2.97606 1.11613 1.22045 0.99861 0.87370 1.39913 
1982 4.23086 3.16805 1.12627 1.18576 0.99659 0.85057 1.39913 
1983 4.47442 3.40696 1.14649 1.14551 0.99485 0.82319 1.39913 
1984 5.17824 3.45063 1.17385 1.27841 0.99632 0.91736 1.39913 
1985 5.58841 3.61816 1.18655 1.30171 0.99649 0.93396 1.39913 
1986 5.92280 3.68213 1.20195 1.33826 0.99385 0.96272 1.39913 
1987 6.21307 3.86270 1.21878 1.31974 0.99422 0.94906 1.39913 
1988 6.76733 4.04995 1.23744 1.35034 0.99426 0.97107 1.39913 
1989 7.20459 4.26681 1.26371 1.33616 0.99240 0.96269 1.39913 
1990 7.51567 4.44489 1.27773 1.32333 0.98993 0.95582 1.39913 
1991 7.58523 4.62950 1.28359 1.27647 0.98593 0.92571 1.39913 
1992 8.09540 4.70216 1.26649 1.35937 0.98524 0.98654 1.39913 
1993 8.40916 4.81293 1.29644 1.34770 0.98472 0.97855 1.39913 
1994 8.85297 4.86845 1.31245 1.38553 0.98413 1.00000 1.40844 
1995 9.23288 5.09895 1.32480 1.36681 0.98412 0.98648 1.40844 
1996 9.95424 5.36112 1.33647 1.38929 0.98410 1.00000 1.41227 
1997 10.58131 5.54023 1.36232 1.40195 0.98410 1.00000 1.42521 
1998 11.44201 5.66193 1.37498 1.46974 0.98410 1.00000 1.49411 
1999 12.21415 5.76635 1.38676 1.52743 0.98410 1.00000 1.55271 
2000 13.22343 6.06797 1.41238 1.54294 0.98410 1.00000 1.56842 
2001 15.23758 6.33652 1.52669 1.57512 0.98410 1.00000 1.60115 
2002 15.88833 6.36495 1.55495 1.60534 0.98410 1.00000 1.63186 
2003 16.75867 6.41842 1.60103 1.63085 0.98410 1.00000 1.65776 
2004 18.18448 6.54641 1.65393 1.67950 0.98410 1.00000 1.70725 
2005 19.43982 6.68416 1.70799 1.70279 0.98410 1.00000 1.73094 
2006 21.34295 6.80506 1.77422 1.76773 0.98410 1.00000 1.79697 
2007 21.93133 6.97187 1.82734 1.72145 0.98425 0.97366 1.79697 
2008 23.03184 6.99939 1.83040 1.79772 0.98415 1.00000 1.82732 
2009 21.60307 6.86380 1.79789 1.75060 0.98315 0.97479 1.82732 
2010 22.29602 7.09602 1.78859 1.75672 0.98347 0.97788 1.82732 
2011 24.13380 7.22277 1.79196 1.86463 0.98424 1.00000 1.89516 
2012 25.52348 7.37188 1.81957 1.90280 0.98424 1.00000 1.93399 
2013 26.43038 7.53339 1.83908 1.90771 0.98424 1.00000 1.93904 
2014 27.60715 7.71100 1.87039 1.91416 0.98424 1.00000 1.94563 
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It can be seen that the loss of value added efficiency in Sector 2 was massive over the 20 
years 1974-1993 and this loss of efficiency dragged down the level of Sector 2 TFP over 
these years. However, TFP growth resumed in 1994 and was excellent until 2006 when 
TFP growth again stalled with the exception of two good years of growth in 2011 and 
2012.  
 
It can be seen that our nonparametric methodology provides a useful supplement to 
traditional index number methods for calculating TFP growth. It illustrates the adverse 
influence of recessions when output falls but inputs cannot be adjusted optimally due to 
the fixity of many capital stock (and labour) components of aggregate input. Under these 
circumstances, production takes place in the interior of the production possibilities set 
and for Sector 2, the resulting waste of resources was substantial.29 
 
We now consider the problem of how to decompose aggregate (across sectors) value 
added into explanatory factors. 
 
7. Aggregation over Sectors: Weighted Average Approach 
 
Diewert and Fox (2016c) considered different ways to go between sectoral and higher 
level of aggregation decompositions. In particular, a sectoral weighted average approach 
and an aggregate cost constrained value added approach. The first method is a “bottom 

                                                 
29 We note that our empirical results in this section and the previous one, which use the cost restricted value 
added function, are very similar to our previous results for these sectors in Diewert and Fox (2016b), which 
used a cost function approach. However, our previous approach relied on the fact that we had only a single 
output in each sector. Our present approach is preferred if there are many sectoral net outputs.   
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up” approach, while the second method is a “top down” approach. Diewert and Fox 
found that both methods produced results that approximated each other very closely. 
Drawing on the material of the previous sections, we present here a summary of the 
results from the “bottom up” approach. This uses weighted averages of the sectoral 
decompositions to provide an approximate decomposition into explanatory components 
at the aggregate level. 
 
Define period t aggregate value added vt as the sum of the period t sectoral value added 
for each sector, vt ≡ v1t + v2t. Then define the period t share of aggregate value added for 
sector k as skt ≡ vkt/vt , for k=1,2.  Diewert and Fox (2016c) showed that, using the year t 
sector k explanatory growth factors, αkt, βkt, γkt, εkt and τkt, that are listed in Tables 1 and 
3, we can write the following approximate decomposition of the (logarithm of the) 
aggregate value added ratio between periods t-1 and t:  
 
(55) ln vt/vt−1 ≈ Σk=1

2 (1/2)(skt + sk,t−1)ln(vkt/vk,t−1) 
                      = Σk=1

2 (1/2)(skt + sk,t−1)ln(αkt βkt γkt εkt τkt)                                using (50)  
                      = ln αt• + ln βt• + ln γt• + ln εt• + ln τt•, 
 
where the terms in the last line of (55) are defined as follows: 
 
(56) ln αt• ≡ Σk=1

2 (1/2)(skt + sk,t−1)ln αkt ; 
(57) ln βt• ≡ Σk=1

2 (1/2)(skt + sk,t−1)ln βkt ; 
(58) ln γt• ≡ Σk=1

2 (1/2)(skt + sk,t−1)ln γkt ; 
(59) ln εt• ≡ Σk=1

2 (1/2)(skt + sk,t−1)ln εkt ; 
(60) ln τt• ≡ Σk=1

2 (1/2)(skt + sk,t−1)ln τkt . 
 
Period t aggregate Total Factor Productivity Growth, TFPGt, can then be defined as 
aggregate real value added growth divided by aggregate primary input growth: 
 
(61) TFPGt ≡ [vt/vt−1]/αt• βt• ≈ γt• εt• τt• ;                                                           t = 2,...,T 
 
where the approximate equality in (61) follows from the approximate equality (55). Thus 
(61) provides an approximate decomposition of aggregate (one plus) TFP growth into the 
product of various aggregate explanatory growth factors (mix effects, returns to scale 
effects, cost constrained value added efficiency effects and technical progress effects). 
Using definitions (37)-(40) applied to aggregate value added, we obtain the following 
levels decomposition for approximate aggregate Total Factor Productivity in year t 
relative to the year 1960, TFPt•: 
 
(62) TFPt• = [vt/v1960]/[At• Bt•] ≈  Ct• Et• Tt• ;                                          t = 1960,...,2014. 
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Table 5: U.S. Aggregate Nonfinancial Value Added Growth vt/vt−1, Output Price Growth αt•, Input 
Quantity Growth βt•, TFP Growth TFPGt•, Input Mix Growth Factors γt•, Value Added Efficiency Growth 
Factors εt• and Technical Progress Growth Factors τt• and Sector 1 Shares of Aggregate Value Added s1t    
 

Year t vt/vt−1 αt• βt• TFPGt• γt• εt• τt• s1t 

1960 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.70438 
1961 1.02671 1.00688 0.99834 1.02139 1.00000 1.00000 1.02139 0.70455 
1962 1.07533 1.00874 1.02160 1.04347 1.00000 1.00000 1.04348 0.71528 
1963 1.05509 1.00675 1.01453 1.03300 1.00000 1.00000 1.03298 0.72330 
1964 1.07183 1.01129 1.02027 1.03882 1.00000 1.00000 1.03883 0.72884 
1965 1.09060 1.01820 1.03223 1.03766 1.00000 1.00000 1.03767 0.73721 
1966 1.09480 1.02959 1.03773 1.02468 1.00000 1.00000 1.02468 0.74427 
1967 1.04506 1.02466 1.01902 1.00088 0.99994 1.00000 1.00093 0.74893 
1968 1.08691 1.03454 1.02408 1.02592 1.00000 1.00000 1.02592 0.75650 
1969 1.07640 1.04252 1.03212 1.00037 0.99995 0.99962 1.00079 0.76171 
1970 1.02992 1.03765 0.99842 0.99412 0.99910 0.99495 1.00005 0.76041 
1971 1.07270 1.03872 1.00478 1.02781 1.00005 1.00547 1.02219 0.76340 
1972 1.11182 1.03851 1.03461 1.03478 1.00000 1.00000 1.03479 0.76495 
1973 1.13375 1.05506 1.04479 1.02851 1.00000 1.00000 1.02850 0.75765 
1974 1.07448 1.09728 1.01411 0.96559 0.99964 0.96596 1.00000 0.76265 
1975 1.07991 1.09932 0.98494 0.99737 1.00023 0.99716 1.00000 0.76452 
1976 1.12486 1.05743 1.02877 1.03402 1.00054 1.01762 1.01556 0.77105 
1977 1.12452 1.06275 1.03615 1.02121 1.00005 0.99816 1.02304 0.77788 
1978 1.13925 1.07144 1.04613 1.01639 1.00014 1.00638 1.00981 0.77910 
1979 1.11660 1.08986 1.03654 0.98843 0.99997 0.98846 1.00000 0.77917 
1980 1.07583 1.08762 1.00662 0.98266 0.99952 0.98313 1.00000 0.78422 
1981 1.12130 1.08833 1.01627 1.01380 1.00006 1.01333 1.00038 0.79038 
1982 1.03789 1.06055 0.99064 0.98787 0.99908 0.98879 1.00000 0.78922 
1983 1.06599 1.03011 1.01881 1.01573 0.99978 0.99877 1.01722 0.79088 
1984 1.12992 1.02702 1.04355 1.05428 1.00031 1.02319 1.03007 0.78581 
1985 1.06796 1.02429 1.02207 1.02012 1.00004 1.00387 1.01616 0.78356 
1986 1.04461 1.01477 1.01450 1.01469 0.99942 1.00663 1.00858 0.78040 
1987 1.06772 1.02543 1.02518 1.01568 1.00008 0.99690 1.01876 0.78425 
1988 1.08876 1.03051 1.02393 1.03182 1.00001 1.00496 1.02674 0.78416 
1989 1.05311 1.03536 1.02423 0.99309 0.99961 0.99349 1.00000 0.78180 
1990 1.04470 1.03272 1.00815 1.00343 0.99948 1.00309 1.00084 0.78212 
1991 1.01508 1.02620 0.98865 1.00053 0.99912 0.99307 1.00839 0.78337 
1992 1.04873 1.01338 1.00450 1.03025 0.99985 1.01401 1.01619 0.77955 
1993 1.04439 1.02143 1.02156 1.00090 0.99988 0.99821 1.00281 0.78074 
1994 1.07222 1.01441 1.02813 1.02806 0.99987 1.00472 1.02338 0.78471 
1995 1.05835 1.02076 1.02742 1.00915 1.00000 0.99710 1.01210 0.78785 
1996 1.06827 1.01601 1.01951 1.03131 0.99999 1.00290 1.02833 0.78589 
1997 1.07258 1.01331 1.03379 1.02390 1.00000 1.00000 1.02392 0.78781 
1998 1.06417 1.00674 1.02081 1.03549 1.00000 1.00000 1.03551 0.78438 
1999 1.06271 1.00916 1.02708 1.02530 1.00000 1.00000 1.02529 0.78342 
2000 1.07036 1.02028 1.02537 1.02312 1.00000 1.00000 1.02312 0.78093 
2001 1.02768 1.02115 1.00598 1.00042 0.99927 0.99638 1.00481 0.75436 
2002 1.01647 1.00065 0.99290 1.02307 0.99999 1.00355 1.01946 0.74802 
2003 1.03784 1.00971 1.00004 1.02781 1.00000 1.00000 1.02780 0.74391 
2004 1.07134 1.02050 1.01572 1.03357 1.00000 1.00000 1.03358 0.74062 
2005 1.06862 1.03090 1.01744 1.01881 1.00000 1.00000 1.01883 0.74052 
2006 1.07748 1.02733 1.02378 1.02445 1.00000 1.00000 1.02446 0.73560 
2007 1.02960 1.02128 1.01554 0.99272 0.99997 0.99275 1.00000 0.73612 
2008 1.01915 1.01656 0.99768 1.00489 0.99975 1.00063 1.00450 0.72809 
2009 0.94245 1.00646 0.96091 0.97449 0.99864 0.97582 1.00000 0.72938 
2010 1.04971 1.00955 0.99971 1.04008 1.00091 1.02554 1.01327 0.73393 
2011 1.05705 1.02104 1.01631 1.01865 1.00021 1.00604 1.01231 0.72754 
2012 1.05772 1.01780 1.02118 1.01766 1.00000 1.00000 1.01766 0.72758 
2013 1.03655 1.01063 1.01864 1.00688 1.00000 1.00000 1.00689 0.72784 
2014 1.04125 1.01225 1.02417 1.00438 1.00000 1.00000 1.00439 0.72699 

Mean 1.06550 1.03100 1.01720 1.01600 0.99990 1.00000 1.01600 0.76069 
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The growth decomposition components that appear in (61) are listed in Table 5, with the 
arithmetic means of the growth rates over the 54 years 1961-2014 listed in the last row. 
The average rate of aggregate TFP growth over these years was 1.60 percent per year, 
which is equal to the average rate of technical progress. There was no technical progress 
growth for eight of the years: 1974, 1975, 1979, 1980, 1982, 1989, 2007 and 2009. For 
these years, the rate of growth of value added efficiency was below unity and this 
translated into negative rates of TFP growth. The aggregate approximate input mix 
growth factors, the γt•, are all very close to unity. The approximate equality in (61) was 
very close to being an equality, with the absolute value of the difference between TFPGt• 
and γt• εt• τt• always less than 0.00003, and a mean difference of -0.0000034.  
 
In Figure 3, we plot TFPt•, and the explanatory factors Ct•, Et• and Tt• which appear in 
(62). Since Sector 1 is almost three times as big as Sector 2, it can be seen that the overall 
aggregate results are closer to the Sector 1 results. In particular, the huge value added 
inefficiency results that showed up in Sector 2 are no longer so huge in the aggregate 
results. However, inefficiency effects which are a result of recessions still show up as 
significant determinants of TFP at the aggregate level. 
 
It can be seen that the input mix is not important in explaining U.S. Nonfinancial Private 
Sector TFP growth over the period 1960-2014. The most important explanatory factor is 
the level of technical progress but during recession years, the level of value added 
efficiency plays an important role. Also noteworthy is the very high rate of TFP growth 
for the Nonfinancial Sector over this long period: the geometric average rate of TFP 
growth was 1.583% per year 
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. 
8. Conclusion 
 
We have derived decompositions of nominal value added growth (and TFP growth) for 
individual sectors into explanatory factors. Starting with Denison (1962), various authors 
have presented decompositions of either aggregate labour productivity growth or TFP 
growth into sectoral explanatory factors by manipulating the index number formulae that 
are used to define the relevant aggregate.30 The approach taken here relied instead on the 
economic approach to index number theory that started with Konüs (1939).  
 
Rather than using the consumer’s expenditure function in order to define various 
economic indexes, we used the sectoral cost constrained value added function, Rt(p,w,x), 
as the basic building block in our approach. This function depends on four sets of 
variables: t (indicating which technology set is in scope), the output price vector p, the 
primary input price vector w and the primary input quantity vector x. Ratios of the cost 
constrained value added functions were used to define various explanatory “economic” 
indexes where three of the four sets of variables are held constant in the numerator and 
denominator and the remaining variable changes from a period t−1 level in the 
denominator to a period t level in the numerator.  
 
With the goal of decomposing value added growth into a product of economic indexes, 
we operationalized our approach by assuming that an adequate approximation to a period 
t technology set can be obtained by taking the conical free disposal hull of past quantity 
observations for the sector under consideration. With a single output, we found that our 
approach generated estimates of TFP growth that are identical to standard index number 
estimates of TFP growth.  
 
A main advantage of our approach is that our new nonparametric measure of technical 
progress never indicates technical regress. During recessions, value added efficiency 
drops below unity and depresses TFP growth. For our U.S. data set, TFP growth is well 
explained as the product of value added efficiency growth times the rate of technical 
progress. For the U.S. Noncorporate Nonfinancial Sector, we found that the cost of 
recessions was particularly high.      
 
Implementation of the decompositions can provide key insights into the drivers of 
economic growth at a detailed sectoral level. Hence, we believe that they will provide 
new insights into the sources of economic growth. Our decompositions may also indicate 
data mismeasurement problems that can then be addressed by statistical agencies.  
 

                                                 
30 See for example, Tang and Wang (2004), Dumagan (2012), Balk (2014) (2015) (2016) and Diewert 
(2015) (2016). 
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