

UNSW Business School Centre for Applied Economic Research

Experimental Economics and the New Commodities Problem

W. Erwin Diewert, Kevin J. Fox and Paul Schreyer

ESCoE Conference on Economic Measurement King's College London, 8-10 May 2019

Summary

- Brynjolfsson, Collis, Diewert, Eggers and Fox (2019) have used experimental economics to measure the welfare benefits of free (digital) commodities and to define an extended measure of output, GDP-B.
- Adapt their methodological approach to new commodities which may or may not be free.
- Provide a new method for estimating Hicksian reservation prices, the prices that reduced demand to zero in the period before they existed.
- Show that the Total Income Approach to GDP-B is (approximately) the difference between a true index and measured GDP.

The Paper in Two Figures: q₁=regular good, z=new good; w^R=reservation price

Figure 1: The Two Commodity Case, when $w^1 > 0$

Figure 2: The Two Commodity Case, when $w^1 = 0$

The Paper in Two Figures: q1=regular good, z=new good; wR=reservation price

Utility function is homogeneous of degree 1. Hence:

$$-w^{R1}/p_1^1 = -w^{R0}/p_1^0$$

and we can solve for the new commodity's reservation price in period 0:

$$w^{R0} = w^{R1}/[p_1^{1}/p_1^{0}];$$

The period 0 reservation price is the inflation adjusted *carry backward* period 1 reservation price. That is, deflated by the inflation of the continuing, regular commodity.

 \Rightarrow if we have an estimate of w^{R1} from e.g. BCDEF-style Willingness-to-Accept experiments, then we have w^{R0}.

What is the income required for the household to achieve the utility level u¹, excluding the use of the new commodity?

$$c(u^1,p^1,0) \equiv \min_{q} \{p^1 \cdot q : f(q,0) = u^1\} > c(u^1,p^1,z^1) = p^1 \cdot q^1$$

Define the monetary compensation m^1 that is additional to $p^1 \cdot q^1$ that is required to keep the household at the utility level u^1 without using z^1 as follows:

$$m^1 \equiv c(u^1,p^1,0) - p^1 \cdot q^1$$

We convert m¹ into a period 1 average compensation price per unit of z foregone by setting m¹ equal to w^{C1}z¹:

$$\mathbf{w}^{\text{C1}} \equiv \mathbf{m}^{1}/\mathbf{z}^{1}$$

Recall the two figures from earlier....

The Paper in Two Figures: q₁=regular good, z=new good; w^R=reservation price

Figure 1: The Two Commodity Case, when $w^1 > 0$

Figure 2: The Two Commodity Case, when $w^1 = 0$

First-order Taylor series approximations:

$$\begin{split} &c(u^1,p^1,0)\approx c(u^1,p^1,z^1)+[\partial c(u^1,p^1,z^1)/\partial z][0-z^1]=c(u^1,p^1,z^1)+w^1z^1.\\ &\Rightarrow c(u^1,p^1,0)-c(u^1,p^1,z^1)\approx w^1z^1\\ &c(u^1,p^1,z^1)\approx c(u^1,p^1,0)+[\partial c(u^1,p^1,0)/\partial z][z^1-0]=c(u^1,p^1,0)-w^{R1}z^1,\\ &\Rightarrow c(u^1,p^1,0)-c(u^1,p^1,z^1)\approx w^{R1}z^1 \end{split}$$

Arithmetic average of the two first order approximations: $c(u^1,p^1,0) - c(u^1,p^1,z^1) \approx \frac{1}{2}(w^1 + w^{R1})z^1$

$$c(u^1,p^1,0) - c(u^1,p^1,z^1) = m^1 = w^{C1}z^1 \approx \frac{1}{2}(w^1 + w^{R1})z^1.$$

Can solve for the unknown reservation price w^{R1}.

$$\mathbf{w}^{R1} \approx 2\mathbf{w}^{C1} - \mathbf{w}^{1}$$

Recall that w¹ is the observed market price for z¹ and w^{C1} is the period 1 compensation price per unit of z foregone, as elicited from experimental evidence.

If z is free, then $w^1 = 0$ and $w^{R1} \approx 2w^{C1}$.

Note

- It is unclear how good this approximation would be for truly novel products.
 - BCDEF (2018) argue that a reservation price of twice the per unit compensation price is too low, at least for innovative digital products with few substitutes.
- If q and z are perfect substitutes, then the indifference curves are linear:
 - Then the reservation price w^{R1}, the observed price w¹ and the average compensation price w^{C1} are all equal.

What About GDP?

NSOs use *maximum overlap* price indexes (using only continuing goods) to deflate nominal value growth. Then the maximum overlap quantity index is:

$$Q_{MO} = \{[p_1^1 q_1^1 + w^1 z^1]/[p_1^0 q_1^0]\}/[p_1^1/p_1^0]$$
$$= [q_1^1 + (w^1/p_1^1)z^1]/q_1^0.$$

Laspeyres and Paasche "true" real indexes, Q_L and Q_p respectively:

$$\begin{split} Q_L &\equiv [p_1^{\ 0}q_1^{\ 1} + w^{R0}z^1]/[p_1^{\ 0}q_1^{\ 0} + w^{R0}0] = [q_1^{\ 1} + (w^{R0}/p_1^{\ 0})z^1]/q_1^{\ 0} \;; \\ Q_P &\equiv [p_1^{\ 1}q_1^{\ 1} + w^1z^1]/[p_1^{\ 1}q_1^{\ 0} + w^10] \\ &= [q_1^{\ 1} + (w^1/p_1^{\ 1})z^1]/q_1^{\ 0} \;. \end{split}$$

What About GDP?

NSOs use *maximum overlap* price indexes (using only continuing goods) to deflate nominal value growth. Then the maximum overlap quantity index is:

$$Q_{MO} = \{[p_1^1 q_1^1 + w^1 z^1]/[p_1^0 q_1^0]\}/[p_1^1/p_1^0]$$
$$= [q_1^1 + (w^1/p_1^1)z^1]/q_1^0.$$

Laspeyres and Paasche "true" real indexes, Q_L and Q_p respectively:

$$\begin{split} Q_L &\equiv [p_1^{\ 0}q_1^{\ 1} + w^{R0}z^1]/[p_1^{\ 0}q_1^{\ 0} + w^{R0}0] = [q_1^{\ 1} + (w^{R0}/p_1^{\ 0})z^1]/q_1^{\ 0} \;; \\ Q_P &\equiv [p_1^{\ 1}q_1^{\ 1} + w^1z^1]/[p_1^{\ 1}q_1^{\ 0} + w^10] \\ &= [q_1^{\ 1} + (w^1/p_1^{\ 1})z^1]/q_1^{\ 0} \;. \end{split}$$

What About GDP?

Approximate "true" Fisher quantity index:

$$Q_F \approx \frac{1}{2}Q_L + \frac{1}{2}Q_P$$

$$= [q_1^1 + \frac{1}{2}(w^{R1}/p_1^1)z^1 + \frac{1}{2}(w^1/p_1^1)z^1]/q_1^0$$

$$Q_F - Q_{MO} \approx [(w^{C1} - w^1)z^1/(p_1^1/p_1^0)]/p_1^0q_1^0$$

If
$$w^1 = 0$$
:

$$Q_F - Q_{MO} \approx [m^1/(p_1^1/p_1^0)]/p_1^0q_1^0$$

Note

- Actually derived for the one continuing good case. Can easily generalise to multiple goods: only change in the above expressions is that p₁0q₁0 becomes p⁰ · q⁰.
- This is exactly the adjustment to GDP growth from the GDP-B Total Income Approach of BCEDF (2019).
- Thus if the approximation $w^{R1} \approx 2w^{C1} w^1$, is a good one then the difference between the Total Income quantity index and the maximum overlap quantity index can be interpreted as the amount by which a maximum overlap index understates an approximate "true" Fisher index.

Summary

- Adapted the BCDEF (2019) approach to measure the benefits of new commodities which may or may not be free.
- Provided a new method for estimating Hicksian reservation prices, the prices that reduced demand to zero in the period before they existed.
- Showed that the BCDEF Total Income Approach to GDP-B is (approximately) the difference between a true index and measured GDP.

Reference

Brynjolfsson, E., A. Collis, W.E. Diewert, F. Eggers and K.J. Fox (2019), "GDP-B: Accounting for the Value of New and Free Goods in the Digital Economy", NBER Working Paper 25695.

https://www.nber.org/papers/w25695

