JOURNAL OF
Econometrics

ELSEVIER Journal of Econometrics 96 (2000) 293-356
www.elsevier.nl/locate/econbase

An empirical analysis of earnings dynamics
among men in the PSID: 1968-1989

John Geweke®®*, Michael Keane®*®

“Department of Economics, University of lowa, 121 E. Market Street, lowa City, 14 52242, USA
b Department of Economics, University of Minnesota, USA
“Department of Economics, New York University, USA

Received 1 December 1997; received in revised form 1 April 1999

Abstract

This study uses data from the Panel Survey of Income Dynamics (PSID) to address
a number of questions about life cycle earnings mobility. It develops a dynamic reduced
form model of earnings and marital status that is nonstationary over the life cycle. The
study reaches several firm conclusions about life cycle earnings mobility. Incorporating
non-Gaussian shocks makes it possible to better account for transitions between low and
higher earnings states, a heretofore unresolved problem. The non-Gaussian distribution
substantially increases estimates of the lifetime return to post-secondary education, and
substantially reduces differences in lifetime earnings attributable to race. In a given year,
the majority of variance in earnings not accounted for by race, education and age is due
to transitory shocks, but over a lifetime the majority is due to unobserved individual
heterogeneity. Consequently, low earnings at early ages are strong predictors of low
earnings later in life, even conditioning on observed individual characteristics. © 2000
Elsevier Science S.A. All rights reserved.

Keywords: Earnings mobility; Panel data; Non-Gaussian disturbances; Markov Chain
Monte Carlo

1. Introduction

This paper models the earnings process of male household heads, using data
from the Panel Study of Income Dynamics, 1968-1989. The estimated model
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addresses a number of questions about life-cycle earnings mobility. It provides
answers to questions such as: What is the probability that a household head
with earnings in the bottom quintile of the earnings distribution in one year will
still be in the bottom quintile in a subsequent year? What fractions of the
variance in lifetime earnings are due to observed heterogeneity, unobserved
heterogeneity, and transitory shocks, respectively?

Income mobility has been studied in many previous papers, including McCall
(1973), Shorrocks (1976), Lillard and Willis (1978), MaCurdy (1982), Gottschalk
(1982), Gottschalk and Moffit (1994). However, we believe that recent advances
in econometric methods - in particular, Bayesian inference via Gibbs sampling
- make it worthwhile to reexamine this question, because they allow one to
estimate much more sophisticated models of the stochastic process for income
or earnings than were possible in previous work.

In the classic paper on earnings mobility by Lillard and Willis, the approach
is to estimate a standard earnings function, where the dependent variable is log
annual earnings and the regressors are education, labor force experience and its
square, race, and time effects, and where the error term is assumed to consist of
an individual random effect that is normally distributed in the population plus
a time-varying normally distributed first-order autoregressive error component.
They estimate this model on data from the PSID for male heads of households
over the 1967-1973 period. They find that the regressors explain 33% of the
variance in log earnings, the random effect accounts for 61% of the error
variance, and first-order serial correlation is 0.40.

Some drawbacks of this model are apparent from a comparison of predicted
and actual transition probabilities. For instance, the model predicts that, for
whites, the probability of being in poverty in 1969 conditional on having been in
poverty in 1968 is 46.9%, while the actual sample frequency is only 37%. Thus,
the model overstates short-run persistence of the poverty state. Also, the pre-
dicted probability of a white person being in poverty in 1969 if he was in poverty
in 1968 but not in 1967 is 34.6%, whereas if he was in poverty in 1967 but not in
1968, the predicted probability of being in poverty in 1969 is only 17.9%. The
actual sample frequencies of the person being in poverty in 1969 given these past
histories are 23.5% and 21.1%, respectively. This again suggests that the model
overstates short-run persistence.

A number of possible reasons may explain why the normally distributed
random effect plus first-order autoregressive error structure (AR(1))
might overstate short-run persistence and, more generally, fail to fully capture
the complexity of observed earnings mobility patterns. One is that the
time-varying error term may follow a more complex time-series process
than the AR(1) assumed by Lillard and Willis. Another potential problem
is that the time-varying error components may not be normally distri-
buted. In fact, Lillard and Willis note that ‘the actual distributions [of
log earnings] for both blacks and whites are leptokurtic and slightly



J. Geweke, M. Keane | Journal of Econometrics 96 (2000) 293-356 295

negatively skewed relative to normal curves with the same mean and standard
deviation’.

In this paper we focus on the implications of nonnormality of the time-
varying error components for estimates of earnings mobility. As described
below, it is feasible to undertake Bayesian inference using the Gibbs sampler for
models with complex error structures. The latter may have a complex serial
correlation structure, with non-Gaussian shocks. In our model the proportion of
shock variance due to transitory effects varies with age, for example, and the
shape of each of two key shock distributions depends on seven free parameters.

Our work is related to recent work by Horowitz and Markatou (1996), who
have developed semiparametric methods for estimating models with random
effects plus a transitory error component. They apply this semiparametric
approach to a sample of white male workers from the 1986-1987 Current
Population Surveys. They find that the transitory component is not normal (it
has fatter tails), and show how ‘the assumption that it is normally distributed
leads to substantial overestimation of the probability that an individual with
low earnings will become a high earner in the future’. In our view, the adoption
of a flexible mixture of normals structure for the time-varying errors has some
important advantages over a semiparametric approach. In particular, it easily
accommodates serial correlation and nonstationarity over the life cycle, and
makes fewer demands on the data than do semiparametric methods. The
approach of Hirano (1998) to constructing a complex error structure is similar
to that taken here. He also uses methods for Bayesian inference much like the
ones applied in this paper. However, Hirano uses much smaller, more homogene-
ous samples than we do, because unlike our model his does not include covariates,
and he is unable to use earnings histories that exclude the initial period.

Another reason for reexamining the question of earnings mobility is that
much more data is available now than when the classic studies by Lillard and
Willis and MaCurdy were done. The PSID now extends over more than 20 yr.
Given the objective of distinguishing among alternative serial correlation speci-
fications for the error term, tests based on more than 20 yr of data should have
much greater power than ones that use only 7 or 10 yr of data. In particular, one
would need a lengthy panel in order to have much hope of distinguishing
individual effects from an autoregressive coefficient near one. The model in this
paper takes advantage of the longer period, but it also includes data from men
who were only observed over very short periods — even as short as one year. In
conjunction with a model that permits nonstationarity over the life cycle, the use
of all these data required several innovations in methodology, described sub-
sequently.

Finally, we should note that a Bayesian approach has important advantages
over classical approaches for studying earnings mobility. Specifically, we can
form complete posterior distributions for earnings given any initial state (e.g.,
parents were black and high school educated) or given any subsequent history
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(e.g., respondent obtained a college degree and has a particular earnings history
up through age 30). This is, in effect, exactly what Lillard and Willis do, but the
posterior distributions they construct are based on classical point estimates. In
a Bayesian approach, the posterior distributions are formed by integrating over
the posterior distributions of model parameters, thus accounting for parameter
uncertainty. In this context, parameter uncertainty is likely to be important,
especially since it is difficult to distinguish between individual effects and very
strong autoregressive error components. Thus, a prediction of the probability
that someone in poverty today will still be in poverty 10 yr from now, based on
point estimates of the fraction of variance due to a random effect and the
parameters of a complex autoregressive error process, all estimated on only 20
yr of data (not to mention 7 to 10 yr of data), and ignoring the uncertainty in
those estimates, does not seem particularly credible.

2. The PSID data

The PSID data set is based on a sample of roughly 5000 households that were
interviewed in 1968. Of these, about 3000 were sampled to be representative of
the nation as a whole and about 2000 were low-income families that had been
interviewed previously as part of the Census Bureau’s Survey of Economic
Opportunity. The members of these households have been tracked every year
since then. People who entered either the original households or split-offs from
the original households are also tracked. For example, if after 1968 a child in one
of the original households left home to form a new household, then that new
household as well as its members are tracked.

The structure of the PSID data is unusual, in that the household is treated as
the unit of observation, yet households are unstable over time. Thus, to form
a time series of earnings or marital status for an individual in the PSID data, one
must determine what household that individual was in during each year of the
data (based on unique household identifiers) and then read the individual’s
earnings and marital status from the relevant household record. For example, if
a person was in a particular household in a particular year, and one wants to
know the person’s earnings, one can determine whether the person was the
household head and, if so, read off the earnings-of-household-head variable.
Unless the person was the household head in a particular year, data on that
individual tend to be scanty.

We use the PSID data for 1968-1989 in our analysis. The full data set
contains observations on 38,471 different individuals. We apply several screens
to the data. First, we consider only men aged 25-65, and for these men we use
only the person-year observations in which the person can be identified clearly
as a household head. Our definition of household head is stricter than that in
the PSID. Approximately 10% of the males identified as household heads in the
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PSID in any given year report they are still students, or that they are keeping
house, permanently disabled, in prison, or otherwise institutionalized. We do
not count such men as household heads in these periods. Second, we screen out
those individuals for whom education or race is unavailable. Third, we drop the
observation for the first year a person was a household head, if the earnings
information for that year is contained in the data set. We do this because in
many cases that is the first year the person works full time, and he may not work
the entire year. Such part-year earnings figures may severely understate the
person’s actual initial earnings potential. Finally, if an individual has missing
earnings or marital status observations following his first period of accepted
data (due, say, to nonresponse in a particular year), we drop all observations for
that person from that point onward. This last screen is convenient, but not
essential, because data augmentation methods (see Appendix C?) could be used
to treat the missing observations as latent variables assuming an independent
censoring process. The resulting sample for analysis contains 4766 persons and
48,738 person-year observations. By far the bulk of the sample reduction comes
from the first screen: restricting the sample to males aged 25-65 who at some
point in the data set are household heads. There are 5267 such individuals in the
PSID. The various missing data screens only eliminate 501 of these.

Table 1 reports on the earnings distribution of the analysis sample, condi-
tional on demographics. We define earnings quintiles based on the full sample.
In 1967 dollars these are $3817, $5786, $7798 and $10,454 (to convert to 1998
dollars multiply by 4.88). In Table 1 we report for each of 24 subsamples (two
race categories crossed with three education and four age categories) the number
of person-year observations in each earnings quintile.

An important aspect of the PSID data is that the earnings questions are
retrospective. Most interviews are conducted in March, and the questions refer
to earnings in the previous year. Thus, the earnings data in our sample are
primarily from 1967 to 1988. We date the observations according to the year of
the earnings data, rather than the year of the interview. Consistent with the prior
literature on male earnings dynamics and distribution, we drop person-year
observations in which reported annual earnings are zero, on the grounds that
annual earnings that are truly zero for a male household head are an unusual
event. In fact, zero reported annual earnings for males classified as household
heads by the PSID are a fairly common event, occurring in approximately 7% of
all the person-year observations for males aged 25-65. However, once we apply
our stricter definition of a household head, and drop the observations for first
time heads, the percent of zeros becomes quite small at most ages. It averages
about 1.5% over ages 25-43, increases slowly to about 4% in the late 1940s and

! Appendices A-G are available through http://www.econ.umn.edu/ ~ geweke/papers.html.
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Some sample properties of earnings data (full sample)

Cell counts

Personal characteristics

Number in earnings quintile

Race Education Age 1st 2nd 3rd 4th Sth Total
White <12 25-34 516 624 461 290 111 2002
White <12 35-44 464 562 557 472 276 2331
White <12 45-54 582 677 622 536 449 2866
White <12 55-65 883 601 454 397 269 2604
White 12-15 25-34 993 1504 1812 1682 891 6882
White 12-15 35-44 457 682 1065 1301 1284 4789
White 12-15 45-54 294 518 703 1063 1052 3630
White 12-15 55-65 374 403 481 580 545 2383
White > 16 25-34 332 319 513 812 843 2819
White > 16 35-44 95 129 230 502 1448 2404
White > 16 45-54 45 90 105 300 1136 1676
White > 16 55-65 83 71 87 211 598 1050
Nonwhite <12 25-34 944 524 274 94 23 1859
Nonwhite <12 35-44 747 577 420 183 81 2008
Nonwhite <12 45-54 881 655 369 201 94 2200
Nonwhite <12 55-65 817 405 217 96 59 1594
Nonwhite 12-15 25-34 859 917 716 446 169 3107
Nonwhite 12-15 35-44 156 254 314 283 157 1164
Nonwhite 12-15 45-54 82 111 127 109 72 501
Nonwhite 12-15 55-65 71 39 52 43 47 252
Nonwhite > 16 25-34 49 70 111 84 62 376
Nonwhite > 16 35-44 1 3 34 29 43 110
Nonwhite > 16 45-54 1 9 9 24 18 61
Nonwhite > 16 55-65 21 5 14 9 21 70
Totals 9747 9749 9747 9747 9748 48738
Sample distributions

Personal characteristics Proportion in earnings quintile

Race Education Age Ist 2nd 3rd 4th Sth

White <12 25-34 0258 0312 0230 0.145 0.055

White <12 35-44 0.199  0.241 0239 0202 0118

White <12 45-54 0.203 0236 0217 0187  0.157

White <12 55-65 0339  0.231 0.174  0.152  0.103

White 12-15 25-34 0.144 0219  0.263 0244  0.129

White 12-15 35-44 0.095 0142 0222 0272  0.268

White 12-15 45-54 0.081 0.143 0.194  0.293 0.290

White 12-15 55-65 0.157 0169 0202 0243 0.229

White > 16 25-34 0.118  0.113 0.182  0.288 0.299

White =16 35-44 0.040  0.054 009 0209  0.602

White > 16 45-54 0.027  0.054  0.063 0.179  0.678

White > 16 55-65 0.079  0.068 0.083 0.201 0.570
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Table 1 (Continued)

Personal characteristics Proportion in earnings quintile

Race Education Age Ist 2nd 3rd 4th Sth
Nonwhite <12 25-34 0.508 0282  0.147  0.051 0.012
Nonwhite <12 35-44 0372 0287 0209  0.091 0.040
Nonwhite <12 45-54 0.400  0.298 0.168 0.091 0.043
Nonwhite <12 55-65 0.513 0254 0136  0.060  0.037
Nonwhite 12-15 25-34 0276  0.295 0230  0.144  0.054
Nonwhite 12-15 35-44 0.134  0.218 0270  0.243 0.135
Nonwhite 12-15 45-54 0.164 0222  0.253 0.218 0.144
Nonwhite 12-15 55-65 0282 0155 0206 0171 0.187
Nonwhite > 16 25-34 0.130 0186 0295 0223 0.165
Nonwhite > 16 35-44 0.009 0027 0309 0264 0391
Nonwhite > 16 45-54 0.106  0.148 0.148 0.393 0.295
Nonwhite > 16 55-65 0.300  0.071 0.200  0.129  0.300

5% in the late 1950s, and then jumps rapidly to 12.5% at age 62 and to 23% at
age 65. The large increases at ages 62 and 65 are due to retirement.

As we discuss in Section 3, in our approach to modeling earnings of male
household heads we will adopt the view that the latent earning process runs
from age 25 to 65, but that the actual earnings value at any age may be
unobserved for various reasons. For example, the latent earnings will be unob-
served near the beginning of the life cycle if the person still lives at home or is still
a student and is therefore not yet a head. Similarly, we view the earnings process
as again becoming unobserved at the end of the life cycle at the point when the
person retires. This perspective justifies our ignoring the zero earnings observa-
tions for retired men, just as we ignore the zero observations for the young men
who are still students or living with parents, and instead viewing latent earnings
as unobserved in such cases.

The zeros reported for younger male heads (those under age 62) pose a greater
problem. Upon examining the zero observations, we found that 15% of these
people were working on the interview date. And, of those not working, only
about one quarter reported an unemployment spell of over three months. This
makes us suspicious whether many of these people actually had zero labor
earnings over the entire previous calendar year. Thus, we suspect that many of
these zeros arise due to mis-reporting, and it seems sensible to omit them as well.

Since we treat the stochastic process for earnings as beginning at age 25, we
face an initial conditions problem if we do not observe an individual’s earnings
until an age later than 25. Of the individuals in the sample, only 1728 are
observed at age 25, and for these there are 15,604 person-year observations.
In part of our analysis, we only use this subsample, which we refer to as the
‘young men’ sample. This avoids the initial conditions problem. For the full
sample, we develop and apply data augmentation methods to the earlier,
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missing years. It is worth noting that 569 individuals in the sample have only
one year of data, and many others have short records of only a few years of data.
Our data augmentation procedure enables us to more than triple the sample size
available for inference and to introduce data from later in the life cycle that
otherwise could not be used. This procedure can be applied generally in
nonstationary models for panel data with partial or interrupted individual
records.

3. The model

We model the annual earnings of male household heads between ages 25 and
65. An individual becomes a household head when he ceases to be a dependent;
he may be either single or married. For each male in the PSID, our sample
begins the year after he became a household head, the year he turns 25, or the
year he entered the PSID, whichever is latest. It ends when he left the PSID or
turned 65, whichever is later.

In our model the latent process for annual earnings begins at age 25,
regardless of the age at which an individual’s earnings are first observed. We
model earnings at ages greater than 25 as a function of lagged earnings, a set of
exogenous personal characteristics (education, age, race, and parents’ educa-
tion), current marital status, individual specific disturbances, and serially corre-
lated shocks. At age 25 annual earnings are a (different) function of the
exogenous personal characteristics, and a first-period shock. Realizations of
annual earnings from this latent process are observed only when the individual
is a household head, is present in the sample, and has been a household head for
at least one year. In one variant of the model the first-period and subsequent-
period shocks are Gaussian. We refer to this as the ‘normal model’. In another
variant these shocks are mixtures of three normal distributions and therefore
non-Gaussian. We refer to this as the ‘mixture model’.

In previous cross-section studies marital status appears to have had a large
positive partial correlation with male earnings, even after controlling for human
capital variables and other demographic characteristics. Thus, to forecast
a man’s earnings over all or part of his life cycle it could be important to forecast
his marital status as well. We therefore model earnings and marital status
jointly.

Marital status is determined in a probit equation. At ages beyond 25 the
probit is a function of lagged marital status, lagged earnings, a set of exogenous
personal characteristics (education, age, and race), and a serially correlated
Gaussian shock. Marital status at age 25 is determined by a probit equation in
which the probit is a (different) function of the exogenous personal character-
istics and a first-period shock. As with the earnings model, the latent marriage
process begins at age 25 regardless of the age at which an individual enters the
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data set. Realizations from this process are observed only when the individual is
a household head, is present in the sample, and has been a household head for at
least one year.”

The joint model is fully recursive, with current marital status affecting current
earnings, while current earnings do not affect current marital status. This model
is applied to a panel of n individuals, i = 1,...,n. Individual i is observed in
periods S;, ..., T;, where S; and T; are determined as just described. Period 1
corresponds to age 25, period 2 to age 26, etc. Because the first-period model is
not the same as the model for later periods, and since age appears as a covariate
in the later periods, the processes for earnings and marital status are nonstation-
ary. Therefore, if S; > 1, the distribution of the first observation on earnings and
marital status is an impractically complicated explicit function of the parameters
of the model. We avoid this complication by treating the unobserved earnings
and marital status in periods 1,...,S; — 1 as latent variables, as described in
Section 4 and Appendix C. Because of this, it turns out to be harmless to assume
that individuals are observed in periods 1,..., T;. With this convention, let
Q; = {i: T; > j}, the set of individuals observed in period j, and let N; denote the
cardinality of ;. The total number of observationsis N = Z?: 1T = Z,T: 1 N,.

3.1. Earnings model

For(t=1,...,T;;i=1,...,n), further denote
vir = log real earnings of individual i in period t;
x;; = (k; x 1) vector of period 1 explanatory variables for individual i
i=1,...,n)
x; = (ky x 1) vector of period t explantory variables for individual i

t=1,...,T;; ieQ,).

2The marital status data are as of the interview date, while the income data are retrospective.
Thus, marital status from March of year ¢ is paired with income from year ¢ — 1. It is difficult to pair
March of year t — 1 marital status with year t — 1 income information, because a person who was
a household head at t may not have been a head at t — 1. In this case, time ¢t — 1 information on
marital status is often scanty. Note that in either case we must pair point-in-time measures from
either March of year t — 1 or March of year ¢t with annual data that span those dates. Neither
approach to dating is ‘correct’, since both involve an arbitrary pairing of point-in-time with annual
measures. Given the data structure of the PSID, it is much more straightforward to pair the March
of year ¢ point-in-time measures with the year t — 1 income data, since both are collected in the same
interview.
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Table 2
Explanatory variables x;, (earnings model) and s;, (marriage model)

Variable description Entry number in

Xi1 Xit Si1 Sit
Indicator (nonwhite) 7 7 1 1
Intercept 9 9 2 2
Education (yr) 10 10 3 3
Age/100 — 11 — 4
Education x (Age/100) — 12 — 5
(Age/100)* — 13 — 6
Education x (Age/100)? — 14 — 7
(Age/100)3 — 15 — —
Education x (Age/100)* — 16 — —
Indicator (Married) 8 8 —

Indicator (Lagged married)

Lagged log earnings — —
Indicator (Father education missing) 1 1

Indicator (Father education 12 +) 2 2

Indicator (Father education 16 + ) 3 3

Indicator (Mother education missing) 4 4 — —
Indicator (Mother education 12 +) 5 5

Indicator (Mother education 16 +) 6 6

The model of individual earnings is
vir = Bxit + e,
Yie = Piu—1 + (1 =9)Bx + (L =)t + (1 = )deiy +& (t=2,...,7),

(1)
&2 = P& + Niz, (2

&y = pPeig—1 + 1y (=3,...,T),

% N(0, o2).

The vector x;, used in this study is described in Table 2; k; = 10 and k, = 16.
The vector x;; contains indicator variables for parents’ education and the
individual’s race, and the individual’s years of education and current marital
status. The vector x;, (t = 2) contains these variables and, in addition, a poly-
nomial in education and age, through the first power in education and the third
power in age. These are all standard covariates in earnings equations. The
functional form of (1) is chosen so that f; is, to a good approximation,
the marginal effect of the corresponding covariate on the unconditional expecta-
tion of log real earnings. Thus the polynomial in age and education provides
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a model of the effects of aging and education on expected log real earnings that is
quite flexible. The first period is taken to be fundamentally different from the
remaining periods. Covariates will not have the same effects then as later. Given
the dynamic structure, it would be inappropriate to assume that these effects are
the same.

The shocks ¢;1, 12, n;; (t = 3) are mutually independent across both time and
individuals. The shocks ¢;; are identically distributed, as are the shocks
ni (t = 2), but the two do not necessarily have the same distribution. Individual
heterogeneity consists of two components. The first-period shock is that portion
of first-period earnings that is unanticipated across individuals, conditional on
first-period covariates. Part of this shock may be a transitory first-period effect
(2), but part of it can also be permanent (the coefficient ¢ in (1)). The mean level
of earnings in the dynamic equation (1) is also heterogeneous, by virtue of the
shock 7;. The variance of the disturbance vector &’; = (&;y, ..., &) is a function of
the six terms var(e;; ), var(n,), o2, p, p, and ¢: in general a variance matrix for
disturbances from any three years corresponds to six values of these parameters,
and the fraction of variance due to unobserved heterogeneity (in 7; and ¢;;) can
range from zero to one and can change smoothly from year to year.

Serial correlation in the distribution of earnings, conditional on covariates,
enters the model by means of the parameters y and p. All of the covariates in x;;,
except current marital status, are either time invariant or are deterministic
polynomial functions of time. Thus the only nondeterministic covariate, marital
status, provides most of the distinction between and y and p: effects of lagged
marital status are present if and only if y # 0. If p # 0 but y = 0 there is serial
correlation in earnings but no lagged impact of marital status on earnings.

In the mixture model the distributions of ¢;; and 5;, are each mixtures of three
normal distributions; e.g.,

Nig ~ N(az(j),hg(})) Wlth probablllty p2j9

where oy(1y) < 0a2) =0 < 0tp3y; 0 < hyjy < 0 (j=1,2,3); p2; =20 (j=1,2,3);
and py; + pay + P2z = 1. (Similarly, &; ~ N(oy;), hi(j,) with probability py;).
The shock distribution thus belongs to a seven-parameter family in each case.
This feature of our model is unusual but important. It turns out that shocks are
indeed non-Gaussian, and the mixture of three normal distributions goes far to
resolve the puzzle about predicted and actual transitions noted in the introduc-
tion. The normal model is a special case of this model, which imposes the
constraint pj = 1,p;; =p;3 =0 (j =1,2).

The choice of three components for the mixture of normals was based on
inspection of the posterior distribution of the ¢;, when the shocks are assumed to
be normal. We found through experimentation that a three-component mixture
model could approximate the posterior distribution of the ¢; reasonably well.
Given the lack of experience with mixture models this complex, we did not wish
to use more components. Based on the results reported below, it seems clear that
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experimentation with more components for the mixture of normals is war-
ranted. An alternative is to allow an infinite number of components, and use
a Dirichlet process prior for the number of components actually observed in the
sample. The latter approach was taken by Hirano (1998), but his model excludes
covariates, and allows either random effects or autocorrelation in transitory
shocks but not both.?

The earnings model has 45 free parameters. It is completed with a prior
distribution for these parameters. We choose a prior distribution in the light of
two criteria. First, the functional form of the prior distribution should be one
that is flexible but also convenient in obtaining the posterior distribution. This
relationship between the functional form of the prior and posterior is treated in
Appendices 1 and 2 of this paper, and in detail in Appendices A and B. Second,
the prior distribution should center about values that are plausible in the
context of the earnings and income mobility literature, but should also be diffuse
enough to permit all reasonable (and in the process, many unreasonable)
departures from these values. A detailed presentation of the prior distribution is
made in Appendix 3.1.

One feature of the prior distribution is worth emphasis, for it copes with the
interpretation of the effects of age and education on earnings in a way that is
also useful in the subsequent presentation of results. The prior distribution for
the coefficients of the age-education polynomial is developed by considering the
difference between expected log earnings at age a, and education e,, and
expected log earnings at age a; and education e, denoted G(ay,a,;eq,e,).
Independent, normal prior distributions for G(25,35;12,12), G(35,45;12,12),
G(45,55;12,12), G(25,25;12,16), G(35,35;12,16), G(45,45;12,16) and
G(55,55;12,16) were constructed. Combined with another independent prior
distribution for expected log earnings at age 25 and education level 12, these
eight distributions imply a joint normal distribution on the coefficients in the
polynomial in education (powers 0 and 1) and age (powers 0 through 3). Since
individual coefficients in this polynomial have no interesting interpretation, we
make use of this convention as well in subsequently reporting posterior means.

Assessment of the sensitivity of the posterior distribution to changes in the
prior is useful in interpreting the results. Corresponding to each posterior mean,
we report the posterior standard deviation, and the prior mean and standard
deviation. This facilitates a quick approximation of the sensitivity of the poste-
rior mean to the prior mean using the familiar relation that is exact in the
Gaussian case: 0 = (h0 + h0)/(h + h), where 0, 0, and 0 are the prior, data, and

3 For further discussions of finite normal mixture models see West and Harrison (1989), Section
12.3.4, and Roeder and Wasserman (1997). On infinite normal mixture models with Dirichlet process
priors see Escobar and West (1995) and MacEachern and Mueller (1995).



J. Geweke, M. Keane | Journal of Econometrics 96 (2000) 293-356 305

posterior means, respectively; and h and h are the prior and data precisions.
Since the posterior precisionis i = h + h, the sensitivity of the posterior mean to
the prior mean is 90/00 = h/(h + h), which is simply the ratio of the posterior
variance to the prior variance. This expression is invariant to rescaling of 6,
bounded between 0 and 1, and naturally interpreted as a ratio.

3.2. Marital status model
We adopt a dynamic probit specification for marital status. Denote

d; = 1 if individual i is married in period ¢
and d, =0ifnot(t=1,...,T;i=1,...,n)
s;1 = (p1 x 1) vector of period 1 explanatory variables
for individual i (i = 1,...,n);
si: = (p x 1) vector of period ¢ explanatory variables
for individual i (t = 2,...,T;;i€e Q2,);
m# =Probit (latent) that determines d;, (t =1,...,T;;i=1,...,n).
The model for marital status is

% 1)
mi = 0's;y + i,

11D

&~ N[O,(1 = 4771,

m:‘; = G,Sit + éit (t = 25 ceey T)7
éit :;Léi,tfl +l//it (tzzaaT)a

11D

Ya~ NO,1) (t=2..T),

{1 it mE >0,
dit = .
0 if mi<O.

The vector s;; used in this study is described in Table 2; p; = 3 and p, = 9. The
vector s;; contains an intercept, the individual’s education, and a race indicator.
The vector s;, (t = 2) contains these variables and, in addition, lagged marital
status d;,—; and log real earnings y; ;—;, and a polynomial in education and age,
through the first power in education and the second power in age. As in the
earnings model, the specification of the first-period equation is different from
the other periods. The most important factor dictating a different structure is
that we do not have available lagged earnings for the first period, as explained
above. We retain an explicit latent-variable formulation for the model for two
reasons. First, this representation is readily amenable to the computational
methods outlined subsequently. Second, in extensions and elaborations of this
work, we intend to allow for the possibility that shocks to continuous and
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discrete variables may be dependent. This possibility is facilitated by the latent-
variable representation.

The marital status model has 13 free parameters. It is completed with a prior
distribution for these parameters, designed according to the same criteria used
in developing the earnings model prior. A detailed presentation of the marital
status model prior distribution is made in Appendix 3.2. As in the earnings
model it is necessary to cope with the interpretation of the effects of age and
education - here, on the marital status probit. The prior distribution for the
coefficients of the age-education polynomial is developed by considering the
difference between the expected marital status probit at age a, and education e,,
and the expected marital status probit at age a; and education e;, denoted
A(ay,a,;eq,e,). Independent, normal prior distributions for A(25,40;12,12),
A(40,55;12,12), A(25,25;12,16), A(40,40;12,16) and A(55,55;12,16) were con-
structed. Combined with another independent prior distribution for the ex-
pected marital status probit at age 25 and education 12, these six distributions
imply a joint normal distribution on the coefficients in the polynomial in
education (powers 0 and 1) and age (powers 0 to 2). Since individual coefficients
in this polynomial have no interesting interpretation, we make use of this
convention as well in subsequently reporting posterior means.

4. Bayesian inference

This section provides an overview of the methodology for conducting
Bayesian inference in the earnings-marital status model. This description as-
sumes familiarity with Bayesian inference and with the Gibbs sampling algo-
rithm for drawing values from a posterior distribution. Accessible introductions
to both topics for economists include Chib and Greenberg (1995,1996) and
Geweke (1996,1999). More general references are Gelman et al. (1995) and Gilks
et al. (1996).

The objective here is to provide an overview of the methods that are described
in complete detail in Appendices A, B, and C. To that end, some additional
notation is useful. Let z; denote the vector of time invariant or deterministic
characteristics of individual i: i.e., all variables except earnings and marital
status. Let L;, be an integer latent variable indicating from which of the three
normal distributions the shock ¢; (if t = 1) or u; (if t > 2) was drawn. Let
Y, = ity .oy Vi), Diy = (diy, ..., d;) and ME = (m¥, ..., m%). Finally, let 05 de-
note the 45 x 1 vector of parameters in the earnings model, and 6, the 13 x 1
vector of parameters in the marital status model.

The earnings model outlined in Section 3.1 and described in complete detail in
Appendix 1 provides the probability density functions

Peie | Yie—1,Dirs 20, Tis Lit, Op),  Pr(ti|0g), pr(Li|0F).
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The marital status model outlined in Section 3.2 and described in complete detail
in Appendix 2 provides the probability density function and probability function

P Y 1, ME_1,2:,00), Pum(di | mf).

The corresponding prior distributions for each model provide, respectively,

pe(0r) and py(On).
By the standard definition of conditional probability,

P{Ow. O, [0, Vies die) P2 s (Lo mi) 2 1 111 1 (2o (Vies die)ies, 1i=1 )

n T;
o PE(QE)H {pE(Ti [OF) n [Pe(Li | Op)PEic | Yig—1,Die, %, Tis L, HE)]}
i=1

t=1
T

X pM(GM)lﬁ |:

We use a Gibbs sampling algorithm to make draws from this conditional
distribution. (More precisely, a Gibbs sampling algorithm is used to construct
a Markov chain whose unique invariant distribution is this distribution.) The
algorithm proceeds in three groups of steps, detailed in Appendices A, B, and C,
respectively.

In the first group of steps, the parameter vector 0y is divided into eight blocks.
A drawing is made from each block, conditional on all other parameters and
latent variables. Then the individual effects t; (i = 1,...,n) are drawn individ-
ually and in succession, exploiting their conditional independence. Finally the
L, (t=1,...,T;i=1,...,n)are drawn in succession, again taking advantage of
conditional independence. This completes a set of drawings from the conditional
distributions for all parameters and latent variables in the earnings model, given
(Yi.r,,» D; 1,)i=1. The algorithm is described in Appendix A. Details for the
parameters of the mixture distribution are given in Appendix F.

In the second group of steps, the parameter vector 0,, is divided into two
blocks. A drawing is made from each block, conditional on all other parameters
and latent variables. Then the probits m¥ (t = 1,...,T;;i = 1,...,n) are drawn
individually; these are conditionally independent across individuals but not
across time periods. This completes a set of drawings from the conditional
distributions for all parameters and latent variables in the marital status model,
given (¥, 1., D; 1, )i=1.

In the third group of steps, first the unobserved earnings (¥;s —)i=; are
drawn. These are conditionally independent across individuals and jointly
normally distributed. Then, the unobserved probits and marital statuses
(D;s,—1, M¥s —1)i=1 are drawn. These are conditionally independent across
individuals, but not across time periods, and so are drawn in succession for each
individual. For the sample of young men, all §; = 1 and this third group of steps
is skipped.

puE | Y1, Dy M1, 2i, 0p)pae(diy | mﬁ):|
1
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Because the shocks ¢; and 5; have mixture of normals distributions, the
likelihood function is unbounded. The essential problem is that coefficients on
the covariates can be chosen to make the conditional means of several log
earnings observations identical to their observed values, given in one of the three
normal distributions. As the variance term for that distribution approaches zero,
the likelihood function is unbounded. This property of the mixture of normals
likelihood function was fist demonstrated by Kiefer and Wolfowitz (1956); for an
extended discussion, see Titterington et al. (1985, Section 4.3). As a consequence,
numerical problems can arise in maximum likelihood algorithms and there is no
assurance that any given bounded local maximum of the likelihood function is
consistent (Redner and Walker, 1984). Appendix F shows that given conven-
tional gamma priors for the precision terms hyj, the posterior distribution
exists, as do moments of bounded functions of interest. Appendix F also shows
that the posterior moment of an unbounded function of interest exists if the
corresponding prior moment exists after reducing the degrees of freedom para-
meters in the chi square priors for the precision terms h; ; by 2 + ¢ (¢ > 0). With
the exception of four moments noted in Table 3, the first and second moments of
all unbounded functions of interest reported here satisfy the latter condition.

The Gibbs sampling algorithm simulates a Markov chain in high-dimen-
sional space. By following all of the steps of the algorithm detailed in Appendices
A, B, and C, it can be verified that the probability that this Markov chain will
move from any point in this parameter space to any region of the space with
strictly positive posterior probability, in exactly one complete step of the
algorithm, is nonzero. The chain is therefore ergodic (Tierney, 1994; Geweke,
1996): i.e., if E{g(0r, Oy)|[zi» (Vir»dis)its, Ji=1} exists, then the corresponding
sample average of g(0g, 0)) from the posterior simulator converges almost
surely to this posterior moment.

Operationally, the Gibbs sampling algorithm produces a file with one record
for each iteration. Each record has 58 entries, the parameter values for that
iteration. Some posterior moments can be approximated directly from this file
by corresponding sample averages of explicit functions of parameters. (One
example is the serial correlation parameter p in the earnings model. Another is
the difference in unconditional expected log real earnings at ages 35 and 25,
given 16 yr of education.) Most of the questions we investigate, however, have to
do with properties of the earnings process. To facilitate this investigation, we
construct a second file of simulated earnings and marital statuses, based on the
Gibbs sampling output file and the personal characteristics of the individuals in
the sample. Corresponding to the personal characteristics of each individual in
the sample, we randomly select ten sets of parameter values from the Gibbs
sampling output file. Then we simulate the model from period 1 (age 25) through
period 41 (age 65) and record the simulated path of earnings and marital status
in each case. (For details of the simulation procedure, see Appendix D.) The
simulated values are then used to approximate the probabilities of various
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events (e.g., lengths of spells of earnings below a specified value) conditional on
various combinations of personal characteristics. Since these probabilities are
based on the posterior distribution, they reflect our uncertainty about para-
meters as well as our uncertainty about events conditional on parameters.

All results presented here for the sample of young men are based on 10,000
iterations of the Gibbs sampler following an initial 2000 iterations which were
discarded. These computations were undertaken on a Sun Model 20 worksta-
tion, and required about 25 s per iteration for each model. For the mixture
model based on the full sample, all results are based on 2500 iterations of
the Gibbs sampler following an initial 294 iterations which were discarded.
These computations required about 332 s per iteration. For the normal model
based on the full sample all results are based on 1500 iterations of the Gibbs
sampler following an initial 276 iterations which were discarded. These compu-
tations required about 325 s per iteration. Computational times for the full
sample are much longer than for the young men sample, because there are
48,738 rather than 15,604 person-year observations and because in the full
sample 47,594 person-year observations were multiply imputed in the data
augmentation step described in Appendix C, whereas this step is unnecessary in
the young men sample. In all four models, the relative numerical efficiency
(Geweke, 1989) of the Monte Carlo approximation ranged from about 0.05 for
some posterior moments to nearly 1.0 for others. This indicates moderate serial
correlation in the algorithm and is not indicative of convergence problems. Both
indications are confirmed by examination of the simulated functions of interest.
Multiple executions of the algorithm would provide further assurance of conver-
gence (Gelman and Rubin, 1992) but are precluded by the computing time
required.

5. Results

Table 3 and Figs. 1 and 2 report results for two models, mixture and normal,
and two samples, young men and full. The table reports prior and posterior
means and standard deviations for the parameters and some functions of
interest in each model and for each sample.

5.1. Earnings model, first period

The first 10 rows of Table 3 report the results for first-period earnings. All four
model/sample combinations imply that first-period earnings are substantially
lower for blacks than whites, ceteris paribus. For example, the posterior mean
for the race dummy in the mixture model based on the full sample is — 0.195,
implying that first-period earnings are roughly 20% lower for blacks. All four
sets of results indicate that those with missing values for father’s education tend
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to have lower initial earnings, but there is little evidence of any other relation
between parents’ education and initial earnings. In the case of parents’ education
the data are not very informative — comparing posterior and prior standard
deviations, note that changes in prior means produce a response in posterior mean
exceeding one-tenth of the prior mean change in most cases. For the race dummy
the change is about one-tenth and for the other first period covariates it is less.

For the other regressors, the four sets of results imply rather different effects.
For example, the mixture model based on the full sample implies that each
additional year of education is associated with a 3% increase in initial earnings,
while the normal model based on the full sample indicates a 12% increase. The
mixture model based on the full sample provides no evidence of an association
between initial marital status and initial earnings, whereas the other three
models indicate that married men have initial earnings that are 7-9% greater
than single men, ceteris paribus.

5.2. Earnings model, subsequent periods

The next 16 rows of Table 3 report the results for the model of earnings in the
second period and onward. The four sets of results imply earnings ranging from
16% to 27% lower for blacks than whites, ceteris paribus. And the four models
imply that married men have earnings that range from 4% to 10% greater than
single men. The parents’ education variables show no clear pattern across the
models. Most are within two posterior standard deviations of zero, and poste-
rior means respond by more than one-tenth to changes in prior means in the
mixture model.

We do not report results for the parameters of the education and age
polynomials, which are difficult to interpret, but rather report posterior means
and standard deviations for earnings differences across certain age and educa-
tion categories, corresponding to the functions G(ay,a,; e(,e,) described in
Section 3.1. For example, the posterior mean for earnings at age 35 vs. 25 at
education level 12 in the mixture model based on the full sample is 0.231,
implying earnings growth of roughly 23% from age 25 to 35 for those with 12 yr
of education. For age 45 vs. 35 the growth is 8%, whereas for 55 vs. 45 it is
— 4%. Thus, this model implies that earnings growth slows substantially with
age and turns negative in the 50s. As another example, the posterior mean for
earnings at education level 16 vs. 12 at age level 35 in the mixture model based
on the full sample is 0.469, implying that college graduates earn roughly 47%
more than high school graduates at age 35, ceteris paribus.

The coefficient y on lagged earnings is negative and small in absolute value
(about — 0.1), whereas the serial correlation coefficient p is substantial (about
0.5). Thus there is strong evidence for persistence in earnings conditional on the
covariates, but there is very little impact of current marital status on future
earnings.
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It is interesting to note that using the young men sample posterior standard
deviations for the earnings at age 55 vs. 45 parameters are more than an order of
magnitude greater than using the full sample. This is because in the young men
sample no individual is more than 46 yr old. Thus, the data are not directly
informative on earnings growth from age 45 to 55. The posterior mean for that
parameter is just a combination of information from the prior and extrapolation
of the age-earnings pattern from earlier ages. Notice that in the young
men sample the posterior standard deviations for earnings are comparable
to prior standard deviations for ages above 45, and that posterior means
are all within a prior standard deviation of the prior mean at these ages.
By contrast, when the sample is informative (younger ages for the young men
sample and all ages for the full sample) posterior standard deviations range from
2% to 20% of prior standard deviations. This reflects the deliberate weakness of
the prior (as discussed fully in Appendix 3) and the flexibility of the richly
parameterized polynomial in age and education. Through this parameterization
we accomplish formally what a nonparametric, non-Bayesian approach has as
its informal goal: when there is no information in the data the posterior should
reflect the prior, and not unwarranted extrapolation from data points with little
relevance.

5.3. Properties of the shocks

The next two panels in Table 3 report various properties of the first-period
and tth period shocks. For each shock there are 18 rows. The first nine rows
report the three means, three standard deviations, and three probabilities from
the mixture of three normals. Recall that the means are ordered and the second
mean is set to zero, as identifying restrictions beyond the priors for these
parameters (which are discussed in Appendix 3), and of course the three
probabilities must sum to one: thus, there are seven free parameters. The mean
of the mixture is nonzero, but since the wage equation has an intercept, the
entire mixture may be renormalized to have a mean of zero. The next nine rows
report some values of the cumulative distribution function (c.d.f.) for each shock,
after this normalization.

Individual parameters in the mixture distribution are not tightly estimated
relative to the prior. Changes in the prior means of the mixture standard
deviations and probabilities often produce a corresponding change of 50% or
more in the posterior mean.

Since the c.d.f.’s and probability density functions (p.d.f.’s) of these shocks are
functions of the distribution parameters, posterior moments and distributions of
the c.d.f’s and p.d.f’s are easily determined. Table 3 exhibits the c.d.f.’s at nine
points, after normalization to a mean of zero. The distribution is clearly
asymmetric and is very accurately determined: e.g., for the tth period shock #;,,
posterior means for the full sample show the probability of a shock that cuts
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wages by 50% or more is 5%, while the probability of a shock that more than
doubles wages is 2.7%; posterior standard deviations are negligible.

The priors have little influence on the posterior means of the c.d.f’s. At none
of the nine points displayed in Table 3 does a change in the prior mean for the
c.d.f. produce a change 10% as large in the posterior mean. This contrasts with
the parameters of the mixtures themselves (first nine lines of Table 3) where the
prior is more influential. Thus the data dominate in determining the posterior
means of the c.d.f.’s of the shocks to earnings, but the prior is more influential in
structuring the three Gaussian components of the mixture.

The implied p.d.f.’s are shown in Figs. 1 and 2. Each p.d.f. itself has a posterior
distribution, reflecting uncertainty about the parameters of that distribution. To
convey the p.d.f. posterior distributions, the panels plot the posterior mean,
median, and quartile for each point of evaluation of the p.d.f’s. Due to the
tightness of the posterior distributions, these four are visually nearly indistin-
guishable. For the normal mixtures the asymmetry of the distribution is evident
in every case. The mixture distributions are clearly leptokurtic, strongly skewed
to the left, with modes at positive values. The mode is around log(1.18) for the
first-period shock and around log(1.09) for the tth period shock. The normal
distributions are of course symmetric. Relative to the mixture distributions they
assign less probability near zero (1og(0.88) to log(1.32) for the tth period shock),
less probability far from zero (below log(0.325) and above log (4.50) for the tth
period shock), and more probability in between.

5.4. Dynamics of the earnings model

Of crucial importance for forecasting life-cycle earnings mobility are the
covariance structure parameters and the coefficient on lagged earnings. Results
for these are reported in the next 5 rows of Table 3. For example, in the mixture
model based on the full sample the coefficient y on lagged earnings is — 0.121.
This is many posterior standard deviations from zero, but small in magnitude.
On the other hand, serial correlation in the shocks is substantial in magnitude,
p having a posterior mean of 0.655. The only lagged covariate that is not
perfectly collinear with the current value is marital status. Thus, the results
imply that lagged marital status has very little effect on current period earnings,
but there is modest serial correlation in the disturbance ¢; to current period
earnings. The normal mixture model exhibits less serial correlation than the
normal model.

In the mixture model based on the full sample, the posterior mean for the
standard deviation of the individual effects is 0.366. Thus, a person with a one
standard deviation above the average t; value would have earnings about
37% above average, given his personal characteristics. The marital status
coefficient in the same model and sample is about 0.05, implying that marital
status is unimportant relative to unobserved individual effects in explaining the
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variance of persistent wage differentials across men. Finally, the posterior mean
for ¢ in the mixture model based on the full sample is 0.240. This implies that the
first-period shock could be decomposed into independent permanent and tran-
sitory components, with the permanent component having about one-fifteenth
the variance of the transitory component.

Combined, these parameters imply a variance structure for disturbances to
the wage equation over the lifetime. Some aspects of this variance structure are
reported in the next 13 rows of Table 3. Variances are highest at age 25 but then
drop quickly to a level that remains constant for the remaining years. Since all
ages contain the common variance component (1 — y)*[o? + ¢ var(e;;)], this is
accounted for by var(e;;) > var(n;,)/(1 — p?). The fraction of variance accounted
for by the transitory shock #;; is about the same from age 30 onward; in the full
sample this fraction is about two-thirds. Correlations between ages separated by
at least five years are mainly accounted for by the permanent components 7; and
&1, consistent with the fraction of variance due to the permanent component,
these values are about one-third. The posterior means of all of these variances,
and their decomposition, are heavily data driven. In most cases, a change in the
prior mean has an impact of less than one percent on the corresponding
posterior mean.

5.5. Marital status model

The last several rows of Table 3 contain the results for the marital status
model. In the mixture model based on the full sample, the posterior mean for the
education coefficient in the first-period marital status model is — 0.232, imply-
ing that more educated men are much less likely to be married at age 25. But
note that the posterior mean for the difference in probits between college and
high school graduates at age 55 is only — 0.092, implying that most of the
association between education and marital status is eliminated by that age. Also
interesting is that the posterior mean for the lagged earnings coefficient is 0.177,
implying that marital status probabilities are higher for men with greater lagged
earnings.

For the young men sample, the posterior distributions of the earnings and
marital status models are independent. Thus the posterior distribution of the
marital status model parameters are the same in the normal and mixture
models. All differences in Table 3 are due to noise in the posterior simulator. For
the full sample, the posterior distributions of the two sets of parameters are
linked through the unobserved earnings and marital status between age 25 and
the first sample data for all men who were not in the sample at age 25. In the case
of the young men sample, the posterior means and standard deviations for the
marital status model in Table 3 are nearly identical across the mixture and
normal models, and in the case of the full sample they are quite similar.
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6. Simulations of earnings distributions and earnings mobility

In this section we report on simulated earnings distributions and earnings
mobility for the four model/sample combinations. The simulations are per-
formed as discussed in Section 4 and Appendix D. We first report on compari-
sons of simulated and actual earnings data in order to evaluate model fit. We
next contrast the predictions of the four models for features of earnings distribu-
tions and earnings mobility. Finally, we compare the implications of the models
for features of the distribution of the present value of lifetime earnings.

6.1. Model fit

Table 4 provides a comparison of the in-sample fit of the four models for the
young men sample and the full sample.

As discussed in Section 2, the full sample was used to define earnings quintiles.
Using these quintiles, we calculated the frequency of various quintile sequences
for men in the full sample and in the young men sample. In Table 4, we use the
symbol * — ’ to denote a year in which the person is in the bottom quintile of the
earnings distribution, and ¢ 4+ ’ to denote a year in which he is not. For example,
in the young men sample, the frequency of * — ’ is 0.152 for whites and 0.342 for
blacks. And if we look at the set of all two year sequences, the frequency of
¢ — — 15 0.089 for whites and 0.240 for blacks.

We next simulated earnings data from the four models. The simulations are
based on the exogenous variables for the men in the young men and full samples
(i.e. race, education, parents’ education). That is, the simulations cover only the
years in which the men are observed in the respective samples, so as to allow
comparison of simulated with sample earnings distributions.

Table 4 first compares the fit of the mixture and normal models to the quintile
sequence data in the young men sample. The mixture model provides a much
better fit to observed sequence probabilities than does the normal model. For
example, the actual frequencies of * — — —’and ‘' + + + ’sequences for blacks
in the young men sample are 0.181 and 0.538, respectively. The mixture model
predicts frequencies of 0.181 and 0.532, while the normal model predicts 0.278 and
0.355 respectively. In fact, for every sequence considered, the mixture model
comes closer to replicating the sample frequency than does the normal model.

Table 4 next compares the fit of the mixture and normal models to the quintile
sequence data in the full sample. With only three exceptions out of 28 cases (the
‘— 4+ =+ — +’and ‘' + + —’ sequences for blacks), the mixture model
comes closer to replicating the sample sequence frequencies than does the
normal model. However, the agreement between sample frequencies and
simulated frequencies for the mixture model is not nearly as close as it was in the
young men sample. Obviously, it is more challenging to fit earnings distribu-
tions and transition frequencies for a 25-65 age range than a 25-46 age range.
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Table 4
Comparison of model fit: probabilities of earnings quintile sequences

White Black

Sequence PSID Mixture Normal PSID Mixture Normal

Sample of young men

- 0.152 0.179 0.255 0.342 0.327 0.469
+ 0.848 0.821 0.745 0.658 0.673 0.531
- - 0.089 0.110 0.157 0.240 0.232 0.346
- + 0.058 0.071 0.101 0.091 0.097 0.124
+ - 0.053 0.062 0.084 0.087 0.083 0.111
+ + 0.800 0.758 0.659 0.582 0.588 0.420
- - = 0.058 0.075 0.109 0.181 0.181 0.278
- - + 0.028 0.036 0.049 0.050 0.054 0.069
-+ — 0.014 0.010 0.028 0.031 0.019 0.046
-+ + 0.043 0.061 0.074 0.060 0.077 0.078
+ - = 0.025 0.033 0.039 0.046 0.049 0.061
+ - + 0.026 0.029 0.045 0.040 0.033 0.049
+ + — 0.037 0.047 0.054 0.054 0.056 0.063
+ + + 0.769 0.708 0.601 0.538 0.532 0.355
Full sample
- 0.144 0.206 0.249 0.348 0.422 0.491
+ 0.856 0.821 0.751 0.652 0.673 0.509
- - 0.088 0.144 0.162 0.248 0.349 0.381
- + 0.044 0.060 0.083 0.084 0.076 0.110
+ - 0.051 0.057 0.081 0.089 0.072 0.105
+ + 0.817 0.739 0.674 0.578 0.504 0.404
- - — 0.061 0.112 0.118 0.196 0.306 0.318
- - + 0.020 0.031 0.040 0.042 0.045 0.064
-+ — 0.012 0.011 0.026 0.033 0.019 0.043
-+ + 0.031 0.048 0.057 0.051 0.057 0.067
+ - - 0.023 0.031 0.040 0.044 0.045 0.061
+ - + 0.022 0.026 0.041 0.038 0.027 0.044
+ + - 0.039 0.044 0.054 0.056 0.049 0.061
+ + + 0.792 0.696 0.625 0.539 0.452 0.343

Note: The earnings quintiles are defined using full PSID data set on male household heads aged
25-65. In the column headed ‘Sequence’, * — ’ indicates the person is in the bottom quintile of the
earnings distribution, and * + ’ indicates they are not. A ‘~--’ indicates the person is in the bottom
quintile for three consecutive years. For purposes of comparison with the PSID data, the simulation
for a person covers only those periods for which data is observed for the person in the relevant PSID
sample (young men or full).

It is also interesting to examine how the models fit the cross-sectional log
earnings distribution at various ages. Fig. 3a reports kernel density estimates for
log earnings at age 25 in both the young men sample and the simulated data
from the normal model estimated with the young men sample. (This and all
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Fig. 3. Log earnings density estimate — age 25 of young samples (a) Normal (b) Normal mixture.

other density estimates reported in this paper were obtained using a Parzen
kernel with a bandwidth of 0.10). As is apparent, the normal model fails to
capture important features of the earnings distribution. It underestimates the
mode, places too little mass near the mode, has an excessive interquartile range,
and fails to capture the long left tail of the observed earnings distribution.

Fig. 3b reports the same kernel density estimates for the mixture model.
Clearly, this model captures the shape of the earnings density much better than
the normal model. Figs. 4a and b report similar density estimates at age 30 based
on the young men sample. Again, the mixture model does much better, but not
quite as well as at age 25.
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We now turn to evaluation of the earnings distribution in models based on the
full sample. Kernel density estimates for log earnings at ages 25, 30, 45, and 60 in
the full sample, using the normal model and the mixture model, are reported in
Figs. 5-8. The interesting pattern in these figures is that, based on the full
sample, the mixture model fits the log earnings distributions much better than
the normal model at ages 25 and 30, but at age 45 it only does slightly better. As
can be seen in Fig. 7b, by age 45 the mixture model suffers from the same basic
set of problems that were attributed to the normal model above (i.e., it underesti-
mates the mode, places too little mass near the mode, and has an excessive
interquartile range). By age 60 the superiority of the mixture model is again
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apparent (see Fig. 8), but discrepancies between its predictions and the observed
earnings density are still obvious.

We conjecture that these problems arise because at age 45 a greater fraction of
the variation in log earnings is due to variation in covariates than at either
earlier or later ages. Two possible modifications of the model that may better
enable us to capture the age 45 earnings distribution, and that we intend to
explore in future work, are (1) to allow for a more flexible pattern of changing
effects of covariates on earnings with age, and (2) to allow the variance of the
shocks to vary with age (so that it may fall in the middle of the life cycle but rise
at the end).
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Fig. 6. Log earnings density estimate — age 30 of full samples (a) Normal (b) Normal mixture.

Finally, we explore the fit of the models to conditional log earnings distribu-
tions. Fig. 9a reports kernel density estimates for log earnings at age 35,
conditioning on the event that the men were in the bottom quintile of the
earnings distribution at age 34. Density estimates are reported for both the
young men sample itself and the simulated data from the normal model
estimated from the young men sample. (Note that only men who were observed
at both ages 34 and 35 were used to generate covariates for the simulation.) As
expected, the normal model places too little mass near the mode. Fig. 9b reports
corresponding kernel density estimates for the mixture model. This places more
mass near the mode and better captures the shape of the conditional density.
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Fig. 10 reports similar age 35 earnings density estimates for the young men data
and models, but now conditioning on not being in the bottom quintile at age 34.
Comparing Figs. 10a and b, it is apparent that the mixture model fits the shape of
the conditional earnings density quite closely, while the normal model does not.
Figs. 11 and 12 report the same density estimates for the full sample data and
models. The superior fit of the mixture model is again apparent in these figures.

To summarize, the mixture model clearly provides a better fit to log earnings
distributions (both unconditional and conditional on past earnings status) in the
PSID than does a normal model. However, in absolute terms the mixture model
only appears to provide a close fit to these distributions at young ages (say
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25-40), and again at older ages (near 60). At age 45 it fails to capture important
features of the earnings distribution. We conjecture that this is due either to
failure to allow for a sufficiently flexible pattern of changing effects of covariates
on earnings with age, or failure to allow the variance of the shocks to vary
flexibly with age. We intend to explore these issues in future research.

6.2. Earnings mobility

We next report on the implications of the four models for earnings mobility,
focusing on mobility across quintiles. For this purpose, it is no longer necessary
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(a) Normal (b) Normal mixture.

or appropriate to restrict the simulations to the periods when a person is
observed in the data. Rather, we use the same distribution of covariates as in the
PSID analysis sample (i.e., race, education, parent’s education) but simulate
earnings and marital status from age 25 through 65.

Tables 5a and 5b reports simulations of the probability of various earnings
quintile sequences at ages 30, 45 and 60. For example, the symbol * — — —~
indicates that a person is in the bottom quintile at all three ages. Looking at
such statistics gives one a feel for the model’s predictions regarding life cycle
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earnings mobility. For example, in Table 5a, simulations of the mixture model
based on the young men sample imply that sequences in which a male is in the
bottom quintile at age 30 and then moves up (i.e., “— + +’) are much more
common than sequences in which a male moves into the bottom quintile at age
60 (i.e., “+ + —’). For white males with 12-15 yr of education the simulated
probabilities of these sequences are 0.122 and 0.047, respectively. But Table 5b,
which contains results based on the full sample, shows that the same simulated
probabilities in the normal mixture model are 0.102 and 0.086, respectively.
Thus, the full sample results imply that falling into a low-earnings state at later
ages is much more likely. These results must be given more credence, since the
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predicted earnings changes after age 46 in the young men models are not based
on data.

Table 6 reports simulations of the fraction of the lifetime (from age 25 through
65) that men in various race and education categories are predicted to spend in
the bottom earnings quintile. Both expected number of spells in the bottom
quintile and expected spell length are reported. The mixture model estimated
from the full sample predicts that a typical white male without a high school
degree will spend 47.6% of the time in the bottom quintile. His expected number
of spells in the bottom quintile is 3.49, and the mean spell length is 5.45. In
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contrast, the normal model estimated from the full sample implies a higher
fraction of years in the bottom quintile (51.9%), a substantially larger expected
number of spells (4.90), and a substantially shorter mean spell length (4.28 yr).
Thus, the mixture model implies that low-earnings status tends to be more
persistent and more concentrated among men experiencing long spells. But for
white males with college degrees the mixture model implies both fewer and
shorter low-earnings spells than does the normal model. This is because the
mixture model simply predicts much less time in the bottom quintile for the
college educated than does the normal model.
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Table 5a
Simulations of earnings mobility based on young men sample, probabilities of earnings quintile
sequences (ages 30, 45, 60)

White Black

Sequence Ed. <12 Ed. 12-15 Ed. 16 + Ed. <12 Ed. 12-15 Ed. 16 +

Mixture distribution for transitory error component

- - = 0.023 0.007 0.002 0.053 0.022 0.003
- - + 0.061 0.029 0.007 0.116 0.064 0.013
- + - 0.023 0.016 0.011 0.040 0.030 0.017
- + + 0.155 0.122 0.084 0.177 0.161 0.120
+ - = 0.017 0.007 0.003 0.018 0.012 0.010
+ - + 0.096 0.070 0.039 0.118 0.096 0.053
+ + - 0.052 0.047 0.066 0.053 0.060 0.073
+ + + 0.573 0.701 0.787 0.424 0.554 0.710
Normal distribution for transitory error component

- - = 0.065 0.014 0.002 0.143 0.052 0.007
- - + 0.079 0.049 0.012 0.135 0.108 0.047
- + = 0.071 0.029 0.008 0.104 0.065 0.027
-+ + 0.178 0.162 0.107 0.170 0.196 0.153
+ - = 0.043 0.013 0.003 0.051 0.034 0.013
+ - + 0.106 0.084 0.045 0.102 0.106 0.050
+ + - 0.091 0.055 0.039 0.087 0.066 0.060
+ + + 0.367 0.594 0.784 0.208 0.373 0.643

Note: Based on simulations of earnings from age 25 through 65. The sequence refers to status of
being in the bottom earnings quintile at ages 30, 45 and 60. A * — indicates the person is in the
bottom quintile of the earnings distribution, and a * 4+’ indicates he is not.

The mixture model estimated from the full sample also predicts that the
fraction of time in the bottom quintile declines quite precipitously with educa-
tion, especially for blacks (e.g., 60.9% when education is less than 12 yr but only
15.1% when education is 16 yr or more). The normal model predicts a less sharp
decline (e.g., 68.1% for blacks with education less than 12 yr and 28.9% when
education is 16 yr or more).

Table 7 reports simulations of the fraction of the remaining lifetime, from age 31
to 65, that people are expected to spend in the bottom earnings quintile condi-
tional on low-earnings status at age 30. Based on the full sample, if a white male
without a high school degree is in the bottom quintile at age 30, the mixture model
predicts that he will spend 70.5% of the remaining years in the bottom quintile. If
he is not in the bottom quintile at age 30, the fraction is only 29.2%. The
corresponding figures for the normal model are 65.6 and 36.4%. Note that
status at age 30 is predicted to have less impact on subsequent outcomes in the
normal model than in the mixture model (i.e., the divergence in the two fractions
is greater in the later). The same pattern holds for blacks with education less
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Table 5b
Simulations of earnings mobility based on full sample, probabilities of earnings quintile sequences
(ages 30, 45, 60)

White Black

Sequence Ed. <12 Ed. 12-15 Ed. 16 + Ed. <12 Ed. 12-15 Ed. 16 +

Mixture distribution for transitory error component

- - = 0.201 0.037 0.006 0.334 0.068 0.019
- - + 0.058 0.024 0.008 0.064 0.036 0.017
- + - 0.078 0.034 0.010 0.083 0.057 0.019
- + + 0.097 0.102 0.068 0.083 0.120 0.058
+ - = 0.049 0.017 0.004 0.057 0.024 0.007
+ - + 0.071 0.058 0.035 0.059 0.064 0.045
+ + - 0.088 0.086 0.046 0.081 0.097 0.062
+ + + 0.358 0.643 0.824 0.238 0.534 0.772
Normal distribution for transitory error component
- - = 0.150 0.041 0.010 0.296 0.117 0.029
- - + 0.057 0.032 0.012 0.070 0.054 0.028
- + - 0.134 0.080 0.033 0.165 0.130 0.104
-+ + 0.121 0.117 0.087 0.093 0.125 0.112
+ - = 0.058 0.031 0.011 0.078 0.056 0.023
+ - + 0.058 0.048 0.031 0.047 0.052 0.043
+ + - 0.129 0.140 0.097 0.109 0.142 0.119
+ + + 0.293 0.512 0.720 0.142 0.325 0.542

Note: Based on simulations of earnings from age 25 through 65. The sequence refers to status of
being in the bottom earnings quintile at ages 30, 45 and 60. A * — indicates the person is in the
bottom quintile of the earnings distribution, and a * 4+’ indicates he is not.

than 12 yr. Thus, for those with low education, the mixture model clearly
predicts more persistence in low-earnings status than does the normal model.

Again based on the full sample, at higher education levels the mixture model
predicts a lower fraction of remaining life in the low-earnings state than does the
normal model, regardless of age 30 earnings status. This reflects the greater
positive association between education and earnings in the mixture model that
has already been noted.

Tables 8a and 8b report simulations of year-to-year transition probabilities at
age 35. Table 8a contains results for the models based on the young men data,
and Table 8b contains results based on the full sample. If a white male without
a high school degree is in the bottom quintile at age 34, the full sample mixture
model predicts he has an 81.2% probability of remaining in the bottom quintile
at age 35. If he is not in the bottom quintile at age 34, the probability of being in
the bottom quintile at age 35 is only 13.2%. The corresponding figures for the
normal model are 73.4 and 17.5%. Thus, the mixture model predicts more
persistence in low-earnings status.
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Table 6
Simulations of earnings mobility, conditional expectations of: fraction of lifetime in bottom quintile;
expected number of spells in bottom quintile; mean spell length

White Black

Ed. <12 Ed. 12-15 Ed. 16 + Ed. <12 Ed. 12-15 Ed. 16 +

Mixture distribution, young men sample

Fraction 0.264 0.179 0.121 0.364 0.271 0.177
# Spells 2.89 2.29 1.68 3.51 3.03 2.26
Length 3.47 2.88 2.58 4.01 341 292
Normal distribution, young men sample

Fraction 0.422 0.254 0.128 0.571 0.422 0.221
# Spells 4.57 3.27 1.84 5.28 4.58 2.98
Length 3.64 2.94 248 4.33 3.61 2.78
Mixture distribution, full sample

Fraction 0.476 0.221 0.107 0.609 0.307 0.151
# Spells 3.49 2.51 1.51 3.56 3.06 1.87
Length 5.45 3.34 2.47 6.91 391 2.95
Normal distribution, full men sample

Fraction 0.519 0.315 0.170 0.681 0.477 0.289
# Spells 4.90 3.78 2.37 5.03 4.79 3.44
Length 4.28 3.31 2.76 5.51 4.01 3.31

Note: Based on simulations of earnings from age 25 through age 65. ‘Fraction’ is expected fraction of
years in bottom quintile of earnings distribution. ‘# Spells’ is expected number of spells in bottom
quintile over life cycle (ending at age 65). ‘Length’ is mean length of low earnings spells.

It also interesting to examine the probability of being in the bottom quintile at
age 35 conditional on * — + ’vs.“ + —’patterns at ages 33 and 34. The mixture
model predicts these probabilities are 28.0 and 62.3% for whites with education
less than 12 yr, while the normal model predicts 36.7 and 55.7%, respectively,
both based on the full sample. Thus, the normal mixture model predicts greater
short-run persistence in the low-carnings state.

In summary, in comparing the mixture and normal models based on the full
sample, we find that for men with low levels of education - the group for whom
low-earnings spells are most common - the mixture models predict (1) that
low-earnings spells are less frequent but of longer duration, (2) greater differ-
ences in expected fraction of the remaining lifetime in the low-earnings state
depending on current low-earnings status, and (3) greater differences in the
probability of low-earnings status at age ¢ depending on low-earnings status at
age t — 1. In each of these senses, the mixture model implies greater persistence
of the low-earnings state than does the normal model.
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Table 7
Simulations of earnings mobility, expected fraction of remaining lifetime in bottom quintile condi-
tional on earnings status at age 30

White Black

Age 30 Ed. <12 Ed. 12-15 Ed. 16 + Ed. <12 Ed. 12-15 Ed. 16 +

Mixture distribution, young men sample

- 0.398 0.288 0.213 0.471 0.391 0.294
+ 0.190 0.134 0.095 0.249 0.190 0.138
Normal distribution, young men sample

- 0.525 0.355 0.197 0.633 0.497 0.291
+ 0.320 0.181 0.083 0.446 0.315 0.148
Mixture distribution, full sample

- 0.705 0.437 0.250 0.796 0.524 0.387
+ 0.292 0.152 0.079 0.357 0.198 0.104
Normal distribution, full sample

- 0.656 0.492 0.351 0.772 0.616 0.476
+ 0.364 0.225 0.123 0.491 0.339 0.192
Note: Based on simulations of earnings from age 25 through age 65. A * — ’ indicates the person is in

the bottom quintile of the earnings distribution when he is age 30, and a * + ’ indicates he is not.

Table 8a
Simulations of earnings mobility based on young men sample, probabilities of bottom quintile at age
35 conditional on earnings status at ages 33 and 34

White Black

Age 33,34 Ed. <12 Ed. 12-15 Ed. 16 + Ed. <12 Ed. 12-15 Ed. 16 +

Mixture distribution for transitory error component

? - 0.646 0.588 0.409 0.722 0.649 0.571
? + 0.113 0.073 0.042 0.147 0.095 0.060
— — 0.698 0.641 0.422 0.763 0.698 0.667
- + 0.239 0.151 0.051 0.234 0.187 0.050
+ - 0.521 0.498 0.398 0.599 0.522 0.429
+ + 0.098 0.066 0.041 0.132 0.085 0.061

Normal distribution for transitory error component

? — 0.707 0.580 0.409 0.747 0.684 0.477
? + 0.166 0.113 0.046 0.278 0.170 0.082

- = 0.770 0.647 0.506 0.796 0.748 0.611

- + 0.293 0.269 0.200 0.429 0.354 0.208

+ - 0.566 0.478 0.327 0.578 0.539 0.385

+ + 0.133 0.091 0.038 0.219 0.126 0.069
Note: Based on simulations of earnings from age 25 through age 65. A * — ’ indicates the person is in

the bottom quintile of the earnings distribution at age 33 or 34, and a * + ’ indicates he is not.
A ? indicates that status at age 33 is not specified.
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Table 8b
Simulations of earnings mobility based on full sample, probabilities of bottom quintile at age 35
conditional on earnings status at ages 33 and 34

White Black

Age 33, 34 Ed. <12 Ed.12-15 Ed. 16 + Ed. <12 Ed.12-15 Ed. 16 +

Mixture distribution for transitory error component

? - 0.812 0.639 0.469 0.872 0.707 0.552

? + 0.132 0.067 0.033 0.159 0.081 0.029
- = 0.854 0.702 0.547 0.906 0.765 0.639
- + 0.280 0.160 0.103 0.307 0.170 0.120
+ - 0.623 0.507 0.385 0.646 0.546 0.400
+ + 0.110 0.060 0.030 0.129 0.072 0.025

Normal distribution for transitory error component

? - 0.734 0.608 0.503 0.820 0.697 0.541

?7 + 0.175 0.098 0.050 0.246 0.162 0.086
- - 0.792 0.689 0.615 0.862 0.753 0.569
- + 0.367 0.274 0.224 0.400 0.366 0.200
+ - 0.557 0.461 0.378 0.618 0.548 0.455
+ + 0.129 0.075 0.038 0.190 0.114 0.071

Note: Based on simulations of earnings from age 25 through age 65. A * — ’ indicates the person is in

the bottom quintile of the earnings distribution at age 33 or 34, and a * + ’ indicates he is not.
A ? indicates that status at age 33 is not specified.

6.3. Present value of lifetime earnings

In this section we use the various models to simulate lifetime earnings streams
and construct present values of lifetime earnings. Table 9a reports present value
of lifetime earnings at age 25 from simulations based on the mixture and normal
models, using the young men data and an annual discount factor of 0.95. Table
9b contains the same calculations using the full sample. Note that the models
based on the full sample predict a mean present value of lifetime earnings that
is 13 to 15 thousand dollars (or 9-10%) less than that predicted by the models
based on the young sample. This is because, as was discussed in Section 5, the
young men sample contains no data on men over 46, so that its predictions for
earnings growth beyond that age are based entirely on prior growth combined
with extrapolations beyond age 46. These lead it to predict modest earnings
growth from age 45 to 65. On the other hand, the models based on the full
sample predict earnings declines at older ages. For this reason, we view models
based on the full sample as providing more reliable simulations of lifetime
earnings paths.
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Table 9a
Present value of lifetime earnings at age 25 based on young men sample

Mean  Stan. Dev. Q (0.05) Q (0.25) Median  Q (0.75) Q (0.95)

Mixture distribution for transitory error component

All 146.5 66.8 65.0 100.3 1342 178.8 268.0
Whites 160.3 69.4 73.2 112.6 148.7 193.9 2859
Blacks 118.3 50.6 56.9 84.0 110.0 141.8 207.1
Whites

Ed. <12 127.0 52.5 60.1 91.2 118.0 153.8 222.2
Ed. 12-15 155.8 62.2 75.4 1132 146.4 186.9 267.0
Ed. 16 + 204.0 824 98.8 149.2 190.7 243.7 343.5
Blacks

Ed. <12 103.3 414 49.6 76.2 96.3 124.0 181.2
Ed.12-15 122.3 50.1 60.5 89.1 114.8 146.4 206.5
Ed. 16 + 166.8 66.9 81.8 119.0 153.0 200.6 291.8
Normal distribution for transitory error component

All 143.1 76.4 56.1 90.5 125.8 177.2 288.9
Whites 161.3 80.6 66.9 105.3 143.7 197.5 314.0
Blacks 106.0 49.4 474 71.2 95.9 129.0 198.4
Whites

Ed. < 12 114.6 51.5 52.5 789 104.7 138.8 206.3
Ed.12-15 154.0 68.0 71.2 106.2 140.6 186.9 2782
Ed. 16 + 226.0 98.7 105.2 158.3 206.8 274.0 413.6
Blacks

Ed. <12 87.4 384 413 60.3 80.0 105.7 157.2
Ed.12-15 110.6 46.6 51.7 713 101.8 134.1 198.6
Ed. 16 + 169.7 72.5 80.1 118.6 154.7 204.9 317.7

Note: Values are in thousands of 1967 dollars. Annual discount factor is 0.95. ‘Q(p)’ is the pth
quantile.

Turning to the full sample results in Table 9b, we see that the normal and
mixture models yield similar predictions for the unconditional lifetime earnings
distributions. The normal model predicts roughly the same unconditional mean
present value of lifetime earnings as does the mixture model ($130,100 vs.
$131,600). They also predict similar standard deviations ($85,400 vs. $84,600)
and similar quantile points. Kernel density estimates for the predicted distribu-
tions from the two models (not reported) are virtually indistinguishable. How-
ever, this similarity in unconditional distributions predicted by the two models
masks dramatic differences in the conditional distributions they generate.

The mixture model predicts a mean present value of lifetime earnings for
blacks that is $45,100 (or 31%) less than that for whites. Much but not nearly all
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Table 9b
Present value of lifetime earnings at age 25 based on full sample

Mean  Stan. Dev. Q (0.05) Q (0.25) Median  Q (0.75) Q (0.95)

Mixture distribution for transitory error component

All 131.6 85.4 38.8 74.4 111.7 165.7 290.9
Whites 145.7 89.3 45.8 84.8 125.2 183.2 315.0
Blacks 100.6 66.4 31.1 58.5 87.3 1259 213.7
Whites

Ed. <12 933 48.7 34.0 60.0 84.0 1159 183.4
Ed.12-15 1474 724 59.3 98.1 1335 181.7 2789
Ed. 16 + 229.6 1138 91.9 150.3 205.7 284.2 4449
Blacks

Ed. <12 76.1 42.1 26.0 46.9 67.7 96.0 155.7
Ed.12-15 120.8 60.0 48.5 79.7 109.1 148.5 233.1
Ed. 16 + 1929 1511 77.1 122.7 1719 238.5 353.7
Normal distribution for transitory error component

All 130.1 84.6 39.9 729 109.4 163.9 290.7
Whites 146.3 89.8 48.2 85.0 125.0 183.1 315.8
Blacks 94.4 57.5 31.4 55.0 81.1 117.9 200.2
Whites

Ed. <12 102.4 56.4 37.6 63.5 90.0 127.2 208.2
Ed.12-15 149.3 79.7 58.1 94.0 131.8 184.6 301.7
Ed. 16 + 2125 114.8 83.1 133.4 187.5 263.5 420.2
Blacks

Ed. <12 75.7 42.6 26.8 45.8 66.2 95.1 158.6
Ed.12-15 110.3 58.6 434 69.4 97.7 136.6 221.3
Ed. 16 + 160.7 91.2 59.1 97.5 140.7 193.1 332.6

Note: Values are in thousands of 1967 dollars. Annual discount factor is 0.95. ‘Q(p)’ is the pth
quantile.

of this difference is accounted for by the education differences between blacks
and whites. For example, among those with education in the 12-15 yr range, the
mean present value of lifetime earnings for blacks is predicted to be $26,600 (or
18%) less than that for whites.

The normal model predicts a greater unconditional black-white differential
(851,900 or 35.5%), and greater black-white differentials within education
classes. For example, among those with education in the 12-15 yr range, the
mean present value of lifetime earnings for blacks is predicted to be $39,000 (or
26%) less than that for whites.

The mixture model predicts greater differences in earnings across education
classes than does the normal model. For example, comparing whites in the 16 +
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vs. 12-15 yr of education categories, it predicts a $82,200 (or 56%) greater
present value of lifetime earnings for members of the college-educated group.
The normal model predicts only $63,200 (or 42%) greater earnings for members
of the college-educated group.

The mixture model predicts that the increase in mean present value of lifetime
earnings in moving from the 12-15 to 16 + yr of education group exceeds
the increase in the median (e.g., $82,200 vs. $72,200 for whites). The uni-
variate normal model also predicts that the increase in the mean is greater than
the increase in the median (e.g., $63,200 vs. $55,700). Thus, both models predict
that at higher education levels the present value of lifetime earnings distribution
becomes more skewed to the right. This is apparent in Figs. 13 and 14, which
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Fig. 13. Lifetime earnings density estimate by type, full samples (a) Normal (b) Normal mixture.
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Fig. 14. Lifetime earnings density estimate by type, full samples (a) Normal (b) Normal mixture.

report kernel density estimates for the earnings distributions within race and
education classes. Fig. 13a reports results for whites based on the normal model,
while Fig. 13b reports results for whites based on the mixture model, both using
the full sample. Comparison of Figs. 13a and b shows clearly that the mixture
model predicts a greater shift right in the mode with increasing education than
does the normal model. Fig. 14 shows that this difference is even more apparent
for blacks.

Tables 10a and 10b report the distributions of lifetime earnings over ages
31-65, conditional on earnings quintile status at age 30, using the full sample
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Table 10a
Present value of lifetime earnings, ages 31-65 based on full sample, normal distribution for
transitory error component

Mean  Stan. Dev. Q (0.05) Q (0.25) Median  Q (0.75) Q (0.95)
Conditional on being in bottom quintile at Age 30
All 80.2 40.3 30.9 51.7 72.2 99.9 1553
Whites 89.7 427 37.0 59.7 81.8 110.1 169.1
Blacks 67.9 332 27.0 442 61.4 85.0 130.6
Whites
Ed. < 12 74.8 34.0 323 50.9 68.8 924 1389
Ed.12-15 98.7 41.4 46.2 69.6 91.3 119.0 178.3
Ed. 16 + 126.8 55.2 59.1 89.3 117.2 152.0 230.6
Blacks
Ed. <12 59.5 28.8 24.2 39.2 539 73.5 114.1
Ed.12-15 80.7 34.4 371 56.4 73.8 99.1 146.3
Ed. 16 + 101.7 41.7 49.3 71.8 91.6 123.1 184.7
Conditional on not being in bottom quintile at Age 30
All 161.6 88.4 63.8 101.5 140.9 197.8 328.7
Whites 173.2 92.1 70.6 110.6 1519 211.4 346.2
Blacks 124.6 62.4 54.0 823 110.6 152.3 2409
Whites
Ed. < 12 127.2 58.6 57.3 86.4 115.6 154.6 235.5
Ed.12-15 169.8 80.5 76.3 1143 152.7 206.0 321.8
Ed. 16 + 229.8 1133 99.0 150.1 205.2 279.2 4432
Blacks
Ed. < 12 102.7 457 47.0 70.5 935 123.8 187.0
Ed.12-15 1339 61.3 61.8 91.0 120.8 161.7 2504
Ed. 16 + 185.6 91.0 84.1 126.3 166.9 223.0 354.5

Note: Values are in thousands of 1967 dollars. Annual discount factor is 0.95. ‘Q(p)’ is the pth
quantile.

results; Table 10a is based on the normal model and Table 10b is based on the
mixture model. The mixture model implies that mean present value of lifetime
earnings over ages 31-65 is $159,100 if a male is not in the bottom quintile at age
30, and $70,700 if he is in the bottom quintile. This is $88,400, or 56% less.
Interestingly, conditioning on race and education class does little to eliminate
this difference. For example, for whites in the 12-15 yr of education range, the
difference is $161,900 vs. $92,500. This is still $69,400, or 43% less. Thus, even
conditioning on race and education status, position in the earnings distribution
at the single age of 30 reveals a great deal about expected future earnings.

It is also interesting to compare the normal and mixture model implications
for lifetime earnings. According to Table 10a, the normal model implies a mean
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Table 10b
Present value of lifetime earnings, ages 31-65 based on full sample, mixture distribution for
transitory error component

Mean  Stan. Dev. Q (0.05) Q (0.25) Median  Q (0.75) Q (0.95)

Conditional on being in bottom quintile at Age 30

All 70.7 42.0 25.0 435 61.4 86.1 147.5
Whites 78.6 46.7 28.5 48.4 67.7 95.8 164.3
Blacks 60.4 31.9 22.1 38.5 54.3 74.9 120.7
Whites

Ed. < 12 60.8 29.0 255 40.8 56.4 74.7 112.3
Ed.12-15 92.5 455 39.5 61.6 83.2 111.2 178.8
Ed.16 + 142.1 77.0 53.0 87.9 125.0 176.7 284.5
Blacks

Ed. <12 52.0 24.9 20.5 34.5 478 63.8 98.1
Ed.12-15 79.7 36.6 353 55.2 72.2 96.7 147.6
Ed.16 + 99.9 474 39.6 73.5 92.3 115.6 188.1

Conditional on not being in bottom quintile at Age 30

All 159.1 92.8 64.9 98.8 136.1 193.9 331.0
Whites 169.8 94.7 69.0 105.6 1459 207.1 350.7
Blacks 128.7 79.9 57.5 84.8 113.2 1539 250.6
Whites

Ed. < 12 112.6 49.2 55.3 79.0 101.9 134.0 205.7
Ed.12-15 161.9 734 77.1 111.1 145.8 195.6 295.2
Ed.16 + 248.5 119.8 108.5 1644 222.3 304.7 471.6
Blacks

Ed. < 12 101.0 43.7 49.8 71.8 92.4 119.9 180.7
Ed.12-15 138.0 61.7 68.0 95.6 124.6 164.7 2523
Ed.16 + 2149 196.1 95.3 138.6 190.0 257.1 3879

Note: Values are in thousands of 1967 dollars. Annual discount factor is 0.95. ‘Q(p)’ is the pth
quantile.

present value of earnings over ages 31-65 of $161,100 if a man is not in the
bottom quintile at age 30, and $80,200 if he is in the bottom quintile. This is
$80,900, or 50% less, which is less than the difference predicted by the mixture
model.

Table 11 presents regressions of present values of lifetime earnings on indi-
vidual characteristics, using the simulated data from the four models. The
estimated partial effects of covariates are quite different across the models. For
example, using the full sample the mixture model predicts that blacks have an
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Table 11

345

Present value of lifetime earnings at Age 25; Regression on race, education, parents’ education, t;, &

Young men sample

Full sample

Mixture model

Normal model

Mixture model

Normal model

Education 11.282 (0.237) 15.248 (0.255) 12.985 (0.108) 10.278 (0.113)
Black — 28.497 (1.031) —35.305 (1.111) — 19.214 (0.720) —30.724 (0.752)
Father’s Ed.

Missing — 22.454 (2.384) — 14.910 (2.566) —4.472 (1.593) — 8.458 (1.663)
HS —0.477 (1.057) 7.408 (1.138) 13.607 (0.834) 11.209 (0.871)
College 1.461 (1.713) 5.678 (1.844) —1.233 (1.414) 4.120 (1.476)
Mother’s Ed.

Missing 10.372 (2.881) 10.110 (3.102) — 8.989 (0.975) — 6.534 (1.018)
HS — 2.149 (0.943) — 2.808 (1.015) —2.682(0.714) — 2.705 (0.745)
College — 12.138 (2.190) — 5.668 (2.358) 5.756 (1.589) 7.780 (1.660)
7 139.224 (1.137) 134.483 (1.573) 126.337 (0.561) 124.374 (0.690)
&i1 34.301 (0.383) 45.146 (0.436) 30.954 (0.245) 52.113 (0.259)
Constant 17.224 (2.993) —37.521 (3.222) — 12.586 (1.361) 20.548 (1.421)
R?-Regressors 0.2115 0.3019 0.3367 0.2630
R*-t.6;, 0.4492 0.3565 0.3866 0.4457
Unexplained 0.3393 0.3416 0.2767 0.2913
Dependent variable:

Mean 146.501 143.139 131.586 130.066

SD 66.810 76.435 85.413 84.607

Note: The dependent variable is the present value of lifetime earnings from a simulated lifetime earnings
path, using a discount factor of 0.95 from ages 25 to 65. Earnings are measured in thousands of 1967 dollars.
The number of simulated paths is 10 times the number of individuals observed in the PSID data. The
distribution of education, race and parents’ education is the same as in the data.

expected present value of lifetime earnings that is $19,214 less than whites,
ceteris paribus. This is 14.6% of the unconditional mean present value
of earnings of $131,586 in that model. But, using the same sample, the
normal model predicts a black-white differential of $30,724, which is 23.6% of
the mean.

Using the full sample, the mixture model predicts that each additional year
of education is associated with a $12,985 increase in expected present value of
lifetime earnings, as compared to $10,278 in the normal model. Thus, the
mixture model predicts that, ceteris paribus, a college graduate will have
a present value of earnings that is $51,940 greater than that for a high school
graduate (39.5% of the mean). The normal model predicts a college premium of
only $41,112 (31.6% of the mean).
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Largely due to the greater earnings differences across education classes
predicted by the mixture model, the covariates explain 33.7% of the variation in
present value of earnings in that model, while in the univariate normal model
they explain only 26.3%. The mixture model attributes 38.7% of the variation in
lifetime earnings to unobserved individual effects (t; and ¢;; ) while the univariate
normal model attributes 44.6%. The fact that a larger percentage of variance is
due to unobserved heterogeneity than due to race, education, and family
background explains why, in Tables 10a and 10b, earnings status at the single
age of 30 was so important in predicting future earnings, even after conditioning
on race and education.

7. Conclusion

In this study we have used data from the PSID on male household heads to
address a number of questions about life-cycle earnings mobility. We developed
a dynamic, reduced-form model of earnings and marital status, and applied it
using most of the available male household data in the PSID. The model
developed is nonstationary over the life cycle and permits possibly non-Gaus-
sian shocks. Both to facilitate the use of most of the sample and to infer
properties of life-cycle earnings accounting for parameter uncertainty, we de-
veloped a Gibbs sampling-data augmentation algorithm that provides numer-
ical approximations to the exact posterior distribution of properties of earnings
paths. An important property of this algorithm is that it copes with the
potentially very complex distribution of earnings and marital status observa-
tions that are available for short segments of an individual’s work history that
do not include the initial period.

We reached several firm conclusions about life-cycle earnings mobility. First,
we found that Gaussian shocks did not account for observed transition patterns
between low-earnings states and higher-earnings states observed in the PSID for
male household heads. The poor fit provided was similar to that reported in
previous efforts to model these transitions. When non-Gaussian shocks were
permitted, we found that our model accounted very well for transitions of young
men in and out of low-carnings states, and it performed almost as well for older
men. For men in their forties, the fit to observed transitions was not as good, but
still substantially better than for the Gaussian version of the model and in
comparison with previous studies.

We reported specific transition probabilities in and out of low-earnings states,
exhibiting variations over race and education classifications. One of our central
findings is that low earnings at a specific age, like 30, is a strong predictor of low
earnings later in life, even conditioning on race, education, and age. Our model
decomposes earnings into permanent and transitory components. Posterior
distributions of these components show that in a given year, 60% to 70% of the
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variation in the log of earnings not explained by covariates is accounted for by
transitory components whose serial correlation is relatively weak, about 0.7
from year to year. But over a lifetime transitory components (by definition)
average out. The posterior distributions show that about 60% of the variation of
lifetime earnings that is not explained by education and race is attributable to
permanent individual characteristics that are unobserved and uncorrelated with
education, age, and race. This is consistent with the explanatory power of low
earnings early in life for lower earnings later in life.

The non-Gaussian shock distribution has important consequences for lifetime
earnings. Using the full sample of male household heads aged 25-65 in the
PSID, the mixture model implies that, ceteris paribus, the present value of
lifetime earnings is $253,467 greater for those with a college degree than for
those with only a high school degree (in 1998 dollars). The normal model implies
a college premium of only $200,626. And while the normal model predicts that
present value of lifetime earnings is $149,933 less for blacks in 1998 dollars
(ceteris, paribus), the mixture model predicts a substantially smaller black/white
differential of $93,764. Thus, the mixture model implies a greater association
between education and earnings and a lesser association between race and
earnings than does the normal model. The mixture model also predicts, among
men with low levels of education, more persistence in low-income states than
does the univariate normal model.

Although this work is in many respects complete, the model might be
improved in a number of ways without radical modification. We plan to
experiment further with functional forms for the age and education covariates
and with the introduction of age-specific heteroscedasticity in an effort to
account for dynamic mobility in middle age as well as the model now does for
younger and older men. Our experience with non-Gaussian distributions was
much more successful that we had hoped, both in the ability of the model and
data to yield precise posterior information about these distributions and in the
distributions themselves to account for earnings mobility. We therefore plan to
experiment with higher-order normal mixture distributions for both transitory
and permanent disturbance components.

Finally, one of our key findings is that the mixture model predicts a greater
association between low earnings at a specific age (say, age 30) and the present
value of earnings over the rest of life (after conditioning on race and education)
than does the Gaussian model. This means that the two models would have
rather different implications for how an increase in the variance of transitory
earnings shocks would alter the dispersion in the present value of lifetime
earnings. We thus conclude that the development of a good model of earnings
mobility is an important first step toward beginning to assess how the widely
noted increase in the cross-sectional variance of earnings that has occurred in
the U.S. in recent decades will translate into increased dispersion in the present
value of lifetime earnings. We plan to explore this question in future research.
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Appendix A. Posterior distribution for the earnings model

The panel consists of n individuals, i = 1, ..., n. In this appendix it is assumed
that individual i is observed in periods 1,...,T; T; < T (i=1,...,n).
Let Q; = {i:T; >j}, the set of individuals observed in period j, and let
N; denote the cardinality of ;. The total number of observations is
N = Z?:1 T; = Zthth-

The shocks in the earnings model are distributed as mixtures of normal
distributions. That is, a generic shock ¢; has distribution ¢; ~ N(a;, h; ), and the
distribution of o; and h; are specified in a separate model. In our application
the shocks are discrete mixtures of normals. These distributions, including
priors, are discussed in Appendix F, which details complete conditional distribu-
tions for the «; and h;.

For(t=1,...,T;i=1,...,n),let

yi: = log real earnings of individual i in period t,
x;; = k; x 1 vector of contemporaneous first period variables
for individual i,
xi; = k, x 1 vector of contemporaneous variables and other variables
lagged one period for individual i in period t (t =2,...,T;; i € Q,).
The model for individual earnings is,
yir = Bxi + &,
Vie = Wii—1 + (1 =% + (L =)t + (L =) + & (t=2,...,7T),
&z = Peir + Nizs
& = peig-1 + M (=3,....7T),
e = oy + hin ',
M =0 + hi 20 (1=2,...,7),
7 = 0.{io-
11D

Ca(6=0,...,T;i=1,....n)" N, 1).
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The parameters {a;, h;,} arise from a discrete mixture of normals model. In
this model, the disturbance &;; is a discrete mixture of three normals, with one
set of parameters; the distribution of #;, is a discrete mixture of three normals
with another set of parameters.

The prior distribution is composed of the following independent components:

0=(F.pY ~N@.Hy"). H; pd.
= (z)>p)/ ~ N(E,I_{;l), I_{np'd') —1< p< 1,

¢ ~N(¢, hy "),
Y NN(Z:I/Lyil)s —1< Yy < 19
ves?/og ~ 1(ve), 52 >0, v > 0.

The joint posterior density of the parameters and the latent variables (z;);- 1,
conditional on the parameters of the normal mixture process, is

p(ﬁv ﬁ: ﬁ: P> (;ba Vs O-rza (Ti)?=1 | {(yitnxit: its hit)tzl}’i';l:éaf_lénzal_{naga ]1(;59 Vs ]Zya§17292r)
oC l_[ [p({ylt}tT;I | {xitaocitahit}};bﬁ’ ﬁaﬁ,pa ()b’ % 0-172’ ('Ci)?:l)p('fi | 0_12)
i=1
p(5> T, d)a Vs 0 |é9}_15,23gn599 ll(fnry llysztasrz)

12 7
oc l_[ hif? eXP|: ~> Z hit(yip — oiq — ﬁ/xi1)2:|
i=1

1 ’
X l_[ hzlzlz CXP{ ) Z hix[yia — otz — yyin — 71B%i2 — 17
ieQ,

i€Q,

— (P + 710 yir — ﬁ/xil)]z}

T;
X n n hi? exp{ Z Z hilyie — ot — Yie—1 — 718X — 91T
i€eQ; t=3 lE.Qa t=3

=710 — ﬁ/xil) = PpWii—1 = Pii—2 — V1BXii—1 — V1T

— 7191 — B’xu))]z}

Y eXp< . Z )exp[ =3 (0 = 'H,(0 - 9)]

xexp[ — 3 (1 — 1/ Ho(m — M7 1.1)(p)expl — 2 hy(d — §)*]

xexp[ — 3 h, (7 — ) x- 1o & TP exp(— 3y, s2 0
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Appendix B. Posterior distribution for the marital status model

The panel consists of n individuals, i = 1, ..., n. In this appendix it is assumed
that individual i is observed in periods 1,...,T; T; < T (i=1,...,n). Let
Q; = {i: T; > j}, the set of individuals observed in period j, and let N; denote the
cardinality of Q;. The total number of observationsis N =7, T; =Y/ N,.
For(t=1,...,T;;t=1,...,n) let

d; = 1 if individual i is married in period ¢ and d;, = 0 if not,
51, = (p1 x 1) vector of deterministic variables,
si; = (p> x 1) vector of deterministic variables and lagged earnings,
possibly interacted with d;,_; (t =2,...,T;; i€ Q,),
m#% = a latent variable that determines d,,.
The model for marital status is
miy = 0siy + &,

11D

& ~ N[O,(1 — 2271,

m:’; = G,Sit + éit (t = 25 ey T)7
Cu=AS 1 + YWy (t=2,...,T),

1ID

qlit ~ N(07 1) (t = 2’ cees T)a

1 if mE >0,
0 ifmE <0

The parameters of the model are 1, 0 and 4. The prior distribution has two
independent components,

= (0,0 ~NwH;"), H, pd.,
A~ N(Lhih, hy >0, —1<l<Ll

The joint posterior density of the parameters and latent variables is

p(0,0, 2, {m)= 1 V=1 [{(dis $00)i% 1 =1 S H 2 hy)

1 " ~
oc(l — iz)"/zexp[ -5 (1—=2%)> (mf — 9'51’1)2]
i=1
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XeXP{ Py Z [mf — 0's;; — Ami — glsil)]z}

lE.Q;

X ex { 5 Z [mii — 0'syy — Ami— 1 — g/si,t—l)]z}
ieQ; t=

X

i

::
:|~3

IS(d,-,)(mzt)

11t

xexpl — 3 (u — p)'Hy(u — )]
xexp[ — 3 (2 — 271 1 1.0)(A), (B.1)
where S(0) = (— o0,0) and S(1) =[0, o0 ) in (B.1).

Appendix C. Prior distributions

All prior distributions are proper. In setting the priors, our guiding principle
is that the priors should be flexible to make very large but reasonable effects
likely.

C.1. Priors in the earnings model

In our model there are 10 covariates for the log of real earnings in the first
period (k; = 10) and 16 covariates for the log of real earnings in the other
periods (k, = 16). The prior distribution for the 26 corresponding coefficients

= (f, p) is multivariate normal.

The first 8 covariates are the same for all periods. The covariates and their
prior means and standard deviations are given in Table 12.

Prior means reflected our best subjective judgement of the most plausible
effects of each of the covariates on the log of real earnings. Prior standard
deviations were chosen to reflect considerable uncertainty, and to be consistent
with our role as investigators rather than clients. In the case of the missing
education dummies, we had very little idea what the effects might be, since we
have little insight into the missing variable process.

The remaining covariates pertain to the effects of age and education on
expectations of log earnings. Our prior for these coefficients is independent of
the prior distribution of the eight covariates just discussed. It is constructed by
thinking about expected log earnings at eight combinations of age and educa-
tion: ages 25, 35, 45, and 55; and 12 and 16 yr of education. In our model, the
only covariates that affect expected earnings growth are age and education.
Denote the impact of age and education on expected log earnings growth from
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Table 12

Covariate Prior mean Prior stan. dev.
Father education missing dummy 0.05 0.20
(1 if missing, O if present)

Father high school dummy 0.05 0.10
(1 if known high school grad, else 0)

Father college dummy 0.10 0.10
(1 if known college grad, else 0)

Mother education missing dummy 0.05 0.20
(1 if missing, O if present)

Mother high school dummy 0.05 0.10
(1 if known high school grad, else 0)

Mother college dummy 0.10 0.10
(1 if known college grad, else 0)

Race dummy —0.10 0.10
(1 if nonwhite, O if white)

Lagged marital status dummy 0.20 0.20

(1 if married, O if not married)

period 1 to period 2 by G(ay,a,,eq,e,). There are seven independent prior
distributions for values of this function, with means and standard deviations
given in Table 13.

Thus, real earnings of a high school graduate with no college are expected to
grow at a 1.5% annual rate from 25 to 35, at 1% from 35 to 45, and at 0.5% from
45 to 55. The earnings of a college graduate are expected to be 1.3 times those of
a high school graduate at age 25, 1.4 times at 35, 1.45 times at 45, and 1.5 times at
55. Prior standard deviations are sufficiently large to make other reasonable
growth rates — including none at all - plausible.

We complete our prior distribution for the effects of age and education on
expected log earnings with an independent distribution for expected log earn-
ings of a white high school graduate for whom it is known that neither parent
graduated from high school. This distribution has mean 8 and standard
deviation 4, which is quite diffuse and includes unreasonable as well as reason-
able values of expected log earnings.

For periods beyond the first, the eight age and education covariates are the
full interaction of age raised to the powers 0, 1, 2, and 3, on the one hand, with
education raised to the powers O and 1, on the other. The foregoing prior
distribution for eight age—education combinations induces the prior distribution
on the coefficients corresponding to these covariates through a standard linear
transformation. For the first period the covariates are the intercept and age. The
prior distribution on the level and G(25, 25; 12, 16) provide the prior distribution
on the corresponding coefficients.
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Table 13

Age/education linear combination Prior mean Prior stan. dev.
G (25,35:12,12) 0.15 0.10

G (35,45;12,12) 0.10 0.10

G (45,55,12,12) 0.05 0.10

G (25,25;12,16) 0.26 0.15

G (35,35;12,16) 0.34 0.20

G (45,45;12,16) 0.37 0.225

G (55,55;12,16) 0.40 0.25

Priors for other parameters in the earnings model were set as follows.

7, P1, p2: Normal priors for these serial persistence parameters were each
centered at 0.5, with a standard deviation of 0.5. As explained in Appendix A, the
priors are then truncated to force the parameters to lie between — 1 and 1.
These priors were mutually independent and independent of priors for all other
parameters.

¢: The value 0.4 was taken to be a large persistent effect of the first-year shock.
Since we are not very certain about this, prior standard deviation is set to 0.5.
This prior is independent of priors for all other parameters.

o?: If heterogeneity not associated with the covariates contributed typically to
variations by a factor of two in earnings, then these terms would be about
[log(2)]* = 0.480. We assigned the prior 0.4/a? ~ y*(1), implying that a priori
P(0.104 < 67 < 101.7) = 0.9.

C.1.1. Shock distributions

The disturbances ¢;; and n;, (t = 2) are each modeled as mixtures of three
normal distributions. The prior distribution of the parameters of these distribu-
tions are the same for each kind of disturbance. The prior distribution was
developed after inspection of residuals in models with i.i.d. normal disturbances.
Using ‘x;” do denote a generic random variable, the three-normal mixture
distribution can be described

x; ~ N(o j, h;')  with probability p; (j = 1,2,3).

(For a complete discussion, see Appendix F.) We impose the identifying restric-
tion 01(1) < OC(Z) < 01(3).
Subject to this restriction, the prior distribution for o’ = (o), %2), %3)) is
OC(l) ~ N( - 3, 1)
%2 =0
o3y ~ N(Ol, 01)



354 J. Geweke, M. Keane | Journal of Econometrics 96 (2000) 293-356

(The restriction ¢, = 0 is a normalization, since an intercept term, o or fiy is
already included as a covariate.)
The independent prior distributions for the hj are

200h;, ~ z4(100) = P[1.268 < h;'/? < 1.602] = 0.9;
125h) ~ 7*(100) = P[1.002 < h/? < 1.266] = 0.9;
10k, ~ z*(100) = P[0.284 < h;)/? < 0.358] = 0.9.

The prior distribution for p is multivariate beta, with parameters 2, 48, and 50,
implying modal values of 0.0103, 0.4895, and 0.5052 for the prior distribution of
p- The marginal prior distributions are univariate beta, with

P(0.0036 < p;, < 0.0470) = 0.90,
P(0.3984 < p, < 0.5621) = 0.90,
P(0.4181 < p; < 0.5819) = 0.90.

C.2. Priors in the marital status model

There are 3 covariates for the log of real earnings in the first period (p; = 3)
and 9 covariates for the log of real earnings in the other periods (p, = 9). The
prior distribution for the 12 corresponding coefficients i’ = (¥, 0’) is multivari-
ate normal.

Since this is a probit model, scale effects are determined by the standard
normal distribution for the innovations in the marital status state equation. In
thinking about the magnitude of any covariate coefficient, it is necessary to
consider the effect of a change in the covariate on the marital status from
a particular starting probability.

Of the 9 covariates for periods beyond the first, 6 correspond to interactions
of education and age: the full interaction of age raised to the powers 0, 1, and 2,
on the one hand, with education raised to the powers 0 and 1, on the other. Our
prior distribution for the corresponding coefficients is independent of the prior
distribution for the coefficients of the other three covariates. It is constructed by
thinking about plausible effects of different age and education on marital status
probability, when that probability is about 0.5. Let A(ay,a,,eq,e,) denote the
impact on the probit of a change in age from a, to a, and a change in education
from e; to e,. We adopt independent priors for five linear combinations of the
coefficients and they are given in Table 14.

A sixth prior distribution, independent of these five and the other coefficients,
assigns a mean of @~ 1(0.5) = 0 and standard deviation of [®~1(0.6) — &~ 1(0.5)]/
2 =0.255 to the probability of being married at age 25 and education 12.

Of the remaining three covariates for periods beyond the first, the nonwhite
dummy is assigned a mean of 0 and a standard deviation of ®~'(0.6) —
@~ 1(0.5) = 0.255. Lagged marital status is given both a mean and standard
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Table 14

Age/education linear combination Prior mean Prior stan. dev.

4 (25,40;12,12) 0 @~10.6) — ®~1(0.5) = 0.255
4 (40,55;12,12) 0 &710.6) — ®~1(0.5) = 0.255
4 (25,25;12,16) 0 @~10.6) — ®~1(0.5) = 0.255
4 (40,40; 12, 16) 0 &~10.6) — ®~1(0.5) = 0.255
A4 (55,55;12,16) 0 @~ 1(0.6) — @ 1(0.5) = 0.255

deviation of @~ 1(0.8) — &~ 1(0.2) = 0.68. The mean for the coefficient on lagged
earnings is 0. The standard deviation is set by reasoning that an increase in log
earnings of one unit might change marital status probability by 0.2 when that
probability was about 0.5 to start: so the standard deviation was chosen to be
@~ 10.6) — & 1(0.4) = 0.510. In choosing all of these values, the intention is to
select reasonable means, and standard deviations sufficiently large as to make all
plausible values fall within two standard deviations.

In the first period the only covariates are intercept, education, and the race
dummy. The prior distributions for the race dummy coefficient is the same as in
the later periods, and the prior distribution for intercept and age is inferred from
the distributions above.

The prior specification of the model is completed by assigning a normal
distribution to the serial correlation coefficient 4, with a mean and standard
deviation of 0.7.
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