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Abstract

This study develops practical methods for Bayesian nonparametric inference
in regression models. The emphasis is on extending a nonparametric treatment
of the regression function to the full conditional distribution. It applies these
methods to the relationship of earnings of men in the United States to their age
and education over the period 1967 through 1996. Principal findings include
increasing returns to both education and experience over this period, rising
variance of earnings conditional on age and education, a negatively skewed and
leptokurtic conditional distribution of log earnings, and steadily increasing in-
equality with asymmetric and changing impacts on high- and low-wage earners.
These results are insensitive to several alternative nonparametric specifications
of distribution of earnings conditional on age and education.

Acknowledgement 1 Grant R01-HD37060-01 from the National Institutes
of Health provided financial support for this work.

Much of applied statistics and econometrics is concerned with the measurement
and interpretation of conditional distributions. In statistics the core curriculum de-
votes substantial time to regression, a topic that practically defines elementary econo-
metrics and is the main point of departure in advanced treatments. Typically the
conditional distribution is that of a univariate random variable y conditional on a
random vector x. Regression, narrowly defined, is concerned only with E (y | x), yet
this topic alone is the basis of a huge literature in mathematical statistics and theo-
retical econometrics. The strong assumption that regression is linear in x, made in
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elementary treatments, is rarely justified on theoretical grounds and as an empirical
matter often can be overturned. Therefore much of this literature has taken nonpara-
metric or semiparametric approach to regression. The textbooks by Hardle (1989)
and Green and Silverman (1994) provide introductory yet comprehensive treatments
of non-Bayesian approaches; for Bayesian treatments, see, for example Erkanli and
Gopalan (1994), Wong and Kohn (1996), Smith and Kohn (1996), Koop and Tobias
(2004) and Koop and Poirier (2004).
In general, substantive interest in the conditional distribution goes well beyond

conditional expectations to embrace the entire distribution p (y | x). Well-known ex-
amples include the pricing of derivatives of financial assets and the study of inequality
and mobility of earnings across individuals. Nonparametric approaches are much less
common at this level of generality, due mainly to well-understood practical problems,
but even semiparametric treatments of both the regression function and the condi-
tional distribution simultaneously are rare. In this study we take nonparametric and
semiparametric Bayesian approaches to this question. The specific statistical question
we address is Bayesian inference for a functional of p (y | x). This includes not only
the expectation of y corresponding to given value of x, but also functionals of the con-
ditional distribution such as the coefficient of kurtosis and measures of inequality like
the Gini coefficient. The emphasis is on methods that can be carried out quickly and
reliably using software that is widely available. We achieve our objectives by com-
bining, alternatively, polynomial basis functions or Wiener process smoothness priors
for regression, with normal mixture modeling for regression residuals y − E (y | x).
Section 2 describes our methods in detail. The closest precedent for our approach
appears to be that of Smith and Kohn (1996). That study, however, is concerned
with outliers and confines consideration to scale mixture of normal distributions.
The findings in Section 3 show that assumption clearly would be inappropriate in our
application.

1 Earnings and the PSID data

Our substantive concern is with the distribution of the earnings of individual men
conditional on age and education. To introduce notation used throughout this study,
we have available for each of 30 years t = 1967, . . . , 1996 a sample of the age ati,
education eti and logarithm of earnings yti for each of n (t) men (i = 1, . . . , n (t)). We
are interested in functionals of the density p (yti | xti), where xti = (ati, eti)0. Due to
the structure of the data, described in Section 1.2, we treat each year as a separate
sample.

1.1 Modelling earnings

There is a long and well established literature studying the relationship between earn-
ings and the determinants of earnings suggested by life-cycle human capital models.
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Going back at least to the seminal work of Mincer (1958) the essence of these models
is that an individual’s productivity, or human capital, is an increasing function of
formal education and work experience. Heckman et al. (2003) review this work. By
far the most common measure of formal education is years of schooling, and the most
common measure of experience is age for individuals who have limited or no spells
of labor force nonparticipation following the completion of their formal education.
Since our study is limited to men, the latter assumption is reasonable.
A fully specified relationship between earnings, one the one hand, and age and

education, on the other, has several properties that are of substantive interest. One
is the impact of education on earnings, sometimes termed returns to education. We
use that terminology here, recognizing that returns so measured do not distinguish
between the impact of education on the earnings of a given individual and the fact that
individuals for whom further education is more likely to provide economic benefits
are more likely to choose more years of schooling. Another is the distribution of
earnings over the life cycle. As individuals age the relative benefits of working and
leisure change because of increasing financial wealth (on average), a changing planning
horizon, and changing family circumstances.
This relationship need not be constant over time. On the demand side, changes

in technology can change the relative productivity of more and less highly educated
individuals, and may make it more advantageous for a given number of hours of work
over the life cycle to be more concentrated in fewer years or spread out over more
years. On the supply side, demographic changes driven by changes in fertility and
immigration shift the age distribution of the labor force, and to the extent that older
and younger workers are imperfect substitutes in the workforce their relative wages
will change for this reason as well. Changes in economic policy including the taxation
of earnings, public subsidies for higher education, unemployment benefits, and public
pension benefits, will also affect wages and decisions about hours of work, thereby
changing the relationship. There is no reason that the effect of these changes should be
limited to expectations of earnings (or log earnings) conditional on age and education:
the entire distribution may be affected. The extent to which this distribution has
changed, and especially the implications for inequality in the distribution of earnings,
has been a topic of intense interest in both the academic literature and public policy
forums. In this study we characterize the distribution and its change over the period
1967 through 1996.

1.2 Data

Our findings are all based on the panel study of income dynamics (PSID). The PSID
is a household-based panel that has collected information on earnings and other as-
pects of household economic activity. From 1968 through 1997 the survey was fielded
annually, collecting data pertaining to the previous year. We use these data, identify-
ing each wave of the panel by the year previous to the interview since that is the year
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to which the information pertains. The survey was not fielded in 1998, and data has
been conducted biannually since 1999. Death or divorce can lead to one or two new
households, and in these cases the PSID tracks the new households. It also follows
households formed eventually by children in households, and from time to time the
sample is refreshed with new households as required to preserve the stratification of
the sample. We restrict our study to male household heads between the ages of 25
and 65, inclusive, who are labor force participants as indicated by earnings of $1,000
or more in a year. Black males and the 1989-1993 Latino source sample are excluded.
For each year we assemble data on age, education and earnings of these individuals.
We model the distribution of earnings conditional on age and education separately
for each year. Thus we do not exploit the panel structure of the data in this study.
Figure 1 conveys some properties of the sample that are important in understand-

ing the findings reported in Section 3. Because the PSID follows households the
sample has grown steadily since its inception. Our data from 1994 through 1996 is
pre-release and does not include new, young households. Through the period 1967-
1996 white male labor force participants became steadily better educated, as a group.
There has been a strong tendency to leave the labor force earlier and, since 1976, a
tendency to enter later. Conclusions about the distribution of earnings conditional
on age and education will, therefore, most strongly reflect the data for men between
the ages of 30 and 50 with 12 or more years of education. At the other extreme, if
education is less than 8 years, then conclusions will strongly reflect prior information
about the similarity of the conditional distribution for poorly educated men to the
conditional distribution for well educated men, together with the information in the
data about well educated men. These differences are conveyed in greater posterior
uncertainty about the distribution of earnings conditional on combinations of age and
education that are poorly represented in the sample, as compared with combinations
that are well represented.

2 Methodology

We are interested in learning about pt (yti | xti). This notation reflects the fact that
we model each year separately. We do not exploit the panel features of the data. It
is important to bear in mind that earnings are not conditionally independent across
years. Beginning with the textbook Bayesian linear model we first weaken the as-
sumption that Et (yti | xti) is a linear function of xti (Section 2.1) and then weaken the
assumption that the conditional distribution of yti given xti is conditionally Gaussian
(Section 2.2).

2.1 Nonlinear regression

We begin by weakening the assumption that the regression function is linear in xt
in favor of the specification that it is a smooth function of xt, while maintaining
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the assumption that yti − Et (yti | xti) is i.i.d. Gaussian. As with all subjective
conditions, “smoothness” can be characterized in different ways. This section takes
up two different approaches. Each leads to a posterior distribution identical to that
of a normal model linear in unknown coefficients, but with a different matrix of
covariates and with a different interpretation of the coefficient vector in each case.
That nonlinear regression is thus isomorphic to linear regression has two desirable
consequences. On the practical level, many Bayesian computational methods for the
normal linear model can be applied in normal nonlinear regression. On the conceptual
level, many of the rich elaborations of the normal linear model that have been taken
up in Bayesian analysis can be applied directly in nonlinear regression. These include
the extension to non-normality in Section 2.2.

2.1.1 Polynomial basis functions

A sequence of normal linear models Aj (j = 1, 2, . . .) for each of the period t models
captures the essentials of nonlinear regression with basis functions. In model Aj,

yti = ftj (xti)+εti =

kjX
c=1

βtjcφjc (xti)+εti = β0tjφj (xti)+ εti; εti
i.i.d.∼ N

¡
0, h−1

¢
. (1)

ModelAj specifies basis functions φji (i = 1, . . . , kj; j = 1, 2, . . .) so that as j increases,
the function ftj is, loosely speaking, more flexible. We take the basis functions to
be monomials; other possibilities include Fourier functions (Gallant (1981)) and the
Muntz-Szatz series (Barnett and Jonas (1983)). In the interactive polynomial model
φjc (xti) consists of all terms of the form amti e

n
ti (m = 0, . . . , ka (j) ; n = 0, . . . , ke (j)).

In the separable polynomial model φjc (xti) consists of all terms of the form amti or
enti (m = 0, . . . , ka (j) ; n = 1, . . . , ke (j)). In both cases the relation between j and
(ka (j) , ke (j)), for j = 1, . . . , 9 is

ke = 0 ke = 1 ke = 2
ka = 0 j = 1 j = 3 j = 6
ka = 1 j = 2 j = 4 j = 8
ka = 2 j = 5 j = 7 j = 9

and the pattern continues for larger values of j. The Weirstrass Theorem guarantees
that the interactive polynomial model provides an arbitrarily close approximation of
E (yti | xti) for j sufficiently large, but at the cost of a vector of basis functions of
high dimension. There is no such justification for the separable polynomial model,
but separability is of substantive interest.
In formulating prior distributions of the coefficient vector βtj, it is useful to think

in terms of the function f . This is especially important in comparing variants with
different numbers of basis functions, because it ensures comparable priors. For exam-
ple, the prior distribution consisting of the components f (x∗i )

iid∼ N (µ, σ2) for selected
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points x∗i (i = 1, . . . , n) implies the prior distribution consisting of the components

β0jφj (x
∗
i )

iid∼ N (µ, σ2) (i = 1, . . . , n) when the order of expansion is j. If J is the high-
est order of expansion considered and n ≥ kJ points are chosen appropriately, this
approach will provide comparable and proper prior distributions for the coefficients
in all orders of expansion considered. It also facilitates comparison of polynomial
models with models based on smoothness priors described in the next section.
For year t we take the points x∗i to be the observed covariates xti and choose

µ = 10.5, which is close to the sample mean of yti for all years. Then denoting the
matrix of covariates in year t and order of expansion j by Xtj, the prior distribution
of the kj × 1 vector βtj is

βtj ∼ N
h
θ,λn (t)

¡
X0

tjXtj

¢−1i
,

where θ0 = (µ, 0, . . . , 0) and λ is a hyperparameter to be chosen. The prior distribution
of h in (1) is gamma,

s2h ∼ χ2 (ν) .

Experimentation with the three hyperparameters λ, s2 and ν showed that findings are
robust over changes of nearly an order of magnitude. Based on marginal likelihoods
for several years and several variants of the models, we settled on λ = 200, s2 = 12
and ν = 1. Marginal likelihoods were then computed corresponding to all orders of
polynomial expansion ka and ke for both the interactive polynomial and separable
polynomial models. For the thirty separate regressions corresponding to the 30 years
in the sample, average marginal likelihood was maximized with the choice ka = 4,
ke = 1 in the interactive polynomial model, and the choice ka = 4, ke = 2 in the
separable polynomial model. These values are used in all of the results reported
subsequently.

2.1.2 Wiener process smoothness priors

There is a complementary approach when the regression function is separable, so that

yti = fta (ati) + fte (eti) + εti; εti ∼ N
¡
0, h−1

¢
. (2)

Models of this form have been widely studied in the non-Bayesian semiparametric
estimation literature. In the Bayesian literature the same problems have been ad-
dressed by smoothness priors. We take a Bayesian smoothness prior approach that
emphasizes two properties. The first is that the prior distribution should be capable
of allowing the investigator to study the behavior of fta or fte at points not in the
data set: for example, in some years t not all levels of education are represented in our
data set as indicated in Section 1.2. The second is that the prior distribution should
be formulated in a fashion that assures comparability between models using smooth-
ness priors and models using basis functions, so that Bayes factors are not driven by
arbitrary assumptions that are implicit in priors but opaque to the investigator.
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The essentials of nonlinear regression with smoothness priors are captured in the
simpler model with a single covariate,

yt = f (xt) + εt, εt
i.i.d.∼ N

¡
0, h−1

¢
(t = 1, . . . , T ) . (3)

The function f (τ) is defined on a closed interval τ ∈ [τ1, τ2]. The prior must incor-
porate the idea that f is a smooth function, in the sense that it is differentiable and
df (τ) /dτ changes slowly with τ . By formulating a prior that pertains to all points
τ ∈ [τ1, τ2] we guarantee coherence if the investigator decides to incorporate a point
that is of interest but for which there is no data.
A convenient and powerful analytic tool for expressing these beliefs is the Wiener

process W (τ), defined on τ ∈ [0,∞) with W (0) = 0. A standard representation is
W (τ) =

R τ
0
dW (u), it being understood that the orthogonal increments dW (u) are

normally distributed. One important property of a Wiener process is W (τ + s) −
W (τ) ∼ N (0, s), for all τ ≥ 0 and all s > 0: this limits the rapidity with which W
can move as a function of τ , and this feature can in turn be controlled by appropriate
scaling ofW . Another important property is that any pair of incrementsW (τ + s)−
W (τ) and W (τ 0 + s0)−W (τ 0) has a bivariate normal distribution. Each increment
has mean zero. If [τ, τ + s] and [τ 0, τ 0 + s0] do not overlap then the increments are
uncorrelated, whereas if the intervals do overlap then their covariance is the length
of the overlap: in general,

cov [W (τ + s)−W (τ) , W (τ 0 + s0)−W (τ 0)] =

Z ∞

0

I[τ,τ+s] (u) I[τ 0,τ 0+s0] (u) du.

for all positive τ , τ 0, s and s0.
A Wiener process has the properties ascribed to the function f 0 (τ) = df (τ) /dτ ,

and thus we pursue the idea that in the prior distribution f (τ) is the integral of a such
a process. The approach is that of Shiller (1984). Thus, f (τ) = h−1/2

R τ
0
W (u) du,

where the precision hyperparameter h controls smoothness. For any two points τ and
s,

f (τ) = h−1/2
Z τ

0

W (u) du =

Z τ

0

Z u

0

dW (r) du, (4)

f (s) = h−1/2
Z s

0

W (v) dv =

Z s

0

Z v

0

dW (p) dv, (5)

have a joint normal distribution, with E [f (τ)] = E [f (s)] = 0. If s ≥ τ then from
(4) and (5),

E [f (τ) f (s)] = h−1
Z τ

0

Z s

0

min (u, v) dvdu = h−1
Z τ

0

∙Z u

0

vdv +

Z s

u

udv

¸
du

= h−1
Z τ

0

∙
u2

2
+ u (s− u)

¸
du =

h−1/2τ 2

6
(3s− τ) . (6)
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Since var [f (τ)] = h−1/2τ 3/3, the prior variance ascribed to f (τ) at a point τ = s1
will depend strongly on the idea that τ = 0 is a special point at which it is known a
priori that f 0 (0) = 0. This is an artificial assumption. It arises not from prior ideas
about smoothness (the reason for introducing the Wiener process as a model for the
prior) but rather from the analytical necessity of an initial condition for f 0 (τ). There
is a similar problem with the slope of the function f (τ) between two points s1 and
s2 (s2 > s1), [f (s2)− f (s1)] / (s2 − s1). From (6),

var {[f (s2)− f (s1)] / (s2 − s1)} =
1

6h

∙
− (s2 − s1)

−1

(s2 − s1)
−1

¸0 ∙
2s31 s21 (3s2 − s1)

s21 (3s2 − s1) 2s32

¸ ∙
− (s2 − s1)

−1

(s2 − s1)
−1

¸
= (4s1 + 2s2) /6h = [6s1 + 2 (s2 − s1)] /6h, (7)

which depends not only on the length of the interval s2 − s1, but also on the size of
s1. However for any three points s1 < s2 < s3, we find that for the change in the
slope of f (τ),

var

∙
f (s3)− f (s2)

s3 − s2
− f (s2)− f (s1)

s2 − s1

¸
=
(s3 − s1)

3h
, (8)

which can be derived from (6) in the same way that (7) was derived. Thus the
distribution of any change in slopes does not depend on the artifice of an initial
condition for f 0 (τ). This fact is not surprising, given that f 0 (τ) is a Wiener process,
and changes in the level of a Wiener process over an interval depend only on the
length of the interval and not on the distance of the interval from the origin τ = 0.
Given s4 > s3,

cov

∙
f (s3)− f (s2)

s3 − s2
− f (s2)− f (s1)

s2 − s1
,

f (s4)− f (s3)

s4 − s3
− f (s3)− f (s2)

s3 − s2

¸
=
(s3 − s2)

6h
. (9)

If s6 > s5 > s4 ≥ s3 > s2 > s1, then

cov

∙
f (s3)− f (s2)

s3 − s2
− f (s2)− f (s1)

s2 − s1
,
f (s6)− f (s5)

s6 − s5
− f (s5)− f (s4)

s5 − s4

¸
= 0. (10)

Without loss of generality suppose that in a sample of size T there are m distinct
values of x1, . . . , xT . Denote the ordered distinct values by si (i = 1, . . . ,m), and
define s = (s1, . . . , sm)

0 and

β = [f (s1) , . . . , f (sm)]
0 . (11)

Then (3) may be written y = Xβ + ε with xti = 1 if xt = si and xti = 0 otherwise,
and βi = f (si). The information in the smoothness prior of the form (8)-(10) may
be expressed

Rβ ∼ N (0,G) . (12)
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The matrix R is (m− 2)×m , with

rii = (si+1 − si)
−1 , ri,i+1 = −

£
(si+1 − si)

−1 + (si+2 − si+1)
−1¤ ,

ri,i+2 = (si+2 − si+1)
−1 (i = 1, . . . ,m− 2)

and all other elements 0. The matrix G is (m− 2)× (m− 2) with

gii = (si+2 − si) /3h, gi,i+1 = gi+1,i = (si+2 − si+1) /6h (i = 1, . . . ,m− 2)

and all other elements 0.
Because (12) provides a distribution ofm−2 linear combinations ofm coefficients,

more information is needed for a proper prior distribution for β. To construct a
proper prior that is comparable with those used in the previous section, we amend
(3) slightly, by writing

yt = α1 + α2xt + f (xt) + εt, εt
iid∼ N

¡
0, h−1

¢
(t = 1, . . . , T ) . (13)

Then (13) has the form y = X1α+X2β + ε, for the suitably arranged T × 2 matrix
X1 and T ×m matrix X2 = X. The two restrictions

mX
i=1

f (si) = 0, f (s1) = f (sm) (14)

identify α1, α2 and f in (13) without imposing any additional restrictions. They can
be imposed by writing

β = Qβ∗ ,with Q0 =

∙
ιm−2 (−1/2)

... Im−2
... ιm−2 (−1/2)

¸
. (15)

The restrictions (15) plus the prior information (12) in y = X1α + X2β + ε are
equivalent to β∗ ∼ N

¡
0,H−12

¢
, in y = X1α + X

∗
2β
∗ + ε where X∗2 = X2Q and

H2 = Q
0R0G−1RQ. If α ∼ N

¡
α,H−11

¢
is independent of β in the prior distribution,

then as h→∞ in G, the marginal likelihood of the model must approach that of the
linear model yt = α1 + α2xt + εt. By using the same prior distribution for α and h
that we used in the special case of the linear model in the polynomial expansions of
the previous section, we guarantee comparability of those models with models based
on smoothness priors.
Extension from the case of a single covariate (3) to the model at hand (2) is

straightforward so long as the smoothness priors for fta and fte are independent,
which we take them to be. The extension may be expressed

yti = βt1 + βt2ati + βt3eti + fta (ati) + fte (eti) + εti; εti ∼ N
¡
0, h−1

¢
.

The prior distributions of h and (βt1, βt2, βt3)
0 are the same as those for the particular

case j = 3 of the linear model. The prior distributions of fta and fte are indepen-
dent of each other and of these prior distributions, and are given by (12) and (14).
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The hyperparameter h−1/2, which is the prior standard deviation of f (τ)− f (τ − 1)
controlling smoothness, is set to 0.01 in for fta and 0.10 for fea, values that produce
large marginal likelihood values relative to most other choices in most of the samples.
Experimentation showed that varying these values by a factor of 10 had little effect
on the results that we report in Section 3.

2.1.3 Computation

Both of these approaches to nonlinear regression lead to regression models of the form

y= Xβ + ε, (16)

ε ∼ N
¡
0,h−1IT

¢
, (17)

where the matrix of covariates X is T ×k, and independent prior distributions of the
form

β ∼ N
¡
β,H−1

¢
, s2h ∼ χ2 (ν) . (18)

In both cases the number of observations T is the number in the sample for the year
to which the regression model is being applied: 1751 in the smallest sample and 2698
in the largest. In the interactive polynomial model ka = 4 and ke = 1, so k = 10,
and in the separable polynomial model ka = 4 and ke = 2, so k = 7. In the separable
models with smoothness priors there are 41 distinct values of ati (ages 25 through
65); the corresponding vector β (see (11)) has 41 elements and β∗ (see (15)) has 39
elements. There are 17 distinct values of eti, so the corresponding vector β∗ has 15
elements. Thus k = 57 in the separable models with smoothness priors.
In the posterior distribution corresponding to (16)-(18),

β| (h,y,X) ∼ N
³
β,H

−1
´
, with H = H+ hX0X and β = H

−1 ¡
Hβ + hX0y

¢
;

s2h| (β,y,X) ∼ χ2 (ν) , with s2 = s2 + (y−Xβ)0 (y−Xβ) and ν = ν + T .

The corresponding Gibbs sampling algorithm produces a sequence of draws
©
β(m), h(m)

ª
from the posterior distribution with little or no detectable serial correlation. Com-
putations were carried out using the Bayesian Analysis, Computation and Commu-
nications (BACC) software1 running under Matlab 6.5. The results reported here
are based on 1,000 iterations following 10 warm-up iterations. Computation time is
less than one second for the polynomial models and less than five seconds for the
separable models with smoothness priors.

2.2 Non-Gaussian conditional distributions

Based on our earlier work (Geweke and Keane (2001)) the assumption of Gaussian
disturbances is bound to be poor in this context. In measuring the evolution of

1The Bayesian Analysis, Computation and Communication extension for Matlab, Gauss, and
Splus; see http://www.cirano.qc.ac/~bacc.
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inequality in earnings over the period 1967 through 1996, it is therefore essential to
employ a more flexible distribution of earnings conditional on age and education.
In measuring changes in returns to education, the age profile of earnings, and the
conditional variance of earnings, a more flexible distribution should provide a more
reliable indication of uncertainty about these changes.

2.2.1 Mixture of normals distributions

The normal mixture linear model begins with (16) and then introduces the latent state
vector es = (es1, . . . , esT )0. Conditional on X, the est are i.i.d. with P (est = j) = πj, and
thus

p (es| X) = TY
t=1

πst =
mY
j=1

π
Tj
j (19)

where Tj =
PT

t=1 δ (est, j) is the number of observations t for which est = j.
Corresponding to each of the m states j there is a mean parameter αj and a posi-

tive precision parameter hj; let α =(α1, . . . , αm)
0, h = (h1, . . . , hm)

0 and π =(π1, . . . , πm)
0.

Conditional on est = j, εt ∼ N
£
αj, (h · hj)−1

¤
. Thus

p [yt | β,h, π,α,h,est = j,X] ∝ (h · hj)1/2

· exp
h
−h · hj (yt − αj − β0xt)

2
/2
i
(t = 1, . . . , T ) . (20)

The disturbances εt are i.i.d. and follow a full discrete normal mixture distribution:

p (εt | h, π, α,h,X) ∝ h1/2
mX
j=1

πjh
1/2
j exp

£
−h · hj (εt − αj)

2 /2
¤
.

The mixture of normals distribution is very flexible. Figure 2 provides several
examples. For the special case in which the means αj are all the same the normal
mixture distribution is known as the scale mixture of normals distribution. That
distribution is symmetric, unimodal, and must be leptokurtic, that is, the coefficient
of kurtosis K = E [εt −E (εt)]

4 /var (εt)
2 > 3, its value if εt is normally distributed.

Panels (a) and (f) of Figure 2 provide examples. If the means αj are not all the same
then the normal mixture distribution can be skewed, as illustrated in panels (c) and
(d). It can also be platykurtic (i.e., K < 3 ), as is the case in panels (b) and (e). Of
course, these distributions can be multimodal (panel (e)). With a sufficient number of
components, the normal mixture distribution can mimic distributions that are quite
different from the normal, like the uniform (panel (b)).
The conditionally conjugate prior densities in the normal mixture linear model

are (18) for β and h. The prior distribution of π is Dirichlet,

p (π) = Γ (mr)Γ (r)−m
mY
j=1

πr−1j . (21)
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The components of h, ν2· hj
i.i.d.∼ χ2 (ν ·) (j = 1, . . . ,m) have independent gamma dis-

tributions,

p (h) = 2mν/2Γ (ν ·/2)
−m/2 ¡ν2· ¢mν·/2

mY
j=1

h
(−ν·−2)/2
j exp

¡
−ν2· hj/2

¢
. (22)

Finally, α | h ∼ N
£
0, (hα · h)

−1 Im
¤
, so that

p (α |h) = (2π)−m/2 (hαh)
m/2 exp (−hαhα0α/2) . (23)

These prior distributions are conditionally conjugate, symmetric across states, and
require the specification of just three hyperparameters: r, ν., and hα. The speci-
fication E (α) = 0 resolves the identification issues with respect to α and β. The
prior variance in β conveys uncertainty about the location of the distribution of y
given X. The prior distribution of α is scale dependent on h−1/2: that is, it states
prior beliefs about the shape of the distribution. Keeping in mind that E (h) = em,
a prior distribution with h−1/2α = 5 implies a prior probability of multimodality that
is near 1, whereas h−1/2α = 1/5 makes this probability negligibly small. Keeping in
mind that E (α) = 0, choice of ν · governs the prior probability of tail thickness in
the mixture normal density relative to the normal. In the prior distribution the ratio
hj/hk ∼ F (ν ·, ν ·) for all j 6= k. If ν · = 1 the prior probability of component variance
ratios at least as great as those shown in Figure 2(f) is significant, whereas if ν · = 5
it is negligible. With these considerations in mind, and after examining the impli-
cations of different choices for marginal likelihood in the three regression models and
several samples, we settled on the choices h−1/2α = 1.58, ν · = 0.2, and r = 1.
The states are unidentified in this model: that is, a relabelling that interchanges

two or more states leaves the posterior distribution unaffected. In our application
this lack of identification is harmless, because the states are simply a modeling device
to provide a flexible conditional distribution and have no independent substantive
interpretation. None of the questions of interest depend in any way on identification
of the states. Moreover, leaving the states unidentified provides some advantages in
computation.

2.2.2 Computation

Posterior inference in the normal mixture model utilizes five blocks: (α, β), h, π, h,
and es. It is useful to define

eZ (es)
T×m

= eZ = [ez1, . . . ,ezT ]0 = [δ (est, j)] , fW
T×(m+k)

=
h eZ X

i
,

γ
(m+k)×1

=

µ
0
β

¶
, Hγ (h)
(m+k)×(m+k)

= Hγ =

∙
hαhIm 0
0 Hβ

¸
,
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and eQ (es)
T×T

= eQ = diag (hs1, . . . , hsT ). With this notation (20) is equivalent to

p (y | γ,h, π,h,es,X) ∝ hT/2
¯̄̄ eQ¯̄̄1/2 (24)

· exp
∙
−h
³
y− fWγ

´0 eQ³y− fWγ
´
/2

¸
. (25)

The kernel of the conditional posterior density of γ is the product of (18), (23),
and (25), from which the conditional posterior distribution is

γ∼ N
¡
γ,Hγ

¢
; Hγ = Hγ + hfW0 eQfW, γ = H

−1
γ

h
Hγγ ++hfW0 eQeyi . (26)

The conditional posterior density of h is the product of (18), (23) and (20). This
kernel corresponds to the conditional posterior distribution"

s2 + hαα
0α+

TX
t=1

h(t) (yt − α0ezt − β0xt)
2

#
h ∼ χ2 (ν +m+ T ) . (27)

The conditional posterior density kernel of π is the product of (19) and (21),
mY
j=1

p
r+Tj−1
j ,

and thus the conditional posterior distribution is Dirichlet with parameters r + Tj
(j = 1, . . . ,m). The conditional posterior density kernel of h is the product of (22)
and (20), which implies"

s2· +
TX
t=1

δ (st, j) (yt − aj − β0xt)
2

#
hj ∼ χ2 (ν · + Tj) (j = 1, . . . ,m) .

The conditional posterior density kernel for the state assignments es is the product of
(19) and (20) taken over t = 1, . . . , T . Thus the states est are conditionally indepen-
dent, with

P (est = j) ∝ pjhj exp
h
−h · hj (yt − aj − β0xt)

2
/2
i
(j = 1, . . . ,m) . (28)

Draws from these multinomial distributions are straightforward.
Computations follow a Gibbs sampling algorithm based on these five blocks. Since

the states are left unidentified, the Markov chain is characterized by label switching.
We observed this regularly with mixtures of three components and occasionally in
models with two components, using 20,000 iterations in each case. The results pre-
sented in the next section are all based on every tenth value of 20,000 iterations
following 1,000 warm-up iterations. Figure 3 illustrates MCMC output using the
1986 data, the two component mixture model, and two of the regression functions.
The illustration labels as state 1 the state with the smaller probability: the top panels
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display π1, the middle panels show α2 − α1, and the lower panels (h1/h2)
1/2. The

MCMC output is nearly serially uncorrelated in all cases: relative numerical efficien-
cies are between 0.65 and 0.75 for the polynomial models (left-hand panels), and
between 0.25 and 0.50 for the separable smooth function models. All computations
were carried out using BACC running under Matlab 6.5, and require about 4 minutes
for each polynomial model and 10 minutes for each separable smooth function model.

3 Findings

This section presents the evidence on the substantive questions of interest motivating
our application. We begin by summarizing the relative performance of the alterna-
tive approaches to nonlinear regression and the distribution of regression residuals
(Section 3.1). Next we take up returns to education and the age profile of earnings,
which are functionals of the regression (Section 3.3). Lastly we turn to measures
of inequality in the distribution of earnings, which are functionals of the entire con-
ditional distribution (Section 3.4). The principal vehicles for conveying the results
are conditional medians and interquartile ranges for these functionals for each of the
thirty years in the sample. Tables in an appendix provide corresponding posterior
means and standard deviations.

3.1 Model comparison

The conclusion of Section 2.1.1 describes the selection of orders of polynomial ex-
pansion and prior hyperparameters in the basis function approach to regression, the
conclusion of Section 2.1.2 indicates how the smoothness hyperparameters were cho-
sen in the Wiener process prior approach, and the end of Section 2.2.1 does the
same for the three prior distribution hyperparameters for the normal mixture models
of regression residuals. Given these choices, we now compare these approaches to
modeling p (y | x) using Bayes factors.
Figure 4 provides histograms for the posterior probabilities across the three alter-

native specifications of the regression function assuming a Gaussian distribution for
disturbances, in the three left panels. It does the same assuming a mixture of two
normal distributions in the three right panels. In both cases interactive polynomials
are favored in the early samples (through about 1980) but not thereafter. In the later
samples (after about 1980) the models with Wiener process priors are more highly fa-
vored if one assumes Gaussian residuals. Given a mixture of normals specification for
the residuals, the separable polynomial specification is favored more often than the
Wiener process priors after about 1980. Perhaps more important than any of these
results, however, is the fact that no one model captures a disproportionate share of
the posterior probability in most years — note that the figures convey small positive
probabilities for quite a few models and years.
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Appendix Table 1 provides log Bayes factors for the models, all taken relative to
an interactive polynomial model of order ka = 3 in age and ke = 1 in education,
with Gaussian residuals. (We take this as a benchmark because it is the closest
to a consensus of earnings model specifications in the literature.) The most impor-
tant information conveyed by this table is that models with mixtures of two normal
distributions completely dominate the Gaussian models. For any combination of
specifications of the regression function the log Bayes factor in favor of a mixture of
two normals model versus a Gaussian model is never less than 170 and exceeds 300 in
some cases. Comparison of this table with Figure 1 shows that the log Bayes factors
comparing normal mixture and Gaussian models are roughly proportional to sample
size, as might be expected. Bayes factors comparing mixtures of two normals with
mixtures of three normals (not presented) weakly favor a mixture of two normals.
The reason for this will become apparent when we inspect conditional distributions
in detail in Section 3.4.
Because no one mixture of normals model dominates in many of the years, it is

necessary to average across models for those functionals whose posterior distribution
is sensitive to the specification of the regression function. In Sections 3.3 and 3.4 we
report results for all three specifications, and it turns out that these distributions are
insensitive to specification. In the case of conditional means and variances, we report
findings for all six specifications (the product of three for regressions and two for
residual specification) in order to assess the sensitivity of the posterior distribution
to the incorrect assumption of normality of residuals.

3.2 Model evaluation

Bayes factors provide relative comparisons of alternative models, but they do not
reveal the adequacy or inadequacy of these models in describing interesting aspects
of the data. We address this question through the structured but less formal method
of posterior predictive analysis. To describe this method succinctly, denote the para-
meters of the model by θ, the observables in the sample by y, and the entire observed
data set by yo. Let g (y) be an interesting scalar feature that can be observed in
the data, such as a sample moment or quantile. Then the posterior distribution of
θ induces a distribution on g (y) by means of the model density p (y | θ): it is the
predictive distribution for g (y) corresponding to a hypothetical repetition of the ex-
periment of drawing a sample of the same size from the same population. A finding
that with extremely high probability g (y) would exceed or fall short of the observed
g (yo) in this hypothetical experiment casts doubt on the specification of the model.
This idea goes back to the notion of surprise discussed by Good (1953) and its essen-
tials were further developed by Rubin (1984) in what he termed “model monitoring
by posterior predictive checks.” The mechanics of model evaluation entail generating
an artificial sample y(m) corresponding to each draw θ(m) from the posterior simula-
tor and computing g

¡
y(m)

¢
(m = 1, . . . ,M), and then finding the position of g (yo)
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relative to the empricial c.d.f., which can be expressed

p∗g =M−1
MX

m=1

I(−∞,g(yo)]

£
g
¡
y(m)

¢¤
.

If p∗g is close to zero, then the posterior distribution overpredicts g (y); if it is close to
one, then the posterior distribution underpredicts. For further details see Lancaster
(2004, Section 2.5) or Geweke (2005, Section 8.3).
We evaluate the Gaussian and mixture models using six different features of the

data g (y). We include the Gaussian models in spite of their inferior performance in
the model comparison exercise because we wish to see if the mixture models perform
at least as well as the Gaussing models with respect to all these features. Figures 5
through 10 provide the results of this analysis. Each figure corresponds to a different
function g, to be described shortly. The six panels in each figure correspond to the
three Gaussian and three mixture models, just as in Figure 4. The value p∗g was
computed for each of the 30 samples corresponding to the years 1967-1996, and each
panel provides a histogram of the p∗g values over the 30 samples. Values of p

∗
g are sorted

into five bins of equal size, except that if g (yo) < g
¡
y(m)

¢
for all iterations, then p∗g is

assigned to a bin just below zero (see, for example, Figure 9) and if g (yo) > g
¡
y(m)

¢
for all iterations, then p∗g is assigned to a bin just above one (see, for example, Figure
10); all results are based onM = 2, 000 iterations. Thus if a histogram is concentrated
to the left, the posterior distribution tends to overpredict the observed feature of the
data, and if concentrated to the right tends to underpredict. Appendix Tables 2
through 7 provide the values p∗g for the individual years.
Figures 5, 6 and 7 provide evidence on the ability of the models to describe

systematic differences in earnings by age and education. In Figure 5 the function
g is the difference in average log earnings between men with 16 years of education
and men with 12 years of education, in each of the 30 sample years. In Figure 6
it is this difference computed for men age 45 and age 25, and in Figure 7 it is for
men age 60 and men age 45. There is a mild tendency for all models to underpredict
the observed returns to college education (Figure 5). The tendency is slightly more
pronounced for mixture models than for Gaussian models. The difficulty is most
pronounced in the mixture models with interactive polynomials, in which the sample
returns to education fell below the posterior median in 29 out of 30 years, and in
one year (1977) p∗g = 1.0. All models do better in capturing average log earnings
by age: Figures 6 and 7 show little, if any, tendency for models to overpredict or
underpredict. While the difficulties in capturing average log earnings between men
with 16 years of education and men with 12 years of education in the sample are
not extreme, we find them somewhat puzzling in view of the fact that the evidence
supports a very nearly linear relationship between education and log earnings in the
regression function. The fact that there are many more men with exactly 16 years
and exactly 12 years of education than there are men of any one age (an in particular,

16



ages 25, 45 and 60) means that there is less sampling variation in observed returns
to education, and this may contribute to the evident mild difficulties in fitting these
returns.
Figures 8, 9 and 10 show how well each of the models describes aspects of the

distribution of log earnings conditional on age and education. In the case of Figure 8,
the function g (y) was computed by finding least squares estimates of the regression
function (e.g., a polynomial of order 4 in age and 2 in education in the case of the
separable polynomial models), and then computing the usual least squares estimate
of the standard deviation of the disturbance. In Figure 9 the procedure was the same
except that the final object g (y) is the coefficient of skewness of the least squares
residuals, and in Figure 10 it is the coefficient of kurtosis of these residuals. The
first of these figures stands in marked contrast to the latter two. For the Gaussian
models, the sample conditional standard deviation g (yo) in Figure 8 is always close
to the median of the distribution. This reflects the well-known fact that a normal
linear model recovers the population linear projection and the variance about that
projection whether the model is correctly specified or not; see Geweke (2005), Exam-
ple 3.4.3. For similar reasons g (yo) is also near the median in the mixture models.
Figure 9 dramatically demonstrates the failure of the Gaussian models to describe
the negative skewness in the distribution of log earnings conditional on age, and Fig-
ure 10 does the same for the leptokurtosis in this distribution. The mixture models
account for these features rather well, although there is a mild tendency for the pos-
terior distribution to underpredict the degree of conditional kurtosis observed in the
sample.
Posterior predictive analysis can be conducted with other interesting functions of

the observables g (y) . Appendix Tables 8, 9 and 10 report results related to aspects
of conditional distributions studied below in Section 3.4.2. In many of these cases
the failure of the normal models was as dramatic as that in Figures 9 and 10, and in
all cases the mixture models had stronger posterior predictive performance.

3.3 Conditional means and variances

Each of the six models provides the functionals E (y | x) and var (y | x); the former
depends on x but the latter does not. Figure 11 shows posterior medians and in-
terquartile ranges for f1 (a) = E1986 (y | a, e = 12) and Figure 12 does the same for
f2 (e) = E1986 (y | a = 40, e). A change in the conditioning e = 12 or a = 40 produces
only level shifts in the medians and interquartile ranges for the separable polyno-
mial and Wiener process prior specifications, whereas for the interactive polynomial
regressions both the shapes of the curves and the sizes of the interquartile ranges
will be affected. The values of f1 (a) for different values of a are highly dependent,
via the polynomial restriction for the first two specifications and the Wiener process
prior for the third. The posterior medians and interquartile ranges in Figure 11, and
the posterior means and standard deviations in Appendix Table 11, pertain to the
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marginal posterior distribution of f1 (a) at each value of a, and therefore do not pro-
vide an indication of uncertainty about the regression function as a whole. A similar
precaution is in order for the interpretation of Figure 12 and Appendix Table 12.
The posterior medians and means of f1 (a) are remarkably insensitive to the spec-

ification of the model. Differences in posterior means are always substantially less
than corresponding posterior standard deviations, and differences in posterior medi-
ans are less than the corresponding interquartile ranges. The same cannot be said
of f2 (e). We observe a similar congruence across specifications for those values of e
on which the sample is concentrated, e = 12 and above (recall Figure 1). For lower
values of e discrepancies markedly increase, especially for the interactive polynomial
model in which f2 (e) is linear. The models have substantially different implications
for f2 (e), e ≤ 4, but because of the dearth of data for such low levels of education
different implications have very little impact on the posterior distribution: these are
cases of almost pure extrapolation.
The sizes of the posterior interquartile ranges and standard deviations tell a more

complex, but quite informative, story. Consider first the case of f2 (e), which is some-
what simpler. For all specifications the posterior interquartile range and standard
deviation increase as e decreases. This is due to the lack of observations on poorly
educated men, and is familiar from elementary econometrics. For any given specifica-
tion of the regression function and value of a, the interquartile ranges and posterior
standard deviations of f2 (e) are smaller for most mixture of normal specifications of
the disturbance than for the Gaussian specification. (This feature is somewhat more
transparent in Appendix Table 12 than it is in Figure 12.) This is due to the fact
that under the mixture of normals specification the conditional distribution is sub-
stantially leptokurtic, as described below in Section 3.4.1. The Gaussian and mixture
of normals specification lead to similar inferences about conditional variance, a fact
familiar from the analysis of misspecification of regression residual distributions in
linear regression and demonstrated below in Section 3.3.3 for this application. In this
situation the mixture of normals distribution is more informative about the regression
function than is the Gaussian distribution due to its higher concentration of residuals
near the mean of the distribution, illustrated below in Section 3.4.1 for this applica-
tion. This is perhaps most easily seen in the limiting case in which kurtosis increases
without bound while variance remains constant: Chebychev’s inequality implies that
the probability density function of the residuals collapses about the point zero, and
as this limit is approached the posterior distribution conveys the value of E (y | x)
with certainty given a fixed specification of the model and prior.
Interquartile ranges and posterior standard deviations for f1 (a) increase as a

increases, due to the fact that sample size is a decreasing function of age in 1986. For
the same specification of the regression function, the ratio of the posterior standard
deviation in the mixture of normals specification to that in the Gaussian specification
is a monotone increasing function of age, as may be confirmed from Appendix Table
11. The same is true of the interquartile range, although this admittedly requires a
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very keen eye inspecting Figure 11. This can be traced to the fact that in the mixture
of normals model, draws of st from (28) occur more often from the high-variance state
than from the low-variance state for older men relative to the frequency for younger
men. This reflects a misspecification of the model, which implies that the distribution
of these states should be the same at all ages. We return to this point when discussing
directions for future research in the concluding section.

3.3.1 Returns to education

Changes in education imply changes in expected log earnings. We focus here on the
difference in expected log earnings between college graduates (e = 16) and high school
graduates (e = 12). In the separable polynomial and Wiener process prior models
these differences do not depend on age. For the interactive polynomial regression
specification we condition on age 40, at which point expected log earnings approach
their peak over the life cycle. Figure 13 provides the posterior medians, upper and
lower quartiles of the posterior distribution of this functional for all six models and
each of the 30 data sets for the years 1967, . . . , 1996, and Appendix Table 13 indicates
the corresponding posterior means and standard deviations. Recall that posterior
distributions are constructed separately for each year, and there is no functional or
prior dependence between years in Figure 13 (or in any of the succeeding figures) as
there was between years of education in Figure 11 or ages in Figure 12. The results
are not independent across years, since that data are taken from a panel. While our
models do not address this dependence, regarding results as independent across years
is probably a good approximation in interpreting these figures and similar figures that
follow.
Posterior means and medians for returns to education are sensitive to the specifica-

tion of the regression function, and almost completely insensitive to the specification
of the distribution of the regression residuals. However, there is substantially less pos-
terior uncertainty about returns in the mixture of normals models, for the reasons just
discussed in considering f2 (e): posterior standard deviations and interquartile ranges
are about 25% smaller. Across regression specifications and for the same specification
of the residual distribution, models that have the highest posterior probability (Fig-
ure 4) tend to provide the smallest posterior standard deviations and interquartile
ranges.
The separable regression functions indicate stagnating returns to college education

early in the sample, declining from about 0.35 in 1967 to about 0.25 in 1979. By 1990
returns have nearly doubled, to about 0.48, where they remain through 1996. In
the context of the mixture of normals specification the early downward movement
amounts to about four posterior standard deviations, and the later increase is the
equivalent of about eight posterior standard deviations. Conditional on these models,
there is substantial confidence in the “U” shape of returns to college education over the
period 1967-1996. Given the interactive polynomial specification, returns to college
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change substantially less over the period. They remain in the range 0.30 to 0.35,
which has roughly the same length as the interquartile range, through 1979. They
then increase to about 0.48, but not until the early 1990’s. All models identify 1979
through 1996 as a period in which returns to college education increased substantially,
with an upward shift on the order of 0.20.
Recall that the interactive polynomial specification was favored in many of the

years prior to 1980 (Figure 4), although the log-odds ratio never exceeds about 15
(Appendix Table 1). In the interactive polynomial models, returns to education can
depend on age. Figure 14 and Appendix Table 14 show that in these models, returns
to college education are lower for younger men than for older men, in roughly the
first half of the sample. Through about 1985, returns to college are between 0.1 and
0.2 for men age 25, as opposed to the substantially higher levels for men age 40 or
60. After 1985 returns to college are similar for men of all ages, consistent with the
Bayes factors in favor of the separable models for those years. In all specifications
the sample provides considerably more information about returns to college at age
40 than at age 25 or 60. This is consistent with the distribution of age and education
in the sample (Figure 1). In particular, in the last years of the sample there are very
few very young men, and this is reflected in large interquartile ranges in Figure 14.

3.3.2 Age profile of earnings

The hump displayed in the age profile of earnings for 1986 in Figure 11 is characteristic
of all years in the sample, but the shape changes markedly over the period 1967-1996.
We measure the change by considering two functionals of E (y | x),

E (y | a = 45, e = 12)−E (y | a = 25, e = 12)

and
E (y | a = 60, e = 12)−E (y | a = 45, e = 12) .

The first reflects mainly returns to experience, since virtually all men are labor mar-
ket participants between the ages of 25 and 45, and most of them work full-time
during almost all of these years. The second reflects mainly changes in labor market
participation that accelerate between the ages of 45 and 60. Conditioning on 12 years
of education matters only in the interactive polynomial models of regression.
As was the case with returns to education, posterior means and medians for the

age profiles shown in Figures 15 and 17 and Appendix Tables 15 and 17 depend on
the model for the regression function, but are insensitive to whether the specification
of the regression residual is Gaussian or a mixture of normals. On the other hand,
posterior interquartile ranges and standard deviations are smaller in the mixture
models, for reasons discussed above. Across the years changes in the size of posterior
interquartile ranges and standard deviations are due to changes in the size of the
sample. In the case of returns to experience between the ages of 25 and 45 these sizes
increase substantially in 1994, 1995 and 1996, due to the dearth of 25 to 30 year olds
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in the samples for those years, above and beyond the decline in overall sample size
indicated in Figure 1.
Turning to Figure 15 and Appendix Table 15, all models indicate that returns to

experience rose between 1967 and 1975, but the amount depends on the model: the
increase is about 0.15 for the separable regression functions but only about 0.06 in
the interactive polynomial regression function. From 1975 through 1991 return to the
20 years of experience between the ages of 25 and 45 remains about 0.40, in all of the
models. Over the period 1991 to 1996, the polynomial regression functions show a
sharp increase in these returns, reaching about 0.55 by 1996. The smoothed separable
models, on the other hand, indicate only a modest increase, from about 0.40 to about
0.43. We believe this difference can be ascribed to the thinning of the sample of very
young men in the later years, which implies that expected earnings for 25-year-olds
in these samples is largely extrapolation. Since the polynomial regression functions
and the Wiener process prior approach extrapolation in fundamentally different ways,
the different conclusions are not surprising. This difference in conclusions should be
resolved when we update the pre-release sample with the full data.
Figure 16 and Appendix Table 16 indicate how returns to experience varies by level

of education in the interactive polynomial models. Overall, the expected difference in
log earnings between ages 45 and 25 is greater, the higher the level of education, but
this difference steadily narrowed throughout the thirty-year period and practically
vanished by 1996. Through 1985, the difference for poorly educated men is only
about half what it is for high school graduates. After 1985 there is evidence that
returns to experience for these men rises to returns for high school graduates, but by
the 1990’s the point is moot since there are almost no poorly educated young men
in the sample. This accounts for the huge interquartile ranges in the top two panels
of Figure 16 in the 1990’s. College graduates average about 15% greater growth in
earnings than do high school graduates, through about 1985. After that, earnings
growth drops for the college graduates and increases for the high school graduates.
The scarcity of young men in the last years of the sample makes it hard to assess
returns to experience in the 1990’s.
Figure 17 and Appendix Table 17 exhibit findings about the difference in expected

log earnings at age 60 and age 45. As expected, the difference is always negative.
All of the models indicate that the algebraic difference increased by about .10 to
.15 between the late 1960’s and 1988, after which it declined sharply to the values
of the late 1960’s. These changes are all modest absolutely and in comparison with
changes over the 30-year period found for returns to education and to experience
between ages 25 and 45. A striking feature of these results is that the difference in
expected earnings between men of ages 60 and 45 is systematically more negative in
the Gaussian models than it is in the mixture models. We believe that this can be
traced to the evident misspecification of the assumption that state probabilities are
independent of age. Older men are classified more frequently into the less probable
state. As detailed in Section 3.4.1, the less probable normal distribution has a lower
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mean and a higher standard deviation than the more probable state. With more men
classified into the less probable state at age 60 than at age 45, some of the decline in
expected log earnings between ages 45 and 60 is accounted for by the high probability
of a normal mixture component with a lower mean at age 60 than at age 45, leaving
less to be explained by the regression function. We suggest ways that future research
can address this issue in the concluding section.
In the interactive polynomial models, the expected difference in log earnings be-

tween ages 60 and 45 can depend on the level of education. Figure 18 and Appendix
Table 18 show that education does not have quite as strong an impact on expected
earnings growth between the ages of 45 and 60 as it does between the ages of 25 and
45, but this impact changed in a systematic way between 1967 and 1996. Early in
the sample, expected log earnings fell most rapidly between the ages of 45 and 60 for
the most poorly educated men. For example, in 1970 the difference is about -0.30
for men with 8 years of education, -0.15 for high school graduates, and about zero
for college graduates. In 1977 the pattern reversed, and the reversal became stronger
over time. By the 1990’s, men with 8 years of education have almost no change in
earnings between the ages of 45 and 60, whereas expected log earnings decline by
about 0.10 for high school graduates and 0.20 for college graduates. It is important
to keep in mind that in the latter years, there is considerable uncertainty about the
impact of education on the age profile of earnings, as indicated by the Bayes factors
summarized in Figure 4. We conjecture these changes over the years, like many of
the others discussed in this Section, can be assessed more accurately in a longitudinal
model in which the entire sample can be studied at once.

3.3.3 Conditional variances

The standard deviation of log earnings conditional on age and education increased
sharply over the period, from about 0.6 in the late 1960’s to about 0.75 in the early
1990’s: see Figure 19 and Appendix Table 19. In the misspecified Gaussian models
the standard deviation is still the standard deviation of the actual distribution of
regression residuals, so it is not surprising that the posterior means and medians of
the standard deviation of this distribution are about the same: those for the mixture
models are on the order of 1% to 2% higher than those in the Gaussian models.
Differences across the specification of the regression function are even smaller.
Not surprisingly, posterior interquartile ranges and standard deviations of the re-

gression residual standard deviations are substantially larger for the normal mixture
model than for the Gaussian model, in most years by about a factor of two. Nev-
ertheless, the change in the standard deviation of the conditional distribution over
the 1967-1996 period amounts to about six normal mixture model posterior standard
deviations.
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3.4 Conditional distributions

As discussed in Section 2.2.1, the normal mixture models accommodate a rich variety
of distributions. With separate models for each of the 30 years in the sample, we
can track changes in the conditional distribution in the same way that changes in
the regression function were tracked in Section 3.3. This can be done through a wide
variety of functionals. We concentrate here on functionals familiar from distribution
theory (Section 3.4.1) and those related to the measurement of inequality (Section
3.4.2).
First, however, we present some evidence on the distribution of log earnings re-

gression residuals. Each panel of Figure 20 provides the posterior mean of a mixture
of normals density (heavier line) together with the posterior mean of a normal density
with the same mean (zero) and standard deviation (about 0.68) as the mixture of
normals density. The posterior means are taken with respect to the 1986 sample.
Comparing top, middle and bottom panels, mixture of normals densities are insen-
sitive to the specification of the regression function. Comparing the left and right
panels, the mixture of normals density with three components is very similar to that
with two components. A mixture of three normals requires three more parameters
than a mixture of two normals. Since both distributions provide about the same
fidelity to the data, marginal likelihoods favor a mixture of two normals over a mix-
ture of three normals. This happens for all years, and hence we conduct all further
analysis using the two-component mixture models. Given the similarity of the condi-
tional mixture of normals densities across regression functions, all further results in
the paper pertain to the Wiener process prior separable regression function. Detailed
results for other regression functions may be found in Appendix Tables 20 through
25.
These mixture of normal distributions are strongly negatively skewed: the mode

is almost one-half standard deviation larger than the mean and the left tail is much
thicker than the right tail. The excess kurtosis of the mixture of normals distribution
is evident in the fact that the mode of its density is substantially higher than the mode
of the corresponding normal density. Because the skewness coefficient is negative,
the thicker left tail of the normal mixture density is evident in Figure 20 whereas the
thicker right tail is not.
Figure 21 exhibits the two-component normal mixture probability density function

posterior means for six years evenly spaced through the sample. The increasing
standard deviation, documented in Section 3.3.3, is evident. The shape as well as the
scale the distribution changes, a feature that we document more closely in the next
subsection.

3.4.1 The evolution of the conditional distribution of earnings

There are many ways of summarizing the shape of a probability density. Two of the
most familiar are skewness and kurtosis. The top panels of Figure 22, and Appendix
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Table 20, show how these measures have changed for the distribution of log earnings
conditional on age and education over the sample. Skewness in the distribution
has diminished, moving from about -1.25 in the late 1960’s to around -1.15 in the
1970’s to about -1 by 1990. Thus the difference between the left and right tail of
the distribution has diminished; but, of course, the tails have also expanded with the
growth in standard deviation, and we return to the implications of both movements
for low earnings in Section 3.4.2. Kurtosis declined sharply through the mid-1980’s,
after which it rose again, returning to 1970 levels by 1996. We conclude that the
shape of the distribution has evolved slowly and systematically, even as standard
deviation was increasing. However these changes are small relative to the absolute
magnitude of skewness and excess kurtosis.
The shape may also be summarized in terms of the components of the normal

mixture model. In all years, the component of the mixture model with the higher
probability has a positive mean and a smaller standard deviation; the component with
the lower probability has a negative mean and a larger standard deviation. The ratio
of the larger to the smaller standard deviation declined until about 1980 and then
rose again beginning about 1990. The pattern is similar to the movement in kurtosis,
and accounts for most of its change. The spread in the means of the components
was about the same in the first and last years in the sample, but declined somewhat
in the years before 1983 and rose again thereafter. The fact that the difference in
the component means was about the same in the early 1990’s as in the late 1960’s,
together with the increase in the standard deviation, accounts for movement in the
skewness coefficient toward zero over the thirty-year period. The probabilities of
the mixture components change somewhat over the period: the component with the
negative mean and larger standard deviation has probability roughly 0.2 in the earlier
and later years, but is between 0.25 and 0.3 during the 1980’s.
The lower right panel of Figure 22 tracks the proportion of the probability density

that is within one standard deviation of the mean, in each year. (See also Appendix
Table 22.) For a Gaussian density this proportion is 0.68. Note that the change in this
probability closely follows the change in kurtosis shown in the top right panel: for the
same standard deviation, the more leptokurtic the distribution, the more probability
must be concentrated near the mean in order to preserve the standard deviation.
Since 1976, changes in this probability have been small.

3.4.2 The evolution of inequality in earnings

Inequality in the distribution of earnings, or of any other non-negative variable associ-
ated with a population of individuals, can be measured in a variety of ways. Perhaps
the most familiar is the Gini coefficient, which derives from the Lorenz curve. The
Lorenz curve L (p) is defined on the interval [0, 1] and is the fraction of total earn-
ings accruing to individuals in earnings quantile p or lower. If all individuals have
the same earnings then L (p) = p and in general L (p) < p. The Gini coefficient is
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G = 2
h
1−

R 1
0
L (p)

i
dp; G ∈ [0, 1], with G = 1 if and only if all individuals have the

same earnings and G = 0 if and only if all earnings accrue to one individual. We
consider two other measures of inequality: P , the fraction of men with earnings less
than one-half of median earnings, and R, the fraction of earnings accruing to men in
the top decile of the earnings distribution.
These measures depend on the population, and we consider two such populations.

The first is a hypothetical population of men of the same age and education, which
leads to measures of inequality conditional on age and education. Given the speci-
fications of our models, this measure of inequality will be the same for all ages and
education, but it changes from year to year. For example, it will be affected by the
change in the conditional standard deviation conveyed in Figure 19, but it will not
be affected by the increasing return to education identified in Figure 13. The second
population we consider is the distribution of age and education in our sample for
1986, selected only as a convenient benchmark, and leads to measures of inequality
unconditional on age and education. Measures of inequality for this population will
be affected by changes in the regression of log earnings on age and education, such as
the increasing return to education. We expect unconditional measures of inequality
of earnings to be greater than conditional measure of inequality. (If inequality were
measured by variance, this would be a consequence of the Rao-Blackwell Theorem.)
It is important to keep in mind that all of the changes considered here condition on a
fixed distribution of age and education, and abstract from the important demographic
changes that are evident in Figure 1.
Figure 23 shows the evolution of each measure of inequality over the 1967-1996

period; unconditional measures are in the left panels, and conditional measure are in
the right panels. Each panel provides a measure of inequality based on the mixture
model by means of the darker lines and, for comparison, the measure based on the
Gaussian model by means of the lighter lines. Appendix Tables 23, 24 and 25 provide
detail for posterior means and standard deviations of these measures based on the
mixture models.
The discrepancy between inequality measures based on the Gaussian and mixture

distributions is striking. In all cases, the Gaussian specification leads to a higher
measure of inequality than does the mixture specification. This occurs because the
Gaussian specification reliably captures the mean and variance in the leptokurtic
mixture distributions, but in so doing moves most points in the distribution farther
from the mean. This is documented in the lower right panel of Figure 22, which
shows that the mixture specification places about 78% of the probability within one
standard deviation of the mean, whereas for a Gaussian distribution this fraction is
always 68%. The difference is largest in the fraction of earnings accruing to men in
the top decile, and lowest in the fraction of men with earnings below half the median.
This occurs because the mixture distributions are negatively skewed, meaning that the
overdispersion in the Gaussian specification is less for earnings below the conditional
mean than above.
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Most measures of inequality have risen steadily through the period, and in every
case the increase is large relative to posterior interquartile ranges or standard devia-
tions. Inequality arises primarily from the distribution of earnings conditional on age
and education, rather than from differences in expected earnings for different levels
of age and education, as indicated by the fact that the conditional measure is nearly
as large as the unconditional measure in each case.
The rise in the Gini coefficient has been steady, with plateaus in the 1970’s and

1980’s and a sharp jump between 1981 and 1982. The pattern of changes in the
unconditional and conditional Gini coefficients are quite similar. The change in the
Gini coefficient is similar to that in the standard deviation of the conditional distrib-
ution of log earnings (Figure 19). The change in the Gini coefficient can be ascribed
primarily to the increase in these standard deviations.
The fraction of men with earnings below half the median rose from 11.5% to

13.5% between 1967 and 1980, and jumped to 16.5% by 1982 where it remained to
the end of the sample. Conditional on age and education the pattern is similar. The
movement in the standard deviation documented in Figure 19 accounts in part for
these changes. But the impact of the increase in standard deviations is tempered by
the decline in the probability of the low-mean state, documented in the lower left
panel of Figure 22, and this accounts for the plateau in this measure of inequality in
the late 1980’s and early 1990’s.
The fraction of earnings accruing to men in the top decile shows the same slow

increase through the 1970’s followed by a sharp increase over the 1980-1982 period,
but then it continues to rise steadily through the rest of the sample period. In fact, this
measure grows nearly twice as much after 1982 as it does before 1980. Comparison of
Figure 19 and Appendix Table 19 with the lower panels of Figure 23 and Appendix
Table 25 indicates that like the Gini coefficient, the movement in this measure is
driven by the change in scale of the distribution of log earnings conditional on age
and education.

4 Conclusions and directions for future research

We undertook this study using a Bayesian approach because we find it natural. It
allows us to address questions the way they are asked, conditioning on data and
assumptions, and to answer them by providing probability distributions for interesting
unobservables like returns to education and measures of inequality. The results are
exact and can be traced to explicit assumptions, which can be varied deliberately in
order to assess the sensitivity of conclusions to different assumptions. We have done
that for several important aspects of the specification of the model.
The study has advanced this methodology in two ways.

1. It shows that state of the art Bayesian methods permit the simultaneous non-
parametric modeling of the regression function, employing either basis functions
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or smoothness priors, and the conditional distribution, using mixture of normals
distributions.

2. The computations required are modest, both absolutely and in comparison with
what is often required in non-Bayesian nonparametric methods. They amount
to special cases of simple models already incorporated in extensions of popular
mathematical applications software.

We began by examining the evidence in the data on the suitability of alternative
modelling assumptions, and reached two main conclusions.

1. Three alternative expansions of the regression function–interactive polyno-
mials, separable polynomials, and separable functions with Wiener process
smoothness priors–are highly competitive in the sense that different formu-
lations are favored in different years, and the Bayes factors in any one year
are rarely extreme. Moreover, substantive conclusions are generally insensi-
tive to choice among these three specifications and consequently averaging over
specifications is not essential.

2. The traditional specification of a Gaussian conditional distribution is decidedly
inferior to a mixture of two normals. Mixing three normals does not improve
the fit.

In the context of this specification we reached several conclusions about the evolu-
tion of the distribution of the earnings of men in the U.S. over the thirty-year period
1967 through 1996.

1. The ratio of expected earnings of college graduates to high school graduates
declined from about 1.4 in 1967 to around 1.3 in 1979, and then rose to approx-
imately 1.6 by 1990 where it remained through 1996.

2. The ratio of expected earnings at age 45 to those at age 25 grew from about 1.4
in 1967 to almost 1.6 by 1975, where it remained until 1991, after which there
is some evidence of further growth in this ratio.

3. The conditional variance of earnings increased steadily over the period. The
standard deviation rose from about 0.6 in 1967 to around 0.75 by the mid-
1990’s.

4. The conditional distribution of earnings was negatively skewed, but the coeffi-
cient of skewness rose from -1.25 to -1 over the sample period. The coefficient
of kurtosis is between 5 and 7 for most of the sample
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5. Inequality in earnings rose steadily through the period. Conditional on age and
education, the Gini coefficient steadily rose from about 0.25 to 0.35. Returns to
education and experience contribute further to inequality, and the unconditional
Gini coefficient steadily rose from about 0.30 to 0.40 over the sample period.
This increase in inequality is reflected in growth in the proportion of men with
low earnings in the first half of the sample, and in the fraction of income accruing
to the top decile in the latter half of the sample.

This study is part of our ongoing research on the evolution of earnings in the U.S.
We note several extensions of this work.

1. The analysis here can be repeated, organizing by age rather than by year. That
is, we can construct 41 samples of a-year-olds, and examine pa (yai | tni, eni).
This approach explicitly models the impact of the evolution of earnings, and
drops any assumption about smoothness in age. One could organize by educa-
tion or cohort, as well, but these do not lead to cross-sectional analyses.

2. Our work here strongly suggests that the density pt (yti | ati, eti) depends on ati
and eti through more than just the regression function. A natural extension
of the approach taken here is to permit the state probabilities to depend on
covariates, and we are currently pursuing this approach.

3. Ultimately, it should be possible to develop a practical, fully nonparametric
longitudinal model in which the conditional distributions of all shocks are po-
tentially non-Gaussian and sensitive to covariates.

28



References
Barnett, W.A., and A, Jonas (1983), The Muntz-Szatz demand system: An appli-

cation of a globally well balanced series expansion. Economics Letters 11: 337-342.
Erkanli, A. and R. Bopalan (1994), Bayesian nonparametric regression: Smooth-

ing using Gibbs sampling, in: D. Berry, K. Chaloner and J. Geweke (eds.), Bayesian
Statistics and Econometrics: Essays in honor of Arnold Zellner. Wiley, New York.
Gallant, A.R. (1981), On the bias in flexible functional forms and an essentially

unbiased form: The Fourier flexible form. Journal of Econometrics 15: 211-245.
Geweke, J. (2005). Contemporary Bayesian Econometrics and Statistics. New

York: Wiley.
Geweke, J. and M. Keane (2000), An empirical analysis of earnings dynamics

among men in the PSID: 1968-1989. Journal of Econometrics 96: 293-356.
Good, I.J. (1956), The surprise index for the multivariate normal distribution.

Annals of Mathematical Statistics 27: 1130-1135.
Green, P. and B. Silverman (1994), Nonparametric regression and generalized

linear models. Chapman and Hall, London.
Hardle, W. (1989), Applied Nonparametric Regression. Cambrdge University

Press, Cambridge.
Heckman, J.J., L.J. Lochner and P. Todd (2003), Fifty years of Mincer earnings

regressions. IZA Discussion Paper No. 775.
Koop, G. and D.J. Poirier (2004), Bayesian variants of some classical semipara-

metric regression techniques. Journal of Econometrics, forthcoming.
Koop, G. and J.L. Tobias, Semiparametric Bayesian regression in smooth coeffi-

cient models. Journal of Econometrics, forthcoming.
Lancaster, T (2004). An Introduction to Modern Bayesian Econometrics. Malden

MA: Blackwell Publishing.
Mincer, J. (1958), Investment in human capital and personal income distribution.

Journal of Political Economy 66: 281-302.
Rubin, D.B. (1984), Bayesianly justifiable and relevant frequency calculations for

the applied statistician. Annals of Statistics 12: 1151-1172.
Shiller, R.J. (1984), Smoothness priors and nonlinear regression. Journal of the

American Statistical Association 79: 609-615.
Smith, M. and R. Kohn (1996), Nonparametric regression using Bayesian variable

selection. Journal of Econometrics 75: 317-344.
Wong, C. and R. Kohn (1996), A Bayesian approach to additive semiparametric

regression. Journal of Econometrics 74: 209-236.

29



Figure 19: Posterior medians, upper and lower quartiles for the standard deviation
of the distribution of log earnings conditional on age and education.

30



Figure 20: Posterior mean of the mixture of normals conditional p.d.f. for the 1985
sample (heavy line) together with the posterior p.d.f. of the corresponding normal

p.d.f. (light line).
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Figure 21: Posterior mean of the two-component mixture of normals conditional
p.d.f. for each of several samples (heavey line) together with the posterior mean of

the corresponding normal p.d.f. (light line).
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Figure 22: Posterior medians, upper and lower quartiles for several aspects of the
two-component mixture of normals distribution of log earnings conditional on age

and education.
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Figure 23: Posterior medians, upper and lower quartiles for several measures of
inequality, using a mixture of normals distribution (heavy line) and a Gaussian

distribution (light line) of the residuals
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Figure 1: Some aspects of the PSID data sets
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Figure 2: Several mixture of normals probability density functions
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Figure 3: Markov chain Monte Carlo for model with mixture of two normals, 1985
sample
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Figure 4: The left [right] panels show posterior probabilities of regression functions
given Gaussian [mexture of normals] regression residuals.
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Figure 5: Posterior predictive p∗g for difference between average sample log earnings
of men with 16 and 12 years of education
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Figure 6: Posterior predictive p∗g for difference between average sample log earnings
of men age 45 and men age 25
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Figure 7: Posterior predictive p∗g for difference between average sample log earnings
of men age 60 and men age 45
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Figure 8: Posterior predictive p∗g for standard deviation of least squares residuals
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Figure 9: Posterior predictive p∗g for coefficient of skewness of least squares residuals
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Figure 10: Posterior predictive p∗g for coefficient of kurtosis of least squares residuals
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Figure 11: Posterior medians, upper and lower quartiles for expected log earnings
conditional on age and 12 years of education, 1986 sample
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Figure 12: Posterior medians, upper and lower quartiles for expected log earnings
conditional on education at age 40, 1986 sample
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Figure 13: Posterior medians, upper and lower quartiles for the difference in expected
log earnings given 16 years of education versus 12 years of education at age 40.
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Figure 14: Posterior medians, upper and lower quartiles for the difference in expected
log earnings given 16 years of education versus 12 years of education, conditional on
alternative ages, interactive polynomials models
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Figure 15: Posterior medians, upper and lower quartiles for the difference in expected
log earnings at age 45 versus age 25, given 12 years of education
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Figure 16: Posterior medians, upper and lower quartiles for the difference in expected
log earnings at age 45 versus age 25, conditional on alternative levels of education,
interactive polynomials models
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Figure 17: Posterior medians, upper and lower quartiles for the difference in expected
log earnings at age 60 versus age 45, given 12 years of education.

51



Figure 18: Posterior medians, upper and lower quartiles for the difference in expected
log earnings at age 60 versus age 45, conditional on alternative levels of education,
interactive polynomials models
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