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Abstract  
 
While there is general agreement that consumer taste heterogeneity is crucially important in 
marketing, there is no consensus on a preferred approach to modeling heterogeneity. In this 
paper, we assess the performance of five alternative choice models, using ten empirical data sets. 
We include the popular latent class (LC) model, and the mixed logit (MIXL) model where utility 
weights are assumed to be multivariate normal. The new generalized multinomial logit (G-MNL) 
and scale heterogeneity (S-MNL) models are also included. G-MNL generalizes MIXL by 
allowing for heterogeneity in the scale coefficient. S-MNL is a special case of G-MNL where 
only scale heterogeneity is present. Finally, we consider the potentially more flexible mixture-of- 
normals logit or “mixed-mixed” logit (MM-MNL) model. We find that according to the Bayes 
information criteria, G-MNL is preferred in 4 datasets while MM-MNL and S-MNL are 
preferred in 3 datasets each. By further investigating what behavioural patterns each model can 
capture better than others, we find that: (i) the more flexible heterogeneity distributions of G-
MNL and MM-MNL allow them to better capture "extreme" (i.e., lexicographic) as well as 
"random" behaviour; and (ii) which model is preferred depends on the structure of heterogeneity, 
which differs across datasets. 
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I. Introduction 
For at least 25 years, there has been a large ongoing research program in marketing on 

modeling consumer heterogeneity. Much of this work was motivated by the classic Guadagni 

and Little (1983) paper on modeling choice behavior using scanner panel data. The issue of how 

best to model heterogeneity is important for many reasons. Most obviously, estimates of own and 

cross price elasticities of demand may be severely biased if one does not properly account for 

taste heterogeneity. But understanding taste heterogeneity is also critical for a host of other 

problems, such as new product development (NPD), product positioning and advertising, optimal 

price discrimination strategies, the development of menus of product offerings, considerations of 

product image and/or brand equity, etc.. 

 Most researchers would now agree that the simple multinomial logit (MNL) model of 

McFadden (1974), which assumes homogeneous tastes for observed product attributes, is 

inadequate to model choice behaviour in many contexts. Many popular models extend MNL to 

allow for unobserved heterogeneous tastes over the observed product attributes. However, there 

is no general consensus within marketing on a preferred approach to modeling heterogeneity.   

 In this paper, we consider several alternative approaches to modeling consumer taste 

heterogeneity. The models we consider include two that are currently quite popular – the latent 

class (LC) model and the mixed logit (MIXL) model. We also consider two new models recently 

developed by Fiebig, Keane, Louviere and Wasi (2009) – the scale heterogeneity logit (S-MNL) 

and the generalized multinomial logit (G-MNL). G-MNL nests the scale heterogeneity model 

and the MIXL model. Finally, we also consider a model that is present in the literature but has 

rarely been applied, the mixture of normals logit model or “mixed mixed” logit (MM-MNL) 

model. MM-MNL specifies that the mixing distribution in MIXL is a discrete mixture-of-

multivariate normals.  

Fiebig, Keane, Louviere and Wasi (2009) report a series of experiments where G-MNL 

generally fits consumer choice behavior better than MIXL. However, the G-MNL and MM-MNL 

models are closely related, in that G-MNL can be interpreted as letting heterogeneity take the 

form of a continuous mixture of scaled normals. This is typically more parsimonious than the 

MM-MNL specification (i.e., discrete mixture of normals), but still quite flexible. It is thus of 

considerable interest to compare the performance of MM-MNL and G-MNL.          
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Here, we compare the performance of all 5 of these alternative models of heterogeneity 

on 10 empirical data sets. Using the Bayes information criteria (BIC), we find that G-MNL is the 

preferred model of heterogeneity in 4 data sets, while MM-MNL and S-MNL are preferred in 3 

each. Strikingly, the MIXL and latent class models, which are arguably the most popular models 

of heterogeneity in use in marketing today, are never preferred (and rarely come even close to 

matching the fit of the preferred models). In the paper, we explain what features of the data the 

G-MNL, MM-MNL and S-MNL models capture that MIXL and LC models fail to capture.            

Essentially, what we find is that G-MNL, MM-MNL and S-MNL all do a better job of 

capturing behaviour of consumers who exhibit “extreme” or lexicographic behaviour, in the 

sense that they base choice largely on a single attribute (i.e., thus choose the alternative that has 

the lowest price, highest quality, etc.). At the same time, these models are also better able to 

capture the behaviour of “random” consumers, whose choices are only slightly influenced by 

observed product attributes. What determines which model is preferred among G-MNL, MM-

MNL and S-MNL is more subtle.  

G-MNL and S-MNL can never dominate MM-MNL in terms of the likelihood function, 

because the mixture-of-normals can approximate any heterogeneity distribution arbitrarily well. 

But it may require large number of parameters to do so. Thus, G-MNL and S-MNL can 

potentially dominate MM-MNL according to information criteria like BIC that favor more 

parsimonious models. Where G-MNL dominates MM-MNL, the two models actually capture 

similar observed choice patterns, but G-MNL is preferred because it achieves this in a more 

parsimonious way. In some cases, S-MNL is preferred because almost all the likelihood 

improvement that can be achieved by introducing a flexible heterogeneity distribution is 

achieved by introducing scale heterogeneity alone. As S-MNL is a very parsimonious model, it is 

preferred by BIC in such cases. 

MM-MNL outperforms G-MNL when there is a small, but not trivial, fraction of 

respondents who exhibit “extreme” behaviour, but whose choices are largely determined by 

some attributes which are not viewed as important by the majority of the respondents. For 

example, regarding pizza delivery services, we find there are large segments of consumers who 

place great weight on either price or ingredient quality. In the text we will refer to these as 

“major” attributes. But there are also small fractions who care greatly about other attributes, like 

gourmet pizza, woodfire cooking, etc.. In the text we will refer to these as “minor” attributes. In 
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some (but not all) cases, MM-MNL provides a much better fit to consumers who have a strong 

preference for one of these minor attributes.  

Finally, we conduct counterfactual simulations to examine differences in the demand 

predictions from G-MNL and MM-MNL. In most cases these models give very similar 

predictions for the effects of changing product attributes. In particular, they always give very 

similar predictions for the effects of changing “major” attributes. In some (but not all cases) the 

two models give quite different predictions for the effects of changing “minor” attributes. 

II. Alternative Models of Consumer Choice Behaviour 

In the traditional multinomial logit (MNL) model (McFadden, 1974), the utility to person 

n from choosing alternative j on purchase occasion (or in choice scenario) t is given by: 

1,..., ; 1,..., ; 1,..., ,njt njt njtU x n N j J t Tβ ε= + = = =          (1)  

where xnjt is a K-vector of observed attributes of alternative j, β is a vector of utility weights 

(assumed homogenous across consumers) and εnjt ~ iid extreme value is the “idiosyncratic” error 

component. The xnjt  for j = 1,…,J may include alternative specific constants (ASCs) to capture 

persistence in the unobserved attributes associated with each option j over choice occasions. The 

iid extreme value assumption leads to a closed form expression for the choice probabilities: 

1
( | ) exp( ) exp( )

J

nt njt nkt
k

P j X x xβ β
=

= ∑  

where Xnt is the vector of attributes of all alternatives j=1,…J. However, due to the restrictive 

assumptions that (i) the εnjt are iid and (ii) tastes for observed attributes are homogenous, MNL 

imposes a very special structure on how changes in elements of xnjt can affect choice 

probabilities. For instance, the IIA property is implied by the iid assumption. And, with panel 

data, the basic MNL model does not incorporate individual-specific unobserved taste 

heterogeneity. 

Several alternative models which avoid IIA and/or allow for unobserved heterogeneous 

tastes over the observed product attributes have been proposed. These included the nested logit 

model (McFadden, 1978), the generalized extreme value (GEV) model (McFadden, 1978), the 

multinomial probit (MNP) model (Thurston, 1927), the mixed MNL or mixed logit (MIXL) 

model (Ben-Akiva and McFadden et al., 1997; McFadden and Train, 2000), the latent class (LC) 

model (Kamakura and Russell, 1989), and their variants. 
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The mixed logit and latent class models appear to be the most popular models of 

heterogeneity in use in marketing and other fields today. Because of its ability to approximate 

some other existing models (e.g., nested logit and MNP) together with its ease of use, MIXL is 

appealing. For instance, one may try to approximate MNP by specifying the mixing distribution 

of the alternative specific constants to be multivariate normal (MVN). Most applications of the 

MIXL model assume the whole vector of preference weights has a MVN distribution in the 

population.1  

The latent class model is thought to be robust to non-normal heterogeneity distributions 

as its semi-parametric formulation allows for a more flexible shape of the taste distribution (e.g., 

skewed or multi-modal). Of course, if the true heterogeneity distribution departs substantially 

from normality, LC maybe better able to capture that than MIXL. However, by using a finite 

number of homogenous segments (typically 3-5), LC is usually found to understate the extent of 

heterogeneity in the data (Elrod and Keane, 1995; Allenby and Rossi, 1998). Applied researchers 

are often aware of the disadvantages of MIXL and LC, and sometimes estimate both models in 

their empirical applications (see, e.g., Greene and Hensher (2003), Hole (2008)).  

Recent studies have started to question whether the specification of MIXL with a MVN 

mixing distribution is adequate for explaining key features of choice data. In particular, Louviere 

and colleagues (1999, 2002) have argued that the major source of heterogeneity in choice data 

comes from “scale heterogeneity” – i.e., a generally scaling up or down of the entire vector of 

attribute weights – as opposed to the random coefficients specification of MIXL.   

Recently, Fiebig, Keane, Louviere and Wasi (2009) developed a generalized multinomial 

logit model (G-MNL) which extends MIXL by incorporating both scale heterogeneity and a 

random coefficient vector. G-MNL nests both MIXL and the “scale heterogeneity” model (S-

MNL). The latter, as its name implies, includes only scale heterogeneity. They found that G-

MNL outperform MIXL with MVN in eight out of the 10 datasets that we examine in this paper.  

Another flexible model that is present in the literature but has rarely been applied is the 

mixture of normals logit model or “mixed mixed” logit (MM-MNL) model. MM-MNL specifies 

that the mixing distribution in MIXL is mixture-of-multivariate normals. Under the Hierarchical 

Bayes approach, a literature is also moving from using normal weak priors to using mixtures-of-

                                                 
1 There seems to be a misconception among practitioners that mixed logit with a MVN mixing distribution can 
approximate any random utility model well. In fact, McFadden and Train (2000) showed that the MIXL model can 
approximate any random utility model arbitrarily well if the researcher specifies the correct mixing distribution. 
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normal priors for the individual level parameters as it accommodates a larger range of non-

normal posteriors. This approach has been extended to probit by Geweke and Keane (1999, 

2001) and to MIXL by Rossi et al (2005) and Burda, Harding and Hausman (2008). 

Next, Section II.A reviews the MIXL and LC models. Section II.B reviews the S-MNL 

and G-MNL models. And Section III.C discusses the MIXL model with a discrete mixture-of-

normals as the mixing distribution (that is, the MM-MNL model). 

II.A. Models with Unobserved Taste Heterogeneity: Mixed Logit and Latent Class models 

 The MIXL and LC models simply extend the MNL to allow for random coefficients on 

the observed attributes, while continuing to assume the “idiosyncratic” error component εnjt  is 

iid extreme value. 

njtnjtnnjt XβU ε+=  ,...,T,...,J;  t j Nn 11  ;,...,1 === .   (2) 

The difference is that MIXL specifies a continuous distribution for nβ  while LC assumes that the 

underlying distribution is discrete.  For MIXL, the model is often written as 

( ) 1,..., ; 1,..., ; 1,..., ,njt n njt njtU x n N j J t Tβ η ε= + + = = =   (3) 

Here, β is the vector of mean attribute utility weights in the population, while ηn is the person n 

specific deviation from the mean. The investigator is free to specify any distribution for the η 

vector, but in most applications it is assumed to be multivariate normal, MVN(0, Σ). 

Equivalently, we can write that ),(~ ΣβMVNβn . 

The LC model assumes that consumers belong to one of several classes (also called 

"segments" or "types"). Classes are latent and the number of classes is not known a priori. The 

nβ 's differ across classes but are identical within classes, i.e., 

 sn ββ =  with probability snw ,   

1, =∑
s

snw  and     sw sn   0, ∀>       

for s = 1, 2,…,S; ,...,T,...,J;  t j Nn 11  ;,...,1 ===     (4) 

where S is number of classes and snw ,  is the probability of person n to be a member of class s. 

snw ,  may depend on characteristics of person n or maybe assumed identical across consumers, 

snw , = sw . In typical applications, the researcher estimates models with different numbers of 

classes, and the best model is chosen using BIC or AIC.    
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In both the MIXL and LC models, the choice probabilities conditional on nβ  still have 

the closed form logit expression: 

( ) ∑
=

=
J

i
nitnnjtnnnt xxXjP

1
)exp(exp),|( βββ . 

With panel data, the probability that we observe a sequence of choices T
tnjty 1}{ =  from period 1 to 

T for person n is just the product of the period-by-period logit expressions. Denote ynjt = 1 if 

choice j is chosen and 0 otherwise. Because nβ  is unobserved, the unconditional choice 

probabilities have to be evaluated over all possible values of nβ . The choice probabilities of 

MIXL and LC are given by (5) and (6), respectively. 
 

 ( )∫ ∏∏ ∑ ⎥
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The only difference between (5) and (6) is whether the possible values of nβ  are generated from 

a continuous distribution or a discrete distribution.  

II.B. The Scale Heterogeneity and Generalized Multinomial Logit Models 

 Louviere and colleagues (1999, 2002) have argued that “scale heterogeneity” is a major 

source of taste heterogeneity in choice models. They have also argued that the MIXL model is 

seriously mis-specified because it ignores scale heterogeneity. Their argument led Fiebig, Keane, 

Louviere and Wasi (2009) to develop the scale heterogeneity (S-MNL) model, as well as the 

generalized multinomial logit (G-MNL) model that nests MIXL and S-MNL. 

To understand what scale heterogeneity means, one must first recognize that the variance 

of the extreme value idiosyncratic error of MNL model is σ2π2/6 where σ, the scale parameter, 

has been implicitly normalized to one to achieve identification. The simple logit model can be 

written with the scale of the error made explicit: 
 
   / 1,..., ; 1,..., ; 1,..., ,njt njt njtU x n N j J t Tβ ε σ= + = = =  

The scale heterogeneity model assumes that σ is heterogeneous in the population, and hence 
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denotes its value for person n by σn: 

  nnjtnjtnjt xU σεβ /+=   Tt,..,JjNn ,...,1  ;1   ;,...,1 ===   (7) 

The expression in (7) suggests that the source of heterogeneity is the variance of the 

idiosyncratic error, not the taste parameters, β. Heterogeneity in scale, however, is 

observationally equivalent to a particular type of heterogeneity in the utility weights. Multiplying 

(7) through by σn we obtain: 

njtnjtnnjt xU εβσ += )(   Tt,..,JjNn ,...,1  ;1   ;,...,1 ===   (8) 

That is, equation (8) can be considered a random coefficient model but with βσβ nn = , a 

restriction that the vector of utility weights β is scaled up or down proportionately across 

consumers by the scaling factor σn.   

The G-MNL model incorporates two ways to nest the S-MNL and MIXL models. The 

first (called G-MNL-I) combines (3) with (8): 

njtnjtnnnjt xU εηβσ ++= )( .       (9) 

The other one (called G-MNL-II) starts with MIXL and multiplies through by σn, 

njtnjtnnnjt xU εηβσ ++= )(        (10) 

Both (9) and (10) incorporate MIXL and S-MNL as special cases. G-MNL adds parameter γ,  

varying between 0 and 1, to nest G-MNL-I and G-MNL-II as well as the hybrid case. The 

difference between the two cases is that in G-MNL-I, ηn is independent of the scaling of β while 

in G-MNL-II, ηn  and β are both scaled by σn. The utility function of G-MNL model is given by: 

  njtnjtnnnnnjt xU εησγγηβσ +−++= ])1([      (11) 

The following table lists the special cases of G-MNL model: 

σn   = σ  = 1 Var(ηn) = 0  ββ =n  MNL 
σn  ≠ σ Var(ηn) = 0  βσβ nn =  S-MNL 
σn   = σ  = 1 Var(ηn) ≠ 0  nn ηββ +=  MIXL 
σn  ≠ σ Var(ηn) ≠ 0 γ = 1 nnn ηβσβ +=  G-MNL-I 
σn  ≠ σ Var(ηn) ≠ 0 γ = 0 )( nnn ηβσβ += G-MNL-II

 

To complete the specification of the G-MNL model the distribution of σn must be specified. 

Because it is the "scale" parameter, its distribution should have positive support. We have used 

the lognormal distribution, ln(σn) ~ N( 2,τσ ).  
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Note that the parameters τσ ,  and β cannot be separately identified. To achieve 

identification we normalize E[σn] to one. Also, in order to constrain γ to lie between 0 and 1, we 

use a logistic transformation. 

Finally, it is important to note that this model differs from the model of Sonnier et al. 

(2007) or Train and Weeks (2005). Theirs are still the mixed logit model in (3), but with an 

alternative normalization used to achieve identification. Instead of setting the scale parameter to 

one as in the standard procedure, they set the coefficient of one attribute (price) to minus one (for 

further discussion see Fiebig, Keane, Louviere and Wasi (2009)). 

II.C. The Mixed-Mixed Multinomial Logit Model 

The use of mixture-of-multivariate normals as an alternative flexible distribution is 

present in the literature. Geweke and Keane (1999, 2001) develop the mixture-of-normals probit 

model, and Rossi et al (2005) develop the mixture-of-normals logit model. Figure 5.7 in Rossi et 

al (2005) provides a nice illustration of how flexible the distribution of household posterior 

means can be in a mixture-of-normals model compared to standard MIXL. Burda et al (2008) 

specified a subset of coefficients in MIXL model to follow mixture-of-normal distributions while 

some other still follow a simple MVN distribution. Train (2008) and Bajari et al (2007) also 

consider specifying mixture-of-normals for MIXL but both studies focus on alternative 

algorithms rather than the performance of MM-MNL compared to existing models.  

The MM-MNL essentially nests the MIXL with LC models, and minimizes the 

disadvantages of each. Specifying the mixing distribution of MIXL to be mixture-of-MVN is 

actually equivalent to extending LC models to incorporate unobserved heterogeneity within 

class. In the MM-MNL model, the utility of person n in period t conditional on choice of 

alternative j is specified as: 
 

njtnjtnnjt XβU ε+=  

where   ),(~ ssn βMVNβ Σ  with probability snw ,   

 1, =∑
s

snw  and     sw sn   0, ∀>   

for s = 1,2,…,S; ,...,T,...,J;  t j Nn 11  ;,...,1 ===     (12) 
 
As we can see if  0, →snw for all classes except one, (12) becomes the mixed logit model in (3). 

If ss   0 ∀→Σ , (12) becomes the latent class model in (4). The choice probabilities are given by 
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where )( sf β refers to ),( ssβMVN Σ . 

III. Some Notes on the Estimation Procedures 

  The LC models are estimated by maximum likelihood, and we estimate them using many 

alternative values for S, the number of classes. It is well known that estimation results for LC 

models are sensitive to starting values. Thus, for each number of classes, we use 50 different 

random values and the solution to the model with one fewer class as starting values. For each 

data set, we kept adding one more class until that model yielded a smaller AIC than the model 

with one fewer class. We report the results for the LC model that is preferred by BIC. 

 For MIXL and G-MNL, we consider both the case where the covariance matrix of η, 

denoted Σ, is a full covariance matrix (correlated errors) and the case where Σ is a diagonal 

matrix (uncorrelated errors). We again report results from the version of each model that is 

preferred by BIC. 

One key detail about estimation of the S-MNL model is worth noting. For datasets in 

which choices are labeled (e.g., buy or don’t buy), our models include alternative specific 

constants, or 'ASCs.' Of course, ASCs are not needed in datasets where choices are generic (e.g., 

pizza A or pizza B). Fiebig, Keane, Louviere and Wasi (2009) found that scaling the ASCs in the 

S-MNL model leads to non-sensical results. So instead we assume the ASCs are normally 

distributed random coefficients. 

For the MM-MNL model, the choice probabilities in (13) can be simulated as follows. 

First, conditional on being in class s, the simulated probability of observing person n choose a 

sequence of choices is given by: 
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where ds,η  is a K-vector distributed MVN(0, sΣ ). The simulation involves drawing { ds,η } for d 

=1,…,D; and s=1,…,S. To obtain the unconditional probability of a person’s choice sequence, 

we take a weighted average of the simulated probabilities for each class, where the weights are 
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the probability of being in that class: )|ˆ(ˆ
,∑=

s
nsnn sPwP . The simulated log likelihood for the 

sample is the sum of the simulated likelihood contributions for all individuals: ∑=
n

nPL ˆlnˆln . If 

there is only one class, this is exactly the simulated likelihood of the mixed logit model. 

 Because few personal characteristics are available in these data sets, we specify ssn ww =,  

for both LC and MM-MNL models. To impose 1=∑
s

sw , we use the logistic transformation, 

∑
−

=

+=
1

1

** )exp(1)exp(
S

s
sss www , and set *

sw  for the last class to zero. To avoid cases where *
sw  may 

run off to infinity as we iterate, we also set upper and lower bounds of 5 and -5, implying the 

membership probability for each class is at least 0.01. We also impose upper and lower bounds 

on taste parameters because, when a large fraction of respondents chooses based on one or two 

attributes, LC and MM-MNL are likely to generate one class to capture that behaviour. The 

estimates of utility weights on those attributes can then run off to infinity. 

The number of parameters of MM-MNL proliferates with the number of classes, 

especially if one specifies sΣ  to be a full variance-covariance matrix for all classes. We adopt 

two alternative restrictions here. In the first case, we assume that sΣ  is a diagonal covariance 

matrix for all s, and sΣ  differ across class s.  The second case specifies the variance-covariance 

matrices for all classes to be proportional: Σ=Σ ss k  where Σ  is a full variance-covariance matrix. 

Note that the first case nests (i) MIXL with uncorrelated errors and (ii) LC models. The second 

case nests (i) MIXL with correlated errors and (ii) LC models. 

 The second case is closely related to the G-MNL model. If one specifies sΣ for each class 

to be Σ−+Σ sk)1( γγ , restricts the mean vector to vary proportionally across classes, ββ ss k= , 

and lets the number of classes goes to infinity, then one obtains the G-MNL model. G-MNL as a 

continuous mixture of normal can be written: sn σβ |  ~ ),( ssMVN Σβ  and )ln( sσ ~ ),( 2τσN  

where βs and Σs follow the restrictions above. 
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IV. Empirical results 

The five models of consumer heterogeneity (S-MNL, MIXL, G-MNL, LC and MM-MNL) are 

evaluated based on ten stated preference choice experiment data sets. Three of the data sets 

concern medical decision making, specifically, preferences for genetic and cervical cancer test 

options. Seven of the data sets concern choice of various consumer products, ranging from pizza 

delivery services to holiday packages, mobile phones and charge cards. Table 1 describes the 

general characteristics of each dataset (i.e., number of attributes, number of choices, number of 

choice occasions). Table 2 lists the attributes and their levels.  

Tables 3-12 report estimation results for the MNL, S-MNL, MIXL, G-MNL, LC and 

MM-MNL models on each of the ten datasets. As there are so many models, we only present a 

subset of the parameter estimates. Also, within each type of model, we have generally estimated 

several different versions (e.g., different numbers of latent classes, errors correlated or 

uncorrelated, etc.). For each class of model, we only report results for member of the class that 

was preferred by the Bayes information criterion (BIC). 2 This is because in Monte Carlo work 

reported in Fiebig, Keane, Louviere and Wasi (2009) found that BIC was the most reliable 

criteria for choosing the correct model in this type of data. Still, we report how each model 

performed on 3 information criteria, Akaike (AIC), Bayes (BIC) and consistent Akaike (CAIC).  

IV.A. Estimation Results for the Ten Data Sets 

Table 3 presents the result of the first data set. Here, subjects were asked whether they 

would chose to receive diagnostic tests for Tay Sachs disease, cystic fibrosis, both or neither, 

giving four alternatives. Covariates include cost of the tests, whether the person’s doctor 

recommends it, risk factors, and alternative specific constants. The sample members are all 

Ashkenazi Jews, who have a relatively high probability of carrying Tay Sachs.   

For this data set, Fiebig, Keane, Louviere and Wasi (2009) found that G-MNL with 

correlated errors dominated S-MNL and MIXL (and G-MNL with uncorrelated errors) by all 

three model selection criteria (AIC, BIC and CAIC). The 4th column reports the estimates of this 

G-MNL model. Note that G-MNL achieves log-likelihood of -2480 using 79 parameters, giving 

a BIC value of 5601. Estimates of the mean preference weights have expected signs and most are 

statistically significant. The estimated mean ASCs are not statistically significant different from 

                                                 
2 Given N people and T choices per person we have that BIC = -2LL + (#parameters) * log(NT). 
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zero. But their estimated variances are large and significant, suggesting a high degree of 

heterogeneity in how people value each test option, holding other observed attributes constant. 

Note that the G-MNL estimate of the scale parameter τ is 0.45 with a standard error of 

0.08, which implies substantial scale heterogeneity in the data. As σ n = exp(−τ 2 /2 + τε0n ), the 

estimates imply a person at the 90th percentile of the scale parameter would have his/her vector 

of utility weights scaled up by 57%, while a person at the 10th percentile would have his/her 

vector of utility weights scaled down by 46%.3 

The 5th column reports the latent class (LC) model. We estimated LC models with 

various numbers of classes, and found that a model with 5 classes is preferred by both BIC and 

AIC. Given the large number of parameters, we only report the attribute coefficient vectors for 

the 3 largest classes, which account for 76% of the population. Note that the largest class (class 

1) places much greater weight on risk factors than do classes 2 and 3. The second largest class 

(class 2) places a much greater weight on cost than do classes 1 and 3. Class 3 has a very high 

intercept for the “both” option, implying they are very likely to get both tests regardless of 

attribute settings. Regarding the two smaller classes not reported, class 4 is characterized by 

placing a very great weight on price. Class 5 has a configuration of parameters such that they 

will usually choose to get either both tests or neither, and they have low sensitivity to attributes 

in making these decisions. The 5-segment LC model achieves a log-likelihood of -2701 using 59 

parameters, giving a BIC of 5882. Thus, it is dominated by the G-MNL model according to all 

three model selection criteria. In particular, G-MNL is superior on BIC by 281 points.    

The 6th column presents the MM-MNL model. We estimated several versions of this 

model, using different numbers of classes, and assuming either independent or correlated normal 

coefficient vectors. In this case BIC preferred a model with a mixture of two independent normal 

coefficient vectors. The 6th column is MM-MNL with 2-independent-normals, which achieves a 

log-likelihood of -2620 using 45 parameters, giving a BIC of 5605.4 Note that the larger class 

                                                 
3 The estimate of γ is 0.11, which implies the data is closer to the G-MNL-II model (see equation (10)), where the 
variance of residual taste heterogeneity increases with scale, than the G-MNL-I model (see equation (9)), where it is 
invariant to scale. 
4 MM-MNL with 3-independent-normals (not reported) achieves the log-likelihood of -2555 but is beaten by MM-
MNL with 2-independent-normal using BIC. MM-MNL with 2 correlated normal coefficient vectors (with the 
covariance proportionality constraint discussion in the text imposed) achieves a log-likelihood of -2455, but this 
model has 90 parameters, and gives a BIC of 5640. Thus, it is also beaten by MM-MNL with 2 independent normal 
coefficient vectors.  
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(Class 1) places much greater weight on risk factors, while the smaller class (Class 2) places 

much greater weight on costs.   

In summary, BIC prefers G-MNL over all other models, the closest competitor being 

MM-MNL (5601 vs. 5605) followed by MIXL (5626). There is then a rather wide gap before we 

get to S-MNL (5777) and another wide gap before we get to LC (5882).  

The comparison between G-MNL and MM-MNL is more complex if we also consider 

AIC and CAIC. This is because G-MNL (with correlated errors) has 79 parameters while MM-

MNL with 2 independent normals has only 45.5 Hence, the advantage of G-MNL is much greater 

if we look at AIC, which imposes a smaller penalty for extra parameters (5118 vs. 5330). Indeed, 

MIXL is also preferred to MM-MNL according to AIC. On the other hand, MM-MNL is slightly 

preferred by CAIC, which imposes a larger penalty for extra parameters (5680 vs. 5650).  

The comparison between G-MNL and MIXL is unaffected by the criterion used, since 

these models have a similar number of parameters (79 vs. 77). Furthermore, G-MNL and MM-

MNL remain heavily preferred to LC regardless of the criteria used. 

As we will see below, this pattern of the LC model performing poorly relative to the 

other 4 models that include heterogeneity holds consistently across all 10 data sets. According to 

BIC, the LC model performs worst in 5 datasets, and next to worst in the other 5. Thus, we 

would not advise using the LC model for demand prediction. However, as we will also see, the 

LC model estimates are very useful for gaining an intuitive understanding of the nature of 

consumer segmentation in each category.  

For instance, in Table 3, the LC results indicate that the largest segment of consumers 

place great emphasis on risk factors, the next largest cares a lot about cost, and the third largest 

pretty much chooses to get the tests regardless of attribute settings (i.e., they have very large 

intercepts). Segment 4 (not reported) cares extremely much about cost, and segment 5 (not 

reported) tends to behave fairly randomly, choosing to get either both tests or nether test with 

little effect of attribute settings. These patterns are basically born out when we look at posterior 

distributions of attribute weights derived from the better fitting G-MNL and MM-MNL models. 

                                                 
5 It is notable that this situation is a bit unusual, as G-MNL only ends up with more parameters than MM-MNL 
because BIC prefers the G-MNL model with a correlated random coefficient vector. In most cases we consider, the 
G-MNL model with uncorrelated heterogeneity is preferred, and as a result G-MNL has fewer parameters than MM-
MNL. 
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It is interesting to note that the two classes identified by the MM-MNL model basically 

correspond to the two largest classes identified by the LC model (i.e., class 1 cares a lot about 

risk, class 2 cares a lot about costs). MM-MNL is able to capture the behavior of members of 

smaller segments by relying on the randomness of its coefficient vectors. In contrast, G-MNL is 

able to capture the behavior of various segments via the interaction of the random coefficients 

with the scaling parameter. For example, there will be some cases where the random draws for 

price coefficients are large, and in addition the random draw for the scale parameter is also large. 

This generates behavior where consumers care very much about price.     

Table 4 reports results for an identical Tay Sachs/Cystic Fibrosis screening test choice 

experiment, except now the sample is chosen from the general population. In this dataset, 

according to BIC, the MM-MNL model (with a mixture of two independent normals) is preferred 

over G-MNL (6420 vs. 6487). The ordering of the other models is the same as before – i.e., 

MIXL (6535), S-MNL (6591) and LC (6723). 

Interestingly, in the general population data the nature of heterogeneity appears to be 

more complex than in sample of Ashkenazi Jews. The LC model identifies 7 consumer segments, 

compared to 5 in the previous example, and here the three largest segments capture only 57% of 

the population, compared to 76% in Table 3. Below we will see that this pattern holds generally. 

That is, MM-MNL will be preferred by BIC in the 3 data sets where the number of segments in 

the LC model is 6+, G-MNL will be preferred in 4 data sets where the number of segments is 4 

or 5, and S-MNL will be preferred in 3 datasets where the number of segments is 4.   

Substantively, the difference in the structure of heterogeneity between the Ashkenazi and 

general population samples is quite interesting. In the general population, there is a segment that 

will almost never choose to get the tests, and it is actually the largest segment (22%). It basically 

replaces segment 3 in the Ashkenazi population (20%), which almost always gets the tests. This 

pattern would not be surprising unconditionally (i.e., we would expect the Ashkenazis to be more 

interested in getting the tests as they know they are at higher risk). But the fact this holds even 

conditional on risk factors is consistent with a view that the experimental subjects are behaving 

as Bayesians – i.e., updating their own priors on risks with the information given in the 

experiment. This highlights the fact that even in a choice experiment it is not possible to fully 

control subjects’ perceptions of the attribute levels. This of course has more general implications 

for social advertising (e.g., how we convey information about risks to the population).  



 15

The two extra segments that appear in the general population are #6, who rely heavily on 

doctor’s recommendation (7%), and #7, who care a lot about both risk factors and price (7%). As 

we will see below, this constitutes a general pattern for cases where MM-MNL is preferred to G-

MNL. That is, MM-MNL tends to be preferred in cases where there are some small but non-

trivial segments of consumers who care a great deal about particular attributes that are not 

weighed so heavily by members of the larger segments. Of course, this statement is essentially 

equivalent to our earlier observation that MM-MNL is preferred in cases where the number of 

segments identified by the LC model is large (i.e., 6 or more). In such cases there will almost 

inevitably be a few small segments (i.e., segment proportions in the single digits).      

Table 5 reports estimates from the mobile phone choice experiment. Here, the choice is 

simply whether or not to buy a mobile phone with the specified attributes. In this dataset the 

structure of heterogeneity is fairly simple. The LC model identifies only 4 segments. The largest 

(32%) is not very sensitive to any particular attribute (i.e., they exhibit fairly “random” 

behavior). Segment 2 (28%) is sensitive to price but not other attributes. Segment 3 (22%) is 

very sensitive to price. And segment #4 (not reported, 18%) is modestly sensitive to price. Thus, 

one could think of the consumers as being segmented into 4 levels of price sensitivity (very 

sensitive to not at all), with other attributes being fairly unimportant. This apparent lack 

sensitivity to extra features of cell phones (beyond the basic features all phones have) is 

consistent with information we were given by industry executives. 

Given the simple structure of heterogeneity, it is not surprising that the very parsimonious 

S-MNL model is actually the preferred model in this dataset, with a BIC of 8121. There is little 

to choose between MIXL and G-MNL, which have BIC values of 8197 and 8190, respectively. 

Finally, MM-MNL and LC lag far behind, with BIC values of 8359 and 8426, respectively.  

Even though MIXL beats G-MNL for the mobile phone data (albeit by only 7 points), we 

would argue that the results are still supportive of the use of the G-MNL specification over 

MIXL. It is important to note that S-MNL is a special case of G-MNL, and a researcher who 

started with G-MNL would have tested down to the more parsimonious S-MNL specification. As 

emphasized by Fiebig, Keane, Louviere and Wasi (2009), either G-MNL or its S-MNL special 

case is preferred over MIXL in all 10 datasets we examine.           

We have now discussed in detail results from three data sets that illustrate contexts where 

G-MNL, MM-MNL or S-MNL is the preferred model. We will now discuss the other datasets in 
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less detail. Table 6 reports results from Pizza delivery service choice experiment A. The two 

services are only labeled by A and B, and hence the model does not contain ASCs. This data set 

is a bit exceptional, in that the LC model identifies only 4 segments, yet the G-MNL model is 

preferred. It appears that S-MNL does relatively poorly because the four segments are very 

different (i.e., type 1 cares greatly about freshness, type 2 exhibits random behavior, type 3 cares 

greatly about the pizza being hot and type 4 (not reported) cares a lot about price). 

Table 7 reports results from the Holiday A dataset. Participants choose between two 

Holiday packages labeled A and B, so there is no ASC. Here, the LC model identifies 5 

segments.6 Given this intermediate level of heterogeneity we are not surprised that G-MNL is 

preferred, as per our earlier discussion. Table 8 reports the results from the Papsmear test choice 

experiment. Here the LC model identifies 5 segments, and G-MNL is preferred by BIC as we 

would expect.  

Substantively, it is interesting that type 1’s chose to get the test as needed (i.e., when due 

and doctor recommended), type 2’s almost always chose to get the test, and type 3’s are sensitive 

to a range of factors (test due, doctor characteristics, and doctor recommendation). Types 4 and 5 

(not reported) make up 24% of the population and they are, respectively, either very averse or 

extremely averse to male doctors. No type cares much about price.   

Table 9 reports the results from Pizza deliver service choice experiment B. This differs 

from experiment A in that the number of attributes of the pizza (and the delivery service) is 

increased from 8 to 16. Not surprisingly, this increases the number of classes identified by the 

LC model from 4 to 6. Hence, it is not surprising that that MM-MNL is the preferred model in 

this dataset according to BIC (11527 vs. 11693 for G-MNL). There is quite a large gap before we 

come to MIXL (12081), followed by LC (12118) and then S-MNL (13372).     

The structure of heterogeneity in this data set is quite interesting. The first segment 

identified by the LC model makes up 51% of the population, and is it shows only very modest 

sensitivity to the attributes (i.e., close to random choice behavior). Members of the 2nd segment 

(14%) care greatly about price, the 3rd (12%) cares greatly about quality (fresh ingredients), the 

4th (10%) cares greatly about crust type, the 5th (9%) cares greatly about hot delivery, and the 6th 

                                                 
6 The first segment cares a lot about price, the second about quality of accommodation and the third cares only 
modestly about price and accommodation. The 4th and 5th either like or do not like overseas destinations, 
respectively.  
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(4%) wants a vegetarian option.7 Thus, we have several small segments that care greatly about 

different attributes (as oppose to just few large segments). Contrast this to Pizza A, where, e.g., 

there was one large segment (36%) that cared greatly about price. The more complex 

heterogeneity structure in Pizza B falls neatly into our characterization of when the MM-MNL 

model would be preferred. Also, this is the first dataset we have examined where the structure of 

heterogeneity is complex enough that MM-MNL supports a 3-class model.     

Table 10 reports results from the Holiday B dataset. This differs from experiment A in 

that the number of attributes of the holiday packages is increased from 8 to 16. This increases the 

number of classes identified by the LC model from 5 to 9. This is more segments than for any 

other dataset.8 Hence, it is not surprising that that MM-MNL is preferred over G-MNL according 

to BIC (23002 vs. 23291). Next comes MIXL (23519), followed by LC (23981) and then S-MNL 

(26224). This is only other dataset (besides Pizza B) where a MM-MNL model with a mixture of 

3 normals is preferred over models with only two.   

Table 11 reports results from an experiment where a bank offers a credit card and a debit 

card (which, along with “neither”, giving 3 alternatives). The structure of heterogeneity in this 

data set is quite simple. According to the LC model, there are only 4 segments. The largest 

segment (48%) basically doesn’t want either card (large negative intercepts). Segment #2 (27%) 

prefers a debit card while segment #3 (19%) prefers a credit card. Segment #4 (not reported, 7%) 

is fairly indifferent between the two. All types dislike interest and fees. Given this simple 

structure, it is not surprising that the S-MNL model is preferred by BIC (5707). It is followed by 

MIXL and G-MNL, whose BIC values are fairly close (5883 and 5898, respectively). Then 

comes MM-MNL (5988) and, finally, LC (6039). 

Table 12 reports results from the 2nd charge card experiment, which is identical except 

that a transaction card option is added. Again there are only 4 segments according to the LC 

model. The largest segment (44%) basically doesn’t want either card (large negative intercepts). 

                                                 
7 The crust type and vegetarian segments were not identified by LC in the Pizza A dataset (the latter because it was 
not one of the listed attributes). 
8 Segment 1 (27%) cares modestly about price, but has small attribute coefficients in general (i.e., close to “random” 
choice behaviour. Segment 2 (15%) cares moderately about quality accommodation, price, meals and length of stay. 
Segment #3 (14%) cares intensely about quality accommodation. Segment #4 (14%) wants overseas travel. Segment 
#5 cares about price and meal inclusion. Segment #6 (7%) cares mostly about having a beach or swimming pool. 
Segment #7 (6%) intensely dislikes overseas travel. Segment #8 (5%) likes personal tours. And segment #9 (4%) 
cares about price, quality accommodation and length of stay (i.e., “value”). Sadly, not enough respondents value 
cultural activities to form a segment.    
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Segment #2 (21%) is indifferent among type of card, but cares about interest, fees and access. 

Segment #3 (19%) prefers a transaction card and cares about interest rates. Segment #4 (not 

reported, 16%) is indifferent among type of card, but cares about interest, fees and access. All 

types dislike interest. Given this simple structure, it is not surprising that the S-MNL model is 

again preferred by BIC (7007). It is followed by MIXL and G-MNL, whose BIC values are fairly 

close (7166 and 7182, respectively). Then comes MM-MNL (7258) and, finally, LC (7391). 

IV.B. Comparing Model Fit across Data Sets. 

Table 13 summarizes the fit of the 6 models (MNL, S-MNL, G-MNL, LC and MM-

MNL) across the ten datasets. For MIXL, G-MNL, LC and MM-MNL we estimated various 

versions of each model, which differ in number of segments and whether random coefficients are 

allowed to be correlated. Within each type of model, we report results for the version preferred 

by BIC. Nevertheless, we will compare these models based on AIC, BIC and CAIC.  

According to AIC, MM-MNL is preferred in 7 out of 10 datasets. G-MNL is preferred 

only in the two Tay Sachs datasets. In the Papsmear dataset there is a virtual tie between MM-

MNL and G-MNL. However, in Monte Carlo work reported in Fiebig, Keane, Louviere and 

Wasi (2009), we found that BIC was much more accurate than AIC in selecting the correct 

model for data of this type. AIC tends to choose over-parameterized models (as it imposes a 

smaller penalty for additional parameters). 

According to BIC, G-MNL is the preferred model in 4 datasets, MM-MNL is preferred in 

3 and S-MNL is preferred in 3. Another way to look at this is that models that allow for scale 

heterogeneity – that is, G-MNL or its S-MNL special case – are preferred in 7 out of 10 datasets. 

Furthermore, G-MNL is preferred to MM-MNL in 7 out of 10 data sets (the 4 where it is 

preferred overall plus the 3 where S-MNL is preferred overall). Thus, the results clearly support 

a conclusion that it is important to consider models with scale heterogeneity.  

It is also notable that in 4 of the 7 datasets where MM-MNL loses to a scale 

heterogeneity model (mobile phones, papsmear test, card cards A and B) it losses rather soundly 

(i.e., by 3% to 5% on BIC). But in the three datasets where MM-MNL wins (Tay Sachs general, 

Pizza B, Holiday B), the G-MNL model is a closer competitor, losing by only 1% to 1.4% on 

BIC. Thus, G-MNL appears to be rather robust to alternative data structures in the following 

sense: in data where the structure of heterogeneity is “very complex” MM-MNL is preferred, but 

G-MNL proves to be a close competitor. In data where heterogeneity is “moderately complex” 
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these roles are reversed. But in data sets where the structure of heterogeneity is “simple” the S-

MNL special case of G-MNL is preferred by a wide margin over MM-MNL. Thus, the use of G-

MNL (including the possibility of testing down to the S-MNL special case) will produce 

reasonably good results in all three cases. 

Recall that we have defined heterogeneity as “very complex,” “moderately complex” or 

“simple” in a specific way in this paper. We have based it on the number of segments of 

consumers identified by the LC model. In the 3 “very complex” datasets where MM-MNL is 

preferred (Tay Sachs general, Pizza B, Holiday B) there are 6+ segments.  In the 4 “moderately 

complex” datasets where G-MNL wins (Tay Sachs Jewish, Pizza A, Holiday A, Papsmear) there 

are 4 to 5 segments. And in the 3 “simple” datasets where S-MNL wins (mobile phones, charge 

cards A and B) there are only 4 segments.  

More subtly, “simplicity” is also defined by how the segments differ. For instance, in 

mobile phones the four segments differ only in the sense of having different levels of price 

sensitivity. This is quite easy for the S-MNL model to capture. Pizza A also has only 4 segments, 

but their behavior differs quite substantially. Thus, the more general G-MNL model is needed. 

The results for CAIC are almost identical to those for BIC. In 9 datasets the preferred 

model is unchanged. The only change is Tay Sachs Jewish data set, where the G-MNL model 

beats MM-MNL by a small margin. Using CAIC this result is reversed. The reason for the 

reversal is that CAIC imposes a larger penalty for additional parameters than BIC, and in the Tay 

Sachs Jewish dataset the G-MNL model has more parameters than MM-MNL. (This is actually a 

bit unusual as in most cases G-MNL has fewer parameters).   

Strikingly, the MIXL and LC models, which are arguably the most popular models of 

heterogeneity in use in marketing today, are never preferred by any model selection criteria. The 

performance of LC is particularly weak: MIXL is preferred over LC by BIC in all 10 datasets. 

Nevertheless, we found that the LC model is very useful for gaining an intuitive understanding of 

the structure of heterogeneity in each dataset, and for understanding why G-MNL, MM-MNL or 

S-MNL is preferred in each case. Of course, ease of interpretation has always been the strength 

of the LC model. Thus, we would advocate estimating the LC model in conjunction with the G-

MNL and MM-MNL models. The better fitting of the latter can be used for actual demand 

prediction, while the LC model can be used for intuition.    
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IV.C. Understanding the Behavioral differences between the Models 

Simply knowing that one model fits better than another is not in itself particularly 

interesting. We would all also like to understand the behavioral differences between the models. 

What aspect(s) of behavior can one model capture better than another? In this section we 

examine the behavioral differences between our 6 models (MNL, S-MNL, LC, MIXL, G-MNL 

and MM-MNL).   

First, we examine the degree of flexibility of each model in fitting distributions of taste 

heterogeneity. To do this, we use the estimated model to calculate person-specific parameters. 

Adopting what Allenby and Rossi (1998) call an “approximate Bayesian” approach, the 

estimated heterogeneity distribution is taken as the prior, and the posterior means of each person-

specific vector of preference weights are then calculated conditional on his/her observed choices 

(see Train (2003), chapter 11.)  

For the Pizza B dataset, Figures 1-2 plot the posterior distributions of the person level 

coefficients on "price" and "ingredient freshness," respectively. Consider first figure 1, which 

plots the posterior distribution of the price coefficient. Of course, the MNL posterior puts all 

mass on a point, as there is no heterogeneity in this model. Notice next that the MIXL posterior 

has a distinctly normal shape. As Allenby and Rossi (1998) pointed out, the normal prior in the 

MIXL model has a strong tendency to draw in outliers, so this model has a hard time capturing 

“extreme” consumers – e.g., a mass of consumers who place great weight on price. Similarly, the 

S-MNL posterior departs only slightly from its log-normal prior.  

And, as Allenby and Rossi (1998) also pointed out, the LC posterior is less dispersed than 

that for MIXL, as it is constrained to lie within the convex hull of βs. Thus, as Elrod and Keane 

(1995) found, LC tends to understate the degree of heterogeneity in the data.   

In contrast to MIXL, the posterior distributions of G-MNL and MM-MNL depart quite 

substantially from normality, with more mass in the tail. Notice that both models generate a mass 

of consumers in the left tail who care intensely about price (e.g., G-MNL generates a local mode 

at a price coefficient of -4.1). Both models also generate excess kurtosis relative the normal (i.e., 

a mass of consumers with price coefficients near zero).    

Notice that the G-MNL and MM-MNL posteriors for price look fairly similar (especially 

relative to the other models). This is not really surprising, because, as noted earlier, these two 

models are actually closely related. In the case of G-MNL, the posterior is a continuous mixture 
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of scaled normals, while for MM-MNL the posterior is a discrete mixture of normals (see Fiebig, 

Keane, Louviere and Wasi (2009) for further discussion). Both posteriors are quite flexible, 

which lets the data have more impact on the shape of the posterior.  

Figure 2 reports the posterior distribution for the ingredient quality coefficient. The story 

here is very similar to Figure 1. Both G-MNL and MM-MNL are able to capture that there is a 

segment of consumers who put great positive weight on fresh ingredients. MIXL is again unable 

to capture this as these outliers are pulled in by the normal prior. LC does capture that there is a 

segment that cares a lot about freshness, but it puts almost all the mass of the heterogeneity 

distribution on a few points, understating the true extent of heterogeneity in the data. 

Figure 3 reports an experiment where we look at the predictions of the various models for 

how changes in product attributes would affect consumer demand. Specifically, we start from a 

baseline where pizza delivery services A and B both offer identical attributes. Of course, in that 

case people are indifferent between the two services, and all models predict that 100% of 

consumers choose service A exactly 50% of the time. In the experiment, service A improves 

ingredient quality (i.e., fresh ingredients) while also increasing price by $4.  

   G-MNL predicts that, after the policy change, 16% of consumers still have roughly a 

50% chance of choosing A. Strikingly, 8% of consumers have a near 100% chance of choosing 

A (these are the types who put great weight on fresh ingredients) while 5% have a near 0% 

chance of choosing A (these are the types who care primarily about price).9 The predictions for 

MM-MNL are quite similar. It predicts that 16% of consumers remain near 50%, while 9% have 

a near 100% chance of choosing A and 7% have a near 0% chance of choosing A. 

As we would expect based on the coefficient distributions in Figures 1-2, MIXL predicts 

fewer people stay indifferent, but also that fewer people have extreme reactions. Specifically, 

MIXL predicts that only 8% of consumers stay at roughly a 50% chance of choosing A, while 

almost no consumers have their choice probabilities move all the way to 100% or 0%.  

In the actual Pizza B data, 24/328 = 7.3% of subjects choose the fresh ingredient Pizza on 

all choice occasions regardless of other attribute settings, while 27/328 = 8.2% always choose the 

less expensive Pizza. The Figure 3 results show that G-MNL and MM-MNL can both generate 

such extreme (lexicographic) behavior, while MIXL cannot.  

                                                 
9 In these calculations, we define “roughly 50%” as between .475 and .525, while we define “essentially 100%” as 
greater than .95 and “essentially 0%” as less than .05.  
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In Table 13 we see that G-MNL fits better than MIXL in 7 out of 10 datasets, often by 

wide margins. MIXL is only marginally preferred to G-MNL in the 3 data sets with “simple” 

heterogeneity structures (i.e., mobile phones and charge cards A and B). In order to understand 

why G-MNL generally fits better than MIXL, Fiebig, Keane, Louviere and Wasi (2009) ordered 

people by their likelihood contribution in the MIXL model (from best to worst). They then 

plotted the G-MNL likelihood contributions against the MIXL contributions and found two 

patterns of improvement:  

First, G-MNL is better able to capture the behavior of consumers who base choice largely 

on a single attribute (i.e., people who have nearly lexicographic preferences). Examples are the 

people who put great weight on price or freshness in choosing pizza. As we see in Figures 1-2, 

G-MNL can generate very large coefficients on price or freshness, while MIXL cannot.   

Second, G-MNL is better ability to capture the behavior of “random” consumers, whose 

choices are only slightly influenced by observed product attributes. This is again because G-

MNL is better able to generate excess kurtosis (i.e., more mass near zero than in the normal). 

We performed the same type of analysis to compare MM-MNL to MIXL, and we found 

identical results. Thus, MM-MNL has the same advantages over MIXL as does G-MNL. This is 

quite apparent from the policy experiment results in Figure 3.  

We performed the same type of analysis to compare MM-MNL vs. G-MNL. Recall from 

Table 13 that G-MNL is preferred to MM-MNL in 7 out of 10 datasets. Thus, we looked at both 

types of datasets to see if we could discern, via this approach, the types of people that each 

model tended to fit better. Unfortunately, we could not discern any clear patterns. In particular, 

MM-MNL and G-MNL are both able to capture the behavior of consumers who exhibit either 

nearly lexicographic or nearly random behavior, so no differences emerged there. Indeed, for the 

most part, MM-MNL and G-MNL predict similar patterns in choice behavior, and thus provide a 

similar fit to the data. Which model is preferred is therefore often determined not by differences 

in ability to fit various data patterns, but rather by issues of parsimony. BIC often tends to choose 

G-MNL because in most cases it provides a similar fit to MM-MNL but with fewer parameters.     

 Thus, we sought to find more subtle behavioral patterns that might distinguish the two 

models. A clue is provided by the fact that we already found that MM-MNL is preferred only in 

the datasets where the structure of heterogeneity is complex. For example, in Pizza B we found 

that there are five “major” attributes that are important enough for the LC model to devote a 
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segment to consumers who place great weight on them: price, fresh ingredients, crust, hot 

delivery and vegetarian. But an examination of the posterior distribution of attribute weights in 

this data set indicated that there are some additional attributes that small but non-trivial segments 

of consumers also care a lot about. We will call these “minor attributes.”  

For instance, the top panel of Figure 4 shows the posterior distribution of the coefficient 

on baking method (i.e., woodfire) for the G-MNL and MM-MNL models. In contrast to the 

posteriors for the “major attributes,” which are very similar between the two models (see Figures 

1 and 2), the posteriors for this “minor attribute” are quite different. For G-MNL, most of the 

mass is near zero, and only 9% is in the .30 to .50 range. In contrast, for MM-MNL, 29% of the 

mass is in the .30-.50 range. Thus, the MM-MNL model implies that a non-negligible fraction of 

the population has a modest preference for woodfire cooking.  

This is illustrated in the bottom panel of Figure 4. Here we consider an experiment 

where, starting from identical offerings, firm A offers a woodfire cooked pizza. G-MNL predicts 

that about 35% of consumers remain essentially indifferent between A and B. An additional 28% 

have their probability of choosing A increase to only about 55%. But MM-MNL predicts a 

bigger effect. For about 30% of consumers, the probability of choosing A jumps to about 65%.  

Thus, while G-MNL and MM-MNL give very similar predictions for what happens when 

firms change “major” attributes, they do predict different responses when firms change “minor” 

attributes. Based on this, we decided to classify respondents into types based on how they 

respond to both major and minor attributes. Details of how this classification is done are 

provided in the Appendix, but here we just give an overview.                  

Consider again the Pizza B dataset. Some consumers have an extremely strong preference 

weight on only one attribute. These consumers appear in the top panel of Table 14. Within this 

group, consumers can be further divided into whether that attribute is one of the “major” 

attributes (i.e., price, quality, crust, hot, vegetarian) or whether it is a “minor” attribute. These 

people are reported separately in the first two rows of Table 14. Furthermore, these groups of 

consumers can be further divided into those who (i) have negligible preference weights for all 

other attributes, (ii) have modest preference weights for one or a few other attributes, or (iii) have 

modest preference weights for several other attributes. These sub-groups are reported in the 3 

columns of Table 14. For example, in the top row of Table 14, we see there are 39 consumers 

who have a large preference weight on one major attribute, and do not care about other attributes.  
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Similarly, there are consumers who have an extremely strong preference weight on two 

attributes. This group can be further divided based on whether those attributes are (i) both 

“major,” (ii) one “major” and one “minor, or (iii) both minor. These groups are reported in rows 

3 to 5 of Table 14. As above, we can split each of these groups up into subgroups based on 

whether they have modest preference weights on any other attributes.   

Next, we have consumers with large preference weights on three or more attributes. 

These are reported in rows 6 to 8 of Table 14. They are further divided into sub-groups as above. 

Finally, we have people who do not exhibit extreme behavior. These are people who have 

modest preference weights on a few attributes. These people are reported in rows 9 to 10 of table 

14, where they are differentiated by how many of those attributes are “major.” Additionally, 

these people may (or may not) have small but not completely negligible weights on a few other 

attributes, as indicated in the three columns of the table.         

For the Pizza B dataset, Table 14 lists the number of people in each of the above groups. 

It also lists the BIC difference between the MM-MNL and the G-MNL model for each group. 

We have highlighted in yellow the cases where MM-MNL has a large advantage, and in blue the 

cases where G-MNL has a large advantage. Recall that, for the dataset as a whole, the MM-MNL 

model has a BIC advantage of 11527 vs. 11693, which is 166 points or 1.4%. Rather strikingly, 

as we see in row (2) column (1), MM-MNL achieves an advantage of 196 points on just 17 

consumers who exhibit an “extreme” preference for one of the “minor” attributes (and have 

negligible preferences for all other attributes). Furthermore, in row (5) column (1), we see that 

MM-MNL achieves a substantial BIC advantage of 52 points for just 6 consumers who exhibit a 

strong preference for two “minor” attributes (and have negligible preferences for all other 

attributes). And in row (5) column (2), we see that MM-MNL achieves a substantial BIC 

advantage of 34 points for just 3 consumers who exhibit a strong preference for two “minor” 

attributes (and have modest preference weights on a few other attributes). 

There are also groups where G-MNL is favored over MM-MNL. In particular, in rows (9) 

and (10), we see that G-MNL has a BIC advantage in fitting the behavior of “non extreme” 

consumers who show modest preference weights on multiple attributes. 

We have performed this same analysis on other datasets and come to the same general 

conclusion. G-MNL performs better than MM-MNL for consumers who exhibit moderate 

preference weights on multiple attributes, as well as for consumers who exhibit fairly random 
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choice behavior (i.e., their choices are not strongly influenced by any attribute settings). MM-

MNL is better at fitting the behavior of consumers who have a very strong preference for one or 

more minor attributes (i.e., attributes that are not weighted heavily by very many consumers).  

This analysis is consistent with our discussion in Section IV.A. There we found that MM-

MNL is preferred over G-MNL in datasets that exhibit very complex patterns of heterogeneity, 

in the sense that there are a large number of consumer segments. It is precisely in these types of 

datasets that there tend to be relatively small subsets of consumers who have strong preferences 

for “minor” attributes that the majority of consumers are relatively uninterested in.           

V. Conclusion 

In a recent paper, Fiebig, Keane, Louviere and Wasi (2009) evaluated the performance of 

a new choice model called the “generalized multinomial logit” or G-MNL model. The G-MNL 

model generalizes the popular MIXL model by allowing for heterogeneity in the scale coefficient 

(in addition to normally distributed random coefficients). G-MNL also has an important special 

case – the scale heterogeneity or “S-MNL” model – in which only scale heterogeneity is present. 

Using ten empirical datasets, Fiebig, Keane, Louviere and Wasi (2009) found that either G-MNL 

or its S-MNL special case is always preferred to MIXL according to BIC. They showed that the 

reason for the superior performance of G-MNL is its more flexible specification of the 

heterogeneity distribution, which allows it to accommodate highly non-normal posterior 

distributions for individual level coefficients.  

 Note that, in G-MNL, the normal coefficient vector is multiplied by a continuously 

distributed scale coefficient. Thus, G-MNL can be interpreted as a model where the coefficient 

vector is assumed to be distributed as a continuous mixture of scaled normals. There is a rapidly 

growing literature in statistics and econometrics that uses discrete mixtures-of-normals as a 

flexible modeling device. A key reference is Ferguson (1973), who used this approach for 

density estimation. It has been extended to probit by Geweke and Keane (1999, 2001) and to 

MIXL by Rossi et al (2005) and Burda et al (2008).10  The appeal of this approach is that the 

discrete mixture-of-normals can approximate any heterogeneity distribution arbitrarily well. 

                                                 
10 In addition Geweke and Keane (2007) introduced the “smoothly mixing regression” (SMR) model, in which the 
class probabilities in a mixture-of-normals model are determined by a multinomial probit. SMR is closely related to 
what are known as “mixture of experts” models in statistics (see Jiang and Tanner (1999), Villani, M., R. Kohn and 
P. Giordani (2007)) 
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Given this important property of the mixture-of-normals, it would not be surprising if a 

mixture-of-normals generalization of mixed logit were to outperform G-MNL, by providing a yet 

more flexible specification of the heterogeneity distribution. Indeed that was our prior when we 

began this study. Here, using the same 10 datasets as in Fiebig, Keane, Louviere and Wasi 

(2009), we have compared the performance of G-MNL to that of the mixture-of-normals 

generalization of MIXL. We refer to the latter as the “mixed-mixed logit or “MM-MNL” model.  

We found the results of the study somewhat surprising. Based on the BIC criterion, G-

MNL outperformed MM-MNL in 4 of the 10 data sets. Even more surprising, the S-MNL special 

case of G-MNL, which only allows for scale heterogeneity, was preferred in 3 out of 10. MM-

MNL was only the preferred model in 3 datasets. Viewed another way, G-MNL or its S-MNL 

special case are preferred in 7 out of 10 datasets. We also noted that when G-MNL loses to MM-

MNL it is always by a rather small margin.   

These results suggest that the G-MNL model is in fact quite competitive with the MM-

MNL approach. It also reaffirms the conclusion of Fiebig, Keane, Louviere and Wasi (2009) that 

scale heterogeneity may account for much of the heterogeneity in consumer choice behavior, and 

that it is important for researchers to consider models that accommodate scale heterogeneity. 

We also carefully investigated why MM-MNL fits better than G-MNL in some cases and 

not in others. That is, what behavioral patterns does each model have an advantage in fitting? We 

found that the MM-MNL model only outperforms G-MNL in datasets with very complex 

patterns of heterogeneity, by which we mean that there are several attributes that a non-trivial 

fraction of consumers treat as very important when making decisions. In that case one can divide 

these attributes into “major” attributes (i.e., ones that large segments of consumers treat as 

extremely important) and “minor” attributes (i.e., ones that small but non-trivial segments of 

consumers treat as important). As an example, for pizza, we found that price and ingredient 

quality are major attributes, while woodfire cooking and gourmet are minor attributes. The MM-

MNL model provides a clearly better fit for the small groups of consumers who place a great 

deal of weight on “minor” attributes. Conversely, the G-MNL model provides a better fit to 

consumers who exhibit “non-extreme” behavior, meaning that they don’t place great weight on 

just one or two attributes (i.e., they may put modest weight on several attributes). 
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Aside from these fairly small differences, G-MNL and MM-MNL predict very similar 

behavioral patterns for most consumers. For instance, in most cases the two models make very 

similar predictions for how changes in attribute levels affect consumer demand. 

We also included MIXL and latent class (LC) models among the set of models we 

compared. Neither of these models was preferred in any of the 10 data sets. The comparison with 

LC is particularly interesting, as this is also a method that is intended to relax the normality 

assumption often invoked for heterogeneity distributions. However, the LC model performed 

quite poorly in our comparisons. Indeed, it ranked last in 5 datasets and next to last in the other 5, 

and never came within 160 points of the preferred model on BIC. 

Despite this, we found that the LC model results were very useful in order to gain an 

intuitive understanding of the patterns of heterogeneity in the datasets. For example, we found 

that MM-MNL is the preferred model when LC identified 6+ segments, that G-MNL is preferred 

when LC identified 5 segments, and that S-MNL is preferred when LC identified 4 segments 

(except in one case where G-MNL was still preferred). It is precisely in those cases where LC 

identifies a large number of segments that there tend to be some small segments made up of 

consumers who value some “minor” attribute very highly. These are the cases where MM-MNL 

outperforms G-MNL on the BIC criterion. Thus, we would advocate estimating the LC model as 

an aid to understanding the nature of heterogeneity in a market, while using the better fitting of 

the G-MNL, S-MNL or MM-MNL models for actual demand prediction.                     
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Appendix: Classification of Consumers into Types 

Let's consider the binary choice case where both options have binary attributes (say, 

dummy coded with 1 or 0). Define Anjk as a measure of strength of preference of person n for 

attribute k of option j, ∑∑
==

=====
T

t
iktjktiktjkt

T

t
njtnjk xxIxxIyA

11
)0,1()0,1(  for j, i = 1,2. The 

denominator is the sum of number of choice occasions where the attributes of option j takes the 

value 1 and that of option i takes the value 0. The numerator is the number of times option j is 

chosen out of those choice occasions. When choices are unlabelled, which is the case of four 

pizza and holiday data sets, we can further sum these measures across two choices, weighted by 

their denominator: knknnk AwAwA 2211 += . For example, one pizza attribute is "steaming hot" vs. 

"warm"(say, hot = 1, warm = 0). Ank equaling one implies that consumer n extremely likes "hot" 

pizza. Ank equaling zero implies the opposite – that they extremely like "warm". Ank being around 

.5 means consumer n is quite indifferent for this attribute. We will use "extremely prefer" to refer 

to the case where 2.≤nkA or 8.≥nkA ; "like" refer to the case where 4.2. ≤< nkA  or 8.6. <≤ nkA ; 

and "indifferent" refer to the case where 6.4. << nkA . 

Consumer n's observed choice behavior is then described by the vector {An1, An2,…, AnK}, 

where K is the number of attributes. Many possibilities arise. For example, consider the Pizza B 

data set with 16 attributes. If a consumer "extremely prefers" fresh ingredients (the 3rd attribute) 

but is totally indifferent with other attributes, his/her vector would be {.5, .5, 1, .5, .5, .5, .5, .5, 

.5, .5, .5, .5, .5, .5, .5, .5}. If a consumer "extremely prefers" fresh ingredients (the 3rd attribute) 

and also "likes" gourmet (1st), low price (2nd) and steaming hot (7th), but is indifferent to other 

attributes, his/her vector might be {.75, .3, 1, .5, .5, .5, .7, .5, .5, .5, .5, .5, .5, .5, .5, .5}. The third 

possibility is similar to the second but the consumer "extremely prefers" fresh ingredients and 

"likes" many attributes. Then, for example, we might have: {.75, .3, 1, .5, .5, .25, .7, .5, .3, .5, 

.65, .7, .75, .5, .5, .5}.11 

                                                 
11 The "extreme" preference is defined in a less extreme sense here than in the Fiebig, Keane, Louviere and Wasi 
(2009) paper. They only counted only when Ank equals one or zero, and did not look at consumer's preferences on 
other attributes.   
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Figure 1: Posterior distribution of individual-level PRICE coefficient from Pizza B dataset 
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Note: The first bin includes data between –infinity and the first center (-3) and the last bin includes data between the last bin center (3) and infinity. For G-MNL, the left 
tail span to -15.9 and there is a small mode at -4.1. 
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Figure 2: Posterior distribution of individual-level FRESH INGREDIENT coefficient from Pizza B dataset 
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Note: The first bin includes data between –infinity and the first center (-3) and the last bin includes data between the last bin center (3) and infinity. The maximum 
values of the right tails of G-MNL and MM-MNL are 12.4 and 5.2, respectively. MM-MNL also has a small mode at 3. 
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Figure 3: Predicted distribution of probability of choosing firm A from MIXL, LC, G-MNL and MM-MNL models 
                 when firm A improves ingredient quality and increases price $4 
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Figure 4: Posterior distribution of individual-level BAKING METHOD coefficient and predicted probability 
     of choosing firm A from G-MNL and MM-MNL models when firm A uses woodfire baking method  
     but does not increase price 
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Table 1: Empirical Data Sets 

 

    No. of No. of  No. of  No. of No. of  
  choices choice  respondents observations attributes 
      occasions       
       
1 Tay Sachs Disease & Cystic Fibrosis test 4 16 210 3360 11 
 Jewish sample (3 ASCs)      
       
2 Tay Sachs Disease & Cystic Fibrosis test 4 16 261 4176 11 
 General population sample (3 ASCs)      
       
3 Mobile phone (1 ASC) 4 8 493 3944 15 
       
4 Pizza A (no ASC) 2 16 178 2848 8 
       
5 Holiday A (no ASC) 2 16 331 5296 8 
       
6 Papsmear test (1 ASC) 2 32 79 2528 6 
       
7 Pizza B (no ASC) 2 32 328 10496 16 
       
8 Holiday B (no ASC) 2 32 683 21856 16 
       
9 Charge card A (2 ASCs) 3 4 827* 3308 17 
       
 Charge card B (3 ASCs) 4 4 827* 3308 18 

              
 
Note: * The respondents in the two credit card data sets are the same. They first complete 4 tasks with 3 options and then answer 4 tasks with 4 options. Some data sets 
were used in previous research (see Hall et al (2006) for data sets 1 and 2, Fiebig and Hall (2005) for data set 6, and Louviere et al (2008) for data sets 4, 5, 7 and 8). 
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Table 2: Attributes and Levels 
Tay Sachs disease (TS) & Cystic Fibrocis (CF) test: Jewish and General population  Mobile phone   
  Attributes Levels    Attributes Levels 

1 ASC for TS test 0,1  1 ASC for purchase 0,1 
2 ASC for CF test 0,1   (phone 1, phone 2 or phone 3)  
3 ASC for both tests 0,1        Voice Commands (omitted Text to voice or voice to text converter) 
4 Cost to you of being tested for TS (0,150,300,600)/1000  2 (1) No    -1,0,1 
5 Cost to you of being tested for CF (0,375,750,1500)/1000  3 (2) Voice dialling by number or name -1,0,1 
6 Cost to you of being tested both TS and CF (0,150,…,1800,2100)/1000  4 (3) Voice operating commands -1,0,1 
7 Whether your doctor recommends you have a test -1(no),1(yes)         Push to Communicate (omitted to share video) 
8 The chance that you are a carrier (15,30,45,60)/10  5 (1) No -1,0,1 

  even if the test is negative   6 (2) to talk  -1,0,1 
9 Whether you are told your carrier status  -1(individual), 1(couple)  7 (3) to share pictures or video -1,0,1 

 as an individual or as a couple          Email Access (omitted email with attachments) 
10 Risk of being a carrier for TS log base 10 of (.004,.04,.4,4) x 10^3  8 (1) personal emails -1,0,1 
11 Risk of being a carrier for CF log base 10 of (.004,.04,.4,4) x 10^3  9 (2) corporate emails (VPN, RIM) -1,0,1 

    10 (3) both personal & corporate emails -1,0,1 
Papsmear test          on multiple accounts  
  Attributes Levels  11 WiFi -1(No), 1(Yes) 

1 ASC for test 0(no),1(yes)  12 USB Cable or Cradle connection -1(No), 1(Yes) 
2 Whether you know doctor 0(no),1(yes)  13 Thermometer -1(No), 1(Yes) 
3 Whether doctor is male 0(no),1(yes)  14 Flashlight -1(No), 1(Yes) 
4 Whether test is due 0(no),1(yes)  15 Price (0,11.7,19.5,…,497.25, 563.55)/100 
5 Whether doctor recommends 0(no),1(yes)    (36 unique values) 
6 Test cost {0,10,20,30}/10        

       
Pizza A: attributes 1-8;  Pizza B: attributes 1-16 (No ASC)  Holiday A: attributes 1-8; Holiday B: attributes 1-16 (No ASC) 
  Attributes Levels    Attributes Levels 

1 Gourmet  -1 (Traditional),1(Gourmet)  1 Price -1($999), 1 ($1200) 
2 Price -1 ($13),1 ($17)  2 Overseas destination  -1(Australia), 1(Overseas) 
3 Ingredient freshness -1 (some canned),1(all fresh ingredients) 3 Airline -1(Qantas), 1(Virgin) 
4 Delivery time -1(45 mins),1(30 min)  4 Length of  stay -1(7 days), 1(12 days) 
5 Crust -1(thin),1(thick)  5 Meal inclusion -1(no), 1(yes) 
6 Sizes  -1(single size),1(3 sizes)  6 Local tours availability -1(no), 1(yes) 
7 Steaming hot -1(warm),1(steaming hot)  7 Peak season -1(off-peak), 1(peak) 
8 Late open hours -1(till 10 pm.), 1 (till 1 am.)  8 4-star Accommodation -1(2-star), 1 (4-star) 
9 Free delivery charge -1($2),1 (free)  9 Length of Trip -1(3 hours), 1 (5 hours) 

10 Local store -1(chain),1(local)   10 Cultural activities -1(Historical sites), 1 (museum) 
11 Baking Method -1(traditional),1(wood fire)  11 Distance from hotel to attractions -1 (200m), 1 (5km) 
12 Manners -1(friendly),1(polite & friendly)  12 Swimming pool avail. -1(no), 1(yes) 
13 Vegetarian availability -1(no),1(yes)  13 Helpfulness -1(helpful), 1(very helpful) 
14 Delivery time guaranteed -1(no),1(yes)  14 Individual tour -1 (organized tour), 1 (individual) 
15 Distance to the outlet -1(in other suburb),1(in own suburb)  15 Beach availability -1(no), 1(yes) 
16 Range/variety availability -1(restricted menu),1(large menu)  16 Brand -1(Jetset), 1 (Creative Holidays) 
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Table 2 (continued) 
Charge card A & B (no transaction option  for Card A)         
  Attributes Levels       
1 ASC for credit card 0,1    
2 ASC for debit card 0,1    
3 ASC for transaction card 0,1    
4 Annual fee (-70,-30,10,70)/10    
5 Transaction fee (-.5, -.3, .1, .5)*10    
6 Permanent overdraft facility     

   credit:  0 (N/A)    
   debit/trans:  -1(Available), 1(Not available)    
7 overdraft interest free days (up to) (-30, 5, 15, 30 )/10    
8 Interest charged on outstanding (-.075, -.035, .015, .075)*100    

  credit/overdraft     
9 Interest earned on positive balance     

   credit: (-.025, .025)*100    
   debit/trans: 0.015*100    
10 Cash advance interest rate     
   credit: (-.035, -.005, .015, .035 )*100    
   debit/trans: 0.015*100    
       Location and shop access  (omited EFTPOS + telephone + internet + mail, use world wide)   
11 (1) Nowhere else, use Australia wide -1,0,1    
12 (2) EFTPOS + telephone + internet + mail, -1,0,1    
       use Australia wide     
13 (3) Nowhere else, use world wide -1,0,1    
14 Loyalty scheme 0(None), 1(Frequent Flyer/Fly Buys and other rewards) 
15 Loyalty scheme annual fees (-40,40)/10 if Loyalty scheme = 1; 0 if Loyalty scheme = 0 
16 Loyalty scheme points earning -1(points on outstanding balance interest paid on), 1(points on purchases only) 
17 Merchant surcharge for using card (-.03, -.01, .01, .03 )*100    
18 Surcharge for transactions at other banks ATM     
   credit: -1.5    
   debit/trans: (-1.5, -.5, .5, 1.5)    
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Table 3: Tay Sachs Disease (TS) and Cystic Fibrosis (CF) test: Jewish sample (3 ASCs) 
 
                                                
 MNL  S-MNL  MIXLa  G-MNLa  Latent classb  MM-MNLc 
    (with R.E.)        class 1 class 2 class 3  class 1 class 2 
  est s.e.   est. s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e. est. s.e.   est. s.e. est. s.e. 
                        
ASC for TS test -0.57 0.14  -0.57 0.20  -0.67 0.47  -0.17 0.41  -0.33 0.36 -0.64 0.28 2.64 2.16  -0.74 0.31 -0.69 0.33 
ASC for CF test -0.82 0.15  -0.88 0.22  -0.74 0.42  -0.27 0.36  -0.39 0.30 -0.92 0.35 3.18 2.35  -0.69 0.34 -0.86 0.34 
ASC for both tests -0.08 0.15  0.01 0.27  -0.38 0.52  0.01 0.45  -0.98 0.31 -0.42 0.29 6.26 2.63  -0.42 0.36 0.64 0.36 
                        
TS cost   -2.51 0.24  -3.45 0.34  -4.75 0.63  -5.62 0.78  -2.03 0.40 -5.20 0.68 -1.78 1.21  -3.00 0.42 -9.38 1.64 
CF cost   -1.43 0.13  -1.96 0.20  -3.24 0.38  -3.57 0.42  -1.46 0.22 -3.03 0.30 -2.50 1.29  -2.19 0.27 -6.30 1.01 
Both cost   -1.20 0.07  -2.70 0.17  -3.65 0.26  -4.25 0.37  -1.88 0.14 -4.77 0.32 -1.94 0.44  -2.59 0.26 -4.86 0.51 
Recommend   0.33 0.04  0.56 0.06  0.95 0.13  1.00 0.19  0.43 0.10 0.64 0.08 0.72 0.89  0.56 0.12 0.92 0.16 
Inaccuracy   -0.12 0.02  -0.15 0.03  -0.14 0.09  -0.36 0.10  -0.29 0.06 -0.12 0.04 -0.55 0.26  -0.27 0.08 -0.19 0.09 
Form   0.07 0.04  0.12 0.05  0.28 0.16  0.15 0.19  -0.21 0.10 0.19 0.08 -0.43 0.41  -0.05 0.15 0.45 0.20 
Own risk of TS 0.50 0.03  1.05 0.08  1.39 0.12  1.67 0.18  1.43 0.12 0.81 0.08 0.96 0.45  1.64 0.13 0.46 0.10 
Own risk of CF 0.47 0.04  1.02 0.07  1.26 0.12  1.50 0.18  1.30 0.09 0.77 0.12 0.66 0.22  1.54 0.11 0.37 0.10 
                        
τ    0.64 0.06     0.45 0.08             
γ          0.11 0.15             
                        
Class probability             0.29 0.03 0.27 0.03 0.10 0.02  0.62 0.04 0.38 0.04 
                        
No. of parameters 11   18   77   79   59       45    
LL -3717     -2815     -2500     -2480     -2701             -2620       
AIC 7455   5666   5154   5118   5521       5330    
BIC 7523   5777   5626   5601   5882       5605    
CAIC 7534     5795     5703     5680     5941             5650       
 
Notes: a estimates from correlated coefficient specification; b estimates from LC with 5 classes; c estimates from MM-MNL with 2 independent normals. Bold estimates 
are statistically significant at 5%.



 40

Table 4: Tay Sachs Disease (TS) and Cystic Fibrosis (CF) test: General population sample (3 ASCs) 
 
                                                
 MNL  S-MNL  MIXLa  G-MNLa  Latent classb  MM-MNLc 
    (with R.E.)        class 1 class 2 class 3  class 1 class 2 
  est s.e.   est. s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e. est. s.e.   est. s.e. est. s.e. 
                        
ASC for TS test -2.18 0.13  -3.17 0.20  -3.24 0.32  -3.29 0.31  -5.89 3.53 -2.57 0.53 -1.28 0.37  -2.74 0.46 -3.02 0.26 
ASC for CF test -1.92 0.12  -2.92 0.21  -2.61 0.33  -2.64 0.29  -4.86 3.98 -1.90 0.52 -0.19 0.36  -1.27 0.57 -2.57 0.24 
ASC for both tests -1.49 0.13  -3.63 0.27  -3.13 0.44  -3.73 0.40  -4.42 3.17 -3.73 0.51 0.19 0.40  0.80 0.62 -3.65 0.26 
                        
TS cost   -1.12 0.25  -1.39 0.25  -2.71 0.50  -2.99 0.52  1.28 5.43 -1.42 0.66 -0.96 0.51  -9.89 1.35 -1.13 0.43 
CF cost   -0.73 0.10  -0.87 0.11  -2.17 0.30  -2.56 0.32  -0.76 4.33 -0.75 0.28 -1.27 0.20  -10.55 1.79 -0.98 0.18 
Both cost   -0.51 0.06  -1.11 0.10  -2.13 0.23  -2.27 0.22  -2.82 6.98 -1.08 0.19 -1.34 0.17  -4.39 0.59 -1.26 0.14 
Recommend   0.35 0.03  0.61 0.05  0.95 0.12  0.94 0.12  0.14 1.03 0.45 0.15 0.27 0.11  1.08 0.17 0.68 0.12 
Inaccuracy   0.02 0.02  0.05 0.02  0.10 0.07  0.02 0.06  -0.32 0.52 -0.18 0.12 0.10 0.05  -0.53 0.15 0.07 0.06 
Form   0.06 0.03  0.08 0.04  0.25 0.10  0.21 0.13  0.29 0.69 -0.12 0.18 -0.15 0.10  -0.16 0.15 0.21 0.12 
Own risk of TS 0.39 0.03  0.91 0.07  1.06 0.11  1.26 0.13  0.56 1.03 1.94 0.15 0.30 0.09  0.15 0.13 1.27 0.07 
Own risk of CF 0.37 0.03  0.88 0.06  0.99 0.10  1.16 0.10  0.40 0.54 1.65 0.14 0.20 0.08  -0.13 0.17 1.23 0.07 
                        
τ    0.89 0.07     0.56 0.07             
γ          0.64 0.08             
                        
Class probability             0.22 0.03 0.18 0.03 0.17 0.03  0.505 0.03 0.495 0.03 
                        
No. of parameters 11   18   77   79   83       45    
LL -4649     -3221     -2946     -2914     -3016             -3022       
AIC 9320   6477   6047   5986   6197       6134    
BIC 9390   6591   6535   6487   6723       6420    
CAIC 9401     6610     6612     6566     6806             6465       
 
Notes: a estimates from correlated coefficient specification; b estimates from LC with 7 classes; c estimates from MM-MNL with 2 independent normals. Bold estimates 
are statistically significant at 5%.
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Table 5: Mobile phones (1 ASC) 
 
                                                
 MNL  S-MNL  MIXLa  G-MNLa  Latent classb  MM-MNLc 
    (with R.E.)        class 1 class 2 class 3  class 1 class 2 
  est s.e.   est. s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e. est. s.e.   est. s.e. est. s.e. 
                        
ASC for purchase -0.80 0.05  -0.35 0.12  -0.50 0.11  -0.46 0.12  -1.15 0.14 -2.96 0.27 1.49 0.26  0.22 0.25 -1.31 0.20 
                        
No voice comm. 0.04 0.04  0.06 0.05  0.04 0.05  0.04 0.06  0.02 0.08 0.03 0.31 0.07 0.11  0.07 0.08 -0.02 0.12 
Voice dialing 0.08 0.04  0.05 0.06  0.10 0.05  0.09 0.06  0.08 0.09 0.23 0.26 -0.12 0.12  0.12 0.08 0.10 0.12 
Voice operation -0.12 0.04  -0.11 0.06  -0.13 0.05  -0.12 0.06  -0.21 0.10 -0.37 0.39 0.07 0.11  -0.08 0.08 -0.21 0.14 
No push to com. 0.06 0.04  0.12 0.06  0.05 0.05  0.06 0.06  0.05 0.10 -0.22 0.32 0.18 0.12  0.07 0.08 0.05 0.12 
Push to talk 0.03 0.04  0.03 0.07  0.05 0.05  0.07 0.06  0.17 0.09 -0.21 0.39 0.05 0.14  0.00 0.09 0.12 0.11 
Push to share pics/video -0.02 0.04  -0.08 0.07  -0.02 0.05  -0.04 0.06  -0.23 0.11 0.51 0.28 -0.06 0.13  0.05 0.09 -0.18 0.13 
Personal e-mail -0.07 0.04  -0.04 0.06  -0.08 0.05  -0.07 0.06  -0.15 0.10 0.32 0.27 0.03 0.13  -0.03 0.09 -0.13 0.13 
Corporate e-mail 0.09 0.04  0.08 0.07  0.08 0.05  0.08 0.06  0.10 0.08 0.00 0.31 -0.01 0.14  0.06 0.09 0.09 0.11 
both e-mails -0.05 0.04  -0.08 0.06  -0.03 0.05  -0.04 0.06  0.08 0.09 -0.41 0.39 -0.05 0.13  -0.11 0.09 0.08 0.12 
WiFi 0.001 0.02  -0.02 0.03  -0.002 0.03  -0.01 0.03  0.08 0.06 0.05 0.17 -0.08 0.07  -0.07 0.05 0.09 0.07 
USB Cable/Cradle 0.06 0.03  0.08 0.04  0.07 0.03  0.08 0.03  0.05 0.06 -0.01 0.18 0.20 0.08  0.08 0.05 0.07 0.07 
Themometer 0.07 0.03  0.05 0.03  0.07 0.03  0.08 0.03  0.05 0.05 0.00 0.18 0.10 0.06  0.11 0.05 0.02 0.07 
Flashlight 0.05 0.03  0.01 0.03  0.05 0.03  0.04 0.03  0.16 0.06 -0.10 0.17 -0.03 0.08  -0.02 0.05 0.18 0.07 
Price/100 -0.32 0.02  -1.02 0.16  -0.76 0.06  -0.88 0.10  -0.04 0.05 -0.64 0.20 -2.06 0.21  -1.57 0.20 -0.05 0.08 
                        
τ    1.45 0.15     0.66 0.18             
γ          0.01 0.49             
                        
Class probability             0.32 0.03 0.28 0.03 0.22 0.03  0.67 0.05 0.33 0.05 
                        
No. of parameters 15     17     30     32     63             61       
LL -4475     -3990     -3971     -3966     -3952             -3927       
AIC 8980   8014   8002   7996   8030       7976    
BIC 9074   8121   8190   8197   8426       8359    
CAIC 9089     8138     8220     8229     8489             8420       
 
Notes: a estimates from uncorrelated coefficient specification; b estimates from LC with 4 classes; c estimates from MM-MNL with 2 independent normals. Bold 
estimates are statistically significant at 5%. 
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Table 6: Pizza A (No ASC) 
 
                                                
 MNL  S-MNL  MIXLa  G-MNLa  Latent classb  MM-MNLc 
            class 1 class 2 class 3  class 1 class 2 
  est s.e.   est. s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e. est. s.e.   est. s.e. est. s.e. 
                                               
Gourmet  0.02 0.02  0.03 0.04  0.03 0.05  0.45 0.22  -0.01 0.05 0.02 0.02 0.08 0.10  0.02 0.07 0.14 0.47 
Price -0.16 0.02  -0.19 0.05  -0.35 0.06  -1.67 0.65  -0.20 0.06 -0.16 0.03 -0.39 0.09  -0.18 0.06 -4.63 2.71 
Ingredient freshness 0.48 0.03  1.45 0.29  0.96 0.08  4.65 1.69  1.57 0.09 0.12 0.06 0.30 0.16  0.59 0.08 13.47 7.73 
Delivery time 0.09 0.03  0.16 0.08  0.16 0.05  0.74 0.35  0.10 0.09 0.10 0.04 0.32 0.09  0.06 0.05 3.95 2.36 
Crust 0.02 0.03  0.01 0.04  0.02 0.06  0.42 0.26  -0.12 0.06 0.01 0.05 -0.30 0.09  -0.06 0.08 1.18 1.05 
Sizes  0.09 0.03  0.12 0.06  0.20 0.05  0.81 0.37  0.15 0.07 0.06 0.04 0.23 0.11  0.23 0.07 0.92 0.81 
Steaming hot 0.38 0.03  1.02 0.24  0.87 0.08  4.46 1.64  0.50 0.08 0.12 0.06 1.60 0.18  0.50 0.08 9.85 5.76 
Late open hours 0.04 0.02  0.08 0.06  0.07 0.05  0.29 0.17  0.09 0.08 0.06 0.03 0.02 0.07  0.12 0.06 -0.97 0.72 
                        
τ    1.69 0.18     1.79 0.24             
γ          0.01 0.01             
                        
Class probability             0.36 0.04 0.32 0.04 0.23 0.04  0.57 0.04 0.43 0.04 
                        
No. of parameters 8     9     16     18    35             33       

LL -1657     -1581     -1403     -1373    -1418             -1328       

AIC 3330   3179   2838   2782   2907       2722    

BIC 3378   3233   2933   2889   3115       2919    

CAIC 3386     3242     2949     2907    3150             2952       
 
Note:  a estimates from uncorrelated coefficient specification; b estimates from LC with 4 classes; c estimates from MM-MNL with 2 independent normals. Bold 
estimates are statistically significant at 5%. 
 

*γ
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Table 7: Holiday A (No ASC) 
 
                                                
 MNL  S-MNL  MIXLa  G-MNLa  Latent classb  MM-MNLc 
            class 1 class 2 class 3  class 1 class 2 
  est s.e.   est. s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e. est. s.e.   est. s.e. est. s.e. 
                        
Price -0.16 0.02  -0.17 0.03  -0.33 0.04  -0.74 0.12  -0.35 0.05 -0.17 0.06 -0.16 0.03  -0.35 0.06 -0.30 0.07 
Overseas destination  0.09 0.02  0.17 0.02  0.23 0.06  0.32 0.11  0.12 0.04 0.29 0.06 0.01 0.05  0.27 0.06 0.21 0.17 
Airline -0.01 0.02  -0.05 0.02  -0.02 0.03  -0.1 0.06  -0.03 0.04 -0.01 0.08 -0.03 0.04  0.00 0.06 -0.04 0.07 
Length of  stay 0.26 0.02  0.35 0.04  0.52 0.04  1.24 0.19  0.56 0.05 0.36 0.10 0.05 0.04  0.57 0.07 0.61 0.10 
Meal inclusion 0.27 0.02  0.31 0.03  0.56 0.04  1.29 0.2  0.73 0.06 0.28 0.07 0.07 0.08  0.71 0.09 0.38 0.08 
Local tours availability 0.09 0.02  0.09 0.03  0.19 0.03  0.45 0.09  0.24 0.05 0.23 0.07 -0.01 0.04  0.32 0.07 0.02 0.08 
Peak season 0.03 0.02  -0.004 0.03  0.06 0.03  0.14 0.07  0.05 0.05 0.03 0.10 0.02 0.03  0.06 0.06 0.06 0.07 
4-star Accommodation 0.44 0.02  0.65 0.05  0.86 0.06  1.99 0.29  0.49 0.04 1.50 0.11 0.13 0.06  1.23 0.12 0.41 0.06 
                        
τ    0.97 0.08     1.19 0.10             
γ          0.00 0.18             
                        
Class probability             0.34 0.04 0.26 0.03 0.18 0.03  0.58 0.04 0.42 0.04 
                        
No. of parameters 8   9   16   18   44       33    
LL -3066     -2967     -2553     -2519     -2502             -2464       
AIC 6149   5952   5139   5074   5092       4994    
BIC 6201   6011   5244   5192   5354       5211    
CAIC 6209     6020     5260     5210     5398             5244       
 
 
Note:  a estimates from uncorrelated coefficient specification; b estimates from LC with 5 classes; c estimates from MM-MNL with 2 independent normals. 
Bold estimates are statistically significant at 5%. 
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Table 8: Papsmear test (1 ASC) 
 
                                                
 MNL  S-MNL  MIXLa  G-MNLa  Latent classb  MM-MNLc 
            class 1 class 2 class 3  class 1 class 2 
  est s.e.   est. s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e. est. s.e.   est. s.e. est. s.e. 
                        
ASC for test -0.40 0.14  -0.60 0.37  -1.26 0.30  -0.80 0.31  -1.59 0.22 4.31 9.57 -1.37 0.34  -0.16 0.43 -1.35 1.10 
                        
If know doctor 0.32 0.09  0.63 0.14  0.78 0.18  0.68 0.21  0.02 0.27 -1.34 9.51 1.27 0.13  0.20 0.28 2.15 1.21 
If doctor is male -0.70 0.09  -1.24 0.16  -1.39 0.30  -1.99 0.32  -0.18 0.25 0.90 4.55 -0.75 0.27  -0.40 0.23 -6.14 1.46 
If test is due 1.23 0.10  2.74 0.29  3.26 0.31  3.35 0.42  3.15 0.16 2.67 12.80 0.88 0.22  3.20 0.41 3.82 0.65 
If doctor recommends 0.51 0.10  0.74 0.17  1.33 0.23  1.65 0.31  1.57 0.18 0.62 15.60 0.52 0.27  1.31 0.38 1.53 0.69 
Test cost -0.08 0.04  -0.17 0.07  -0.22 0.09  -0.28 0.09  -0.18 0.09 -0.50 1.85 -0.23 0.14  -0.16 0.12 -0.45 0.34 
                        
τ    0.81 0.11     1.00 0.11             
γ          0.01 0.38             
                        
Class probability             0.37 0.05 0.20 0.04 0.19 0.04  0.70 0.07 0.30 0.07 
                        
No. of parameters 6   8   12   14   34       25    
LL -1528     -1063     -945     -935    -958             -923       
AIC 3069   2143   1914   1897   1985       1896    
BIC 3104   2189   1984   1979   2183       2042    
CAIC 3110     2197     1996     1993    2217             2067       
 
 
Notes: a estimates from uncorrelated coefficient specification; b estimates from LC with 5 classes; c estimates from MM-MNL with 2 independent normals. Bold 
estimates are statistically significant at 5%. 

*γ
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Table 9: Pizza B (No ASC) 
 
                                               
 MNL  S-MNL  MIXLa  G-MNLa  Latent classb  MM-MNLc 
            class 1 class 2 class 3  class 1 class 2 class 3 
  est s.e.   est. s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e. est. s.e.   est. s.e. est. s.e. est. s.e. 
                          
Gourmet  0.01 0.01  0.05 0.01  0.01 0.02  0.03 0.03  0.01 0.02 0.02 0.07 0.09 0.05  -0.03 0.04 -0.12 0.07 0.37 0.08 
Price -0.17 0.01  -0.25 0.02  -0.30 0.03  -0.79 0.07  -0.04 0.02 -1.71 0.09 0.24 0.11  -0.10 0.04 -0.86 0.10 -0.17 0.13 
Ingredient freshness 0.21 0.01  0.36 0.03  0.34 0.03  1.05 0.08  0.10 0.02 0.46 0.06 2.17 0.19  0.12 0.03 0.29 0.07 1.02 0.13 
Delivery time 0.03 0.01  0.04 0.02  0.05 0.02  0.15 0.04  0.02 0.02 0.14 0.10 -0.03 0.16  0.02 0.03 0.19 0.07 0.14 0.08 
Crust 0.08 0.01  0.09 0.01  0.08 0.03  0.59 0.06  -0.04 0.01 -0.05 0.04 0.31 0.08  -0.03 0.03 0.62 0.09 0.15 0.07 
Sizes  0.07 0.01  0.08 0.02  0.11 0.02  0.23 0.03  0.05 0.02 0.19 0.07 0.28 0.07  0.06 0.03 0.31 0.07 0.26 0.09 
Steaming hot 0.20 0.01  0.35 0.03  0.34 0.02  1.15 0.09  0.10 0.02 0.22 0.07 0.67 0.07  0.11 0.03 0.37 0.06 1.43 0.17 
Late open hours 0.04 0.01  0.02 0.02  0.08 0.02  0.08 0.04  0.04 0.01 0.06 0.06 0.07 0.10  0.01 0.02 0.29 0.07 0.19 0.06 
Free delivery charge 0.12 0.01  0.15 0.02  0.20 0.02  0.56 0.06  0.11 0.01 0.56 0.04 0.15 0.08  0.22 0.05 0.26 0.06 0.28 0.07 
Local store 0.08 0.01  0.06 0.02  0.15 0.02  0.42 0.05  0.14 0.01 -0.01 0.07 0.10 0.12  0.09 0.03 0.43 0.07 0.08 0.08 
Baking Method 0.07 0.01  0.07 0.02  0.11 0.02  0.25 0.04  0.06 0.01 0.16 0.07 0.29 0.07  0.01 0.03 0.32 0.06 0.35 0.11 
Manners 0.01 0.01  -0.004 0.02  0.02 0.02  0.01 0.04  0.03 0.02 0.03 0.08 -0.06 0.11  0.03 0.03 -0.06 0.08 0.11 0.11 
Vegetarian availability 0.09 0.01  0.06 0.01  0.13 0.03  0.34 0.06  0.02 0.02 0.15 0.04 0.04 0.11  0.04 0.03 0.35 0.09 0.04 0.07 
Delivery time guaranteed 0.07 0.01  0.07 0.02  0.11 0.02  0.15 0.04  0.08 0.02 0.17 0.05 0.12 0.12  0.14 0.04 0.07 0.08 0.19 0.07 
Distance to the outlet 0.06 0.01  0.04 0.02  0.09 0.02  0.10 0.04  0.09 0.02 0.11 0.07 -0.12 0.10  0.11 0.04 0.09 0.07 0.06 0.07 
Range/variety availability 0.06 0.02  0.04 0.02  0.09 0.02  0.14 0.05  0.07 0.03 0.03 0.07 0.07 0.10  0.10 0.03 0.03 0.07 0.19 0.08 
                          
τ    1.22 0.08     1.26 0.06               
γ          0.01 0.01               
                          
Class probability             0.51 0.03 0.14 0.02 0.12 0.02  0.41 0.03 0.31 0.03 0.28 0.03 
                          
No. of parameters 16   17   32   34   101       98      
LL -6747     -6607     -5892     -5689     -5591             -5310           
AIC 13525   13249   11849   11446   11385       10815      
BIC 13641   13372   12081   11693   12118       11527      
CAIC 13657     13389     12113     11727     12219             11625           

 
Notes: a estimates from uncorrelated coefficient specification; b estimates from LC with 6 classes; c estimates from MM-MNL with 3 independent normals. Bold 
estimates are statistically significant at 1%. 
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Table 10: Holiday B (No ASC) 
 
                                               
 MNL  S-MNL  MIXLa  G-MNLa  Latent classb  MM-MNLc 
            class 1 class 2 class 3  class 1 class 2 class 3 
  est s.e.   est. s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e. est. s.e.   est. s.e. est. s.e. est. s.e. 
                                                    
Price -0.16 0.01  -0.16 0.01  -0.25 0.02  -0.34 0.02  -0.15 0.02 -0.18 0.04 -0.27 0.04  -0.45 0.04 -0.12 0.05 -0.16 0.03 
Overseas destination  0.08 0.01  0.12 0.01  0.12 0.02  0.24 0.03  -0.01 0.02 0.02 0.03 0.25 0.04  0.42 0.05 -0.10 0.07 0.06 0.03 
Airline -0.02 0.01  -0.02 0.01  -0.03 0.01  -0.03 0.02  -0.03 0.02 -0.09 0.04 0.00 0.07  -0.04 0.03 0.03 0.04 -0.08 0.03 
Length of  stay 0.18 0.01  0.19 0.01  0.29 0.02  0.40 0.02  0.09 0.02 0.41 0.03 0.19 0.05  0.65 0.05 0.28 0.06 0.11 0.03 
Meal inclusion 0.20 0.01  0.24 0.02  0.34 0.02  0.46 0.03  0.09 0.02 0.54 0.04 0.23 0.08  0.74 0.04 0.25 0.04 0.12 0.02 
Local tours availability 0.07 0.01  0.08 0.01  0.11 0.01  0.17 0.02  0.02 0.02 0.21 0.03 0.21 0.05  0.21 0.03 0.20 0.05 0.02 0.02 
Peak season 0.003 0.01  0.02 0.01  0.001 0.01  -0.01 0.02  -0.02 0.01 0.04 0.03 0.07 0.05  0.02 0.03 -0.05 0.04 0.01 0.03 
4-star Accommodation 0.34 0.01  0.54 0.03  0.50 0.02  0.69 0.03  0.12 0.02 0.64 0.04 1.75 0.06  0.58 0.04 1.14 0.07 0.18 0.03 
Length of Trip -0.02 0.01  -0.03 0.01  -0.03 0.01  -0.03 0.02  -0.03 0.02 -0.11 0.04 0.03 0.06  -0.07 0.03 0.02 0.03 -0.04 0.02 
Cultural activities -0.05 0.01  -0.05 0.01  -0.09 0.01  -0.12 0.01  -0.07 0.01 -0.10 0.03 -0.11 0.06  -0.06 0.03 -0.14 0.04 -0.10 0.03 
Distance to attractions -0.08 0.01  -0.07 0.01  -0.12 0.01  -0.17 0.02  -0.06 0.01 -0.18 0.03 -0.11 0.06  -0.21 0.03 -0.12 0.04 -0.11 0.03 
Swimming pool avail. 0.09 0.01  0.09 0.01  0.15 0.01  0.23 0.02  0.00 0.02 0.19 0.03 0.15 0.04  0.43 0.04 0.08 0.04 0.02 0.02 
Helpfulness 0.04 0.01  0.03 0.01  0.06 0.01  0.07 0.02  0.03 0.02 0.08 0.04 -0.07 0.08  0.10 0.03 0.07 0.04 0.03 0.02 
Individual tour 0.07 0.01  0.07 0.01  0.13 0.02  0.20 0.02  -0.02 0.02 0.01 0.03 0.20 0.04  0.00 0.03 0.61 0.06 0.01 0.03 
Beach availability 0.11 0.01  0.10 0.01  0.18 0.01  0.22 0.02  0.06 0.02 0.20 0.04 0.10 0.06  0.33 0.04 0.12 0.04 0.13 0.03 
Brand 0.001 0.01  -0.01 0.02  0.003 0.02  0.004 0.02  0.00 0.03 0.01 0.04 0.02 0.08  -0.01 0.03 -0.01 0.05 0.01 0.03 
                          
τ -   1.13 0.05  -   0.72 0.04               
γ          0.01 0.02               
                          
Class probability             0.27 0.02 0.15 0.02 0.14 0.01  0.39 0.02 0.33 0.02 0.28 0.02 
                          
No. of parameters 16     17     32     34     152             98           
LL -13478     -13027     -11600     -11476     -11231             -11012           
AIC 26988   26088   23263   23019   22766       22219      
BIC 27116   26224   23519   23291   23981       23002      
CAIC 27132     26241     23551     23325     24133             23100           

 
Notes: a estimates from uncorrelated coefficient specification; b estimates from LC with 9 classes; c estimates from MM-MNL with 3 independent normals. Bold 
estimates are statistically significant at 1%. 
 

*γ



 47

Table 11: Charge Card A (2 ASCs) 
 
                                             
 MNL  S-MNL  MIXLa  G-MNLa  Latent classb  MM-MNLc 
            class 1 class 2 class 3  class 1 class 2 
  est s.e.   est. s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e. est. s.e.   est. s.e. est. s.e. 
                        
ASC for credit -0.85 0.08  -0.90 0.18  -1.31 0.27  -1.31 0.27  -2.83 0.24 0.50 0.23 1.98 0.38  -19.99 13.72 2.16 0.38 
ASC for debit -0.99 0.08  -1.22 0.18  -2.07 0.31  -2.05 0.32  -3.54 0.24 1.64 0.21 0.36 0.44  -30.00 20.73 2.34 0.38 
                        
annual fee -0.08 0.01  -0.13 0.01  -0.18 0.02  -0.19 0.02  -0.11 0.02 -0.11 0.02 -0.08 0.02  -1.16 0.81 -0.18 0.04 
trans fee -0.53 0.07  -0.82 0.11  -1.34 0.20  -1.37 0.21  -1.25 0.21 -0.51 0.17 -0.75 0.32  -8.72 6.15 -0.71 0.27 
overdraft facility 0.28 0.06  0.43 0.09  0.70 0.15  0.75 0.16  0.79 0.17 -0.10 0.15 0.88 0.30  5.59 4.09 0.32 0.21 
overdraft free days 0.04 0.02  0.06 0.02  0.07 0.03  0.07 0.03  0.04 0.04 0.04 0.04 0.11 0.06  0.45 0.43 0.06 0.05 
interest charged -0.43 0.06  -0.67 0.09  -1.00 0.15  -1.01 0.16  -0.70 0.15 -0.54 0.13 -0.50 0.20  -7.11 5.10 -0.68 0.22 
interest earned 0.04 0.01  0.04 0.02  0.06 0.03  0.06 0.03  0.03 0.03 0.07 0.03 -0.02 0.05  0.23 0.28 0.05 0.04 
access_1  -0.05 0.02  -0.08 0.02  -0.05 0.03  -0.06 0.03  -0.01 0.03 -0.10 0.04 -0.12 0.07  -0.12 0.25 -0.17 0.06 
access_2  -0.21 0.05  -0.31 0.08  -0.42 0.13  -0.39 0.12  -0.33 0.14 -0.20 0.13 -0.31 0.21  -3.08 2.25 -0.34 0.16 
access_3 0.06 0.05  0.11 0.07  0.22 0.11  0.23 0.11  0.15 0.12 -0.11 0.14 0.20 0.18  3.60 2.58 0.01 0.16 
cash advance interest -0.06 0.05  -0.12 0.08  -0.29 0.13  -0.34 0.14  -0.29 0.14 0.01 0.12 -0.08 0.23  -2.24 1.83 -0.02 0.17 
loyal scheme 0.26 0.06  0.33 0.08  0.44 0.14  0.47 0.15  0.43 0.14 0.29 0.13 0.33 0.17  1.11 1.35 0.32 0.20 
loyal fee -0.03 0.01  -0.05 0.01  -0.06 0.02  -0.06 0.02  -0.05 0.02 -0.02 0.03 -0.06 0.04  -0.55 0.41 -0.09 0.04 
loyal point -0.04 0.04  0.04 0.06  0.07 0.09  0.07 0.09  0.02 0.10 0.02 0.10 0.19 0.18  1.41 1.12 -0.02 0.15 
merchant surcharge -0.02 0.01  -0.07 0.02  -0.08 0.03  -0.08 0.03  -0.09 0.03 -0.06 0.03 -0.04 0.06  -0.45 0.37 -0.09 0.05 
surcharge at other ATM -0.10 0.04  -0.17 0.06  -0.20 0.11  -0.19 0.11  -0.12 0.12 -0.21 0.10 -0.12 0.18  -0.17 0.75 -0.29 0.14 
                        
τ    0.40 0.17     0.21 0.24             
γ          0.50 0.56             
                        
Class probability             0.48 0.02 0.27 0.03 0.19 0.03  0.62 0.02 0.38 0.02 
                        
No. of parameters 17   21   51   53   71       69    
LL -3354     -2768     -2735     -2734     -2732             -2714       
AIC 6742   5579   5572   5574   5606       5567    
BIC 6846   5707   5883   5898   6039       5988    
CAIC 6863     5728     5934     5951     6110             6057       
 
Notes: a estimates from correlated coefficient specification; b estimates from LC with 4 classes; c estimates from MM-MNL with 2 independent normals. Bold estimates 
are statistically significant at 1%. 
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Table 12: Charge Card B (3 ASCs) 
 
                                     
 MNL  S-MNL  MIXLa  G-MNLa  Latent classb  MM-MNLc 
            class 1 class 2 class 3  class 1 class 2 
  est s.e.   est. s.e.   est. s.e.   est. s.e.   est. s.e. est. s.e. est. s.e.   est. s.e. est. s.e. 
                        
ASC for credit -0.97 0.07  -0.83 0.18  -1.29 0.24  -1.29 0.24  -2.98 0.22 0.19 0.33 -0.12 0.35  -1.75 0.25 9.19 15.05 
ASC for debit -1.29 0.08  -1.47 0.20  -1.99 0.27  -1.99 0.27  -3.76 0.23 0.58 0.30 0.53 0.32  -2.29 0.28 -2.93 7.07 
ASC for transaction -1.32 0.08  -1.59 0.21  -2.12 0.29  -2.12 0.29  -3.63 0.23 0.10 0.32 1.23 0.30  -2.54 0.29 2.72 6.72 
                        
annual fee -0.10 0.01  -0.16 0.01  -0.22 0.02  -0.22 0.02  -0.17 0.02 -0.28 0.03 -0.04 0.01  -0.23 0.02 -1.56 2.34 
trans fee -0.61 0.07  -0.94 0.10  -1.32 0.17  -1.32 0.17  -1.10 0.20 -1.66 0.32 -0.15 0.21  -1.30 0.19 -12.43 19.31 
overdraft facility 0.30 0.06  0.42 0.08  0.48 0.11  0.48 0.11  0.20 0.14 0.53 0.19 0.16 0.17  0.40 0.12 6.30 9.71 
overdraft free days 0.06 0.02  0.09 0.02  0.10 0.03  0.10 0.03  0.06 0.04 0.28 0.06 0.10 0.05  0.05 0.03 2.34 3.59 
interest charged -0.56 0.06  -0.80 0.08  -0.90 0.12  -0.90 0.13  -0.45 0.16 -0.90 0.21 -0.91 0.20  -0.57 0.13 -20.00 30.41 
interest earned 0.02 0.01  0.02 0.02  0.02 0.02  0.02 0.02  0.02 0.03 0.13 0.05 -0.02 0.03  0.03 0.03 0.38 0.76 
access_1 -0.01 0.02  0.00 0.02  -0.01 0.03  -0.01 0.03  -0.05 0.04 0.11 0.06 -0.08 0.07  0.03 0.04 -1.91 3.07 
access_2 -0.21 0.05  -0.35 0.07  -0.44 0.10  -0.44 0.10  -0.25 0.13 -0.67 0.17 0.02 0.14  -0.65 0.12 7.59 11.84 
access_3 0.13 0.05  0.19 0.06  0.32 0.09  0.32 0.09  0.28 0.12 0.62 0.17 -0.05 0.13  0.59 0.11 -11.97 18.43 
cash advance interest -0.19 0.05  -0.32 0.06  -0.45 0.11  -0.45 0.11  -0.42 0.14 -0.90 0.22 -0.07 0.15  -0.68 0.12 5.34 8.55 
loyal scheme 0.24 0.05  0.37 0.07  0.46 0.11  0.46 0.11  0.37 0.14 0.36 0.17 0.51 0.15  0.37 0.13 10.73 16.01 
loyal fee -0.02 0.01  -0.04 0.01  -0.04 0.02  -0.04 0.02  -0.05 0.02 -0.05 0.03 -0.03 0.03  -0.07 0.02 0.54 0.97 
loyal point -0.03 0.04  -0.06 0.06  -0.06 0.08  -0.06 0.08  -0.02 0.09 -0.20 0.16 -0.08 0.12  0.01 0.09 -2.02 3.43 
merchant surcharge -0.06 0.01  -0.08 0.02  -0.13 0.03  -0.13 0.03  -0.15 0.03 -0.01 0.05 -0.07 0.04  -0.13 0.03 -0.86 1.49 
surcharge at other ATM -0.07 0.03  -0.11 0.04  -0.19 0.07  -0.19 0.07  -0.24 0.10 0.07 0.11 -0.08 0.08  -0.18 0.08 -3.94 6.22 
                        
τ    0.38 0.12     0.00 0.19             
γ          0.99 171             
                        
Class probability             0.44 0.02 0.21 0.02 0.19 0.02  0.72 0.04 0.28 0.04 
                        
No. of parameters 18   25   54    56    75       74    
LL -4100     -3402     -3364     -3364     -3391             -3329       
AIC 8236   6854   6836   6840   6933       6806    
BIC 8346   7007   7166   7182   7391       7258    
CAIC 8364     7032     7220     7238     7466             7332       
Notes: a estimates from correlated coefficient specification; b estimates from LC with 4 classes; c estimates from MM-MNL with 2 proportional covariance normal. Bold 
estimates are statistically significant at 1%.
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Table 13: Comparing Model Fit Across Data Sets 
 

 MNL S-MNL MIXL G-MNL LC MM-MNL 
Tay Sachs Disease # parameters 11 18 77 79 59 45 

 & Cystic Fibrosis test LL -3717 -2815 -2500 -2480 -2701 -2620 
Jewish sample AIC 7455 5666 5154 5118 5521 5330 

 (3 ASCs) BIC 7523 5777 5626 5601 5882 5605 
T = 16; N = 210 CAIC 7534 5795 5703 5680 5941 5650 

Tay Sachs Disease # parameters 11 18 77 79 83 45 
 & Cystic Fibrosis test LL -4649 -3221 -2946 -2914 -3016 -3022 

General population AIC 9320 6477 6047 5986 6197 6134 
 (3 ASCs) BIC 9390 6591 6535 6487 6723 6420 

T = 16, N = 261 CAIC 9401 6610 6612 6566 6806 6465 
  # parameters 15 17 30 32 63 61 

Mobile phone LL -4475 -3990 -3971 -3966 -3952 -3927 
 (1 ASC) AIC 8980 8014 8002 7996 8030 7976 

T = 8; N = 493 BIC 9074 8121 8190 8197 8426 8359 
  CAIC 9089 8138 8220 8229 8489 8420 
  # parameters 8 9 16 18 35 33 

Pizza A  LL -1657 -1581 -1403 -1373 -1418 -1328 
(No ASC) AIC 3330 3179 2838 2782 2907 2722 

T=16; N = 178 BIC 3378 3233 2933 2889 3115 2919 
  CAIC 3386 3242 2949 2907 3150 2952 
  # parameters 8 9 16 18 44 33 

Holiday A LL -3066 -2967 -2553 -2519 -2502 -2464 
 (No ASC) AIC 6149 5952 5139 5074 5092 4994 

T=16; N = 331 BIC 6201 6011 5244 5192 5354 5211 
  CAIC 6209 6020 5260 5210 5398 5244 
  # parameters 6 8 12 14 34 25 

Papsmear test  LL -1528 -1063 -945 -935 -958 -923 
(1 ASC) AIC 3069 2143 1914 1897 1985 1896 

T = 32; N = 79 BIC 3104 2189 1984 1979 2183 2042 
  CAIC 3110 2197 1996 1993 2217 2067 
  # parameters 16 17 32 34 101 98 

Pizza B  LL -6747 -6607 -5892 -5689 -5591 -5310 
(No ASC) AIC 13525 13249 11849 11446 11385 10815 

T = 32; N = 328 BIC 13641 13372 12081 11693 12118 11527 
  CAIC 13657 13389 12113 11727 12219 11625 
  # parameters 16 17 32 34 152 98 

Holiday B LL -13478 -13027 -11600 -11476 -11231 -11012 
 (No ASC) AIC 26988 26088 23263 23019 22766 22219 

T = 32; N = 683 BIC 27116 26224 23519 23291 23981 23002 
  CAIC 27132 26241 23551 23325 24133 23100 
  # parameters 17 21 51 53 71 69 

Credit card A  LL -3354 -2768 -2735 -2734 -2732 -2714 
(2 ASCs) AIC 6742 5579 5572 5574 5606 5567 

T = 4; N = 827 BIC 6846 5707 5883 5898 6039 5988 
  CAIC 6863 5728 5934 5951 6110 6057 
  # parameters 18 25 54  56  75 74 

Credit card B  LL -4100 -3402 -3364 -3364 -3391 -3329 
(3 ASCs) AIC 8236 6854 6836 6840 6933 6806 

T = 4; N = 827 BIC 8346 7007 7166 7182 7391 7258 
 CAIC 8364 7032 7220 7238 7466 7332 
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Table 14: BIC gain of MM-MNL over G-MNL from different types of observed choice pattern from Pizza B dataset 
 
 

   
Totally indifferent 

 for 'other' attributes 
Also like some  

'other' attributes 
Also like many  

'other' attributes 
                 
 Attribute preferences   BIC gain of   BIC gain of   BIC gain of 
   Freq MM-MNL over G-MNL Freq MM-MNL over G-MNL Freq MM-MNL over G-MNL 
 Extremely prefer one attribute               

(1) One of major attributes 39  74  42  -31  17 -29 
 (price, fresh ingredient, crust, hot or vegetarian)               

(2) One of minor attributes 17  196  12  40  16 15 
 (other attributes)               
                 
 Extremely prefer 2 attributes               

(3) both in major attributes 9  -33  14  -7  5 -26 
(4) 1 in major and 1 in minor attributes 5  29  21  10  10 -10 
(5) both in minor attributes 6  52  3  34  7 15 

                 
 Extremely prefer 3 or more attributes               

(6) 2 in major attributes      12  -32  2 -1 
(7) 1 in major and 1 in minor attributes      7  6  3 -5 
(8)) 2 in minor attributes      1  12      

                 
 Not extreme               

(9) like at least 3 of major attributes 2  -11  17  -48  6 -27 
(10) like 2 of major attributes 1  -4  44  -50  10 0 

                       
 

 


