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Abstract 

Statistical inference in multinomial multiperiod probit models has been hindered in the 
past by the high dimensional numerical integrations necessary to form the likelihood 
functions, posterior distributions, or moment conditions in these models. We describe 
three alternative estimators, implemented using simulation-based approaches to infer- 
ence, that circumvent the integration problem: posterior means computed using Gibbs 
sampling and data augmentation (GIBBS), simulated maximum likelihood (SML} es- 
timation using the G H K  probability simulator, and method of simulated moment 
(MSM) estimation using GHK.  We perform a set of Monte-Carlo experiments to 
compare the sampling distributions of these estimators. Although all three estimators 
perform reasonably well, some important differences emerge. Our  most important 
finding is that, holding simulation size fixed, the relative and absolute performar-<, of the 
classical methods, especially SML, gets worse when serial correlation in disturbances is 
strong. In data sets wtth an AR(I) parameter of 0.50, the RMSEs for SML and MSM 
based on G H K  with 20 draws exceed those of GIBBS by 9% and 0%. respectively. But 
when the AR(I) parameter is 0.80, the RMSEs for SML and MSM based on 20 draws 
exceed those of GIBBS by 79% and 37%, respectively, and the number of draws needed 
to reduce the RMSEs to within I0% of GIBBS are 160 and 80 respectively. Also. the 
SM L estimates of serial correlation parameters exhibit significant downward bias. Thus, 
while conventional wisdom suggests that 20 draws of G HK is "enough" to render the bias 
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and noise induced by simulation negligible, our results suggest that much larger simula- 
tion sizes are needed when serial correlation in disturbances is strong. (.t~, 1997 Elsevier 
Science S.A. 

Kevn'ords: Bayesian inference; Discrete choice; Gibbs sampling; Method of simulated 
moments; Simulated maximum likelihood; Panel data 
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1. Introduction 

Discrete economic choices are often made repeatedly over several time peri- 
ods. Examples include the. choice of which brand of a frequently purchased 
product category to buy on each successive ourchase occasion and which of 
several industries or occupations to work in during each year of one's life. 
A multinomial multiperiod probit (MMP) model can be a reasonable frame- 
work for studying choice behavior in such situations. However, the very high 
dimensional integrations necessary to form the likelihood function, posterior 
distribution, or momer, t conditions for inference in the M M P  model have until 
recently precluded its application. Rapid advances in simulation-based ap- 
proaches to inference (McFadden, 1989; Pakes and Pollard, 1989; Keane, 1994a; 
McCulloch and Rossi, 1994) have now made both classical and Bayesian 
mference feasible. These advances have led to several interesting applications of 
the MMP model. These include sequential models of the decision to work 
(Keane, 1994a), brand choice (Elrod and Keane, 1995, Keane, 1994b, McCulloch 
and Rossi, 1994), choice of residential location (Hajivassiliou et al., 1996), and 
the probability a country will default on loans (Hajivassiliou and McFadden, 
1994L 

Despite this burgeoning list of applications, there has been no systematic 
comparison of the sampling distributions of alternative estimators in the MMP 
model in samples representative of these applications. The goal of the present 
paper is to provide such a comparison. First, we describe estimators based on 
three alternative approaches to inference: simulated maximum likelihood (SML) 
estimation using the Geweke-Hajivassiliou-Keane (GH K) recursive probability 
simulator, method of simulated moment IMSM) estimation using the GHK 
simulator, and posterior means computed using Gibbs sampling and data 
augmentation (GIBBS). We perform a set of Monte-Carlo experiments to 
compare the sampling distributions of the respective estimators. The experi- 
mental design allows the impact of three important features of the data on the 
performance of the methods to be assessed: (1 ~ serial correlation of the random 
components of utility, (2) serial correlation of the exogenous variables, and (3) 
contemporaneous cross-alternative correlations of the random components of 
utility. 
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Besides features of the data, it is also important to consider how simulation 
size affects results. In the first set of experiments we hold the number of draws 
used to implement the GHK probability simulator fixed at 20. We choose 20 
because conventional wisdom suggests this number is sufficient to render the 
bias intrinsic to the SML estimator negligible. For instance, Brrseh-Supan and 
Hajivassiliou (1993) conclude that 'In our Monte Carlo experiment, 20 replica- 
tions were sufficient to produce a negligible bias', z,n.~ this conclusion has been 
influential. In fact, existing applications of SML generally use 20 or fewer draws. 
In a second set of experiments, we examine how performance of the classical 
estimators is affected by the number of draws used to implement the G H K  
probability simulator. In both experiments we set the number of cycles of the 
Gibbs sampler at 5000, since we find that this is sufficient to render the 
simulation noise in the posterior means very small as a fraction of root mean 
square error (RMSE). 

Although all three estimators perform reasonably well in our experiments, 
some important differences emerge. Our most important finding is that, holding 
simulation size fixed, the relative and absolute performance of the classical 
methods, especially SML, gets worse when serial correlation in disturbances is 
strong. Consider the RMSEs of the SML and MSM point estimates and GIBBS 
posterior means around the data generating parameter values. In data sets with 
an AR(I) parameter of 0.50, the RMSEs for SML and MSM based on G H K  
with 20 draws exceed those of GIBBS by 9% and 0%, respectively. But when the 
AR(I) parameter is 0.80, the RMSEs for SML and MSM based on 20 draws 
exceed those of GIBBS by 79% and 37%, respectively, and the number of draws 
needed to reduce the RMSEs to within 100,~ of GIBBS are 160 and 80 respec- 
tively. Furthermore, the SML estimates of serial correlation parameters exhibit 
significant downward bias and this becomes insignificant only when 160 to 320 
draws are used. Thus, contrary to conventional wisdom, 20 draws is not nearly 
'enough" when serial correlation is strong. 

This is the first systematic study of the performance of simulation-based 
approaches to inference in the M M P model in representative samples. There are 
five precursors of this work that are worth noting. Brrsch-Supan and Hajivas- 
siliou (1993) considered the distribution of the SM L estimates of a single slope 
parameter in a cross-section trinomial probit model (with all other parameters 
held fixed at true values) using a single artificial data set, but varying the draws 
used in constructing the G H K  simulator. McCulloch and Rossi (I 994) provide 
Gibbs sampling data augmentation algorithms for the cross-section and panel 
probit models with random coefficients, but they do not allow for serial correla- 
tion in disturbances or compare sampling distributions ofalternative estimators, 
Geweke et at. (1994) compared the sampling distributions of the SML, MSM 
and GIBBS estimators in the single-period multinomial probit model. Keane 
(1994a) studied the sampling distributions of the MSM and SML estimators 
based on the GHK probability simulator in the multiperiod probit model. 
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However,  he only considered binomial probit  models, did not  consider Bayesian 
methods, and did not  evaluate the influence of simulation size on  the perfor- 
mance of the alternative methods. Hajivassiliou and McFadden  (1994) s tudy 
sampling distributions of S M L  and simulated score estimators in the multi- 
period binomial probit model. 

in Section 2 we describe the M M P  model. Section 3 describes the SML and 
MSM estimators. In Section 4 we describe the GIBBS estimator. Section 5 lays 
out  the design of  our  Monte-Car lo  study, Section 6 presents results, and Section 
7 concludes. 

2. The model 

Assume that agents choose among a set of  J mutually exclusive alternatives in 
each of  T time periods. If individual i chooses alternative j at time t, he/she 
derives utility 

U o , = X ; j ,  flj+~:i# ( J =  1 . . . . .  J ; t =  1 . . . . .  T),  

where X 0, is a p ×  1 vector of  exogenous variables, /~j is a p x l vector of 
corresponding coefficients, and e.~jt is a r andom shock to utility that is known to 
the agent but  not  to the econometrician.  Cho ice j  is made at t ime t if Uor > U m  
for all k ~ j .  The  econometr ic ian observes the choice 

d~j t=.~l  i f i  chooses j a t  time t 
otherwise, 

but not the utility of any choice. The  M M P  model is obtained by assuming 

g i  ~ (g..i! 1 ,  " ' "  , g ' i J l ,  " ' "  , g i l T ,  ""  ,~ i . t r ) '  "~" IIDN(0,E),  E = [-o'i~ ]. 

Since choices only depend on utility differences, it is conventional  to measure 
utility relatice to alternative J. Since the scale of  utilities is indeterminate,  it is 
also conventional to normalize by setting the variance of the error term correspond- 
ing to the first alternative in the transformed model equal to one. Thus, we define 

U*, = (U O, -- U/a,)(tr t t + aj~ -- 2tr t j ) -  1/2 

= [ ( X ; j ,  t l j  - X ; j , # ~ )  + (~:/j, - ~ :u , ) ] (61 ,  + 0"11  - -  20"t j ) -  ,/2 

= x * ; f l ~  + ~* ,  ( j  = 1 . . . . .  a ;  t = 1 . . . . .  r ) ,  (2.1) 

where X~t ( j  -- 1 . . . . .  J )  is the appropr ia te  t ransformation o f X i j t ( j  = 1 . . . .  , J )  
and f l ' ~ ( j=  1 . . . . .  J )  is the appropria te  t ransformation of f l j ( j  = i . . . . .  J). 
(Notice that U~5, = 0 and ~5, = 0.) We further define 

£ ~  = ( 8 i l ,  . . . . . .  L J -  I .  t . . . . .  & / I T  . . . . .  P ' i . J - , .  T)' 

~.~ ,.0 IIDN(O,'~*), E* --- loCI ,  (2.2) 
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where Y-* is the correspo-,,ding appropr ia te  t ransformation of  X; by construc- 
tion, al ' l  = I. 

In the notat ion of the transformed model, choice j is made  at time t if 

Ui*, > Ui*, for all k ¢-j  (j  = 1 . . . . .  J). (2.3) 

in order  to have a compact  nota t ion for the sequence of choices observed for 
person i, define 

d a  = ( d i l ,  . . . .  , d i j , ) ,  dt = (d~t . . . . .  di,), and j ,  = { j ld i j ,  = 1}. (2.4) 

If P(d~) denotes the probabil i ty that  i chooses the sequence dl, 

P(d f )  = P(U~j, . ,  > Ui*, V k  ~ Ji,, t -- ! ,  . . . ,  T )  

v * , a * _ X * ,  t~*Vk ¢ j i , ,  ( t =  1, T) ' ] .  = P [~,.*i,., - e l ,  > - ~ , , , v k  , j , . , , - j ,  - - . ,  

If the ~ ,  are serially independent,  then this is the product  of  T integrals each 
of  dimension J -- I. However,  if the e*~ are serially correlated, this is in general 
a T ( J -  l) variate integral. As T and /o r  J grow, inference requiring exact 
evaluation of such integrals rapidly becomes infeasible. Much o.f the earlier work 
on the M M P  model sought to avoid this problem by imposing low-order  factor 
structures on ~*.  Fo r  example, if a r andom effects structure is imposed, the 
order  of  integration is reduced to 2 ( J - -  1). The  goal of  simulation~based 
inference is to allow a richer covariance structure to be used. 

In this paper  we consider a special case of  the model (2.1)-(2.4) in which the 
~.r*~ are s tat ionary first-order autoregressive EAR(I)] processes and in which the 
X*t are divided into two sets of  covariates: a set -~*-t that  is constant  across 
alternatives (which can be thought  of  as containing characteristics of agent i) 
and a set Zi*t that varies across alternatives (which can be thought  of  as 
containing attributes of  alternatives, such as price or  quality), but  for which the 
corresponding coefficients are restricted to be equal across alternatives. 

These decisions are motivated by a desire to s tudy models that are practical. 
Note  that even if the high-order integration problem can be solved by simula- 
tion techniques, unless J and T are both  quite small it is not  feasible to estimate 
an unrestricted ~ *  matrix which would contain T 2 ( J  - 1)2/2 free parameters.  
This motivates our  decision to study models in which the errors  follow a station- 
ary AR(1) process. Our  parti t ioning of the covariates into two types is motivated 
not  only by a desire to imitate applications, but  also by the fact that likelihood 
surfaces in the muitinomial probit  model tend to be very flat unless one  includes 
covariates that vary across alternatives (see Keane, 1990). 

We next set out  notat ion for the specific M M P  model used in our  experi- 
ments. Part i t ion each coefficient vector  fl~' -- (~[~", 7') reflecting cross-equation 
constraints of  the form employed in the experiments, and conformably part i t ion 
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= (Xo, ,  Z u,). F u r t h e r  define the  mat r ices  

[i o o [io o 2 ,  2*, ' ,  . . .  o p ~  - . -  o 

o - . 

0 .-- X;% 0 "'" pt. 

[ z?,; 

z* = ] Z?~, 
LZ~L 

where  L = d -- 1 a n d  Ipjl  < I [j  = 1 . . . .  ,L) .  C o n f o r m a b l y  def ine 

~ : , * =  " , u ~ , =  " , g * =  : , p =  . 

In ma t r i x  no ta t ion ,  the  m o d e l  is then  

u,*, 2"17" + z~.~ + * ~ -  F,  i t  • 

T h e  d i s t u rbances  ~:* fol low s t a t i o n a r y  AR( I )  processes:  

~:~ = Rr .~_ t + vi,, t'i, "-- IIDN(O, ~P), tp = etb~k]. 

Thus ,  the  vi, a re  serially uncor re l a t ed  but  co r re la ted  ac ros s  a l ternat ives .  Wi th  
this s t ruc ture ,  a ~  = ,/,jk/(l - PkP.i ]. T h e  a s s u m p t i o n  tha t  R is d i agona l  is specific 
to  the  n o r m a l i z a t i o n  on  cho ice  d in (2. I). In general ,  if R is d i agona l  for  the  given 
no rma l i za t i on ,  it will no t  be d i agona l  for  a l t e rna t ive  no rma l i za t ions .  T h e  d iag-  
ona l i ty  a s s u m p t i o n  m a d e  here  will be  m o s t  a p p e a l i n g  when  choice  J is a base l ine  
decision,  such  as a no  pu rchase  op t ion  in a b r a n d  choice  m o d e l  o r  a no w o r k  
: ,p t ion  in an  o c c u p a t i o n a l  cho ice  model ,  for  which  it is r e a sonab l e  to  a s s u m e  
util i ty is n o n r a n d o m .  

3. Classical approaches to inference 

3. !. Simulation o f  choice sequence probabilities 

Classical  e s t i m a t o r s  for the M M P  m o d e l  rely on  M o n t e - C a r l o  s imula t ion  o f  
the  choice  sequence  p robab i l i t i e s  P(dl) a n d  subs t i tu t ion  of  these s imula ted  
probabi l i t i e s  in to  l ike l ihood funct ions  or  m o m e n t  condi t ions .  In an extensive 
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study of alternative methods for simulation of multinomial orthant probabiht- 
ies, |lajivassiliou et al. (1992)conclude that the G H K  probability simulator, due 
to Keane (1990), Geweke (1991), and Hajivassiliou and McFadden (! 994L is the 
most accurate of all methods considered. Geweke et al. (1994), in a Monte-Carlo 
study of alternative simulation estimators in the single-period multinomial 
probit model, concluded that classical methods based on GHK substantially 
outperformed classical methods based on kernel smoothed probability simula- 
tors. For these reasons, we rely exclusively on G H K  to simulate choice probabil- 
ities when implementing classical estimators in this paper. In Appendix A we 
describe how to apply the GHK algorithm to simulation of choice sequence 
probabilities in the MMP model of Section 2. Below, we let P6HK(dil/~*, X*, X*) 
denote the GHK simulator of the probability of ~.[,oice sequence d~. 

3.2. Classical estimation methods 

The two classical estimation methods we consider are simulated maximum 
likelihood (SML) and method of simulated moments {MSM). The SML es- 
timator maximizes the simulated log-likelihood function, which is obtained 
simply by substituting GHK simulators of choice sequence probabilities into the 
log-likelihood function: 

N 

L([~*, E*) = ~ log P~nK(d;l/~*, X*, X*). 
i = t  

The SML estimator is consistent if M / ( N )  jlx -* oc as N --* o'z. (For proofs, 
see Lee, 1992, 1995; and Gourieroux and Monfort, I993.) 

Direct application of McFadden's (! 989) MSM estimator to the i M P model 
would involve indexing all possible choice sequences s = 1 . . . . .  j r and defining 
choice indicators d~ = 1 if i chooses sequence s and 0 otherwise. Then form the 
MSM estimator by solving the moment conditions: 

N j r  

E W,.[d,s - P ,,K X sM, = 0. 
/ = 1  s = l  

This MSM estimator is consistent for fixed M. This direct approach is not 
feasible because of the computational burden involved in simulating probabilit- 
ies of J r sequences and forming j r  weights. 

Keane (I 990) proposed the eomputationally feasible alternative of factoring 
the sequence probabilities into transition probabilities and forming the alterna- 
tive estimator: 

N T d 

Y w j, P .Kld, ,l,t, . . . . .  = 0 ,  
i = l  I = i  j = l  
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where the transition probabilities are simulated using ratios of GHK-simulated 
choice probabilities, 

PGaK (do, I di l . . . . .  di., - 1) - 
/~C.HK(dil . . . . .  d i . , -  t ,  dij,) 

PGH~(d. . . . . .  d,.,_ , )  

Although this gives a biased simulator of the transition probability, an MSM 
estimator of this form is consistent if M / ( N )  t/2 ~ ~ as N ~ ~ (see Keane, 
1994a). In addition, Keane (1994a) finds in a Monte-Carlo study that it has small 
sample properties superior to SML for the multiperiod binomial probit model, 
especially when serial correlation is strong. 

4. Bayesian inference using the Gibbs sampler 

Bayesian inference using the Gibbs sampler (Gelfand and Smith, 1990) and 
data augmentation (Tanner and Wong, 1987) has been applied to the M M P  
model by McCulloch and Rossi (1994). Our approach is similar, but differs in 
four respects: Here, all priors are proper whereas MeCulloeh and Rossi use 
improper priors fer fl*; we include autoregressive error components; stationar- 
ity is enforced through data augmentation of presample random utilities, rather 
than through explicit restrictions on E* (see step 2 below); and the coefficients of 
covariates are fixed ~ather than random. 

To provide a description of the Gibbs algorithm in generic notation, let 17, 
0 and Y denote vectors of latent utilities, model parameters, and observed choice 
data, respectively. Let p (0, ~1 Y ) denote the joint posterior density function for 
0 and 17 conditional on Y. Suppose there is a partition of the parameter vector 
0 into B subveetors, 0' =(0~1~ . . . . .  0~B~), such that the conditional posterior 
densities p(Oo~ I Oij ~, j ~ i, 17, Y ) and p( F I 0, Y) are of sufficiently simple form that 
it is practical to draw random subvectors tT,~ and 17 from these conditional 
densities. The Gibbs algorithm starts with an initial value (0 Ira, ~,lm) in the 
support of p(O, ~ I Y ) ,  and then draws in turn each of the subveetors 
]?, Ott ~ . . . . .  0~m from the appropriate conditional density. After each draw, the 
corresponding initial value subveetor is replaced by the new subveetor, until 
after a complete iteration an updated vector (0 ~ t ~ 17 ~ t ~) is obtained. After the ruth 
iteration we obtain the draw (0 Imp, 17t=~). As m grows larger the sample of (0, 17) 
draws converges in distribution to the joint posterior distribution. Posterior 
means for the elements 0 are then approximated using arithmetic averages ef the 
corresponding draws. 

To describe the implementation of the Gibbs algorithm in the M M P  
model, some minor changes and extension in notation are necessary. Let the 
U*, ,  X ~ , ,  .,jP*, and e.-*..,~, continue to denote the latent utilities, covariates, coeffi- 
cients, and disturbances of the transformed model, respectively, except that the 
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transformatios~ (2.1)is replaced by 

U L = ( U u ,  - Uij~) 

--u,~'~ "u, ( j = l , J ;  t =  I , T ) .  

The values of the fl* change accordingly, as does ~' = var(e* - Re* ,_  i ). The 
matrix R is unaffected. 

Since the restriction aT, = 1 has not been imposed, the parameters at this 
point are unidentified. In order to achieve identification, the following proper 
prior distributions were employed throughout  the experiments: 

/~* --~ N(0,1r);  ~, --~ N(0, IT); pj "-- TN(0.5,0.25); , p - t  ... W 0 0 / L ,  10). 

The proper prior distribution for ~ centers the ~jj,  which otherwise would be 
identified only up to a scale factor, about 1.0. This in turn induces a proper 
posterior distribution for the/~* and 7, even if the priors for these coefficients 
were flat and improper. (This technique was introduced by McCuUoch and 
Rossi (I 994).) The posterior distribution of these parameters induces a posterior 
distribution on g * =  vat(e*), with aj* = ~jt,/(1 -p jp~) .  Using the normaliz- 
ation set forth in Section 2, parameters of interest are ~ '  (oi '])- t/z (j = 1 . . . . .  L); 
"/(~Tt )- l/z; p~ fo r j  = 1 . . . . .  L; and the elements of the upper triangular matrix 
A*, where A* 'A*  = (a*~)-t ,p. To make drawings from the posterior distribu- 
tions of these functions it is necessary only to transform the drawings of  the ~*, 
~, p j .  and ~'. in the experiments we will see that posterior s tandard deviations 
are very ~mall relative to the priors, and on this basis it is reasonable to 
conjecture that results would be quite similar for other diffuse but proper priors. 

We employ a six-block Gibbs sampling da ta  augmentat ion algorithm in 
which the blocks are: (1) ~he latent utilities U ' t ;  (2) the presample values of the 
errors, e~0; (3) the p j; (4) '~be matrix ~; (5) the vector fl* = (]I*', . . . .  /~/~')'; and (6) 
the 7. Although McCulloch and Rossi (1994) descr,.'be the structure of a Gibbs 
sampling data augmentat ion algorithm for a M M P  model with random effects, 
the complications introduced by our  addition of autoregressive error compo- 
nents are sufficiently great (including the addition of  the new blocks 2 and 3 and 
changes necessary in other blocks) that we provide a detailed description of the 
algorithm for the present model in Appendix B. 

In our  experiments, the first 200 Gibbs iterations were discarded to allow 
"burn in' from the initial drawing from the prior distribution. Inspection of these 
iterations showed that parameter values moved from well outside the concentra- 
tion of the posterior distribution to its concentration in fewer than 100 iter- 
ations. Arithmetic averages of the parameters of interest over the next m = 5000 
iterations were used to approximate posterior means. The standard errors of  
these Monte-Carlo approximations were asse.~.,.ed as described in G~.weke 
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(1992). Typical ly,  this s t anda rd  e r ro r  was less than  10% o f  the pos te r ior  
s t a n d a r d  devia t ion for the exper iments  under taken .  

T h e  a p p r o x i m a t e  pos te r io r  means  ob ta ined  via the G i b b s  sampl ing  da t a  
a u g m e n t a t i o n  a lgo r i thm cons t i tu te  the G I B B S  es t imators  that  we c o m p a r e  with 
the S M L  and  M S M  est imators .  Pos te r io r  means ,  given the priors  assumed,  
cons t i tu te  well-defined es t imators  with sampl ing- theore t ic  propert ies.  Thus,  ou t  
a p p r o a c h  here is del iberately frequentist.  A truly subjective Bayesian wou ld  
have no  reason to  enter ta in  e i ther  the M S M  or  S M L  methods ,  and  wou ld  have 
little interest in pos ter ior  means  given pr iors  o f  convenience.  

5. Experimental design 

In o u r  M o n t e - C a r l o  experiments ,  we cons ider  a three a l ternat ive  model  
(d  = 3~ with T = 10. We  cons t ruc t  20 artificial da t a  sets o f  size N = 500 using 
the da t a  genera t ing  process:  

u*l ,  -- 0.5 + 1 x *  + I Z * ,  + ~:~, 

u & ,  -- - 1.2 + i x ? ,  + 1z?,2 + ,:*, 

and  of  course,  U*3r = 0.0 by o u r  normal iza t ion .  The  r a n d o m  shocks  to  utility 
evolve acco rd ing  to  

~:*n = p l s * l . , -  i + v , ,  

~:,'*z, = p,_~:*,..,- t + vi2, 

,',,,l--[' o ]r,,,,,l 
vi2,_l a]~- " w/l--(a]~2} 2 Lq;2, J 

with tl~r ~ I IDN(0 ,  1(I - p 2 } ) .  In all the genera ted  data ,  Pt = P., = P. In the 
no ta t ion  o f  Sect ion 2, 

lq '  = ( 0 5 ,  1, i)' ,  / ;*  = ( - 1.2,  1, i)' 

x~*i,, = x * , , ,  - x ~ ,  x,*,,,_ = z * , , ,  x~ , ,_  =_ z*2,  

[~% = 1 ~  - 7, 

where  X~u refers to  the lth e lement  of  the X.*. vector.  The  regressors are  ~dg 
cons t ruc t ed  as follows: 

X *  = ~btti + (1 - O-')t/ '  o~, (t = 1 . . . . .  TJ  

Zi*,, = ~b~O 0 + (I --  ~b2}~tz~ u, ( j  = !,2; t = ! . . . . .  T ) 
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with 

0 < ~b < !, lti "-~ IIDN(0, lk wit ~ IIDN(0,  I), ~ij ",~ I1DN(0, 1), 

~jr "-- IIDN~,O, 1). 

In our  first experiment, we set the number  of  draws used to form the G H K  
simulator at 20, and consider 12 different data  structures given by the 3 x 2 × 2 
full factorial design, 

p, = P2 -- 0.50 or  0.80; a~'2  = 0.50 or  0.80; ~b-" = 0 or  0.50 or  0.80. 

These correspond to 'low" and "high" serial correlat ion and cross correlat ion in 
the random elements of  utility and "no', 'low', and "high" serial correlat ion in the 
exogenous variables, respectively, in the second experiment we vary the number  
of draws used to implement G H K ,  using two of the these data  structures (chosen 
as described in Section 6.2). 

6. Results 

6.1. Experiment I - -  effect o f  data structure on petformance o f  the estimators 

The results of  the Monte-Car lo  experiments based on the 12 different data  
structures are reported in Tables 1-12. Fo r  GIBBS we report: (1) the mean of the 
posterior  means across the 20 replications, ~; (2) the RMSE of the posterior 
means a round the data  generating values; and (3) the mean of the posterior 
s tandard deviation across the 20 replications, PSD. F o r  S M L  and MS M we 
report three statistics for each parameter  in each model: (!)  the mean of  the point  
estimates across the 20 replications, 0; (2) the root  mean square er ror  (R MSE) of 
the point estimates a round the data  generating values; and (3) the mean of the 

asymptotic  s tandard errors across the 20 replications, ASE. In the remainder  of  
this section, we compare  the performance of  the different estimators in each 
experiment, focussing on RMSE as the criterion of performance. We also 

examine the ASE and PSD, because, for purposes of inference, it is desirable that 
ASE or  PSD be similar to RMSE. 

In Table 1 we consider 20 artificial da ta  sets generated from the data  structure 
in which Pi = P2 = 0.50, a]'2 ---- 0,50, and q)2 = 0. This is the case of  low serial 
and cross correlat ions of  the disturbances combined with no serial correlat ion in 
the covariates. For  GIBBS and MSM, the ~ are close to the data  generating 
values for all 9 model parameters.  SML, on the other  hand, while producing 
estimates close to the data  generating values for most model parameters,  
exhibits severe bias in estimatipg the AR(I) parameters.  In particular, the mean 
SM L point estimate of  p2 is 0.376, while the data  generating value is 0.500. If we 
use the empirical RMSEs divided by (20) t/z to form t-tests for the estimated 
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deviat ions of  mean point  est imates (or mean  poster ior  means) f rom da ta  
generat ing values, highly s'~gnificant biases are found ['or the S M L  estimates of 
all covar iance  matr ix  paramete rs  (a 'z ,  a~z, Pt ,  P2)- N o  significant biases are 
found for the M S M  estimates. For  the GIBBS estimates,  marginal ly  significant 
biases are found only for P2 and  ill*z. 

In a compar i son  of  RMSEs,  G I B B S  has an edge over  the classical methods,  it 
p roduces  the smallest R M S E  for six of  the nine model  parameters .  Exceptions 
are fl]'z and fl~2 for which the RMSEs  of the M S M  point  est imates are smallest, 
and  fl~'t for which the R M S E  of the S M L  point est imates is smallest. Another  
clear pa t te rn  is that for M S M  the RMSE and the ASE are in close agreement  
for most  model parameters .  But for SML, the ASE are substantial ly below 
the R M S E  for the covar iance  matr ix  parameters .  Interestingly, the ASE 
for M S M  and the P S D  for G I B B S  are in very close agreement .  Given that  the 
R M S E s  for G I B B S  are generally lower than for MSM,  this also means  that for 
GIBBS the PSDs are generally a bit above  the cor responding  RMSEs.  

Ra ther  than  describing Tables  2-12 with the same level o f  detail  devoted to 
Table  1, we instead point  out  certain b road  patterns.  As we move  across 
Tables  ~ -3, the serial correlat ion in the covar ia tes  is increasing (~b 2 increases 
from 0 to 0.50 to 0.80) while o ther  things are held constant .  F o r  mos t  model  
parameters ,  the R M S E s  for all three methods  have a tendency to rise as 
~b 2 increases. The exception involves the p, for which the RMSEs  fall as 
~b 2 increases. It also appea r s  that  the RMSEs  for the S M L  estimates improve  
relative to those for other  methods  as ~b 2 increases, 

In Tables  4 -6  the AR(I)  pa ramete rs  are increased (Pt and  P2 are set at  0.80). 
Again, as we move  across Tables  4-6, serial correlat ion in the covar ia tes  is 
increasing. C o m p a r i n g  Tables  4 -6  with Tables  1-3, we see that  the increase in 
the p generally causes RMSEs  to rise, This  is especially true for MSM.  But for 
M S M  and GIBBS,  the increase in the p causes the RMSEs  for the p to fall. This 
is not true for SML. Again, as in Tables  1-3, the RMSEs  rise as ~2 increases. 

In Tables  7-9  the degree of serial correlat ion in the dis turbances is returned to 
the Table  I -3  level (with Pt and  p_, being set at 0.50), but  the cross correlat ion of  
the errors  is increased (a~'2 is set at  0.80). There  is no obvious  impact  on the 
overall  level of  the RMSEs  as com pa red  to Tables  1-3. However ,  there is 
a substant ial  relative improvemen t  for SM L in the ~± -- 0 case of Table  7, where 
it p roduces  the best RMSE for seven of nine parameters .  And there is a substan-  
tial relative improvemen t  for M S M  in the 02 --- 0.80 case of  Table  9, where it 
produces  the best R M S E  for four of  nine parameters .  These improvement s  in 
relative per formance  for S M L  and MSM do not  extend to o ther  cases. 

In Tables  10-12 the degrees of  serial and  cross corre la t ion in the errors  are 
bo th  set at the 'h igh '  level (Pl --~ P2 --- 0.80, aT2 = 0.801. A compar i son  of  Tables  
10-12 with Tables  4 -6  isolates the impact  of  increasing cross correlat ion when 
serial correlat ion in the errors  is fixed at the high level. This  leads to a clear 
reduction in the RMSE for the p as est imated by SML,  but  not for other  
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methods. Comparison of Tables 10-12 with Tables 7-9 isolates the impact of 
increasing serial correlation in the errors when cross correlation is fixed at the 
high level. This causes an increase of the RMSE for all parameters and for all 
methods, except for the p, for which the RMSEs decrease for GIBBS and MSM, 
but not for SML. 

In Table 13 we present a regression that summarizes the relative performance 
of the estimators. The dependent variable is the log RMSE of the estimates for 
a parameter in one of the experiments. The right hand side variables are 
intercept and dummies for parameter, method of inference, and different levels of 
the treatments (that is, the degrees of serial and cross correlation in the errors, 
and the degree of serial correlation in the regressors), along with interactions of 
the treatment dummies with an indicator for whether the parameter is a p and 
interactions of method of inference with parameter and treatment levels. The 
intercept in the regression corresponds to the base case of GIBBS estimates for 
I' in the model with p = 0.50, a~'2 = 0.50, and ~b = 0. 

The coefficient on MSM-GHK of 0.165 indicates that the RMSEs for the 
MSM estimates of 7 tend to be roughly I6% greater than the RMSEs of the 
GIBBS posterior means. For SML the corresponding estimate is roughly 4%. 
By looking at the interactions of the parameter dummies with the method of 
inference, we can determine if the relative performance of the methods in terms 
of RMSEs differs systematically across parameters. The parameter with 
SML-GHK interactions produces some striking results. The interactions in- 
volving p~ and P2 have coefficients of 0.767 and 0.909 and are significant at the 
1% level. Thus, the RMSEs of the SML point estimates for the serial correlation 
parameters are roughly 81% and 95% greater than those of the GIBBS poste- 
rior means. Also significant are the interactions involving the cross-correlation 
parameters a~2 and a~2, which are 0.191 and 0.280. Thus, the performance of 
SML relative to other methods deteriorates substantially for these parameters 
as well. 

Also of interest are the coefficients on the treatment dummies. These were 
entered both individually and in interaction with a dummy (DEP - RHO) for 
whether the parameter is p~ or P2- This is because, as the above discussion of 
Tables 1-12 made clear, there are obvious differences in how the treatments 
affect the RMSEs for the p's vs. all other model parameters. Note that the 
estimated main effect for Pl = pz = 0.80 is 0.122. This indicates that raising the 
AR(I) parameters from 0.50 to 0.80 causes the RMSEs for GIBBS to rise by 
roughly 12% for parameters other than the p. However, the interaction of the 
P~ -- P2 -- 0.80 dummy with the p parameter dummy has a coefficient estimate 
of -- 0.421. This indicates that for the p parameters, raising the serial correlation 
in the errors causes the RMSE for GIBBS to fall by roughly 30%. 

An important result is that the interactions ofp~ -- Pz = 0.80 with MSM and 
SML are both significantly positive, at 0.129 and 0.142, respectively. This 
indicates that for MSM and SML the increases in RMSEs for model parameters 
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other  than  the p parameters  when serial correlat ion is s t rong are abou t  25 -26% 
(vs. I 2 %  for GIBBS),  while the drops  in RMSEs  for the p paramete rs  are 
only a b o u t  13-14%o (vs. 30%0 for GIBBS). Thus,  the performance  of M S M  
and  S M L  relative to GIBBS deteriorates substantial ly as serial correlat ion is 
increased. 

The  main  effects o f  the if2 = 0.50 and  ~b ~ = 0.80 t reatments  are 0.185 and 
0.468, indicating that  increasing serial correlat ion the regressors causes the 
R M S E s  for G I B B S  to rise. The  only one of  the interactions of  the ~b 2 = 0.50 and  
~b z = 0.80 t rea tments  with M S M - G H K  and S M L - G H K  that  is significant is the 
interact ion of ~b 2 = 0.80 with S M L - G H K .  This has a coefficient of  - 0.143, 
which indicates that the performance  of  S M L  relative to G I B B S  improves  as 
serial corre la t ion in the regressors increases. The interact ion of  ~b 2 = 0.80 with 
M S M - G H K  also has a negative coefficient o f  - 0.057, but this is not  significant. 

6.2. Experiment 2 - -  effect o f  simulation size 

In this exper iment  we consider  the effect of  the n u m b e r  of  draws used to 
construct  the G H K  s imula tor  on  the per formance  of  M S M  and SML.  In 
particular,  we want  to determine whether  the generally higher RMSEs  for S M L  
and MSM,  relative to GIBBS,  can be a t t r ibuted to an insufficient number  of  
draws in the G H K  algori thm. Thus,  we consider M S M  and S M L  es t imators  
implemented  using G H K  simulators  based on I0, 20, 40, 80, 160, 320, 640 and  
1280 draws. 

It is impract ical  to  repeat  the analysis using all 12 da ta  structures used in 
exper iment  1 and  all 8 al ternat ive simulat ion sizes. Instead,  we use the two data  
structures that  generate the lowest and highest R M S E s  for S M L  and MSM,  
relative to GIBBS.  The  last eight rows of  Table  13 indicate that  the best case for 
the classical es t imators  relative to G I B B S  is da ta  s tructure # 9, with low serial 
corre la t ion in disturbances,  high serial correlat ion in regressors, and  high cross 
correlat ion in disturbances.  Conversely,  the worst  case for S M L  and M S M  is 
data  s t ructure  ~ 4, in which these correlat ions are high, low, and low, respec- 
tively. 

in Table  .~4 we repor t  the results for SML,  using the same 20 artificial da ta  
sets generated with da ta  s tructure # 9 as were used in exper iment  1. For  each 
s imulat ion size, we also repor t  the average  (across parameters)  o f  R MSE relative 
to that  for the G I B B S  est imates based on m = 5000 iterations. We do  this 
because s tandard  methods  for evaluat ing the accuracy of  poster ior  momen t s  (see 
Geweke,  1992) indicate that,  with an = 5000, further G ibbs  i terations should 
produce  negligible changes in RMSE.  Thus,  the RMSEs  for G I B B S  provide 
a reasonable  benchmark.  

The  Tab le  14 results are roughly consmtent with the convent ional  wisdom 
reported in Br rsch-Supan  and Hajivassiliou (1993) that  S M L  based on G H K  
performs w e ,  using only 20 draws. The  mean  across all 9 model  parameters  of 
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T a b l e  13 
R o o l  m e a n  s q u a r e  e r r o r  c o m p a r i s o n  

C o v a r i a t e  P r e d i c t e d  R M S E  

Coeff. S td  E r r  t - r a t io  

I n t e r c e p t  --  3.633 0.064 --  56.493 
M S M - G H K  O. 165 0.090 1.846 
S M  L - G H K  0.043 0.090 0.483 

aI'2 0 .960 0.075 12.876 

a,*z 0.704 0.075 9.444 

p ~  - -  0.111 0.089 --  1.250 
p_? 0 .530 0.089 5.942 
/]~'t -- 0.421 0.075 --  5.643 
11.-'! 0.904 0.075 12.118 
/J*2 --  0.024 0.075 - 0.326 

[1~;2 0.846 0.075 11.342 

C o r r ( r / t ,  ff2f) = 0.80 0.009 0.037 --  0.237 

Pt  = P2 --- 0.80 0.122 0.037 3.303 
~2 = 0.50 0.185 0.045 4.095 
~2 = 0.80 0.468 0.045 10.384 

Corrf~ht ,  ~12,) = 0.80 x D E P  = R H O  0.051 0.049 1.O43 

Pt  = P2 = 0.80 × D E P  = R H O  - 0.421 0.049 - 8.615 
$ 2  = 0.50 × D E P  = R H O  - 0.383 0 .060 --  6.409 
~b 2 = 0.80 x D E P  = R H O  - 0.530 0.060 - 8.864 

a*2 x M S M - G H K  0.103 0.105 0.980 
a*2 x M S M - G H K  - 0.047 0,105 - 0.447 
p~' x M S M - G H K  --  0.021 0-105 - 0.196 

p~ × M S M - G H K  - 0 .034 0,105 - 0,326 

fll*t x M S M - G H K  - 0.015 0.105 - 0 ,140 
fl~, x M S M - G H K  0.061 0 . t 0 5  O,57a 

fit*_, x M S M - G H K  --O.181 0.105 --  1,713 
/J*, x M S M - G H K  - 0.195 0.105 --  1.852 

aT2 x S M L - G H K  0.191 0.105 1.812 
a ~  × S M L - G H  K 0.280 O. 105 Z 6 5 0  

p* x S M  L - G  H K 0.767 0.105 7.274 

p* x S M  L - G H  K 0.909 0.105 8.62 I 
[l[t x S M L - G H K  0.110 0.105 i .043 
/ ~ t  x S M L - G H K  0,108 0.105 ! .028 
fl~'2 x S M L - G H K  - 0.046 0.105 --  0.434 
tJ~2 x S M L - G H K  - 0.167 0.105 - 1.585 

C o r r P h , ,  ~lz,) = 0.80 x M S M - G H K  - 0.082 0.050 - 1.652 
Pt = Pz = 0.80 × M S M - G H K  0.129 0.050 2.597 
~b ~ --  0.50 x M S M - G H K  0.033 0.061 0.543 
~b 2 = 0.80 × M S M - G H K  - 0.057 0.061 - 0.938 

C o r r i r h , ,  ll2t) = 0.80 x S M L - G H K  - 0.129 0.050 - 2.585 
PL ---- P2 = 0.80 x S M L - G H K  0.142 0.050 2.865 
~b z = 0.50 × S M L - G H K  - O.G18 0.061 - 0,292 

q~-" = 0.80 × S M L - G H K  - 0.148 0.061 - 2.431 

Note :  D e p e n d e n t  va r i ab l e  is Iog (RMSE) .  D E P  = R H O  m e a n s  t ha i  the  d e p e n d e n t  va r i ab l e  fo r  tho  

o b s e r v a t i o n  is t he  I o g ( R M S E )  for  a p a r a m e t e r  p l  o r  p_,. c~., = p j ~ . , -  ~ + fit, c2., = P ,~2 . , -  t + t/_,, 
t:a. ~ ~ 0 .  
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the RMSE for SML is only 9% greater than GIBBS, and agreement between 
RMSE and ASE is generally good. The exceptions are Pt and p2, for which 
downward bias is noticeable and RMSEs are well above ASE. Noticeable 
improvements in RMSEs and in agreement between RMSEs and ASEs for the 
autoregressive parameters are achieved by increasing the number  of draws to 49 
or  80, but little is gained by going beyond that. 

Note  that for the slope parameters fl* and "2 there is little change in RMSE in 
going from 20 (or even 10) up to 1280 draws. Thus, the conventional  wisdom 
that "20 draws is enough" may well stem from th:  tendency to focus on such 
parameters  to the exclusion of the covariance structure parameters (in fact, 
recall that B6rsch-Supan and Hajivassiliou (1993) held the covariance structure 
parameters fixed at true values in their study}. But clearly, i ra M M P  mn,~ ,1 is to 
be used to model behavior, then the covariance parameters are every bit as 
important  as the slope parameters. 

The MSM results for data structure # 9 are reported in Table 15. When only 
20 draws are used MSM performs even better than SML. The mean across all 
nine model parameters of the RMSE is essentially identical to that for GIBBS, 
and the agreement between RMSE and ASE is generally good. in contrast  to 
SML, no downward bias is apparent  for Pt and P2, even when only 10 draws are 
used. This is consistent with findings in Keane (1994). Again, it appears that 
increasing the number  of draws beyond 20 leads to only minor improvements in 
RMSEs. 

In Table 16 we report  the results for SML using data  structure # 4 - the 
worsl ease for MSM and SML. These results sharply contradict  the conven- 
tional wisdom that '20 draws is enough'. Using only 20 draws, the mean RMSE 
for SML is roughly 79% greater than for GIBBS. Biases for all the covariance 
parameters are severe, especially for pt and P2. 160 draws are needed to reduce 
the RMSE for SML to less than 10 percent greater than GIBBS, and 640 draws 
are needed to reduce it to the same level as for GIBBS. But even here, for the 
slope parameters it appears that the i m p r o v c ~ n t s  in RMSE that are achieved 
by going past 20 draws are minor. 

The  MSM results for data  structure # 4 arc reported in Table 17. The 
performance of MSM in this worst case is much superior to that of SM L. Using 
20 draws, the mean RMSE for MSM is roughly 37% greater than for GIBBS. 
This is much better than the 79% figure achieved by SML. Even more impor- 
tantly, there is no evidence of bias, even when only 10 draws are used. This is 
again consistent with findings in Keane (1994). 

7. Conclusion 

We have compared the sampling properties of the GIBBS estimator obtained 
by using Gibbs sampling and data  augmentation to compute  posterior means, 
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the MS1H estimator using the G H K  probability simulator, and the SML estimator 
using the G H K  probability simulator. In a controlled Monte Carlo experiment 
we find that all three estimators perform reasonably well in point estimation of 
parameters of the data generating process in a three alternative 10-period multi- 
hernial multiperiod probit  model. However, the relative performance of the 
methods varies as we vary the treatment variables in our  experimental design. 

Four  important  patterns emerge in the response of RMSEs to the design 
variables. First, RMSEs for all estimation methods and model parameters rise as 
serial correlation in either the errors or in the covariates is increased, except for 
the AR(I) parameters, for which RMSEs fall. Second, RMSEs of the SML and 
MSM estimates rise substantially relative to those of the GIBBS estimates as 
serial correlation in the errors increases. Third, increasing serial correlation in 
the covariates leads to a small relative decrease in the RMSEs of  the SML 
estimates. Fourth,  increasing cross correlation of the errors leads to relative 
declines in the RMSEs of the SML and MSM estimators. 

Of  these patterns, we feel that the most important  to a user of these methods is 
the fact that, holding draws fixed, both the relative and absolute performance of 
the classical methods, especially SML, becomes worse as serial correlation in 
disturbances increases. In data  sets with an AR(I )parameter  of  O.50, the RMSEs 
for SML and MSM based on 20 draws exceed those oFGIBBS by 9% and 0°A, 
respectively. But when the AR(I) parameter  is 0.80, the RMSEs for S ML and 
MSM based on 20 draws exceed those oFGIBBS by 79%0 and 37%, respectively, 
and the number  of draws needed to reduce the RMSEs for S ML and MSM to 
within 10% of  GIBBS are 160 and 80, respectively. 

In existing applications it is common for MSM or  SML to be implemented 
using G H K  simulators based on only 10 or 20 draws, and conventional wisdom 
seems to suggest that 20 draws is "enough'. But our  results suggest that when 
serial correlation in the errors is strong, substantial RMSE reductions can be 
achieved by going to 80 or 160 draws. And in the case of SML, substantial bias 
reductions can be achieved as well. The  main weakness of  SML relative to the 
other  methods is in estimation of  serial correlation parameters. When 20 draws 
are used, the SML estimates of the AR(I) coefficients are clearly biased down- 
ward and have RMSEs roughly twice as great as for o ther  methods. This 
problem would lead to larger RMSEs in out of  sample forecasts obtained using 
SM L as compared to the other  methods. It appears that from 80 to 320 draws 
must be used in order to render these biases insignificant. 

For  purposes of statistical inference it is desirable that ASE or  PSD be similar 
to RMSE. There is generally close agreement between RMSEs and ASEs 
for MSM, and somewhat less close but still acceptable agreement between 
RMSEs and PSDs for GIBBS. But, when only 20 draws are used, RMSEs of  
SM L point estimates exceed ASEs by 38% on average. This divergence is 
greater when serial correlation in errors is strong, and it can be reduced by using 
more draws. 
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What  accounts for the increases in RMSEs for MSM and SML relative to 
GIBBS as serial correlation in the errors is increased while holding simulation 
size fixed? It stems from the different roles of  simulation in the estimators. In 
MSM and SML, a set of nonlinear equations is solved iteratively. Equation 
evaluation at each i teration is approximate,  but consistent in the number  of 
G H K  draws. As serial correlation increases, more draws are needed to maintain 
a given level of  accuracy of  the G H K  approximation.  In GIBBS, simulation- 
consistent approximat ion of posterior means comes about  because, over the 
whole set of  iterations, the simulator draws a sample representative of the 
posterior distribution. With increased disturbance serial correlation, a greater 
number  of iterations is required to achieve a representative sample because the 
Gibbs sampler navigates the posterior more  slowly. Thus, performance of  each 
method should deteriorate as serial cotrelation in disturbances is increased, but 
the relative rate of  deterioration is an empirical question. In our  experiments, 
5000 iterations of  the Gibbs sampler provides good approximations to the 
posterior for both high and low degrees of serial correlation. In contrast,  20 
draws for the G H K  simulator provides comparable approximation accuracy 
when serial correlation is low, but  the number  must be made much greater when 
serial correlation is high. 

Since we argue that RMSEs of  the MSM and SML estimators based on G H K  
with 20 draws and GIBBS posterior means based on 5000 Gibbs  iterations are 
similar when serial correlation is relati'~'ely weak (i.e., AR(I) parameters in the 
0.50 range}, but that roughly 80 to 320 draws for MSM and S ML are needed to 
maintain comparable  performance when serial correlation is strong 0.e., ARO) 
parameters  in the 0.80 range}, it is important  to consider how computat ion time 
for the various methods is affected by simulation size. 

Unfortunately, it is essentially impossible to give absolute time comparisons 
for these methods for several reasons. For  example, since most of  the computa-  
tion time for GIBBS is used in drawing the latent utilities, time for GIBBS 
increases slowly as the number  of  model parameters increases. But for SM L and 
MSM, computat ion time is roughly proport ional  to the number  of parameters,  
since most of the time in these methods is spent calculating derivatives and the 
initial weighting matrix, respectively. Also, relative timings for the methods wilt 
depend on the number  of iterations necessary to achieve convergence for the 
classical methods, and the number  of Gibbs iterations needed to achieve a de- 
sired level of numerical accuracy. In particular, for MSM the calculation of  the 
initial weighting matrix is much more time consuming that subsequent iter- 
ations, while for SML all iterations take roughly equal time. And the number  of 
iterations needed for convergence is particular to the application at hand. 
Finally, if one wishes to check sensitivity of results to simulation size, MSM and 
SML require that one redo the entire estimation ~,sing more draws, while with 
GI BBS one can simply restart the algorithm from end values and add additional 
iterations. Thus, monitoring numerical accuracy is much easier with GIBBS. 
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Despite these problems, it is informative to give so,.-ne timing information 
based on our  Monte Carlo experiments. The  typical t ime for our  GIBBS runs on  
an IBM 3090 mainframe was 816 cpus.  Timings for the classical methods  is 
much more  variable than for GIBBS, because the number  of iterations needed to 
achieve convergence varies greatly across Monte  Carlo data  sets. On  average, 
the number of  iterations needed to achieve convergence for the data  sots 
considered here is about  I0. For  SML,  a regression of  computat ion time per 
iteration on number  of  draws produced the result 5.2 + 0.74*Draws. Thus,  the 
predicted times for ten iteration runs using 20, 80 and 160 draws arc 200, 644 
and 1236 epu s, respectively. For  MSM, a regression of marginal computat ion 
time per iteration on number  of draws produced the result 2.7 + 0.54*Draws, 
while a regression of  initial weighting matrix computat ion time on number  of  
draws produced the result - 2.0 + 3.44*Draws. Thus, the predicted times for 
ten iteration runs using 20, 80 and 160 draws are 202, 732 and 1439 cpu s, 
respectively. We interpret these results as indicating that computat ion times are 
in the same ballpark for all three methods, given models of the size considered 
here and simulation sizes of  the type one would typically employ. Thus, we 
conclude that computa t ion  time should not be a decisive factor in choosing 
among the methods. 

If  we had found that computat ion times for G1BBS greatly exceeded those Ior 
MSM or  SML, it would make sense for a Bayesian practi t ioner to consider these 
methods as a way to approximate posterior  means. That  this is not  the case 
implies that a Bayesian should have no interest in these alternatives - provided 
that Gibbs sampling data  augmentat ion software is at  hand. 

Appendix A: application of the GHK simulator to the MMP model 

Here we provide a description of the G H K  simulator as applied to the 
simulation of choice probabilities in the M M P  model described in Section 2. F o r  
a proof  of the unbiasedness of  the G H K  simulator in genera l  see B~rsch-Supan 
and Hajivassiliou (1993). To  describe the G H K  simulator it is useful to define 
some additional notation. Let 

0,'/~, = Ui*+ U~, ( j  = 1, , J ;  t = 1 . . . . .  T),  ~,~, * * - -  • * • - - ~  ~ [ k r  - -  l ; i j l -  

(Notice that L?~j+ = 0 and ~j, = 0.) Choice j  is made at  t if the J -- I constraints 
O~k, < 0 for all k # : j  are satisfied. Fur ther  let 

£+~(--J) = (~tr, ... ,P,..j_ i.,, c~0j+ t.r . . . . .  g~j,)' and 

g(d+) = (~+t( - Jit), . . . .  g+T( -- JiT))' 

where d+ is the choice vector defined in (2.4). Thus +(d, +) -- IIDN(0, ~(dl)), where 
~(d+) is the appropriate  transformation of 27". 
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Le t  ~(d~) be  the  u n i q u e  l o w e r  t r i a n g u l a r  C h o l e s k y  d e c o m p o s i t i o n  
-if(d;) = ~(d~) ~(dr) ' .  T h e n  g(d;) = / ~ ( d i )  ~q(di), w h e r e  ( s u p p r e s s i n g  the  i s u b s c r i p t )  
~,( - j , )  = (ri], . . . . .  rb, _ ,.,, tlj, + ,., . . . . .  rij,)', q (d , )  = ( # , ( - - j , )  . . . . .  q r (  - - J r ) ) ' ,  
a n d  rhjs "~ I D N ( 0 ,  I)  fo r  all  i , j ,  t. 

Fina l ly ,  de f ine  - 1  -r ~ . , - t  . . . .  U i , , ( r / t l  . . . . . .  r~ , ,  ~ , )  a s  t h e  v a l u e  o f  £7~,t w h e n  t h e  
r a n d o m  v a r i a b l e s  (ri~] . . . . .  q J . , - ~ , q t ,  . . . . .  ~p,) a r e  f ixed  a t  the  d r a w  
(0~,, ,q~ , ,q' , ,  -, . . .  . , -  . . . .  r/pt). N o t e  t h a t  fo r  p = k th is  is a n u m b e r ,  a n d  fo r  p < k 
th is  is a r a n d o m  va r i ab l e .  T h e n ,  t he  G H K  s i m u l a t o r  for  t h e  p r o b a b i l i t y  o f  t h e  
c h o i c e  s e q u e n c e  ( d i t , - - .  ,d,-t), o r  e q u i v a l e n t l y  ( j l t ,  . . .  ,Jlt), is c o n s t r u c t e d  as 
fo l lows  ( s u p p r e s s i n g  the  i subsc r ip t ) :  

P e r i o d  1: 

Step:  

(J) 

P e r i o d  t. 
Step:  

(1) D r a w  r/tit s.t. OJi l ( ; / I t l )  < 0 

( j ~ -  1)Draw r/~,_ ,., s.t. /.7~',,_ t . t  ( t f t  t , . . .  , r / J ,  _ n., ) . <  0 

( j~)  S k i p  ~/J.,~ 

( j ,  + 1 ) D r a w  J/,~, +,. ,  s.t. 0~',, +, . ,  o / t t ,  . . . .  ,t7~, , . , , t/I,  + ,.,) < 0 

D r a w  r/~t, s.t.t..79 t ( r f t ,  . . . . .  t/J, _ , . , ,  t7~ ' + ,., . . . . .  qS, ) < O 

(1) D r a w  'l~, s.t. 0 ~ i , ( ~ t  fit . . . . .  t j . , - 1 , q t n )  < 0 

(.fi - 1) D r a w  ~l~. - ,., s.t. 0'~',._ 1.,(ri~ ~ , . . .  , ~ t .  _ , ,  ~ , .  . . . ,  rb _ 1 . , ) t  < 0  

l j,} Skip ~,, 
( . b +  1) D r a w  0~;. , . ,  s.t. Oj;+ ,.,(qJt~ . . . . .  $ ~ . , - , ,  tft . . . . . .  t/~_,.1, r / J , + , . , ) < 0  

/~r , rl/lt . . . .  t 1 (d)  D r a w  r/~, s.t. O$,(0~1, .-. • D . , - t  , tb .-  L,, qj. + ,.,, . . . .  q~,) < 0 

a n d  f inal ly,  c o n s t r u c t :  

P G . K ( d t  . . . . .  d,  l l l* ,  Z * . X * ~  

1 M j ,  - 

= Mt~t= P(G'~ ' t  < O) k=-,I'] e [ O ~ t ( t i ~ t ]  . . . . .  t / I_ [ . ,  ) < 0]  
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- - A  ! 
x P [ U j ,  + ,.L(~l~l < . . . . .  ~j,- L,) O] 
J 

l-I PEOh(~ ; ,  . . . . .  ~,'-,- ,.,, d., ~,., . . . . .  d , - , . , )  < 0] 
k=]i+2 

• . . .  • P ( O ~ , ( , ~ ; ,  . . . . .  0~,-,)  < o) 

j , - i  

× H e [ O ~ , ( O ; ,  . . . . .  0 ~ , , - , , ~ , ,  . . . . .  ~ _ , . , )  < 0 ]  
k = 2  

-' q;, ,  ... ,,-J_ ,.,) < o] PEOn: + ,.,(q;,, . . . ,  ~.,..,_ ,, 
J 

.... ~:,- ~,~,, . . . . .  Pl). - , . , ,  ~j.+, . . . . . . .  ~'_ ,.,) < 0 ] .  
k = i , + 2  

Appendix 13: a Gibbs sampling data augmentation algorithm for tke M M P  model 

In order  to describe the Gibbs  sampling da ta  augmenta t ion  algori thm, it is 
first useful to define the proper  pr ior  distributions in generic notation: 

~ "" N(I~7, V~7) ( j -~  1 . . . . .  J -- 1) 

7 "-- N(y, V;.) 

pj ... TN(ppa~,) ( j  = 1 . . . . .  J -  I), 

where T N  denotes t runcat ion of the univariate normal  distribution to the unit 
interval (0, 1); 

~ , , - t  ~ W ( S - t ; v ) ,  

where W denotes the Wishart  distribution. These priors are assumed mutual ly 
independent.  

It  is also useful to adop t  the notat ional  convent ion U~'o = ~*o, )~'o = [O1, 
Z*o = [0], and to define three equivalent expressions for the probabil i ty density 
kernel of the U*, which are 

IVJi-sr/2exp ---~ ~" (e.~ - -  R ~ * , _ , ) ' ~ P - ' ( ~ *  - -  R ~ * , - , )  , (B.I) 
i = t  t = l  

where ~* = U~  - X *  [f* - Z * 7 ;  or  

x ~ - ' ( 0 ~ ,  - .~*~* - -2"7)~ ,  (B.2) 

1 

J 
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where 

0 7 ,  = v ~ ,  - R u * , _ ~ ,  

and 

. ~  =.,L*, - RY,~. ,_i .  2,*, = z~, - R z ? . , _ , ;  

I~PI-Nrt2exp - - ~  [ U ~  --  R U * , _ :  --  (p~, - -  R/a~.,_I) ] ~ - t  
i = l  I = l  

x [ U ~  - -  R U * , _ ,  - -  {#,, - R/t,.,_, ) ]~ ,  (B.3) 

where Pit = X * f l *  + Z ~  7, each multiplied by the kernel density of the uncondi- 
tional distribution of ~,*o, 

[ Vo(R, ~ ) [ -  N/Z exp - ~ ,~ ,  r.,-*o [ V o ( R ,  ~ ) ] - '  ~*o ~, (B.4) 

where [Vo(R, ~)]j~ = ¢~d(1 - PjPD.  

The kernel of the posterior density function for fl*, 7, P, ~,  and the U* is the 
product of(B.I) or (B.2) or (B.3); (B.4); the density kerr,~;is for the prior distribu- 
tions; and 

N T 

I-I I-I n ( v * ,  d.) ,  (B.5) 
i = 1  ~ = 1  

where H is an indicator function for consistency of orderings and signs of the 
It 8¢ " Uo,  (y = 1 . . . . .  L )  with the observed choice vectors d , .  Using notation defined 
in Section 2, this is 

H ( U * , d , , )  = ! iff U?, e {U*I U,*.j,,., > U ~ , V k  # ja}.  

A six-step Gibbs sarnpling-data augmentation algorithm is employed to 
construct draws from the posterior distribution. Initial values for if*, 7, P, and 
~P are drawn from the prior distributions, and initially U~ = 0 {i = 1 . . . . .  N; 
t = l  . . . . .  T). 

S t e p  1: Drawing UT.(i = 1 . . . . .  n; t = 1 . . . . .  T). The kernel density of the 
conditional distribution of the U~ is the product of (B3) and (B.5). 
The conditional distribution of U* -- (U?(, . . . .  U~,~)' is truncated normal. The 
conditional normal distribution is given by the relations 

U*l - # n  - R C o  = v . ,  

U ~  - # i 2  - R ( U * I  - f a i l )  = v i z  

U*r - P~r - R ( U ~ r - ~  - l a . r - t )  = Vrr 
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from (B.3), which imply 

l r  0 0 ... 0 

- -  R l r  0 . . .  0 

0 - - R  l r  ... 0 
: : • . . .  

0 0 0 .. .  - - R  

0 0 0 ... 0 

0 

0 

0 

IT 

- - R  

0 

0 

0 

0 

I r  

Uit - Fil 

U*2 - ~i2 

U*a - -  t~ta 

U~.r-  I -- P~.~r- 

U *r -- ttir 

R~?o + vii 

Vi2 

Oi, T -  1 

/)iT 

Denoting the L T  x L T  matrix in this expression by G -  1, we have 

I I  i 0 0 ... 0 0 
R l r  0 . . .  0 0 

G =  . . " ' .  : . 

r - 1  R / ' - 2  g r - 3  . . .  R l r  

Hence the conditional normal distribution of u* has variance G ( l r  ® ~ ) G '  and 
mean 

l : i  + R~*o 

I'2 + Rae..~o 

/~r + R re*o 

The truncations of this distribution are linear and are given by (B.5). Hence the 
distribution of U ~  for given i and t, conditional on U*t(s v~ t or j  # l), e*o, and 
all the parameters of the models is truncated univariate normal. Therefore, 
UT1 . . . .  U ' r ,  U L ,  U~r  . . . .  * . . . . . .  U~I . . . . .  U*r may easily be drawn in suc- 
cession, the drawn values replacing the old ones at each step. Details of this 
procedure are set out in Geweke (1991). 
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Step 2: Drawing E*o (i = 1 . . . . .  n). The kernel density of the conditional 
distribution of the 8~'o is the product of (B.I) and (B.4}. These expressions reflect 
the assumption that the process {E,},=_~ is stationary. Since 
Ei* = RE,.*.,_ i + v,, the conditional distribution ofe~'o involves only e~, R, and ~.  
It is indicated by the linear regression 

E, = Be,+~ + G, cov(E~+l, ~,) = 0 

B = FVo(R, qJ)]R[Vo(R, ~)] -1 ,  and ~, has variance 

Vo(R, ~P) -  BVo(R,  ~P)B'. 

Hence the conditional distribution of ~,*o is 

e*o "~- N[Bc?,,  Vo(R, ~ )  -- BVo(R,  !/J)B']. 

Step 3: Drawing p. The kernel density of the conditional distribution of 
P----(P~ . . . . .  Pc)' is the product of (B.1), (B.4), and the kernel density of the 
truncated normal prior distribution of p. Expression (B. 1), read as a function of 
p, is the kernel density of a multivariate normal distribution with precision 
(inverse variance) 

o"ZL,ZL 1 i l , t -  t 

n d 

ILl E~=I  E ~ ' = I  F'* "* • ib . t - -  1 ~'il,t-- I 

• . .  EL, . , , . . , - ,  

• . .  

~ L L Z N = I Z T = I E * 2  
• "" iL . t - -  ! 

where ~,jk _ [~p - 1]~, and mean Hdv~, where 

Fv,- o ,  o ,  1 = l ' ~ J "  1 /  "r /.~/= i / ~ I = 1  t+ i l . l - - t r ' i J .  I - 1  

Vj  I ~ L  ~ j L j ~ N  
/ -t= l i L . r -  1 " l j . t -  I L 

/ ' . j :  i • / - i = 1  ~-~T ~ ,  f ; .  

Let Vp diag(6p 2 . . . . .  : = ,o,,~). Then the distribution corresponding to the kernel 
density that is the product of (B.I) and the prior density for p is 

N [ H , v ,  + V f ' p ,  (Hi + V;t) -'] (8.6) 

truncated to the unit hypcrcube in R:'. The conditional distribution's kernel 
density is the product of the kernel density of this distribt,~tion and (B.4). Hence 
drawings from the full conditional distribution for p may be made by drawing 
from (I].6) and then using an acceptance step for the unit hypereube and (B.4). 
This may be done efficiently by noting that (B.4) is bounded above by 
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I(l/N)S~ol-"JZexp( -- NL/2), where S,o - ~-~=1 eioe~o, because (IIN)S~, is the 
unconstrained conditional maximum likelihood estimate of Vo = var(e~o). Thus, 
drawigs for p are made from (B.4), rejected ifpj  < 0 or p~/> 1 for any j, and then 
accepted with probability 

- -  exp k " 

(B.7) 

The acceptance step is motivated by the similar procedures of Marriot t  et aL 
(1995) for stationary time series. The computation of (B.7) is trivial, and the fact 
that e*o is a synthetically drawn latent variable p~'events acceptance probabilities 
from becoming impractically small. 

Step 4: Drawing ~. The kernel density of the conditional distribution of ~P is 
the product of (B.1), (B.4), and the kernel density of the inverted Wishart prior 
distribution of ~. The prior and (B.1) imply 

i----1 I~1 

The effect of(B.4) is then accommodated through an acceptance step just as it 
was in the drawing of p. 

Step 5: Drawing /~i*('g = 1 . . . . .  L). The kernel density of the conditional 
distribution of/~* = (~*', . . . .  /~ ') '  is the product of(B.2) and the kernel density 
of the normal prior distribution of [I. Since the model imposes no cross-equation 
constraints on the ~* and the priors of the ~J' are independent, the conditional 
distribution of each fl}~ has a simple form. Expression (B.2) as a function o f~*  is 
the kernel density of a multivariate normal distribution with precision 

N T 

i = l  t = l  

and mean 

y E E ,J, ,,, • 
i = 1  t m l  I = 1  i~1 t= l  

where 

~nd 

W ( D  • .  ~, = U io -- Z~j~ 7. 
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This mean and precision may then be co,labined with the prior mean and 
precision in the usual way to form the condi*lonal, normal posterior distribution 
from which it is simple to make drawings. 

Step 6: Drawing 7- The kernel density of the conditional distribution of 7 is 
the product of (B.2) and the kernel density of the normal prior distribution of 7. 
Expression (B,2) as a function of 7 is the kernel density of a multivariate normal 
distribution with precision 

N T L, L 

~-- E E E 'l ' 'i '9* ~'*' ~" ~-,  t j t  L .  i l t  

i : 1  t = i  1 = 1  j = l  

and mean 

[ f " i i , , , -  , - * ' l - '  " Z .- Z Z Z Z  " ' *  "* "* * 
i ~ l  | = 1  / = l  j = l  [ = 1  ~ = l  l = l  j = l  

The mean and precision may then be combined with the prior mean and 
precision in the usual way to form the conditional, normal posterior distribution 
from which it is simple to make drawings. 

From the structure of (B.2) and the prior distributions for the fl-* and 7 it is 3 

clear that the joint conditional posterior distribution of (~*', y')' is normal, and 
therefore the J + 1 drawings in steps 5 and 6 could be combined into one, This 
requires the solution of a much larger set of linear equations, each iteration of 
which results in greater execution time. On the other hand, the use of J + ! 
drawings rather than one introduces additional serial correlation into the Gibbs 
sampler. In the applications undertaken here, the choice is not important,  
because over 95% of execution time is devoted to drawing the U~ and e,*o, and 
this step is the source of most serial correlation in the Gibbs sampler. 

References 

B6rsch-Supan, A., Hajivassiliou, V., 1993. Smooth unbiased multivariate probability simulators for 
maximum likelihood estimation of limited dependent variable models. Journal of Econometrics 
58, 347-68. 

Elrod, T., Keane, M., 1995. A factor-analytic probit model for estimaling market structure in panel 
data. Journal of Marketing Research 32, I 16. 

Gelfand, A. E., Smith, A. F. M., 1990. Sampling based approaches to calculating marginal densities. 
Journal of the American Statistical Association 85, 398-409. 

Geweke, J., 1991. Efficient simulation from the multivariate normal and sludent-t distributions 
subject to linear constraints. In: Computer Science and Statistics: Proceedings of the Twenty- 
Third Symposium on the Interface, Alexandria, VAt American Statistical Association, pp. 
571-578. 

Geweke, J., 1992. Evaluating the accuracy of sampling-based approaches to the calculation 
of posterior moments. In: Berger, J.O., Bernardo, J.M,, Dawid, A.P,, Smith, A.F.M. (Eds.) 



J.F. Geweke et al. / dournal of'Econometrics 80 (1997) 125-165 165 

Proceedings of the Fourth Valencia International Meeting on Bayesian Statistics. Oxford 
University Press, Oxford, pp. 169-94. 

Geweke, J., Keane, M.. Rankle, D., 1994. Alternative computational approaches to statistical 
inference in the multinomial probit model. Review of Economics and Statistics 76, 609 632. 

Gourieroux. C., Monfort, A., 1993. Simulation based inference: a survey with special reference to 
panel data models. Journal of Econometrics 59, 5-33. 

Hajivassiliou, V,. Mcfadden,  D., 1994. A method of simulated scores for the estimation of LDV 
models. Discussion Paper # 967. Cowles Foundation. 

Hajivassiliou. V., Mcfadden,  D., Ruud, P., 1996. Simulation of multivariale normal rectangle 
probabilities and lheir derivatives: lheorelical and computational results. Journal of Econo- 
metrics 72, 85 134. 

Keane. M., 1990. Four essays in empirical macro and labor economics. Ph.D. diss~:~tution. Brown 
University. 

Keane, M., 1994a. A ¢ompulationally practical simulation estimator for panel data. Economelrica 
6211),95 116. 

Keane, M ,  1994b. Modelling heterogeneity and state dependence in consumer choice behavior. 
Working Paper. University of Minnesota. 

Lee, L. F,  1992. On efficiency ef melhods of simulated moments and maximum simulated likelihood 
eslimation of discrete response models, Econometric Theory 8, 518-52. 

Lee, L.F., 1995. Asymptotic bias in maximum simulated likelihood estimation of discrete choice 
models. Econometric Theory 1 I. 437-483. 

Marriott, J., Ravishanker, N., Gelfand. A., Pal. J., 1995. Bayesian analysis of ARMA processes: 
Complete sampling based inference under exact likelihood. In: Berry, D., Geweke. J., Chaloner. 
K.. (Eds.] Bayesian Statistics and Econometrics, Wiley, New York. 

McCulloch, R., Rossi, P. E.. 1994. An exact likelihood analysis of the multinomiui probit model. 
Journal of Econometrics 64, 207-240. 

Mcfadden,  D., 1989. A method of simulated moments for estimation of discrete response models 
without numerical integration. Economctrica 57, 995 1026. 

Pukes, A., Pollard, D., 1989. Simulation and the usymptotics of optimization estimators. Econo- 
metriea 57. 1027-58. 

Tanner, M,A., Wong, W.H., 1987. The calculation of posterior distributions by data augmentation 
Iwith discussionL Journal of the American Statistical Association 82, 528-50. 


