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Abstract

Statistical inference in multinomial multiperiod probit models has been hindered in the
past by the high dimensional numerical integrations necessary to form the likelihood
functions, posterior distributions, or moment conditions in these models. We describe
three alternative estimators, implemented uvsing simulation-based approaches to infer-
ence, that circumvent the integration problem: posterior means computed using Gibbs
sampling and data angmentation (GIBBS), simulated maximum likelil.ood (SML} es-
timation using the GHK probability simulator, and method of simulated moment
{MSM) estimation vsing GHK. We perform a set of Monte-Carlo experiments to
compare the sampling distributions of these estimators. Although all three estimators
perform rcasonably well, some important differences emerge. Our most important
finding is that, holding simulation size fixed, the relative and absolute performar-=. of the
classical methods, especially SML, gets worse when serial correlation in disturbances is
strong. In data sets with an AR(1) parameter of 0.50, the RMSEs for SML and MSM
based on GHK with 20 draws exceed those of GIBBS by 9% and 0%, respectively. But
when the AR(1) parameter is 0.80, the RMSEs for SML and MSM based on 20 draws
exceed those of GIBBS by 79% and 37 %, respectively, and the number of draws needed
to reduce the RMSEs to within 10% of GIBBS are 160 and 80 respectively. Also, the
SML estimates of serial correlation parameters exhibit significant downward bias. Thus,
while conventional wisdom suggests that 20 draws of GHK is ‘enough’ to render the bias
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and noise induced by simulation negligible, cur results suggest that much larger simula-
tion sizes are needed when serial correlation in disturbances is strong. © 1997 Elsevier
Science S.A.

Keywords. Bayesian inference; Discrete choice; Gibbs sampling; Method of simutated
moments; Simulated maximum likelihood; Panel data
JEL classification: C35; C15

1. Intreduction

Discreie economic choices are often made repeatedly over several time peri-
ods. Examples include the choice of which brand of a frequently purchased
product category to buy on each successive purchase occasion and which of
several industries or occupations to work in during each year of one’s life.
A multinomial multiperiod probit (MMP) model can be a reasonable frame-
work for studying choice behavior in such situations. However, the very high
dimensional integrations necessary to form the likelihood function, posterior
distribution, or momer:t conditions for inference in the MMP model have until
recently precluded its apptication. Rapid advances in simulation-based ap-
proaches to inference (M<Fadden, 1989; Pakes and Pollard, 1989; Keane, 1994a;
McCulloch and Rossi, 1994) have now made both classical and Bayesian
mference feasible. These advances have led to several interesting applications of
the MMP model. These include sequential models of the decision to work
(Keane, 1994a), brand choice (Elrod and Keane, 1995, Keane, 1994b, McCulloch
and Rossi, 1994), choice of residential location {Hajivassiliou et al., 1996), and
the probability a country will default on loans {(Hajivassiliou and McFadden,
1994).

Despite this burgeoning list of applications, there has been no systematic
comparison of the sampling distributions of alternative estimators in the MMP
model in samples representative of these applications. The goal of the present
paper is to provide such a comparison. First, we describe estimators based on
three alternative approaches to inference: simulated maximum likelihood (SML)
estimation using the Geweke-Hajivassiliou-Keane (GHK) recursive probability
simulator, method of simulated moment (MSM) estimation using the GHK
simulalor, and posterior means computed using Gibbs sampling and data
augmentation (GIBBS). We perform a set of Monte-Carlo experiments to
compare the sampling distributions of the respective estimators. The experi-
mental design allows the impact of three important features of the data on the
performance of the methods to be assessed: (1) serial correlation of the random
components of utility, (2) serial correlation of the exogenous variables, and (3)
contemporaneous cross-alternative cotrelations of the random components of
utility.
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Besides features of the data, it is also important to consider how simulation
size affects results. In the first set of experiments we hold the number of draws
used to implement the GHK probability simulator fixed at 20. We choose 20
because conventional wisdom suggests this number is sufficient to render the
bias intrinsic to the SML estimator negligible, For instance, Borsch-Supan and
Hajivassiliou (1993) conclude that ‘In our Monte Carlo experiment, 20 replica-
tions were sufficient to produce a negligible bias’, 2n-1 this conclusion has been
influential. In fact, existing applications of SML generally use 20 or fewer draws.
In a second set of experiments, we examine how performance of the classical
estimators is affected by the number of draws used to implement the GHK
probability simulator. In both experiments we set the number of cycles of the
Gibbs sampler at 5000, since we find that this is sufficient to render the
simulation noise in the posterior means very small as a fraction of root mean
square error (RMSE).

Although all three estimators perform reasonably well in our experiments,
some important differences emerge. Our most important finding is that, holding
simulation size fixed, the relative and absolute performance of the classical
methods, especially SML, gets worse when serial correlation in disturbances is
strong. Consider the RMSEs of the SML and MSM point estimates and GIBBS
posterior means around the data generating parameter values. In data sets with
an AR(1) parameter of 0.50, the RMSEs for SML and MSM based on GHK
with 20 draws exceed those of GIBBS by 9% and 0%, respectively. But when the
AR(1) parameter is (.80, the RMSEs for SML and MSM based on 20 draws
exceed those of GIBBS by 79% and 37%, respectively, and the number of draws
needed to reduce the RMSEs to within 10% of GIBBS arc 160 and 80 respec-
tively. Furthermore, the SML estimates of serial correlation parameters exhibit
significant downward bias and this becomes insignificant only when 160 to 320
draws are used. Thus, contrary to conventional wisdom, 20 draws is not nearly
‘enough’ when serial correlation is strong.

This is the first systematic study of the performance of simulation-based
approaches to inference in the MMP model in representative samples. There are
five precursors of this work that are worth noting. Bérsch-Supan and Hajivas-
siliou (1993) considered the distribution of the SML estimates of a single slope
parameter in a cross-section trinomial probit model (with all other parameters
held fixed at true values) using a single artificial data set, but varying the draws
used in constructing the GHK simulator. McCulloch and Rossi (1994) provide
Gibbs sampling data augmentation algorithms for the cross-section and panel
probit models with random coefficients, but they do not allow for serial correla-
tien in disturbances or compare sampling distributions of alternative estimators.
Geweke et al. (1994) compared the sampling distributions of the SML, MSM
and GIBBS estimators in the single-period multinoinial probit model. Keane
(1994a) studied the sampling distributions of the MSM and SML estimators
based on the GHK probability simulator in the multiperiod probit model
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However, he only considered binomial probit models, did not consider Bayesian
methods, and did not evzluate the influence of simulation size on the perfor-
mance of the alternative methods. Hajivassiliou and McFadden (1994) study
sampling distributions of SML and simulated score estimators in the multi-
period binomial probit model.

In Section 2 we describe the MMP model. Section 3 describes the SML and
MSM estimators. In Section 4 we describe the GIBBS estimator. Section 5 lays
out the design of our Monte-Carlo study, Section 6 presents results, and Section
7 concludes.

2. The model

Assume that agents choose among a set of J mutually exclusive alternatives in
each of T time periods. If individual i chooses alternative j at time #, he/she
derives utility

Ul'jl=X:'jtﬂf+£iﬁ (j= l, ...,J;t= 1, ...,T).,
where X, is a px 1 vector of exogenous variables, §; is a px1 vector of
corresponding coefficients, and &;;, is a random shock to utility that is known to

the agent but not to the econometrician. Choice j is made at time t if U, > Uy,
for all k # j. The econometrician observes the choice

4o = 1 if i chooses j at time ¢
“ 710 otherwise,
but not the utility of any choice. The MMP model is obtained by assuming
& = (8115 -+« 2 8idts <o+ 5 8t - 2 8p7) ~ [IDN(Q.E), Z =[6;]

Since choices only depend on utility differences, it is conventional to measure
utility relative to alternative J. Since the scale of utilities is indeterminate, it is
also conventional to normalize by setting the variance of the error term correspond-
ing to the first alternative in the transformed model equal to one. Thus, we define

U =W — Uiy + 645 — 204)" 112
=[(XiuB; — XinBs) + (85 — )6 11 + 045 — 2004) 2
=XEBF+eh(i=1,....5t=1...T), @n

where X3, (j = 1. ... ,J)}is the appropriate transformation of X;,(j =1, ..., J)
and B¥(j=1,....J) is the appropriate transformation of f;(j=1,...,J)
(Notice that U¥, = 0 and ¢}, = 0.) We further define

D TR PRI - of ST AN PRI . PN . PR |

6F ~ IIDN(O,£%), E*=[o}]. (22)
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where ¥ is the correspo.ding appropriate transformation of X; by construc-
tion, ¥, = 1.
In the notation of the transformed model, choice j is made at time ¢ if

Uk, > Ul forallk £j(j=1,....J). (2.3)

In order to have a compact notation for the sequence of choices observed for
person i, define

i =i oo dig), di=(dir, ....dy). and j, = {jld; =1} (24)
If P(d;) denotes the probability that i chooses the sequence d;,
Pd)=PUY , > Ul Vk#ju,t=1,...,T)
=Plet — ek > X5BE — X5 BFVEk #jy, (t=1,...,T)].

If the &}, are serially independent, then this is the product of T integrals ecach
of dimension J — 1. However, if the &%, are serially correlated, this is in general
a T(J — 1) variate integral. As T and/or J grow, inference requiring exact
evaluation of such integrals rapidly becomes infeasible. Much of the earlier work
on the MMP model sought to avoid this problem by imposing low-order factor
structures on Z*. For example, if a random effects structure is imposed, the
order of integration is reduced to 2(J — 1). The goal of simulation-based
inference is to allow a richer covariance structure to be used.

In this paper we consider a £pecial case of the model (2.1}-(2.4) in which the
&%, are stationary first-order autoregressive [AR(1)] processes and in which the
X?, are divided into two sets of covariates: a set X% that is constant across
alternatives (which can be thought of as containing characteristics of agent i)
and a set Z%, that varies across alternatives (which can be thought of as
containing attributes of alternatives, such as price or quality), but for which the
corresponding coefficients are restricted to be equal across alternatives.

These decisions are motivated by a desire to study models that are practical.
Note that even if the high-order integration problem can be solved by simula-
tion techniques, unless J and T are both quite small it is not feasible to estimate
an unrestricted %* matrix which would contain T?(J — 1)?/2 free parameters.
This motivates our decision to study models in which the errors follow a station-
ary AR(1) process. Our partitioning of the covariates into two types is motivated
not only by a desire to imitate applications, but also by the fact that likelihood
surfaces in the multinomial probit model tend to be very flat unless one includes
covariates that vary across alternatives (see Keane, 1990).

We next set out notation for the specific MMP model used in our experi-
ments. Partition each coefficient vector 3 = (B¥, 7') reflecting cross-equation
constraints of the form employed in the experiments, and conformably partition
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X7 = (X}, Z%). Further define the matrices

X% O - 0 gm0 - 0
ST D A P |
0 0 - X O 0 - pg

~ K
ils
&
Z,-T= i2r
Zi

where L=J — 1 and |p;| <1 (j=1,...,L). Conformably define
Ein e Bt P
eh=: |, U=+ | B*=|: |. p=|:
it U, Br 2L
In matrix notation, the mode! is then
Ub=XEf*+ Z%7 + 2.
The disturbances ¢¥ follow stationary AR(1) processes:
e =Re¥_{ + vy vy ~1IDN(Q, ¥), ¥=[¥;]

Thus, the v, are serially uncorrelated but correlated across alternatives. With
this structure, 6% = ¥, /{1 — p;p;). The assumption that R is diagonal is specific
to the normalization on choice J in (2.1). In general, if R is diagonal for the given
normalization, it will not be diagonal for alternative normalizations. The diag-
onality assumption made here will be most appealing when choice J is a baseline
decision, such as a no purchase option in a brand choice model or a no work
option in an occupational choice model, for which it is reasonable to assume
utility is nonrandom.

3. Classical approaches to inference
3.1. Simulation of choice sequence probabilities
Classical estimators for the MMP model rely on Monte-Carlo simulation of

the choice sequence probabilitiecs P(d;) and substitution of these simulated
probabilities into likelihood functions or momeat conditions. In an extensive
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study of alternative methods for simulation of multinomial orthant probabilit-
ies, Fajivassiliou et al. (1992) conclude that the GHK probability simulator, due
to Keane (1950), Geweke (1991), and Hajivassiliou and McFadden (1994), is the
most accurate of all meihiods considered. Geweke et al. (1994), in a Monte-Carlo
study of alternative simulation estimators in the single-period multinomial
probit model, concluded that classical methods based on GHK substantially
outperformed classical methods based on kernel smoothed probability simula-
tors. For these reasons, we rely exclusively on GHK to simulate choice probabil-
itics when implementing classical estimators in this paper. In Appendix A we
describe how to apply the GHK algorithm to simulation of choice sequence
probabilities in the MMP model of Section 2. Below, we let Pgux (d| 5%, £*, X *}
denote the GHK simulator of the probability of ~..oice sequence d..

3.2. Classical estimation methods

The two classical estimation methods we consider are simulated maximum
likeclihcod (SML} and method of simulated moments (MSM). The SML es-
timator maximizes the simulated log-likelihood function, which is obtained
simply by substituting GHK simulators of choice sequence probabilities into the
log-likelihood function:

N
L(ﬁ*s E*} = Z log F,GHK(dl'iﬁ*r E*’ X*)

The SML estimator is consistent if M{(N)''> - o as N - oo . (For proofs,
see Lee, 1992, 1995; and Gourieroux and Monfoit, 1993.)

Direct application of McFadden's (1989) MSM estimator to the MMP model
would involve indexing all possible choice sequencess = 1, ... ,J T and defining
choice indicators d;, = 1 if i chooses sequence s and 0 otherwise. Then form the
MSM estimator by solving the moment conditions:

N ar
Y ¥ Wildi — Ponx (dis] Blisms Ziism. X *)1 = 0.
i=1s=1

This MSM estimator is consistent for fixed M. This direct approach is not
feasible because of the computational burden involved in simulating probabilit-
ies of JT sequences and forming J7 weights.

Keane (1990) proposed the computationally feasible alternative of factoring
the sequence probabilities into transition probabilities and forming the alterna-
tive estimator:

"MZ
"M"

ijl [dijr - PGHK(dl'jtldila sdm—l, ﬁn"ﬁsm Ziism, X*)] =0,
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where the transition probabilities are simulated using ratios of GHK -simulated
choice probabilities,

PGHK(du» ot s dije)
Poux(dirs ... dii— 1)

Although this gives a biased simulator of the transition probability, an MSM
estimator of this form is consistent if M/(N}'2 o o as N —+ oo (see Keane,
1994a). In addition, Keane (1994a) finds in a Monte-Carlo study that it has smal!
sample properties superior to SML for the multiperiod binomial probit model,
especially when serial correlation is strong.

ﬁGHK(dijlldils vt ) =

4. Bayesian inference using the Gibbs sampler

Bayesian inference using the Gibbs sampler (Gelfand and Smith, 1990) and
data augmentation (Tanner and Wong, 1987) has been applied to the MMP
model by McCulloch and Rossi (1994). Our approach is similar, but differs in
four respects: Here, all priors are proper whereas McCulloch and Rossi use
improper priors for 8*; we include autoregressive error components; stationar-
ity is enforced through data augmentation of presample random utilities, rather
than through explicit restrictions on £* {see step 2 below); and the coefficients of
covariates are fixed rather than random.

To provide a description of the Gibbs algorithm in generic notation, let ¥,
#? and Y denote vectors of latent utilities, model parameters, and observed choice
data, respectively. Let p(0, ¥|Y) denote the joint posterior density function for
0 and Y conditional on Y. Suppose there is a partition of the parameter vector
0 into B subvectors, (' = (), ... .0(y), such that the conditional posterior
densities p(0;,| Oy, J # 1 Y. Y)and p(¥ |0, Y) are of sufficiently simple form that
it is practical to draw random subvectors {J;, and ¥ from these conditional
densities. The Gibbs algorithm starts with an initial value (0'?, ¥'°Y) in the
support of p(0, ¥|Y), and then draws in turn each of the subvectors
¥, 00y .-- .05 from the appropriate conditional density. After each draw, the
corresponding initial value subvector is replaced by the new subvector, until
after a complcte iteration an updated vector (), ¥'!?) is obtained. After the mth
iteration we obtain the draw (0™, ¥). As m grows larger the sample of (0, ¥)
draws converges in distribution to the joint posterior distribution. Posterior
means for the elements § are then approximated using arithmetic averages cf the
corresponding draws.

To describe the implementation of the Gibbs algorithm in the MMP
model, some minor changes and extension in notation are necessary. Let the
U¥., X¥. £¥, and £, continue to denote the latent utilities. covariates, coeffi-
cients, and disturbances of the transformed model, respectively, except that the
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transformation (2.1) is replaced by
U?}r = (Uijr —Uiz)
= U X%uBi— XinBs) + (&ije — €are)]
=XEBY+ef (=11 1=1T)

The values of the B¥ change accordingly, as does ¥ = var(¢} — Re*,_,). The
matrix R is unaffected.

Since the restriction of, = 1 has not been imposed, the parameters at this
point are unidentified. In order to achieve identification, the following proper
prior distributions were employed throughout the experiments:

Bt ~ N©, Iy y~ N(©,I7); p; ~ TN(0.5,025); ¥~' ~ W(I0I, 10).

The proper prior distribution for ¥ centers the \;;, which otherwise would be
identified only up to a scale factor, about 1.0. This in turn induces a proper
posterior distribution for the % and 7, even if the priors for these coefficients
were flat and improper. (This technique was introduced by McCulloch and
Rossi (1994).) The posterior distribution of these parameters induces a posterior
distribution on X* = var(e}), with ¢% = ¥/l — p;p;). Using the normaliz-
ation set forth in Section 2, parameters of interest are §¥(o%,) Y2 (j =1, ... ,L);
y(6f,) Y3; p;for j =1, ..., L; and the elements of the upper triangular matrix
A*, where A¥ A* = (6T} ' ¥. To make drawings from the posterior distribu-
tions of these functions it is necessary only to transform the drawings of the B*,
¥, #;- and ¥. In the experiments we will see that posterior standard deviations
are very small relative to the priors, and on this basis it is reasonable to
conjecture that results would be quite similar for other diffuse but proper priors.

We employ a six-block Gibbs sampling data augmentation algorithm in
which the blocks are: (1) the latent utilities U,; (2) the presample values of the
errors, £f: (3) the p;; (4) the matrix ¥; (5) the vector §* = (8%, ... ., f¥'Y; and (6)
the y. Although McCulloch and Rossi (1994) describe the structure of a Gibbs
sampling data augmentation algorithm for a MMP model with random effects,
the complications introduced by our addition of autoregressive error compo-
nents are sufficiently great (including the addition of the new blocks 2 and 3 and
changes necessary in other blocks) that we provide a detailed description of the
algorithm for the present model in Appendix B.

In our experiments, the first 200 Gibbs iterations were discarded to allow
‘burn in’ from the initial drawing from the prior distribution. Inspection of these
iterations showed that parameter values moved from well outside the concentra-
tion of the posterior distribution to its concentration in fewer than 100 iter-
ations. Arithmetic averages of the parameters of interest over the next m = 5000
iterations were used to approximate posterior means. The standard errors of
these Monte-Carlo approximations were asseszed as described in Geweke
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(1992). Typically. this standard error was less than 10% of the posterior
standard deviation for the experiments undertaken.

The approximate posterior means obtained via the Gibbs sampling data
augmentation algorithm constitute the GIBBS estimators that we compare with
the SML and MSM estimators. Posterior means, given the priors assumed,
constitute well-defined estimators with sampling-theoretic properties. Thus, out
approach here is deliberately frequentist. A truly subjective Bayesian would
have no reason to entertain either the MSM or SML methods, and would have
little interest in posterior means given priors of convenience.

S. Experimental design

In our Monte-Carlo experiments, we consider a three alternative model
(J = 3) with T = 10. We construct 20 artificial data sets of size N = 500 using
the data generating process:

UK, =05+ 1XE + 125, + &5,
Ul = — 124+ 1XE 4+ 125, + ¢85,

and of course, U%, = 0.0 by our normalization. The random shocks to utility
evolve according to
el = P1f5:‘¥1.1~1 + Uiyy

N - . N
Ei2r = Paéja - + Uiy

I:"flt:l — I: 1 0 :| I:'Jilr]
Uiz, afa V1= (at)? LW

with s, ~ IIDN(O, I{1 — p?)). In all the generated data, p, = p, = p. In the
notation of Section 2,

BT =(051.17, fF=(-12.11
Xn=X581=Xt X5a=2ZK,. Xbh.=2Z%,
Bis=F%=7

where X%, refers to the Ith element of the X}, vector. The regressors are
constructed as follows:

XE=di+ (1 — )%y t=1,....7T)
Zh=¢Y;+ (1 =Y (j=121t=1,...T)
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with
O<¢p <1, p~HDN(@©1), wy~ HDN@,I), ; ~ TIDNQG, 1),
5.—_", ~ "DN(Q 1}.

In our first experimeat, we set the number of draws used to form the GHK
simulator at 20, and consider 12 different data structures given by the 3 x2x 2
full factorial design,

1 = p2 = 0.50 or 0.80; aT; = 0.50 or 0.80; ¢ = 0 or 0.50 or 0.80.

These correspond to ‘low” and ‘high’ serial correlation and cross correlation in
the random elements of utility and ‘no’, ‘low’, and "high’ serial correlation in the
exogenous variables, respectively. In the second experiment we vary the number
of draws used to implement GHK, using two of the these data structures (chosen
as described in Section 6.2).

6. Results

6.1. Experiment | — effect of data structure on performance of the estimators
The results of the Monte-Carlo experiments based on the 12 different data
structures are reported in Tables 1-12. For GIBBS we report: (1) the mean of the
posterior means across the 20 replications, ff; (2} the RMSE of the posterior
means around the data generating values; and (3) the mean of the posterior
standard deviation across the 20 replications, PSD. For SML and MSM we
report three statistics for each parameter in each model: (1) the mean of the point
estimates across the 20 replications, §; (2) the root mean square error (RMSE) of
the point estimates around the data generating values; and (3} the mean of the

asymptotic standard errors across the 20 replications, ASE. In the remainder of
this section, we compare the performance of the different estimators in each
experiment, focussing on RMSE as the criterion of performance. We also

examine the ASE and PSD, because, for purposes of inference, it is desirable that
ASE or PSD be similar to RMSE.

In Table 1 we consider 20 artificial data sets generated from the data structure
in which p; = p; = 0.50, a}, = 0.50, and ¢ = 0. This is the case of low serial
and cross correlations of the disturbances combined with no serial correlation in
the covariates. For GIBBS and MSM, the @ are close to the data generating
values for all 9 model parameters. SML, on the other hand, while producing
estimates close to the data generating values for most model parameters,
exhibits severe bias in estimatirg the AR(1) parameters. In particular, the mean
SML point estimate of p; is 0.376, while the data generating value is 0.500. If we
use the empirical RMSEs divided by (20)'/2 to form t-tests for the estimated
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deviations of mean point estimates (or mean posterior means) from data
generating values, highly significant biases are found for the SML estimates of
all covariance matrix parameters (a¥:, a3:, py, p2). No significant biases are
found for the MSM estimates. For the GIBBS estimates, marginally significant
biases are found only for p, and f%,.

In a comparison of RMSEs, GIBBS has an edge over the classical methods. It
produces the smallest RMSE for six of the nine model parameters. Exceptions
are i1, and %, for which the RMSEs of the MSM point estimates are smallest,
and f#¥, for which the RMSE of the SML point estimates is smallest. Another
clear pattern is that for MSM the RMSE and the ASE are in close agreement
for most model parameters. But for SML, the ASE are substantiatly below
the RMSE for the covariance matrix parameters. Interestingly, the ASE
for MSM and the PSD for GIBBS are in very close agreement. Given that the
RMSEs for GIBBS are generally lower than for MSM, this also means that for
GIBBS the PSDs are generally a bit above the corresponding RMSEs.

Rather than describing Tables 2-12 with the same level of detail devoted to
Table 1, we instead point out certain broad patterns. As we move across
Tables | -3, the serial correlation in the covariates is increasing (¢ increases
from 0 to 0.50 to 0.80) while other things are held constant. For most modetl
parameters, the RMSEs for ali three methods have a tendency to rise as
¢? increases. The exception involves the p, for which the RMSEs fall as
¢* increases. It also appears that the RMSEs for the SML estimates improve
relative to those for other methods as ¢? increases.

In Tables 4-6 the AR(1) parameters are increased (p; and p; are set at 0.80),
Again, as we move across Tables 4-6, serial correlation in the covariates is
increasing. Comparing Tables 4-6 with Tables [-3, we see that the increase in
the p generally causes RMSEs to rise. This is especially true for MSM. But for
MSM and GIBBS, the increase in the p causes the RMSEs for the p to fall. This
is not true for SML. Again, as in Tables 1-3, the RMSEs rise as ¢ increases.

In Tables 7-9 the degree of serial correlation in the disturbances is returned to
the Table 1-3 level (with p, and p- being set at 0.50), but the cross correlation of
the errors is increased (a7, is set at 0.80). There is no obvious impact on the
overall level of the RMSEs as compared to Tables 1-3. However, there is
a substantial relative improvement for SML in the ¢* = 0 case of Table 7, where
it produces the best RMSE for seven of nine parameters. And there is a substan-
tial relative improvement for MSM in the ¢* = 0.80 case of Table 9, where it
produces the best RMSE for four of nine parameters. These improvements in
relative performance for SML and MSM do not extend to other cases.

In Tables 10-12 the degrees of serial and cross correlation in the errors are
both set at the ‘high’ level (p, = p> = 0.80, af, = 0.80). A comparison of Tables
10-12 with Tables 4-6 isolates the impact of increasing cross correlation when
serial correlation in the errors is fixed at the high level. This leads to a clear
reduction in the RMSE for the p as estimated by SML, but not for other
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methods. Comparison of Tables 10-12 with Tables 7-9 isolates the impact of
increasing serial correlation in the errors when cross correlation is fixed at the
high levei. This causes an increase of the RMSE for all parameters and for all
methods, except for the p, for which the RMSESs decrease for GIBBS and MSM,
but not for SML.

In Table 13 we present a regression that summarizes the relative performance
of the estimators. The dependent variable is the log RMSE of the estimates for
a parameter in one of the experiments. The right hand side variables are
intercept and dummies for parameter, method of inference, and different levels of
the treatments (that is, the degrees of serial and cross correlation in the errors,
and the degree of serial correlation in the regressors), along with interactions of
the treatment dummies with an indicator for whether the parameter is a p and
interactions of method of inference with parameter and treatment levels. The
intercept in the regression corresponds to the base case of GIBBS estimates for
y in the model with p = 0.50, af, = 0.50, and ¢ = 0.

The coefficient on MSM-GHK of 0.165 indicates that the RMSEs for the
MSM estimates of y tend to be roughly 16% greater than the RMSEs of the
GIBBS posterior means, For SML the corresponding estimate is roughly 4%.
By looking at the interactions of the parameter dummics with the method of
inference, we can determine if the relative performance of the methods in terms
of RMSEs differs systematically across parameters. The parameter with
SML-GHK interactions produces some striking results. The interactions in-
volving p; and p, have coefficients of 0.767 and 0.909 and are significant at the
1% level. Thus, the RMSEs of the SML point estimates for the serial correlation
parameters are roughly 81% and 95% greater than those of the GIBBS poste-
rior means. Also significant are the interactions involving the cross-correlation
parameters af, and a3,, which are 0.191 and 0.280. Thus, the performance of
SML relative to other methods deteriorates substantially for these parameters
as well.

Also of interest are the coefficients on the treatment dummies. These were
entered both individually and in interaction with a dummy (DEP = RHO) for
whether the parameter is p, or p,. This is because, as the above discussion of
Tables 1-12 made clear, there are obvious differences in how the treatments
affect the RMSEs for the p’s vs. all other model parameters. Note that the
estimated main effect for p, = p, = 0.80 is 0.122, This indicates that raising the
AR(1) parameters from 0.50 to 0.80 causes the RMSEs for GIBBS to rise by
roughly 12% for parameters other than the p. However, the interaction of the
1 = pz = 0.80 dummy with the p parameter dummy has a coefficient estimate
of — 0.421. This indicates that for the p parameters, raising the seriat correlation
in the errors causes the RMSE for GIBBS to fall by roughly 30%.

An important result is that the interactions of g, = p, = 0.80 with MSM and
SML are both significantly positive, at 0.129 and 0.142, respectively. This
indicates that for MSM and SML the increases in RMSEs for model parameters
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other than the p parameters when serial coirelation is strong are about 25-26%
(vs. 12% for GIBBS), while the drops in RMSEs for the p parameters are
only about 13-14% (vs. 30% for GIBBS). Thus, the performance of MSM
and SML relative to GIBBS deteriorates substantially as serial correlation is
increased.

The main effects of the ¢2 = 0.50 and ¢ = 0.80 treatments are 0.185 and
0.468, indicating that increasing serial correlation the regressors causes the
RMSEs for GIBBS to rise. The only one of the interactions of the ¢* = 0.50 and
¢? = 0.80 treatments with MSM-GHK and SML-GHK that is significant is the
interaction of ¢* = 0.80 with SML-GHK. This has a coefficient of — 0.143,
which indicates that the performance of SML relative to GIBBS improves as
serial correlation in the regressors increases. The interaction of ¢ = 0.80 with
MSM-GHK also has a negative coefficient of — 0.057, but this is not significant.

6.2. Experiment 2 — effect of simulation size

In this experiment we consider the effect of the number of draws used to
construct the GHK simulator on the performance of MSM and SML. In
particular, we want to determine whether the generally higher RMSEs for SML
and MSM, relative to GIBBS, can be attributed to an insufficient number of
dra-vs in the GHK algonthm. Thus, we consider MSM and SML estimators
implemented using GHK simulators based on 10, 20, 40, 80, 160, 320, 640 and
1280 draws.

It is impractical to repeat the analysis using all 12 data structures used in
experiment 1 and all 8 alternative simulation sizes. Instead, we use the two data
structures that generate the lowest and highest RMSEs for SML and MSM,
relative to GIBBS. The last cight rows of Table 13 indicate that the best case for
the classical estimators relative to GIBBS is data structure # 9, with low serial
correlation in disturbances, high serial correlation in regressors, and high cross
correlation in disturbances. Conversely, the worst case for SML and MSM is
data structure # 4, in which these correlations are high, low, and low, respec-
tively.

In Table !4 we report the results for SML, using the same 20 artificial data
sets generated with data structure # 9 as were used in experiment 1. For each
simulation size, we also report the average (across parameters) of RMSE relative
to that for the GIBBS estimates based on m = 5000 iterations. We do this
because standard methods for ¢valuating the accuracy of posterior moments (see
Geweke, 1992) indicate that, with m = 5000, further Gibbs iterations should
produce negligible changes in RMSE. Thus, the RMSEs for GIBBS provide
a reasonable benchmark.

The Table 14 results are roughly consistent with the conventional wisdom
reported in Borsch-Supan and Hajivassiliou (1993) that SML based on GHK
performs we.. using only 20 draws. The mean across all 9 model parameters of
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Table I3
Root mean square error comparison
Covariate Predicted RMSE
Coeff. Std Err t-ratio

Intercept — 3.633 0064 — 56493
MSM-GHK 0.i65 0.090 1.846
SML-GHK 043 0.090 0483
atz 0.960 0.075 12.876
a3 0.704 0.075 9.444
pr —0.111 0.089 ~1.250
P2 0.530 0.089 5942
Bt — 0421 0.075 ~ 5.643
[ 0904 0.075 12.118
Bt — 0024 0.075 - 0326
% 0.846 0.075 11342
Corrlmy,, n12,) =0.80 0.009 0.037 —0.237
pL=p2=080 0.122 0.037 3.303
¢z =0.50 0.185 0.045 4095
¢* =0.80 0.468 0.045 10.334
Corr(iy 2 = 0.80 x DEP = RHO 0.051 0.049 1.043
P = p2 =080 < DEP = RHO — 0421 0.049 — 8.615
¢* = 0.50x DEP = RHO —0.383 0.060 — 6409
¢* =080 x DEP = RHO —0(.530 0.060 — 8.364
at, x MSM-GHK 0.103 0.105 0.980
4%, x MSM-GHK — 0047 0.105 — 0447
PEx MSM-GHK — 0021 0.105 - 0.196
P x MSM-GHK - 0034 0.105 — 0326

*, x MSM-GHK —0.015 0.105 —0.140
1%, x MSM-GHK 0.061 0.105 0.574
A x MSM-GHK —0.181 0.105 - L713
%, x MSM-GHK —0.195 0.105 —1.852
at: x SML-GHK 0.191 0.105 1.812
ufy x SML-GHK 0.280 0.105 2,650
p¥xSML-GHK 0.767 0.105 7.274
p¥xSML-GHK 0.909 0.105 8.621
£t x SML-GHK 0.110 0.105 1.043
% x SML-GHK 0.108 0.105 1.028
B x SML-GHK — 0,046 0.105 — 0434
B%: x SML-GHK - @167 0.105 — 1.585
Corr(11, 2 = 0.80 x MSM-GHK - 0082 0.050 — 1.652
M = pz = 0.80 x MSM-GHK 0.129 0.050 2.597
¢% = 0.50 x MSM-GHK 0.033 0.061 0.543
¢? = 0.80 x MSM-GHK — 0.057 0.061 — 0938
Corr{n; 72 = 0.80 x SML-GHK —0.129 0.050 — 2.585
P = p2 = 0.80 x SML-GHK 0.142 0.050 2.865

* = 0.50x SML-GHK — 0618 0.061 - 0292
¢* =0.80 x SML-GHK -0.148 0.061 — 2431

Note: Dependcent variable is log(RMSE). DEP = RHO means that the dependent variable for the
observation is the log{RMSE) for a parameter py or g2, €10 = P1&1,-1 + N1, 2.0 = Paf2ua—1 + 2.
B30 = 0.
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the RMSE for SML is only 9% greater than GIBBS, and agreement between
RMSE and ASE is generally good. The exceptions are p, and p,, for which
downward bias is noticeable and RMSEs are well above ASE. Noticeable
improvements in RMSEs and in agreement between RMSEs and ASEs for the
autoregressive parameters are achieved by increasing the number of draws to 40
or 80, but little is gained by going beyond that.

Note that for the slope parameters f* and y there is little change in RMSE in
going from 20 (or even 10) up to 1280 draws. Thus, the conventional wisdom
that 20 draws is enough® may well stem from th: tendency to focus on such
parameters to the exclusion of the covariance structure parameters (in fact,
recall that Borsch-Supan and Hajivassiliou (1993) held the covariance structure
parameters fixed at true values in their study). But clearly, if a MMP mo lis to
be used to model behavior, then the covariance parameters are every bit as
important as the slope parameters.

The MSM results for data structure # 9 are reported in Table 15. When only
20 draws are used MSM performs even better than SML. The mean across all
nine model parameters of the RMSE is ¢ssentially identical to that for GIBBS,
and the agreement between RMSE and ASE is generally good. In contrast to
SML, no downward bias is apparent for p, and p,, even when only 10 draws are
used. This is consistent with findings in Keane (1994). Again, it appears that
increasing the number of draws beyond 20 leads to only minor improvements in
RMSEs.

In Table 16 we report the results for SML using data structure # 4 - the
worst case for MSM and SML. These results sharply contradict the conven-
tional wisdom that ‘20 draws is enough’. Using only 20 draws, the mean RMSE
for SML is roughly 79% greater than for GIBBS. Biases for all the covariance
parameters are severe, especially for p, and p,. 160 draws are needed to reduce
the RMSE for SML to less than 10 percent greater than GIBBS, and 640 draws
are needed to reduce it to the same level as for GIBBS. But even here, for the
slope parameters it appears that the improvcricnts in RMSE that are achieved
by going past 20 draws are minor.

The MSM results for data structure # 4 are reported in Table 17. The
performance of MSM in this worst case is much superior to that of SML. Using
20 draws, the mean RMSE for MSM is roughly 37% greater than for GIBBS.
This is much better than the 79% figure achieved by SML. Even more impor-
tantly, there is no evidence of bias, even when only 10 draws are used. This is
again consistent with findings in Keane (1994),

7. Conclusion

We have compared the sampling properties of the G1BBS estimator obtained
by using Gibbs sampling and data augmentation to compute posterior means,
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the MSM estimator using the GHK probability simulator, and the SML estimator
using the GHK probability simulator. In a controlled Monte Carlo experiment
we find that all three estimators perform reasonably well in point estimation of
parameters of the data generating process in a three alternative 10-period multi-
nomial multiperiod probit model. However, the relative performance of the
methods varies as we vary the treatment variables in our experimental design.

Four important patterns emerge in the response of RMSEs to the design
variables. First, RMSE:s for all estimation methods and model parameters rise as
serial correlation in cither the errors or in the covariates is increased, except for
the AR(1) parameters, for which RMSEs fall. Second, RMSEs of the SML and
MSM estimates rise substantially relative to those of the GIBBS estimates as
serial correlation in the errors increases. Third, increasing serial correlation in
the covariates leads to a small relative decrease in the RMSEs of the SML
estimates. Fourth, increasing cross correlation of the errors leads to relative
declines in the RMSEs of the SML and MSM estimators.

Of these patterns, we feel that the most important to a user of these methods is
the fact that, holding draws fixed, both the relative and absolute performance of
the classical methods, especially SML, becomes worse as serial correlation in
disturbances increases. In data sets with an AR(1) parameter of 0.50, the RMSEs
for SML and MSM based on 20 draws exceed those of GIBBS by 9% and 0%,
respectively. But when the AR(1) parameter is 0.80, the RMSEs for SML and
MSM based on 20 draws exceed those of GIBBS by 79% and 37%, respectively,
and the number of draws needed to reduce the RMSEs for SML and MSM to
within 10% of GIBBS are 160 and 80, respectively.

In existing applications it is common for MSM or SML to be implemented
using GHK simulators based on only 10 or 20 draws, and conventional wisdom
seems to suggest that 20 draws is ‘enough’. But our results suggest that when
serial correlation in the errors is strong, substantial RMSE reductions can be
achieved by going to 80 or 160 draws. And in the case of SML, substantial bias
reductions can be achieved as well. The main weakness of SML relative to the
other methods is in estimation of serial correlation parameters. When 20 draws
are used, the SML estimates of the AR(1) coefficients are clearly biased down-
ward and have RMSEs roughly twice as great as for other methods. This
problem would lead to larger RMSEs in out of sample {orecasts obtained using
SML as compared to the other methods. It appears that from 80 to 320 draws
must be used in order to render these biases insignificant.

For purposes of statistical inference it is desirable that ASE or PSD be similar
to RMSE. There is generally close agreement between RMSEs and ASEs
for MSM, and somewhat less close but still acceptable agreement between
RMSEs and PSDs for GIBBS. But, when only 20 draws are used, RMSEs of
SML point estimates exceed ASEs by 38% on average. This divergence is
greater when serial correlation in errors is strong, and it can be reduced by using
more draws.
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What accounts for the increases in RMSEs for MSM and SML relative to
GIBBS as serial correlation in the errors is increased while holding simulation
size fixed? It stems from the different roles of simulation in the estimators. In
MSM and SML, a set of nonlinear equations is solved iteratively. Equation
evaluation at each iteration is approximate, but consistent in the number of
GHK draws. As serial correlation increases, more draws are needed to maintain
a given level of accuracy of the GHK approximation. In GIBBS, simulation-
consistent approximation of posterior means comes about because, over the
whole set of iterations, the simulator draws a sample representative of the
posterior distribution. With increased disturbance serial correlation, a greater
number of iterations is required to achieve a representative sample because the
Gibbs sampler navigates the posterior more slowly. Thus, performance of each
method should deteriorate as serial coirelation in disturbances is increased, but
the relative rate of deterioration is an empirical question. In our experiments,
5000 iterations of the Gibbs sampler provides good approximations to the
posterior for both high and low degrees of serial correlation. In contrast, 20
draws for the GHK simulator provides comparable approximation accuracy
when serial correlation is low, but the number must be made much greater when
serial correlation is high.

Since we argue that RMSEs of the MSM and SML estimators based on GHK
with 20 draws and GIBBS posterior means based on 5000 Gibbs iterations are
similar when serial correlation is relatively weak (i.e., AR(1) parameters in the
0.50 range), but that roughly 80 to 320 draws for MSM and SML are needed to
maintain comparable performance when serial correlation is strong {i.e., AR(1)
paramelers in the 0.80 range), it is important to consider how computation time
for the various methods is affected by simulation size.

Unfortunately, it is essentially impossible to give absolute time comparisons
for these methods for several rcasons. For example, since most of the computa-
tion time for GIBBS is used in drawing the latent utilities, time for GIBBS
increases slowly as the number of model parameters increases. But for SML and
MSM, computation time is roughly proportional to the number of parameters,
since most of the time in these methods is spent calculating derivatives and the
mitial weighting matrix, respectively. Also, relative timings for the methods will
depend on the number of iterations necessary to achieve convergence for the
classical methods, and the number of Gibbs iterations needed to achieve a de-
sired level of numerical accuracy. In particular, for MSM the calculation of the
initial weighting matrix is much more time consuming that subsequent iter-
ations, while for SML all iterations take roughly equal time. And the number of
iterations nceded for convergence is particular to the application at hand.
Finally, if one wishes to check sensitivity of results to simulation size, MSM and
SML require that one redo the entire estimation vsing more draws, while with
GIBBS one can simply restart the algorithm from end values and add additional
iterations. Thus, monitoring numerical accuracy is much easier with GIBBS.



JF. Geweke et al. | Journal of Econometrics 80 (1997) 125—-165 157

Despite these problems, it is informative to give some timing information
based on our Monte Carlo experiments, The typical time for our GIBBS runs on
an IBM 3090 mainframe was 816 cpu s. Timings for the classical methods is
much more variable than for GIBBS, because the number of iterations needed to
achieve convergence varies greatly across Monte Carlo data sets. On average,
the number of iterations needed to achieve convergence for the data sets
consitdered here is about 10. For SML, a regression of computation time per
iteration on number of draws produced the result 5.2 + 0.74*Draws. Thus, the
predicted times for ten iteration runs using 20, 80 and 160 draws are 200, 644
and 1236 ¢pu s, respectively. For MSM, a regression of marginal computation
time per iteration on number of draws produced the result 2.7 4+ 0.54*Draws,
while a regression of initial weighting matrix computation time on number of
draws produced the result — 2.0 + 3.44*Draws. Thus, the predicted times for
ten iteration runs using 20, 80 and 160 draws are 202, 732 and 1439 cpus,
respectively. We interpret these results as indicating that computation times are
in the same ballpark for all three methods, given models of the size considered
here and simulation sizes of the type one would typically employ. Thus, we
conclude that computation time should not be a decisive factor in choosing
among the methods.

If we had found that computation times for GIBBS greatly exceeded those for
MSM or SML, it would make sense for a Bayesian practitioner to consider these
methods as a way to approximate posterior means. That this is not the case
implies that a Bayesian should have no inteiest in these alternatives — provided
that Gibbs sampling data augmentation software is at hand.

Appemdix A: application of the GHK simulator to the MMP model

Here we provide a description of the GHK simulator as applied to the
simulation ol choice probabilities in the MMP model described in Section 2. For
a proof of the unbiasedness of the GHK simulator in general, see Borsch-Supan
and Hajivassiliou (1993). To describe the GHK simulator it is useful to define
some additional notation. Let

U’!kl =Uk— U?j: (=1,..,5t=1..,T) th = £kt —gi*jl-

(Notice that U{j, = 0 and &, = 0.) Choice j is made at ¢ if the J — 1 constraints
U4, < 0 for all k # j are satisfied. Further let

Bl — )=, oo 8 y.0 8 jrtes oo »8l)  and
Ed) = @ —ju) o Br( —JiT))

where d; is the choice vector defined in (2.4). Thus &(d) ~ IIDN(O, £(d,)), where
%(d)) is the appropriate transformation of Z*,
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Let A(d)) be the unique lower triangular Cholesky decomposition
2(d;) = Ad;) A(d;y. Then &(d;} = A(d;)#(d,), where (suppressing the i subscript)
ﬁ!( _jl} = (ﬂlh IS S NTE. /S WY "TJ!)’s ﬁ(dx) = (ﬁl( —i | A 1ﬁT( _j'[')),7
and n;;, ~ IDN(0, 1) for all i, j, r.

Finally, define U4 (51, -.- 25— 1. i11e -.- . fi ) @s the value of T, when the
random variables (11, ... \fri—1s fres .- 55} are fixed at the draw
(7414 v sii=15 Tty --- +710). Note that for p = k this is a number, and for p < k
this is 2 random variable. Then, the GHK simulator for the probability of the
choice sequence (d;y, ... ,dy), or equivalently (i, ... ,ji), is constructed as
follows (suppressing the i subscript):

Period 1:
Step:

50 Draw 7y, s.t. Uf () <0

(j1 — 1) Draw '?}. 1.1 St ﬁf: —lrhy e Ji;.— 1) <0

(/1) Skip '?,5.,1
(j1 + 1) Draw ’1,’. + 1 St Uf: s, - Jh’.- l.lvn,!. ra}<0

) Draw iy st Ohirh, oot -t s b)) <0

Period t:
Step:

(1 Draw i st. 0%, (7 (s - o H50-1, 1) < O

(jl - 1) Draw '}j,— tr s.t. tj;:— l.:(ﬁ'l]’ e »ﬁl.l.l—lv ﬁ“ln see -njr,—l,r) < 0
(ir) Skip n}.
Ge+ D) Draw i}, o8t Ok 07 oo o Wi oo ol o 1 1) <0

J) Draw 'T.'h 5.t tji'r:(ﬁ'll: e 1'75.1- Ls '1'1;, ;’hr,— L 'T,f. Ly oe- w'].ln) <0
and finally, construct:

Poux(dys ... .di| %, Z* X%

11!»{

, P
=ﬁ Z P(UY, <) l—l P[UJ&'I('JIU, ,?1{;—1,1}<0]
=1 k=2
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x P[Ui': ey, o, 1) < 0]
[T PIOUG s ool o W v it ooe s H=1,1) < 0]

© oo PO e H-1) < 0)
j—1

x [T PLOLGH s o it 15 Wl o k- 1.0) < 0]
k=2
P[g£:+l.f(ﬁ'lls .- ,ﬁ.lf.,l— 1s ﬁrlh e ’ﬁ},—l,l) < 0]

J
[T PLOGG . o i 1sfhes e sl s Wl tes o 5Tk 1) < O]

k=f+2

Appendix B: a Gibbs sampling data augmentation algorithm for the MMP model

In order to describe the Gibbs sampling data augmentation algorithm, it is
first useful to define the proper prior distributions in generic notation:

Br~N@L Ve G=1,...J-1
y ~ Ny, V)
pi~TN@puol) (j=1,....0—1),

where TN denotes truncation of the univariate normal distribution to the unit
interval (0, 1);

el WS L),

where W denotes the Wishart distribution. These priors are assumed mutually
independent.
It is also useful to adopt the notational convention U = &%, X% = {0],
Z} = [0], and to define three equivalent expressions for the probability density
kernel of the U}, which are

||pl NTIZexp{__ z
i=1

where ¢} = U% — X3 p* — Z¥y; or

i(U B —2Z%yy
=1i=1

Z (ef — Refe— ) ¥ 7' (elk —Re?f:-l)}, (B.1)

=

1 X
~-NT2 :
k4 exp{ 2

x‘f'“(U?:—)'i‘.-‘:l?*—Z:'.‘v)}, (B.2)
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where

Ut=Uf—RUY_,, Xt=RX5—RX} . 25=2Z%—RZ} _,;

and
T
|W5_Nmexl3{ "% Z Z [Uf —RU}_y — (o — Rps, -1 7!
i=11=1
0}
x[U¥ — RU¥, -y — {1ty — Ru.-.,_.nf, (B.3)

where y; = X ¥ i* + Z¥%7, each multiplied by the kernel density of the uncondi-
tional distribution of £f%,

1 X )]
IVo(R,‘I’)I_N’ZEXP{ -3 Y b [Vo(R, 'I’)]"S?BJM (B.4)
i=1

where [Vo(R, ¥ )] = ¥u/(1 — pjpx).

The kernel of the posterior density function for §*, 7, p, ¥, and the U} is the
product of (B.1) or (B.2) or {B.3); {B.4); the density kerrais for the prior distribu-
tions; and

N T
IT T HUE, di), (B.5)
i=11=1
where H is an indicator function for consistency of orderings and signs of the
U¥ (j=1,...,L) with the observed choice vectors d;,. Using notation defined
in Section 2, this is

HWUL, d)=1iff ULe {U|UX > ULVEk # ju}.
A six-step Gibbs sampling-data augmentation algorithm is enployed to
construct draws from the posterior distribution. Initial values for ﬁ*, 7. p, and

¥ are drawn from the prior distributions, and initially U¥ =0(i=1, ..., N;
t=1,...,T)

Step 1: Drawing Uf(i=1....,m t =1, ...,T). The kernel density of the
conditional distribution of the U} is the product of (B3) and (B.5).
The conditional distribution of U¥ = (UY, ..., U¥) is truncated normal. The
conditional normal distribution is given by the relations

Ul — min — Rely = vay,
Ul — iz — RWUH —pa) =1,

Ukt —ptir —RW oy —pir-1) =i
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from (B.3), which imply

[, 0 o .. o o o0 |[uxr—u, )
—R I 0 - 0 0 © Ub — iz

0 — R IT v 0 0 0 U?_’,—Hn

0 0 0 ... -—R Iy 0 Uir-1— tir-1
0 0 0 . 0 —R IT U?‘T—_H.'T
_RC:FQ'*'U”-

Uiz

Vi3

Virt-1

bir

Denoting the LT x LT matrix in this expression by G~ ', we have

Iy 0 0 .. 0 0
-
RT™1 RT-2 RT3 .. R I

Hence the conditional normal distribution of u¥ has variance G(fx ® ¥)G’ and
mean

¥ + Refy
My + R3el

ur + Rk

The truncations of this distribution are linear and are given by {B.5). Hence the
distribution of U; for given i and t, conditional on U%,(s # t orj # ), &%, and
all the parameters of the models is truncated univariate normal. Therefore,
U, .. Uty U, L U, L U, L U may easily be drawn in suc-
cession, the drawn values replacing the old ones at each step. Details of this
procedure are set out in Geweke (1991).
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Step 2: Drawing &% (i =1, ...,n). The kernel density of the conditional
distribution of the &f is the product of (B.1) and (B.4). These expressions reflect
the assumption that the process {ef}/2_, is stationary. Since
et = Re¥,_, + v, the conditional distribution of £% involves only &%, R, and ¥.
It is indicated by the lingar regression

& =Bgyy + 8 covigs1,8)=0
B =[Vo(R, P)YIR[V,(R, ¥)]", and {, has variance
Vo(R, ¥)— BV(R, ¥)B'.
Hence the conditional distribution of &£} is
£y ~ N[Be}. Vo(R, W) — BV(R,¥)B'].

Step 3: Drawing p. The kernel density of the conditional distribution of
p={p1,...,pL) is the product of (B.1), (B.4), and the kernel density of the
truncated normal prior distribution of p. Expression (B.1), read as a function of
p. is the kernel density of a mullivariate normal distribution with precision
{inverse variance)

N T 2 LN T * *
':t’“z.'=1zr=15?1.r—l e ! ;=1Z,=13i1.r—13.1,_¢—1

_'ﬁ“Zi:ZL:ﬁﬁ.r—l“i*l.rﬂ 'I’LLZ:LIZ;ZIE?.‘LZ.!—I
where P* = [¥ '], and mean H,v,, where

Z;;l 'I’UZ?;: ZL efl-16ki
) Z;;:'!’“Zf;; ZL E:L.r-la:‘l}.r—l

Let V, = diag(s},, ... ,62,). Then the distribution corresponding to the kernel
density that is the product of (B.1) and the prior density for p is

N[Hgwe+ V;'"p, (H;+V;H 1] (B.6)

Uy

truncated to the unit hypercube in RL. The conditional distribution’s kernel
density is the product of the kernel density of this distribution and (B.4). Hence
drawings from the full conditional distribution for p may be made by drawing
from (B.6) and then using an acceptance step for the unit hypercube and (B.4).
This may be done efficiently by noting that {B.4) is bounded above by
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[(1/N)S,,| "2 exp( — NL/2), where S, = Zf;, £i0Eln, because {(I/N)S,, is the
unconstrained conditional maximum likelihood estimate of ¥, = var(g;). Thus,
drawigs for p are made from (B.4), rejected if p; < O or p; = 1 forany j, and then

accepted with probability
Nz NL
cexp ( - T) .

(B.7)

[Vo(R, ¥)] M exp{ Slus, vow, -11)-1} / \%s

The acceptance siep is motivated by the similar procedures of Marriott et al.
{1995) for stationary time series. The computation of (B.7) is trivial, and the fact
that &% is a synthetically drawn latent variable prevents acceptance probabilities
from becoming impractically small.

Step 4: Drawing ¥. The kernel density of the conditienal distribution of ¥ is
the preduct of (B.1), (B.4), and the kernel density of the inverted Wishart prior
distribution of ¥. The prior and (B.1) imply

N T
ol W|:S + Y ¥ (ef — Re}~ )k — ReX Y, v + N].
i=1 f=1

The effect of (B.4) is then accommodated through an acceptance step just as it
was in the drawing of p.

Step 5: Drawing f*(j =1, ...,L). The kernel density of the conditional
distribution of f* = (8%, ..., B¥’Y is the product of {B.2) and the kernel density
of the normal prior distribution of f. Since the model imposes no cross-equation
constraints on the ¥ and the priors of the f¥ are independent, the conditional
distribution of each f* has a simple form. Expression (B.2} as a function of ﬂ‘}‘ is
the kernel density of a multivariate normal distribution with precision

N T

VEDWD WP ¢ %64
1

i=1t=

and mean
N T ., -1 L o N T .
|3 5 tutn| Sorns § tamp,
i=11=1 1=1 i=11=1
where

Wil =U¥{— X¥Bi— Ziey( # )
and

(i — 7* .
wiy =ULi—2Zyy.
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This mean and precision may then be combined with the prior mean and
precision in the usual way to form the conditional, normal posterior distribution
from which it is simple to make drawings.

Step 6: Drawing 7. The kernel density of the conditional distribution of 7 is
the product of (B.2) and the kernel density of the normal prior distribution of 7.
Expression (B.2) as a function of y is the kernel density of 2 multivariate normal
distribution with precision

$ 555w

and mean

The mean and precision may then be combined with the prior mean and
precision in the usual way to form the conditional, normal posterior distribution
from which it is simple to make drawings.

From the structure of (B.2) and the prior distributions for the ﬂ}-" and v it is
clear that the joint conditional posterior distribution of (%', ') is normal, and
therefore the J + 1 drawings in steps 5 and 6 could be combined into one. This
requires the solution of a much larger set of linear equations, each iteration of
which results in greater execution time. On the other hand, the use of J + 1
drawings rather than one introduces additional serial correlation into the Gibbs
sampler. In the applications undertaken here, the choice is not important,
because over 95% of execution time is devoted to drawing the U} and &%, and
this step is the source of most serial correlation in the Gibbs sampler.
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