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Abstract

This paper extends the conventional Bayesian mixture of normals model by
permitting state probabilities to depend on observed covariates. The depen-
dence is captured by a simple multinomial probit model. A conventional and
rapidly mixing MCMC algorithm provides access to the posterior distribution
at modest computational cost. This model is competitive with existing econo-
metric models, as documented in the paper’s illustrations. The first illustration
studies quantiles of the distribution of earnings of men conditional on age and
education, and shows that smoothly mixing regressions are an attractive al-
ternative to non-Baeysian quantile regression. The second illustration models
serial dependence in the S&P 500 return, and shows that the model compares
favorably with ARCH models using out of sample likelihood criteria.
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The linear model has always held a special place at the core of econometric the-
ory and practice. The founders of the discipline, in Rotterdam and at the Cowles
Commission, attacked the problem of providing an empirical foundation for economic
policy using models in which relationships between the essential variables were linear.
As the profession has grown in sophistication and ambition models have become more
elaborate, but to a striking degree this has been achieved by using transformations
of linear structures. This central position of the linear model can be ascribed in
part to its simplicity, familiarity and ease of interpretation, characteristics that most
introductory texts and courses in econometrics seek to convey.
Much of econometrics, whether old or recent, is concerned with the relationship

of a vector of relevant covariates x to a vector of outcomes y, the nature of the
relationship being mediated to lesser or greater degree by economic theory. Fifty
years ago theory and practice addressed the regression f (x,θ) = E (y | x,θ), θ being
a vector of structural parameters. In the simultaneous equation work of the Cowles
Commission (Koopmans (1950); Hood and Koopmans (1953)) f is linear in x but not
θ; in the Rotterdammodel (Barten (1964); Theil (1967)) and its descendents f is often
linear in both x and θ, with linear and nonlinear constraints on θ. While progress in
the intervening fifty years can be measured in many dimensions, two are important
to the topic of this study. First, when economic theory tightly mediates f (x,θ) the
function is typically nonlinear in x, θ or both, and when it does not the assumption of
linearity can often be overturned by the evidence. In both cases econometric theory
and practice have risen to the challenge, typically through appropriate modification of
the linear model at the core of the discipline. Second, answering interesting questions
in economics often requires the entire conditional distribution p (y | x): this is nearly
always the case in any problem involving decision making with a relevant loss function,
from macroeconomic policy to the pricing of options to the evaluation of economic
welfare.
This study addresses the question of inference for p (y| x) when data are plentiful,

economic theory does not constrain p, and y is univariate. It proposes a model
for the full conditional density, taking linear models and latent variables structures
well-established in econometrics and combining them in a new way. In so doing it
is related to several branches of the econometric and statistical literature, including
nonparametric and quantile regression as well as mixture models. Section 1 discusses
these relations. Section 2 provides a full exposition of the model, with details of
inference relegated to an appendix. The following two sections illustrate how the
model answers the questions it is designed to address. Section 3 uses data from the
panel survey of income dynamics to infer the distribution of earnings conditional on
age and education, a relation that has been a focal point of the quantile regression
literature. Section 4 applies the model to the distribution of asset returns conditional
on the history of returns, using a decade of Standard and Poors 500 data. It applies
the model to the assessment of value at risk and presents evidence that the model
compares well with other approaches to asset return modeling. The concluding section
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describes some of the key outstanding challenges in conditional distribution modeling.

1 Modeling conditional distributions

Conditional distributions arise at the heart of economic analysis. Formal decision-
making typically incorporates the distribution of a random variable y that is unknown
at the time the decision is made, conditional on the value of a vector of covariates
x that are known. This distribution is conventionally represented by the conditional
probability density function p (y | x). In a related but less formal context, the econo-
metrician may reasonably be asked about many properties of this conditional distrib-
ution and expected to provide answers that are reliable and internally consistent. In
both contexts the entire conditional distribution is required. We emphasize this point
here because the model and methods in this study can be used for any functional of
p (y | x), including expected utility and measures of inequality. Yet it is possible to
present only a few such functionals in a single study and we choose to concentrate on
the moments and quantiles that have been the focus of the econometric literature.
Much of this literature is concerned with particular properties of p (y | x), the lead-

ing example being the regression function E (y | x) for univariate x. Non-Bayesian
nonparametric methods are now standard topics in graduate econometric and statis-
tics courses and components of the econometrician’s toolbox; standard references
include Härdle (1990) and Green and Silverman (1994). Härdle and Tsybakov
(1997) and Fan and Yao (1998) extend these methods to var (y | x), but we are not
aware of any treatment of p (y | x) using the same methods. Bayesian foundations for
smoothing splines originate with Wahba (1978) and Shiller (1984), with extensions to
semiparametric approaches for multivariate x by Smith and Kohn (1996), Koop and
Poirier (2004) and Geweke (2005, Section 5.4.1) among others. In both Bayesian and
non-Bayesian approaches a fully nonparametric treatment of E (y | x) for multivariate
x raises new but surmountable issues: in the Bayesian literature, for example, see
the work of Ruggiero (1994) on hazard models. Of particular relevance for the work
here are Voronoi tesellation methods for spline smoothing (Green and Sibson, 1978),
for which Bayesian methods have recently been developed by Holmes et al. (2005);
we return to these methods in Section 2.5. To the extent this literature addresses
p (y | x) it typically does so using strongly parametric models for ε = y − E (y | x);
a notable exception is Smith and Kohn (1996). Müller and Quintana (2004) provide
an accessible review of the Bayesian nonparametric regression literature.
Koenker and Bassett (1978) note that if P [y ≤ fq (x)] = q, then fq (x) minimizes

the expectation of

(1− q) |y − fq (x)| I(−∞,fq(x)) (y) + q |y − fq (x)| I(fq(x),∞) (y) .
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If fq (x) = f
¡
x,θq

¢
then

bθq = argmin
θ

TX
t=1

£
(1− q) |y − fq (x,θ)| I(−∞,f(x,θ)) (y) + q |y − fq (x,θ)| I(f(x,θ),∞) (y)

¤
is a consistent estimator of θq and f

³
x,bθq´ is a consistent estimator of quantile q of

p (y | x). Quantile regression, as this procedure has come to be known, accomplishes
some of the objectives illustrated in Sections 3 and 4, but it is more limited in two
respects. First, it seeks only to address (at most) a finite number of quantiles of
p (y | x), rather than providing a complete model for the conditional distribution.
Second and derivative from this objective, quantile regression does not make use of
the restrictions q < q∗ =⇒ fq (x) ≤ fq∗ (x), leading to loss of efficiency in finite

sample and the accommodation of the contradiction that f
³
x,bθq´ > f

³
x,bθq∗´ for

some combinations of x and q < q∗. Buchinsky (1994) takes this approach in an
application similar to the one in Section 3; see also Manning et al. (1995) and
Angrist et al. (2004). Nonparametric methods for regression functions may also be
applied to the functions fq (x) themselves (Yu and Jones (1998)).
Over the past decade mixture models have emerged as a practical and theoretically

appealing device for flexible specification of the entire conditional distribution, fueled
in substantial part by Markov chain Monte Carlo (MCMC) methods for Bayesian
inference; see Escobar and West (1995). There is a substantial body of recent work
in Bayesian econometrics that concentrates on flexible modeling of ε = y − E (y | x)
under the assumption that ε is i.i.d. and independent of x. Geweke and Keane (2000)
uses a finite mixture of normals model for transitory shocks to earnings in an otherwise
conventional life-cycle model with panel data, and Hirano (2002) does much the same
thing beginning with a Dirichlet process prior centered on a normal distribution.
Griffin and Steel (2004) take a similar approach in a stochastic production frontier
model, concentrating flexibility on the firm component. Smith and Kohn (1996)
combine a mixture of normals specification for the disturbance with nonparametric
treatment of the regression but their focus was on robust inference for the conditional
means rather than inference for p (y | x).
The assumption that ε = y−E (y | x) is independent of x is clearly inappropriate

in many applied econometric settings: two decades of work on asset returns (Boller-
slev et al. (1992), Jacquier et al. (1994), Kim et al. (1998)) provide spectacular
counterexamples, and the econometrics literature (White (1980)) has long empha-
sized robustness with respect to conditional heteroscedasticity. Mixture models have
been extended to build dependence between ε and x. Some of the first instances
in econometrics were motivated by overdispersion relative to the canonical Poisson
regression (Wedel et al. (1993)) and negative binomial (Deb and Trivedi (1997))
models. Morduch and Stern (1997) applied this idea to conditional distributions of
continuous random variables in an approach related to the one taken here. Since the
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pioneering work of Ferguson (1973, 1974) mixtures with Dirichlet process priors have
been an important tool for modeling unconditional distributions. If this approach
is taken to inference about the joint distribution of y and x, one immediately has
inference for p (y | x) as a logical byproduct. Examples include Müller et al. (1996)
and Chamberlain and Imbens (2003), the latter with an application related to the
example in Section 3. Including x in the modeling exercise substantially increases
computational demands. It also requires that the investigator think about p (x) in
situations where x is otherwise ancillary. Several investigators have recently focused
directly on p (y | x) using Dirichlet process priors to enforce the idea that the mapping
from x to p (y | x) is smooth. DeIorio et al. (2004) uses this strategy for categorical
covariates, and Griffin and Steel (2005) for continuous covariates. The approach in
this literature closest to the one taken here is Dunson and Pillai (2004), who use
kernel smoothing of continuous covariates, to which we return in Section 2.5.

2 The model

We turn first to a full statement of the smoothly mixing regression model.

2.1 Normal mixture models

The point of departure for our work is a general statement of the discrete mixture
of normals model for T observations y =(y1, . . . , yT )

0 of a variable of interest and
T corresponding observations of covariates X = [x1, . . . ,xT ]

0. Linear and nonlinear
transformations of the n×1 vectors xt, for example those used to create polynomials,
produce the T × k matrix U = [u1, . . . ,uT ]

0 and T × p matrix V = [v1, . . . ,vT ]
0.

Corresponding to each observation there is a latent variable est taking on one of the
values 1, . . . ,m (m ≥ 2) and then

yt | (ut,vt, est = j) ∼ N
¡
β0ut +α

0
jvt, σ

2
j

¢
(j = 1, . . . ,m) . (1)

This expression is a component of all the models considered in this article. In all
cases ut is a k × 1 vector of observed covariates and vt is a p× 1 vector of observed
covariates. The first component of these vectors is always the constant term ut1 = 1 or
vt1 = 1 respectively. In the conventional mixture of normals model, est is independent
and identically distributed and independent of ut and vt, with

P (est = j | ut,vt) = πj (j = 1, . . . ,m) . (2)

If p = 1, then (1)-(2) amount to a linear regression model in which the disturbance
term is i.i.d. and distributed as a normal mixture. (Note that β1 and α1, . . . , αm are
unidentified in this case. Section 2.3 returns to identification and related matters.)
This accommodates a wide variety of distributions even whenm is small, as illustrated
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in Figure 1. If p = 0, then the disturbance distribution specializes to a scale mixture
of normals, which is symmetric, as illustrated in panels (a) and (f) of Figure 1.
If k = 1 and p > 1, then the regression in (1)-(2) is E (yt | vt) = β1+

Pm
j=1 πjα

0
jvt.

The distribution of the population residual εt = yt − E (yt | vt) is a normal mixture.
The shape of the mixture distribution depends on the value of vt, but the dependence
is restricted — it amounts to changes in the location of the component normal densities
displayed in Figure 1. In this study, we describe a substantially richer dependence of
the distribution on covariates, and illustrate its application in Sections 3 and 4. The
case ut = vt, with k = p > 1, describes the same family of population models. We
do not pursue this case in this study, but it is attractive in formulating a hierarchical
prior distribution, as discussed in Section 2.3.
In time series applications model (2) for the latent states can be generalized to

the first-order Markov process

P (est = j | ut,vt, , est−1 = i, est−2, . . . , es1) = pij. (3)

The combination of (1) and (3), for ut = (1, yt−1, . . . , yt−k+1) and p = 1, is the Markov
normal mixture model (Lindgren (1978); Albert and Chib (1993); Chib(1996)). In
this model the distribution of yt depends indirectly on yt−1, yt−2, . . . by means of
the filtered probabilities P (est = j | yt−1, yt−2, . . .); see Geweke (2005, Section 7.4) for
discussion and illustration. In this study we describe an alternative structure for
time series and illustrate its application in Section 4. The next section outlines the
structure.

2.2 State probabilities

An important potential shortcoming of the mixture model (1)-(2) is that in the typ-
ical application with p = 1, only the location of the conditional distribution of yt
depends on xt. This excludes conditional heteroscedasticity, which has been doc-
umented in many settings, and other kinds of dependence of p (yt | xt) on xt. In
the smoothly mixing regression model the state probabilities P (est = j) depend di-
rectly on a xt, introducing a flexible dependence of the conditional distribution on
observables, including conditional heteroscedasticity, in ways to be described shortly.
In order to model dependence of p (yt | xt) on xt, let Z =

£
z1 · · · zT

¤0
be a

T × q matrix created from X by means of the same kinds of linear and nonlinear
transformations used to create U and V from X. The entire universe of models
for a finite number of discrete outcomes provides candidates for the structure of
P (est = j | zt). The subset that is tractable depends on the methods of inference
and the nature of the application. We have found that a simplified multinomial
probit model works effectively in conjunction with Bayesian MCMC and data sets
characteristic of many applications in econometrics. The model can be described in
terms of an m× 1 vector of latent states ewt corresponding to observation t

ewt = Γzt + ζt, ζt
iid∼ N (0, Im) , (4)
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and then est = j iff ewtj ≥ ewti (i = 1, . . . ,m) . (5)

The model (4)-(5) produces simple and tractable conditional posterior distribu-
tions in the context of a Gibbs sampling algorithm, as detailed in Section 2.4, and the
resulting MCMC algorithm has good mixing properties. Other widely used models for
multiple discrete outcomes are less tractable in this setting. One such alternative, a
full multinomial probit specification for est, would replace the variance matrix Im with
the m×m positive definite matrix Σ in (4) together with an appropriate constraint
to identify the scale of the latent vector ewt. This leads to the multimodal likelihood
function documented in Keane (1992), compounded here by the fact that the dis-
crete outcome is itself unobserved. A second alternative to (4)-(5) is a multinomial
logit model. For the same covariate vector zt it has the same number of parameters
and similar flexibility in mapping zt into state probabilities. However the conditional
posterior distributions for the logit model parameters are nonconjugate. In our ex-
perience the mixing properties of the resulting MCMC algorithms are inferior when
(4)-(5) is replaced with a logit model.
The smoothly mixing regression model is the combination of (1), (4) and (5).

The adverb “smoothly” derives from the fact that the conditional state probabilities
implied by (4)-(5) are continuous functions of the covariates Z = [z1, . . . , zT ]

0. Covari-
ates can enter the smoothly mixing regression model through the vector ut if k > 1,
the vector vt if p > 1, and the vector zt if q > 1. In our work we have considered five
of the eight cases produced by these three binary contingencies. If k = p = q = 1
then yt is distributed as a mixture of normals independent of covariates. This model
is not interesting as a point of reference in our subsequent illustrations, and so we
exclude it from further consideration in this study, but it might be useful in other
work.
If q = 1 then (4)-(5) is a straightforward reparameterization of (2). As previously

noted in Section 2.1, if k > 1 and p = 1 then the model reduces to a linear regression
with disturbances distributed as a mixture of normals, while k = 1 and p > 1 produces
a mixture of regressions. We denote these models A and B, respectively. The case
k = p > 1 with ut = vt describes the same model. The redundant parameterization
can be useful in constructing hierarchical priors, an extension not pursued in this
study.
When q > 1 then the distinctive features of the smoothly mixing regression model

come into play. If, in addition, k = 1 and p = 1, then the model describes a mixture
of normal distributions in which each of the m normal constituents is independent of
covariates, but component probabilities move with changes in covariates. We denote
this model C. It includes specifications in which distributions but not means depend
on covariates, a plausible feature of asset returns in many settings. Section 4 reports
evidence of just an instance of model C.
In model D, k = q > 1, p = 1 and ut = zt. This may be regarded as a textbook

linear regression model yt = β0zt + εt in which the distribution of the disturbance
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term εt is a mixture of normals distribution with state probabilities depending on
covariates. Note, however, that the regression is now in fact nonlinear, since

E (yt | xt) = β0zt +
mX
j=1

αj · P (est = j | zt) .

The restriction ut = zt stems from the nonparametric spirit of the model: the distinc-
tion between component conditional probabilities and the means of the component
distributions is one of technical convenience rather than of substance.
The richest structure we consider is model E, with k = 1, p = q > 1 and vt = zt,

a covariate-dependent mixture of normal linear regression models. Again the case
ut = vt = zt is formally identical and could be used to facilitate hierarchical priors.
Table 1 summarizes the five structures we consider in subsequent examples in this
study.

2.3 Identification, parameterization and priors

There are several equivalent parameterizations of the smoothly mixing regressions
model, and equations (1), (4) and (5) present just one. In this study we use a
parameterization that facilitates the expression of prior distributions and also leads to
a MCMC posterior simulator with good mixing properties. To facilitate the discussion
consider four groups of unobservables in (1) and (4)-(5): the variance parameters σ2j
(j = 1, . . . ,m) in (1), the coefficient vector β and matrixA = [α1, . . . ,αm] in (1), the
coefficient matrix Γ in (4), and the latent variables es=(es1 · · · esT )0 in (1) and (5) andfW0 = [ew1, . . . , ewT ] in (4)-(5).
It proves convenient to represent the variance by rewriting (1) as

yt | (ut,vt, est = j) ∼ N
¡
β0ut +α

0
jvt, σ

2 · σ2j
¢
(j = 1, . . . ,m) , (6)

thus representing the variance in state j as σ2 · σ2j . This decomposition makes it
possible to separate considerations of scale and shape in thinking about the normal
distributions comprising the mixture, in much the same way as in Geweke and Keane
(2000). Shape is governed by the state-specific components σ2j . The prior distri-
butions of these parameters are independent inverted gamma, and identification is
resolved by centering the distributions of 1/σ2j about 1:

ν∗2/σ2j | ν∗
iid∼ χ2 (ν∗) . (7)

The investigator chooses the hyperparameter ν∗, which governs the thickness of the
tails of the conditional distribution of yt: the smaller the value of ν∗ the greater
the prior kurtosis of the distribution, whereas this distribution excludes the event of
excess kurtosis as ν∗ →∞. The scale of the disturbance is governed by the parameter
σ2. Its conditionally conjugate prior distribution is also inverted gamma,

s2/σ2 |
¡
s2, ν

¢
∼ χ2 (ν) . (8)
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The hyperparameters s2 and ν can be derived by thinking about plausible values for
σ2, for example a centered prior credible interval.
The coefficients in β, A and Γ all mediate the impact of covariates on the con-

ditional distribution, and therefore prior distributions must be chosen with regard to
the specific composition of ut, vt and zt respectively. Consider first the case of β. In
both of the illustrations in this study the elements of the covariate vector ut are func-
tions of the covariate vector xt = (at, bt)

0 with utj of the form acat b
cb
t (ca = 0, . . . , La;

cb = 0, . . . , Lb), and so k = (La + 1) (Lb + 1). These polynomial basis functions are
attractive because they provide flexibility while maintaining the analytical conve-
nience of a model that is linear in β , conditional on all other parameters. There are
other functional forms with the same attraction that also could have been used in
this work; see Geweke (2005, section 5.4) for details. To express a prior distribution
for β, construct a grid of points of the form

G = {(ai, bj) : ai = a∗1, a
∗
1 +∆a, . . . , a

∗
1 + (Na − 1)∆a, a

∗
2, (9)

bi = b∗1, b
∗
1 +∆b, . . . , b

∗
1 + (Nb − 1)∆b, b

∗
2}

where ∆a = (a∗2 − a∗1) /Na and ∆b = (b∗2 − b∗1) /Nb. Corresponding to each point
(ai, bi) in the grid is a k × 1 vector ci with entries of the form acai b

cb
i ; (ai, bi)

0 is
mapped into ci in the same way that xt is mapped into ut. Arrange these vectors in
the r × k matrix C =

£
c1 · · · cr

¤
, where r = (Na + 1) (Nb + 1) The form of the

prior distribution is then

Cβ |
¡
µ, τ 2β

¢
∼N

¡
ιrµ, τ

2
βrIr

¢
, (10)

where ιr denotes an r × 1 vector of units. If Na ≥ La and Nb ≥ Lb this provides a
proper Gaussian prior for β. The force of (10) is to provide a reasonable range of
values of the polynomial β0u over a domain (9) to which the model is meant to apply.
The parameter τ 2β provides the overall tightness of the prior, which is little affected
by the number of grid points due to the presence of r in (10).
The prior distribution for A is constructed in similar fashion,

Cαj |
¡
σ2, τ2α

¢ iid∼ N
£
0r, τ

2
ασ

2rIr
¤
(j = 1, . . . ,m) . (11)

The mean of 0r reflects the fact that location is handled by means of µ in (10).
The scale of the distribution is conditioned on σ2 because A controls the shape of
the conditional distribution, whereas β controls its location. For example, as τ 2α
increases, so does the probability of multimodality of the conditional distribution,
whereas the distribution approaches a scale mixture of normals as τ 2α → 0. The prior
distribution of the shape of the conditional distributions is also affected by the choice
of the covariates ut, vt and zt. An advantage of the polynomial basis functions used
in the subsequent examples is that constraints on shape implied by polynomials of
different order are well understood.
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Identification issues well known in multinomial probit models also arise in (4)-
(5). Scaling is resolved by the fixed variance matrix, but the problem of translation
remains. Any proper prior distribution for Γ would resolve the identification ques-
tion in the posterior distribution, and in the case of Gaussian priors this would be
accomplished through the mean of the prior distribution. We have chosen instead
to fully identify Γ by means of the restrictions ι0mΓ = 0

0
q. Equivalently, define an

m×m orthonormal matrix P =
£
p1 P2

¤
in which p1 = ιmm

−1/2. Then define the
(m− 1)× p matrix Γ∗ = P02Γ and work with the parameters in Γ

∗0 =
£
γ∗1, . . . ,γ

∗
m−1

¤
rather than those in Γ = P2Γ∗. The prior distribution is

Cγ∗j |
¡
σ2, τ 2γ

¢ iid∼ N
¡
0r, τ

2
γσ

2rIr
¢
(j = 1, . . . ,m− 1) , (12)

which has only the single hyperparameter τ 2γ . The appendix of the article shows that
while the matrix P2 is not unique, the prior distribution of Γ implied by (12) is the
same no matter what the choice of P2. For a given specification of covariates and
m discrete outcomes the number of parameters in Γ∗ is the same as the number of
parameters in a conditional logit model with the same covariates and outcomes.
Both the model specification and the prior distribution are exchangeable with

respect to the numbering of the states est, and so there are m! copies of the posterior
distribution, each with a different permutation of the states. This exchangeability
reflects the fact that states in this model do not have intrinsic properties — that is, we
do not apply names like “graduate students” in the earnings example in Section 3 or
“crash” in the asset returns example in Section 4. If this were the case exchangeable
priors would be inappropriate, and there are other problems of interpretation in that
case as well (see Celeux et al. (2000)). The only function of the states in the smoothly
mixing regression model is to provide flexibility in the conditional distribution. The
conditional distribution is invariant with respect to permutation of the states, and our
functions of interest (discussed in the next section) depend only on the conditional
distribution. Therefore formal lack of identification of the state numbers has no
consequences for our work.

2.4 Inference and functions of interest

Conditional on the parameters β, A, Γ∗, σ2 and σ2j (j = 1, . . . ,m) and the covariate
matrices U, V and Z the smoothly mixing regression model consisting of (1), (4)
and (5) completely specifies the distribution of the latent variables fW and es and the
observables y. The prior distribution of the parameters, in turn, does not involve the
latent variables or observables and is completely specified by (7), (8), (10), (11) and
(12). The kernel of the posterior density is the product of the corresponding prior
density, the probability density of latent variables conditional on parameters, and the
probability density of observables conditional on latent variables and parameters. Its
arguments consist of the parameters and latent variables.
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The posterior distribution is well suited to simulation by MCMC. The appendix
of the article fully specifies the algorithm. With one exception it is a straightforward
Gibbs sampler with five blocks: β and A, σ2, σ2j (j = 1, . . . ,m), Γ

∗ and fW. For
each observation t the parameters Γ∗, vector of latent variables ewt and (5) fully
determine est, which is therefore redundant in the MCMC algorithm. Conditional ones, the posterior distribution of β, A, σ2 and σ2j (j = 1, . . . ,m) is nearly the same as
that of the normal linear regression model, and these parameters can be simulated in
much the same manner as in the Gibbs sampler for that model (see Geweke (2005,
Examples 2.1.1 and 4.3.1)). The conditional posterior distribution of Γ∗ involves only
the latent variables fW, and in this distribution the vectors γ∗j (j = 1, . . . ,m− 1) are
Gaussian and mutually independent.
The conditional posterior distribution of fW is complicated by the fact that its

elements determine the states es. Each row ewt of fW is conditionally independent of
all the other rows, with conditional posterior density kernel

exp
£
− (ewt − Γzt)0 (ewt − Γzt) /2

¤
(13)

·
mX
j=1

"
mY
i=1

I(−∞,wjt] (ewti)

#
(14)

· σ−1j exp
h
−
¡
yt−α0jvt − β0ut

¢2
/2σ2σ2j

i
. (15)

This density is nonstandard but well suited to a Metropolis within Gibbs step. The
source distribution is ewt ∼ N (Γzt, Im) ;

(13) is the corresponding kernel. The function (14) selects j = j∗ : ewtj∗ ≥ ewti ∀
i = 1, . . . ,m. Then the ratio of the target to source density is (15). We accept the
draw with probability

min

⎧⎨⎩σ−1j∗ exp
h
−
¡
yt−α0j∗vt − β0ut

¢2
/2σ2σ2j∗

i
σ−1j exp

h
−
¡
yt−α0jvt − β0ut

¢2
/2σ2σ2j

i , 1

⎫⎬⎭
where j denotes the state assignment in the previous MCMC step for observation t,
and j∗ is the state assignment implied by the candidate draw. (Note j∗ = j implies
acceptance.)
For the results reported in Sections 3 and 4 we executed M = 12, 000 iterations

of the Markov chain, with samples of size approximately T = 2, 500. This requires
between one and two minutes using state-of-the-art desktop hardware and fully com-
piled code; more generally, computing time is roughly proportional to the product
of MCMC iterations M and samples size T . We discard the first 2,000 iterations
and use every 100’th of the remaining 10,000 iterations for analysis. There is no
detectable serial correlation in the 100 iterations used for analysis. The code as well
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as the derivation of the algorithm detailed in the appendix were checked using the
joint distribution test described in Geweke (2004) and Geweke (2005, Section 8.1.2).
The speed of the MCMC algorithm is due in substantial part to its simulation of

latent states, an efficient alternative to the computation of state probabilities. This is
an advantage of Bayesian MCMC approaches generally over methods like simulated
maximum likelihood and simulated method of moments that require the computation
of state probabilities (see Geweke et al. (1994) and Geweke and Keane (2001)). On
the other hand many functions of interest, including the posterior quantiles illustrated
in the next two sections, require evaluations of these state probabilities, as do evalu-
ations of the likelihood function entailed in formal methods of model comparison like
those discussed in the same two sections. Evaluation of these probabilities is simpler
here than for multinomial probit models generally, because

P (est = j | Γ, zt) = P [ewtj ≥ ewti (i = 1, . . . ,m) | Γ, zt]

=

Z ∞

−∞
p ( ewtj = y | Γ, zt) · P [ewti ≤ y (i = 1, . . . ,m) | Γ, zt] dy

(16)

=

Z ∞

−∞
φ
¡
y − γ 0jzt

¢Y
i6=j

Φ (y − γ 0izt) dy.

This integral has only a single dimension (regardless of value of m) and so it can be
evaluated by conventional quadrature methods without the need to employ simula-
tion approximations like the GHK probability simulator (Geweke and Keane (2001,
Section 2.1)). The following two examples illustrate how the evaluation of (16) is
embedded in the computation of functions of interest and model evaluation criterion
functions.
Suppose, as in the examples we consider subsequently, that x = (a, b)0, and the

function of interest is the quantile

c (q, a, b) = {c : P (y ≤ c | a, b,Data, SMR) = q}
= {c : P (y ≤ c | u,v, z ,Data, SMR) = q} (17)

for specified q ∈ (0, 1). This entails embedding the evaluation of the posterior c.d.f.
P (y ≤ c | a, b,Data, SMR) in an iterative root-finding algorithm. The posterior dis-
tribution is conveyed through the iterations of the MCMC algorithm. If M such
iterations are used in the approximation then the distribution of y conditional on a
and b is a mixture of M ·m normal distributions. Let β,A,Γ∗, σ2, σ21, . . . , σ

2
m be the

parameter values in a particular iteration, and let u, v and z be the covariate values
corresponding to x = (a, b)0. Let θ = {β,A,Γ∗, σ2, σ21, . . . , σ2m}. Then

P (y ≤ c | x,θ) =
mX
j=1

Φ

µ
c− β0u−α0jv

σ · σj

¶
· P (est = j | Γ, z)
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and P (y ≤ c | a, b,Data, SMR) is the average of these probabilities over the itera-
tions. In the work reported here we have usedM = 100 equally spaced iterations out
of 10,000 successive iterations of the MCMC algorithm.
Because there are two substantively distinct covariates a and b, we can communi-

cate the surface (17) in a series of graphs, one for each of several values of q. Results
in the next section use a grid of P = 450 combinations of a and b to evaluate Q = 7
quantiles. If the root-finding algorithm for c requires R iterations, and we report
results for Q quantiles, then MmPRQ evaluations of (16) are involved, where R is
the average number of iterations required to solve for the inverse c.d.f. from the
c.d.f. We did not track the value of R, but used a relative error criterion of 10−10

for convergence of the quadrature evaluation of (16). Beginning with the output of
the MCMC posterior simulator and using state-of-the-art desktop hardware and fully
compiled software the time required for these computations is about 3 minutes to
produce a set of contours like those shown in Figures 3 and 4.
Formal methods of model evaluation also involve the computation of (16) embed-

ded in

p (yt | ut,vt, zt,θ) =
mX
j=1

(σ · σj)−1 φ
µ
yt − β0ut −αjvt

σ · σj

¶
· P (est = j | Γ, zt) . (18)

For problems of the size considered in Sections 3 and 4, evaluation of (18) requires
roughly 10−3 to 2×10−3 seconds. The modified cross-validated log scoring rules we use
to compare variants of the SMR model, described in Section 3, evaluate (18) at about
600 observations for 100 alternative parameter values. The total computation time
is one to two minutes beginning from the output of the MCMC posterior simulator,
and the numerical standard error is 0.2 to 0.4. As described in Section 4 we also use
predictive likelihoods for model comparison, again with 100 alternative parameter
values. The evaluation of (18) adds negligibly to the time required by the posterior
simulator, and numerical standard error is again 0.2 to 0.4. A number of simulation
procedures could, in principle, be used to evaluate the marginal likelihood, all of
which require repeated evaluation of the likelihood function at alternative parameter
values. (See Geweke (2005, Section 8.2) for an overview of these methods.) It is an
open question, left to future research, how many alternative parameter values would
be required to achieve comparable numerical standard errors.

2.5 Comparison with related models

Express the smoothly mixing regression model in the compact form

p (y | x,m, k, p, q, θ) =
mX
j=1

p1
¡
y | x;β,αj, σ

2, σ2j , es = j; k, p
¢
p2 (es = j | x,q;Γ∗) ,

(19)
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plus the prior distribution of the parameters. In this expression x denotes the n× 1
vector of substantive covariates, for example x = (a, b)0 in the example just discussed,
and the remaining notation is the same established at the start of this section with
θ = {β,A,Γ∗, σ2σ21, . . . , σ2m}. The choice of k maps x into the covariate vector u , p
maps x into v, and q maps x into z, through a set of basis functions in each case.
(These functions are polynomials in the examples in the next two sections.) Then
p1 is the conditional density of the continuous random variable y implied by (6) and
p2 is the probability distribution of the discrete random variable esj implied by (4)-
(5). Various configurations of k, p and q lead to the model variants A through E
discussed at the end of Section 2.2 and detailed in Table 1. This expression facilitates
comparison of the smoothly mixing regression model with closely related approaches
to modeling p (y | x) found in the literature, which tend to be special or limiting cases
of (19).
Morduch and Stern (1997) approach the problem of modeling the impact of a

child’s sex and other covariates on a continuous measure of health outcomes as a
particular case of (19) except that p2 maps x into P (es = j) using a logistic rather
than a normal distribution. Since they used maximum likelihood rather than Bayesian
methods, the logistic is a natural choice. That study set m = 2, and the rest of the
model remained tightly parameterized; in particular there was no analogue of the
expansions of basis functions implicit in k, p and q that are central in the examples
in the rest of this study. Since that study found only marginal evidence in favor
of m = 2 as opposed to m = 1 this was a reasonable strategy; by comparison, our
examples finds strong evidence for m > 2. Wedel et al. (1993) and Deb and Trivedi
(1997) use a similar approach but for discrete rather than continuous outcomes.
There are a number of related approaches in the literature than can be interpreted

as limiting cases of (19). Perhaps the most important is m = ∞ in conjunction
with a Dirichlet process prior for the mixture. Recent work of Dunson and Pillai
(2004) appears the closest in this genre to our approach. It specifies p (y | x) =R
p (y | x,φ) dGx (φ); Gx (φ) is made smooth with respect to x through a conditional

mixing structure. In application the number of states is finite, and a distribution over
different values ofm emerges as a byproduct. In the context of (19) Dunson and Pillai
(2004) concentrate on expansion in m and q (though with a different functional form
p2), maintaining parsimonious specification of k and p. Our approach emphasizes
richness in both p1 and p2; this requires considering several dimensions (m, k, p and
q), and thereby imposes some costs on the investigator. The subsequent examples
illustrate some systematic ways of managing these several dimensions simultaneously,
and provide some evidence on the gains from pursuing flexibility in both p1 and p2.
If we write the multinomial probit state model (5) in the form

ewt = h · Γzt + ζt; Γ fixed

then as h→∞ est = j iff γ 0jzt ≥ γ 0izt (i = 1, . . . ,m)
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where γi denotes row i of Γ. Thus models in which state classifications are determin-
istic functions of x emerge as limiting cases of the smoothly mixing regression models.
These classifications amount to a partition of the domain of x. Special instances of the
limit include the Voronoi tessellation approach to multidimensional spline smoothing
used in spatial statistics, engineering and computer science (Holmes et al., 2005),
and threshold autoregression time series models (Geweke and Terui, 1993). Large
but finite values of h have the effect of smoothing the splines at the join points.

3 Earnings

To gain some practical experience with the model and illustrate its properties, we turn
first to a subset of the panel survey of income dynamics (PSID) sample of earnings for
men used in our previous research (Geweke and Keane (2000)). It consists of the 1993
earnings of those 2,698 men in the PSID who were white, between the ages of 25 and
65 inclusive, and earned more than $1,000 in that year. (As in the previous work, the
exact choice of the truncation point has no substantive impact on the results because
very few men in the sample have positive earnings of less than $1,000.) We also know
the age and education of these men, and we focus on the distribution of the logarithm
of earnings (yt ) conditional on age (at) and education (bt). This is also the focal
point of much of the applied quantile regression literature noted in the introduction.
Neither our treatment nor this literature (e.g. Buchinsky (1994)) addresses causal
interpretation of this relation, which raises important questions about identification
(e.g. Heckman and Robb (1985)). Since we use fully interacting polynomial functions
of a and b results would not change were we to substitute experience, defined as age
minus education minus six, as is sometimes reported. The objective is to characterize
p (y | x), x =(a, b)0, using the smoothly mixing regression model.
Figure 2 indicates the distribution of the covariates in the sample, omitting those

very few men with less than eight years of education. Subsequently we present condi-
tional distributions for the same ranges of covariate values. The covariate distribution
is important in appreciating the results. We expect to find greater certainty about
the conditional distribution at those values for which the sample provides substantial
information (for example 12 to 16 years of education and ages 30 to 45) than for
those where there is little information (for example, less than 10 years of education
and younger than 35). Given the flexibility of the smoothly mixing regression model,
we expect to see the wide ranges of uncertainty suggested by the cell counts in Figure
2.
Applying the smoothly mixing regression model requires choice among the model

specifications A through E, the number of mixture components m, and the polyno-
mial orders La and Lb. We must also select the seven hyperparameters of the prior
distribution detailed in Section 2.3: ν∗, s2, ν, µ, τ 2β, τ

2
α and τ 2γ, as well as the grid

G for a and b indicated in (9). The last choice is the simplest: it indicates the values
of age and education to which the model applies, ages 25 through 65 and years of
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education 0 through 17, the last number being the topcode for years of education in
the PSID.
Our methods of analysis, detailed shortly, do not depend in any critical way on the

choices of prior hyperparameters. (This is not the case for some alternative methods,
in particular marginal likelihoods and Bayes factors for model comparison, which we
do not use in this study.) To avoid rounding error and similar complications involving
polynomials, we rescaled the covariates so that they each ranged from -1 to 1, but
made no change to the natural log of earnings yt. The prior distributions pertain to
the rescaled data, but all the reported results are converted to the original units. The
sample mean of yt is about 10, and the sample standard deviation is about 0.8. For
the coefficients β in (10) the mean is µ = 10 and the variance is τ 2β = 1. This applies
a rough approximation of the sample distribution to each point on the grid, but
recall that the variance in the normal prior distribution (10) is scaled by the number
of grid points r, so that this prior has the weight of one observation. Our prior
for A is even weaker, setting τ 2α = 4, expressing the specification that there may be
substantial differences across components. In the prior for Γ∗, τ 2γ = 16. This provides
enough flexibility that a particular mixture component might be nearly certain for
some combinations of age and education and nearly impossible for others. For the
parameter σ2 we selected the prior hyperparameters s2 = ν = 2, corresponding to
a centered 90% credible interval of (0.57, 4.47) for σ. We set ν∗ = 2, implying that
ratios σ2j/σ

2
i less than 1/9 or greater than 9 each have probability 0.10. We checked

final results for sensitivity to choice of hyperparameters and, as expected, none is
detectable.
We approach the problem of choosing among the model specifications A through

E, the number of mixture components m, and the polynomial orders La and Lb using
a modified cross-validated log scoring rule. A full cross-validated log scoring rule
(Gelfand et al. (1992), Bernardo and Smith (1994, Section 6.1.6)) entails evaluation
of

TX
t=1

log
£
p
¡
yt | YT/t, at, bt, SMR

¢¤
,

where YT/t denotes the sample with observation t removed. This is computationally
expensive, because it requires T posterior simulators (Draper and Krnjajic (2005)),
and there are quite a few combinations of model specifications, m , La and Lb to
sort through. In our modification of the cross-validated log scoring rule we randomly
order the sample of 2698 observations and use the first T1 = 2153 for inference. We
then compute the individual log-score for each of the last 545 observations

TX
t=T1+1

log [p (yt | YT1, at, bt, SMR)] , (20)

where YT1 denotes the first T1 observations of the randomly ordered sample.
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Table 2 conveys the results of this exercise. The numerical standard errors for the
entries in the table range from 0.18 to 0.71, with the majority being between 0.20
and 0.40. Several findings about model performance are noteworthy.

1. Specification C, a smooth mixture of normal distributions each with a fixed
mean and variance, performs the poorest. In view of the well-documented
smooth relationship between the conditional expectation of earnings and the
covariates age and education, this is not surprising. In principle, by mixing
a large number of such distributions these smooth relationships could be well
approximated. This accounts for the increases in log score moving from m = 2
to m = 3 to m = 4. Even with m = 4, however, the performance of this
specification is inferior to that of specifications A, B, D or E.

2. For any combination of m, La and Lb, the log score for D exceeds that of A;
A always exceeds C while D nearly always falls short of B or E. Model A is
a regression model, conventional in every respect except that the disturbance
εt = yt − β0ut is a mixture of normals independent of ut. The superior log
score of model D relative to A may be interpreted as evidence against the
independence of εt and ut.

3. Specifications B and E are superior to specificationD in nearly all cases. Unlike
any of the other specifications, B and E incorporate mixtures of linear combi-
nations of covariates, and the results in Table 1 may be taken as evidence that
this is important in modeling the distribution of earnings conditional on age
and education. There is no systematic tendency for one of these specifications
to outperform the other.

Figures 3 and 4 provide quantiles of the posterior conditional distribution of earn-
ings for the model with the highest log score in Table 2: specificationE with a mixture
of m = 3 normal distributions, the covariates being interactive polynomials of order
La = 4 in age and Lb = 2 in education. The first of these two figures provides results
for quantiles below and at the median and the second does so for quantiles at the
median and above. Quantiles c (q) are increasing functions of education for all ages
and values of q, except in the lowest quantile q = 0.05 for highly educated men under
the age of 30 (completing dissertations?) and over the age of 50. The age profile
varies substantially by quantile and by level of education. For high school graduates
(b = 12) the lower the quantile, the shallower the increase in earnings from ages 30
to 50, and the sharper the decline in earnings after age 50, with the decline begin-
ning somewhat sooner in the lower quantiles. This phenomenon is somewhat more
pronounced for college graduates (b = 16). The earnings of these men in quantiles
below the median peak well before age 50 and the decline in earnings is precipitous
beyond age 60. At quantiles q = 0.75 and above, there is no decline in the earnings
of these men before age 65.
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Since specification B is a special case of E, it is plausible that the close compar-
isons of these specifications in Table 1 indicate that the models have similar implica-
tions for the distribution of earnings conditional on age and education. We examine
this implication by reproducing in Figure 5 the same quantiles as in Figure 3, except
that these quantiles come from model B rather than from model E. The results
are similar, in that the major patterns of age, education and quantile just noted are
reproduced, but there are some minor differences. The decrease in earnings for the
lowest quantile q = 0.05 at 17 years of education for very young and old men noted
in Figure 3(a) is not exhibited in Figure 5(a), and the difference between high school
and college for men age 40 is about 0.6 at the lowest quantile in model B, whereas it
is about 0.75 in model E. Comparisons for quantiles above the median (not shown
here) also show similar results.
We conclude that results do not depend much on the choice between models B

and E, and continue the analysis with model E. Figure 6 reproduces the results of
Figure 3, but with the substantially reduced polynomial orders La = 2 and Lb = 1.
The diminished flexibility in the modeling of quantiles is immediately evident. For
example, earnings of college graduates in quantiles q = 0.05 and q = 0.10 do not fall
as precipitously beyond age 50 in Figure 6 as in Figure 3. For men in the lowest
quantiles who did not graduate from high school (i.e., b < 12 ) this model shows
a substantially smaller decline in income than do the models with higher orders of
polynomials. Thus the deterioration in fit for La = 2 and Lb = 1 versus La = 4 and
Lb = 2 noted above appears to be reflected in distortions for functions of interest of
the kind one would expected from oversmoothing.
Dispersion in the conditional distribution can be measured by differences in quan-

tiles as a function of age and education. Figure 7 does this using the conditional
interquartile range, the length of the centered 80% conditional credible interval for
log earnings, and the length of the centered 90% conditional credible interval. The
alternative measures all indicate that dispersion is smallest and roughly constant for
a wide range of the conditioning variables, with minimum dispersion for men under
age 30 with 12 or 13 years of education, and not much increase until the age of 55 for
education levels between 10 and 15 years. Outside this region dispersion increases
rapidly. For men under 55 it is about the same for 10 and 16 years of education, and
dispersion is greatest for older, highly educated men. As noted earlier from Figures
3 and 4, this is due to a combination of a sharp drop in the lowest earnings quan-
tiles of highly educated men, combined with modest increases in the highest earnings
quantiles, approaching age 65. Panel (d) of Figure 7 indicates that the conditional
distribution of log earnings is skewed to the left at all ages, with skewness being most
pronounced for older men and for younger poorly educated men.
As emphasized in Section 2.4, these quantiles pertain to the posterior distribution,

which integrates uncertainty about parameters with the uncertainty conditional on
parameter values. We can sort out these two sources of uncertainty by examining
the posterior variation in the quantiles of the population distribution. Each drawing
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from the posterior distribution in the MCMC algorithm implicitly generates a distri-
bution of log earnings conditional on age and education. Figure 8 portrays the 10%
quantile of these distributions explicitly for four widely spaced drawings from the
Markov chain. (Recall that the chain uses 12,000 iterations, of which the first 2,000
are discarded and 100 equally spaced drawings are used for the analysis here; the
numbering in Figure 8 is with respect to these 100 drawings.) The general pattern
in the four figures is about the same. Closer examination bears out the properties
relative to the sample distribution of covariates (Figure 2) previously anticipated. At
points where the sample is most highly concentrated there is almost no variation in
the quantile across the four panels. For example, at a = 40 and b = 12, the 10%
quantile ranges from about 9.55 to about 9.625. On the other hand the combination
a = 30, b = 17 produces quantiles between 9.5 (panel (b)) and 10.2 (panel (a)).
A wide range of exercises of this kind can be undertaken, depending on the as-

pect of the earnings distribution of interest. Since we have presented only quantiles,
perhaps it bears emphasis that our method allows access to the entire distribution in
distinction to the methods surveyed in the introduction that provide only estimates
of quantiles. For example, if inequality is measured using a Gini coefficient, or if one
is interested in the probability that earnings fall below a particular threshold, the
analysis can proceed in similar fashion and results can be presented in the same way.

4 Stock returns

In our second illustration the variable of interest yt is daily returns on the Standard
and Poors (S&P) 500 index, measured as yt = 100 log (pt/pt−1), where pt is closing
S&P 500 index on day t and pt−1 is the closing S&P 500 index on the previous trading
day t− 1. The objective is to characterize

p [yt | yt−s (s > 0)]

using the smoothly mixing regression model. To begin, we construct two functions at
and bt of yt−s (s > 0) that are likely to be important for the distribution of yt, based
on the substantial literature on this topic. The first function is the preceding day’s
return at = yt−1. The second function incorporates the history of absolute returns,

bt = (1− g)
∞X
s=0

gs |yt−2−s|κ . (21)

In (21) the summation begins with yt−2 because yt−1 already enters the model in
flexible fashion through at. The parameters g and κ are unknown and could enter the
model symmetrically with other unobservables, but in this illustration we fix them
at reasonable values, in a manner to be described shortly. Our sample consists of
every trading day in the 1990’s. We utilize daily data from the 1980’s, as well, in
constructing (21), so the finite truncation of the lag has no real impact on the results.
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The hyperparameters of the prior distribution are similar to those for the earnings
illustration, because the scale of the data in this illustration is about the same as the
scale of the data in that illustration. As before, s2 = ν = ν∗ = 2. The grid G for
the parameters of β, A and Γ consists of 101 evenly spaced values of a, ranging from
-10 to 10, and 51 values of b = (1− g)

P∞
s=0 g

s |b∗|κ where b∗ ranges from 0 to 10 in
increments of 0.2. As in the previous example, τ 2β = 1, τ 2α = 9 and τ 2γ = 16. We
set µ = 0, a reasonable approximation to the unconditional mean of returns. For the
same reasons given in Section 3, our quantile functions of interest show no detectable
sensitivity to changes in the hyperparameters of these very weak priors, nor do our
model comparison exercises. The same is true of posterior moments of the conditional
distribution, which we also examine briefly in this section.
We compare variants of the smoothly mixing regression model using a modified

log-scoring rule. Given κ and g, we form the covariates a and b and then randomly
order the 2628 observations (at, bt, yt). We use the first T1 = 2017 for inference and
then compute the modified log scoring rule (20) as in the previous example. Because
{yt} is a time series and at and bt are each functions of lagged values of yt, the
interpretation of the log scoring rule is not as natural here as it is with the cross-
section data of Section 3, and we return to a more natural method of evaluation
below. Table 3 conveys some of the results of this exercise; numerical standard errors
are similar to those for Table 2, mostly between 0.2 and 0.4.
Based on the results of this exercise, we selected for further work specification C

with m = 3 components in the mixture, polynomial orders La = Lb = 2, and the
parameters κ = 1.0 and g = 0.95 for the construction of the volatility covariate b.
There are several reasons for these choices, based on prior considerations and the
results in Table 3.

1. We began the exercise with a strong prior in favor of specification C, which
mixes distributions of the form N

¡
µj, σ

2
j

¢
with the probability weights for

the distributions depending on (at, bt). This model captures conditional het-
eroscedasticity, a critical and well-documented characteristic of asset return
data. While other specifications, particularly D and E, also capture this phe-
nomenon, they do so at the cost of introducing more parameters that link
E (yt | est = j) systematically to at and bt. If est were observed, all but the weak-
est such links would create arbitrage opportunities. In fact est is unobserved,
but changing volatility will provide strong signals about est in many periods t.

2. The scores in Panel A support this reasoning. Specification A has mean effects
but no conditional heteroscedasticity and fares most poorly. Specification B
improves relative to C, D, and E as the number of components m increases,
but always takes fourth place. Specifications D and E, which nest C, have
roughly comparable scores. There is no notable improvement in scores beyond
specification C with m = 3 components.
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3. Panel B shows that the choice of polynomial orders has much less consequence
for the scores. Our choice La = Lb = 2 is one of the two smallest scores, but
given numerical standard errors of 0.2 to 0.4 there is not much discrimination
among polynomial orders.

4. Panel C suggests that the score is maximized by (g, κ) near the chosen values
of g = 0.95 and k = 1.0. While these could be treated as unknown parameters,
our subsequent graphical interpretation of the posterior distribution benefits
from keeping these values fixed.

We compared the chosen specification with some alternative models for asset re-
turns on the basis of their out-of-sample forecasting records. We began by computing
the predictive likelihood of the SMR model for the period 1995-1999. Let T1 = 1314
denote the last trading day in 1994 and T = 2628 the last trading day in 1999. Then
the predictive likelihood is

log [p (yT1+1, . . . , yT | YT1, SMR)] =
TX

s=T1+1

log [p (ys | Ys−1, SMR)] . (22)

where Yt = {y1, . . . , yt}. Each of the T − T1 terms on the right-hand side of (22)
can be approximated from the output of a posterior simulator using observations
1, . . . , s − 1. For each of T − T1 samples the execution of the MCMC algorithm
with 12,000 iterations requires one to two minutes using state-of-the-art software and
compiled code, but the results are an order of magnitude more accurate than any
other method for the approximation of log predictive likelihoods of which we are
aware.
This exercise produces the log predictive likelihood -1602.0, the entry in the first

line of Table 4; the numerical standard error is 0.45. The remaining lines provide
comparisons with three models in the ARCH family, plus the i.i.d. normal model
as benchmark. For the closest of the ARCH competitors, t-GARCH(1,1), Table 4
provides both the predictive likelihood and the cumulative one-step-ahead predictive
densities

TX
s=T1+1

log
h
p
³
ys | bθs−1, SMR

´i
(23)

where bθs−1 denotes the maximum likelihood estimates of the model parameters based
on the sample Ys−1. The result is close to the predictive likelihood because the
posterior distribution of the model parameters is tightly concentrated around the
maximum likelihood estimate. (Given that sample sizes range from 1314 to 2627
and the fact that the model has only four parameters, this is not surprising.) In
the interest of sparing computational expense Table 4 reports only (23) for the other
models. The superior performance of the t-GARCH models within the ARCH family,
using a likelihood criterion, is consistent with the literature (e.g. Dueker (1997), Yang
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and Brorsen (1992)). However, the SMR model substantially outperforms t-GARCH
on this same criterion.
Figure 9 shows most of the sample of the substantive variables at and bt in our

specification of the smoothly mixing regression model for the Standard and Poors
500 return. (Because of scaling considerations, Figure 9 excludes about 10% of the
sample.) As in the illustration with the earnings data in the previous section, knowing
the distribution of the covariates helps in the interpretation of the results. Given the
flexibility of the model, we expect to find that the reliability of the results varies
directly with the concentration of the data points in Figure 9.
As in Section 3, our primary functions of interest are the quantiles of the con-

ditional distribution. In the case of asset returns conditional moments are also of
interest, for several reasons: there is a well-founded presumption that the conditional
mean of returns should not differ from a normal rate of return, for all reasonable
values of the conditioning covariates a and b; there is a substantial literature con-
cerned with the conditional variance of returns; and there is some interest in whether
the distribution is skewed. Let θ denote the vector of parameters, consisting of the
elements of β, A, Γ∗, σ2 and σ2j (j = 1, . . . ,m), and let m (θ) be a corresponding
function of population moments. Figure 10 reports posterior means for four choices
of m (·): mean in panel (a), standard deviation in (b), coefficient of skewness in (c)
and coefficient of kurtosis in (d). Figure 11 provides posterior standard deviations of
these same four moments in the corresponding panels.
Figure 10, panel (a), shows that the posterior mean return is between 0.05%

(corresponding to an annual return of 13.4%) and 0.055% (14.9%) for values of a and
b corresponding to roughly three-quarters of the sample. The corresponding panel
of Figure 11 shows that the posterior standard deviation of the conditional mean
increases sharply for points (a, b) that are less typical of the sample, more so when
the previous day’s return a is negative than when it is positive. The two panels
strongly suggest that the hypothesis that the conditional mean is constant, which we
have not examined formally, would be sustained. Not surprisingly, the conditional
standard deviation is larger in periods of greater volatility (higher values of b, see
Figure 10 panel (b)). There is also evidence of a leverage effect, that is, greater
volatility following a negative return than a positive one. Comparison of panel (b)
in Figure 11 with panel (b) in Figure 10 strongly suggests that more formal analysis
would sustain this hypothesis. The leverage effect and the sample distribution of a
and b appear to account for the posterior standard deviation of the mean in Figure
10 panel (a).
There is no evidence of skewness in the conditional distribution. In panel (c)

of Figure 10 the posterior means of the population skewness coefficient are quite
small, and the corresponding panel in Figure 11 indicates that the posterior standard
deviation of the conditional skewness coefficients always exceeds their posterior mean.
Panel (d) of Figure 10 shows an interesting pattern of excess kurtosis, but these
posterior means of the population moment must be interpreted in the context of
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their substantial posterior standard deviation, shown in the corresponding panel of
Figure 11. For most configurations of the covariates the posterior standard deviation
of the coefficient of excess kurtosis varies between 1 and 1.5, and differences in the
posterior mean are on the same order. Given a large return, a, in a period of low
volatility, b, there may be very high kurtosis; but the data underlying these conditions
are thin (Figure 9) and the evidence is correspondingly tenuous (Figure 11, panel (d),
lower right corner).
Figures 12 and 13 show the quantiles of the conditional posterior distribution of

returns. This display for quantile 0.50 is empty, because the value of this quantile is
about 0.02 for all values of a and b; since it never falls below 0 or rises above 0.25,
no lines are shown in panel (d) of Figures 12 or panel (a) of Figure 13. Comparison
of Figures 12 and 13 clearly reveals that returns are symmetric, or nearly so, for all
values of a and b, which in turn is consistent with the small absolute values of the
coefficient of skewness noted in Figures 10 and 11.
Each of these figures, especially Figure 12(a), provide rich information on value at

risk, expressed in units of percent return. Regardless of the current period return a,
value at risk is an increasing function of b, which measures volatility in recent weeks.
On the other hand, for most levels of volatility b, value at risk is a decreasing function
of the current period return. Especially during periods of high volatility, value at risk
declines sharply as a increases, including values of a that are unusually high, like 2%
or 3%. This feature emerges in other variants of the model, including those with more
components m and higher orders of polynomials La and Lb.
Figure 14 uses the quantiles to portray the dispersion and asymmetry of the

posterior distribution conditional on a and b. The pattern of dispersion is broadly
similar to that indicated by the standard deviation in Figure 10(b). Consistent with
this portrayal and value at risk, dispersion always increases as a function of b and
nearly always decreases as a function of a. Careful comparison of panels (a), (b) and
(c) of Figure 14 with Figure 10(b) also reveals the non-normality of the distribution.
For example, the ratio of the interquartile range to the standard deviation is 1.35
in the normal distribution, but for all values of a and b the ratio is smaller in the
conditional posterior distribution of returns. When excess kurtosis is modest (see
Figure 10(d)) the difference between quantiles 0.95 and 0.05 is longer, relative to
the standard deviation, than is the case for the normal; but when excess kurtosis is
highest, the difference is still shorter.
As emphasized in Section 2.4, the quantiles pertain to the posterior distribution,

not the population distribution. We emphasize these quantiles here because they are
the ones pertinent for decisionmaking in general and they address the question of
value at risk directly. Just as in the case of moments, however, one can also pose a
slightly different question: what is the degree of uncertainty about quantiles of the
population conditional distribution? Figure 15 uses the same technique as Figure 8
in Section 3 to answer this question, showing the population 5% quantile from four
widely separated draws in the MCMC sample. Comparison of Figure 15 with Figure 9
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shows that the dispersion of the posterior distribution of this quantile moves inversely
with the concentration of sample points. For a = 0 and b = 0.5, the 5% quantile is
between -1.20 and -1.25 in all four panels; for a = −3 and b = 1.5 it exceeds -3.00
in panel (b) and is less than -4.00 in panel (a). All four panels display the feature of
Figure 12(a) emphasized previously: value at risk not only increases with volatility
b, but it also generally decreases as the algebraic value of the current period return
increases.

5 Conclusions and further research

Inference about conditional distributions p (y | x) lies at the heart of many problems
in econometrics, and the question has always figured prominently in the research
agenda of the profession. This study has documented progress in eliminating re-
strictive assumptions about p (y | x) and increasing the scope of application of the
resulting methods. It has proposed a new approach to inference for conditional distri-
butions, the smoothly mixing regression (SMR) model, largely by combining models
well-established in other contexts in econometrics. The result is a flexible and prac-
tical procedure that produces a full posterior distribution for the conditional distrib-
ution. This study provided two illustrative examples. For one example, comparison
with leading alternative models showed that SMR is superior using out-of-sample
likelihood criteria. Further such comparisons, using alternative applications and data
and alternative metrics, should shed more light on the relative strengths and weak-
nesses of SMR, but are beyond the scope of this study. The illustrations here empha-
size quantiles as functions of interest, and direct comparison with the application of
quantile regression models would be interesting.
There are further immediate applications of SMR in investigative and decision-

making contexts. Because the approach taken here models the full conditional dis-
tribution (unlike quantile regression) it provides a foundation for inference about
functionals

R
f (y) p (y | x) dy. For example, the model can be used to estimate the

fraction of a population exceeding some threshold c as a function of the covariates x,
simply by taking f (y) = I(c,∞) (y). Questions of this form arise in spatial statistics,
where y might measure toxicity and x is a 2×1 location coordinate. If y measures the
price of an asset and c is the strike price of a call option then f (y) = (y − c) I(c,∞) (y)
provides the option’s expected revenue. Some settings combine such functionals with
quantiles: for example, if c (q) is quantile q and y is nonnegative then the Lorenz
curve is L (q) =

R c(q)
0

yp (y | x) dy/
R∞
0

yp (y | x) dy.
This study was confined to a univariate continuous outcome variable y, and the

applications were confined to a small number of substantive covariates x. Exten-
sion to outcomes that are not strictly continuous appears relatively straightforward,
especially for models that modulate discrete outcomes through continuous random
variables (e.g. probit and ordered probit models). In the earnings example the
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original outcome variable is mixed continuous and discrete, but this feature disap-
peared when men with earnings of less than $1,000 were excluded from the sample.
SMR could be extended to the original sample by labeling the first component in
the mixture as the outcome yt = 0. A multivariate generalization of SMR would
have many applications, especially in portfolio problems. For an N × 1 outcome
vector y, a natural extension is to apply SMR separately to the N components of

p (y | x) =
NY
i=1

p (yi | y1, . . . , yi−1,x). For all but very small values of N , however,

one encounters the curse of dimensionality in the specification of the list of covariates
well-established in nonparametric regression. If one were to pursue exactly the same
approach taken in this study, it would emerge in the very large number of terms of
the interactive polynomials u, v and z constructed from y1, . . . , yi−1 and x.
The Dirichlet process prior specification discussed in Section 2.5 emphasizes a non-

parametric approach to the mixture in combination with a (typically parsimonious)
parametric formulation of the component p1 in (19), whereas this study explores the
impact of increasingly flexible parameterizations of p1 and p2 as well as increasing
the number of mixture components m. These approaches are complementary, and
promising avenues for future research are to either increase the flexibility of p1 in
approaches like that of Dunson and Pillai (2004) and Griffin and Steel (2005), or to
take up an explicitly nonparametric specification of the mixture components in SMR.
The examples in this study provide only some hints of the practical returns to these
extensions. The results in Tables 2 and 3 seem to suggest roughly the same upper
bound on the cross-validated log score by expanding in the numbers of components in
the covariates u, v and z, as opposed to the number of mixture components m. Our
finding that the posterior quantiles are similar in these cases (recall the comparison
of Figures 3 and 5) also suggests that results may not be very sensitive to just how
the model is expanded. Much more experience with these kinds of comparisons is
required before it is possible to make general recommendations for applied work.
Beyond these practical questions, there is a substantial agenda of work in the

econometric theory of inference for p (y | x). For the specific case of E (y | x), x
univariate, there are well established results for several approaches to nonparametric
regression; see, for example, Härdle (1990) and Green and Silverman (1994), on
asymptotic distribution theory. The problem for conditional distributions is more
difficult and to our knowledge there are no comparable results. We therefore simply
indicate the kinds of questions for which answers would be interesting and useful in
the context of the SMR model, while noting that essentially the same issues come up
in all approaches. For a suitable distance measure D from one density to another, in
the context of (19) what conditions are sufficient for

min
θ

D [p (y | x) , p (y | x,m, k, p, q, θ)]→ 0

with suitable expansion of m , k, p, and q? And under what conditions will the
posterior distribution of this measure become concentrated in a neighborhood of 0?
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Alternatively, what conditions would guarantee that the posterior distribution ofZ
f (y) p (y | x,m, k, p, q, θ) dy

is asymptotically concentrated around
R
f (y) p (y | x) dy? Theoretical underpinnings

of this kind would be welcome future developments.
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Technical Appendix

This appendix provides the joint distribution of the parameters, latent variables
and observables in the model. It derives and presents the conditional posterior distri-
butions that comprise the MCMC posterior simulator described in the text. The Ap-
pendix uses precisions rather than variances: h = 1/σ2 and hj = 1/σ2j (j = 1, . . . ,m).

1. Fixed hyperparameters of the prior distribution

(a) s2, ν: Prior distribution of h

(b) ν∗: Prior distribution of hj (j = 1, . . . ,m)

(c) µ, τ 2β: Prior distribution of β

(d) τ 2α: Prior distribution of αj (j = 1, . . . ,m)

(e) τ 2γ: Prior distribution of γ
∗
j (j = 1, . . . ,m− 1)

2. Prior distributions of parameters

(a) s2h | (s2, ν) ∼ χ2 (ν)

(b) ν∗hj
iid∼ χ2 (ν∗) (j = 1, . . . ,m)

(c) Cβ |
¡
µ, τ 2β

¢
∼N

£
ιrµ, τ

2
βrIr

¤
=⇒ β ∼N

¡
β,H−1β

¢
(d) Cαj | (σ2, τ 2α)

iid∼ N [0r, τ
2
ασ

2rIr] (j = 1, . . . ,m)

=⇒ αj
iid∼ N

¡
0r,σ

2H−1α
¢
(j = 1, . . . ,m)

(e) Cγ∗j
iid∼ N

£
0r, τ

2
γrIr

¤
(j = 1, . . . ,m− 1)

=⇒ γ∗j
iid∼ N

¡
0r,H

−1
γ∗
¢
(j = 1, . . . ,m− 1)

3. Groupings and transformations of parameters

(a) h =(h1, . . . , hm)
0

(b) A =
£
α1 · · · αm

¤
, α =vec (A)

(c) δ0 = (α0,β0)

(d) Γ∗0 =
£
γ∗1 · · · γ∗m−1

¤
, γ∗ = vec (Γ∗)

(e) Define p1 = ιmm
−1/2, P

m×m
=
£
p1 P2

¤
: PP0 = P0P = Im; Γ = P2Γ∗

Remark. This induces a degenerate normal prior on Γ.

Γ = P·
∙
00

Γ∗

¸
=⇒ Γ0 =

£
0 Γ∗0

¤
·
∙
p01
P02

¸
= Γ∗0P02.
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Then
vec (Γ0) = vec (Γ∗0P02) = (P2 ⊗ Iq) vec (Γ∗0)

has mean 0(m−1)q and variance

(P2 ⊗ Iq)
¡
Im−1 ⊗H−1γ∗

¢
(P02 ⊗ Iq) = P2P02 ⊗H−1γ∗ = [Im − p1p01]⊗H−1γ∗ .

Hence the choice of P2 is of no consequence.

4. Distributions of latent variables

(a) ewt | (Γ, zt) ∼ N (Γzt, Im) (t = 1, . . . , T )

(b) est | ewt = j iff ewtj ≥ ewti (i = 1, . . . ,m; j = 1, . . . ,m)

5. Groupings and transformations of latent variables

(a) es0 = (es1, . . . , esT ) and eS
T×m

= [dtj], dtj = δ (est, j)
(b) Tj =

PT
t=1 δ (est, j)

(c) eH = diag (hs1, . . . , hsT )

(d) ew∗t = P0 ewt, fW∗0 =
£ ew∗1 · · · ew∗T ¤, fW∗ =

£ ew∗(1) · · · ew∗(m) ¤
6. Prior density kernels

(a) p (h | s2, ν) ∝ h(ν−2)/2 exp (−s2h/2)

(b) p (h | ν∗) ∝
mY
j=1

h
(ν∗−2)/2
j exp (−ν∗hj/2)

(c) p
¡
β |β,Hβ

¢
∝ exp

h
−
¡
β−β

¢0
Hβ

¡
β−β

¢
/2
i

(d) p (α |h,Hα) ∝ hmT/2 exp {−α0 [Im ⊗ (h ·Hα)]α/2}

= hmT/2 exp

"
−

mX
j=1

α0j (h ·Hα)αj/2

#

(e) p
¡
γ∗ | Hγ∗

¢
∝ exp

³
−
Pm−1

j=1 γ
∗0
j Hγ∗γ

∗
j/2
´

7. Latent vector density kernels

(a) p
³fW | Γ, zt

´
∝ exp

h
−
PT

t=1 (ewt − Γzt)0 (ewt − Γzt) /2
i

=⇒ p
³fW∗ | Γ∗,Z

´
∝

exp

Ã
−

TX
t=1

(w∗1t/2)

!
exp

"
−

m−1X
j=1

¡ew∗(j+1) − Zγ∗j¢0 ¡ew∗(j+1) − Zγ∗j¢ /2
#
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(b) p (est = j | wt) =
mY
i=1

I(−∞,wtj ] (wti) (j = 1, . . . ,m; t = 1, . . . , T )

8. Observables

(a) Covariates ut (t = 1, . . . , T ); U0=
£
u1 · · · uT

¤
(b) Covariates vt (t = 1, . . . , T ); V0=

£
v1 · · · vT

¤
(c) Covariates zt (t = 1, . . . , T ); Z0=

£
z1 · · · zT

¤
(d) Outcomes yt (t = 1, . . . , T ); y0 = (y1, . . . , yT )

9. Conditional density of outcomes y (equivalent expressions)

(a) p (y | es,A,β,h,h,U,V)

∝ hT/2

Ã
mY
j=1

h
Tj/2
j

!
exp

"
−h

TX
t=1

hst
¡
yt−α0stvt − β

0ut
¢2
/2

#

(b) p (y | es,A,β,h,h,U,V)

∝hT/2
¯̄̄ eH¯̄̄1/2 exp¿−hny− h(ι0m ⊗V) ◦ ³eS⊗ ι0p´iα−Uβo0

eHny− h(ι0m ⊗V) ◦ ³eS⊗ ι0p´iα−Uβo /2E .
10. Conditional posterior distributions of parameter blocks

(a) From (6a), (6d), (9a),

p
¡
h | s2, ν,h,β,A,es,y,U,V

¢
∝ h(ν+mp+T−2)/2

· exp
(
−
"
s2 +

mX
j=1

α0jHααj + h
TX
t=1

hst
¡
yt−α0stvt − β

0ut
¢2#

h/2

)
.

Thus s2h ∼ χ2 (ν) where ν = ν +mp+ T and

s2 = s2 +
mX
j=1

α0jHααj +
TX
t=1

hst
¡
yt−α0stvt − β

0ut
¢2
.

(b) From (6b) and (9a), p (h | ν∗, h,β,A,es,y,U,V) ∝
mY
j=1

h
(ν∗+Tj−2)/2
j exp

(
−
"
ν∗ + h

TX
t=1

δ (est, j) ¡yt−α0stvt − β0ut¢2
#
hj/2

)
.
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Thus {h1, . . . , hm} are conditionally independent: s2jhj ∼ χ2 (νj) with
νj = ν∗ + Tj and

s2j = ν∗ + h
TX
t=1

δ (est, j) ¡yt−α0stvt − β0ut¢2 .
(c) From (6c), (6d) and (9b),

p
³
δ | β,H

β
,Hα, h,h,es,y,U,V

´
∝ exp

h
−
¡
δ−δ

¢0
Hδ

¡
δ−δ

¢i
,

where

Hδ =

⎡⎣ H11

h
(ι0m ⊗V) ◦

³eS⊗ ι0p´i0 eHU
U0 eH h(ι0m ⊗V) ◦ ³eS⊗ ι0p´i Hβ +U

0 eHU
⎤⎦

with

H11 = Im⊗(h ·Hα)+h·
h
(ι0m ⊗V) ◦

³eS⊗ ι0p´i0 eH h(ι0m ⊗V) ◦ ³eS⊗ ι0p´i ,
and δ = H

−1
δ vδ with

vδ =

" h
(ι0m ⊗V) ◦

³eS⊗ ι0p´i0 eHy
Hββ +U

0 eHy
#
.

(d) From (6e) and (7a),

p
³
γ∗ | Hγ,fW∗,Z

´
∝

m−1Y
j=1

exp
h
−
¡
γ∗j−γ∗j

¢0
Hγ∗

¡
γ∗j−γ∗j

¢i
,

where Hγ∗ = Hγ∗ + Z
0Z and γ∗j = H

−1
γ∗Z

0 ew∗(j+1) (j = 1, . . . ,m− 1). This
implies the conditionally independent distributions

γ∗j ∼ N
¡
γ∗j ,Hγ + Z

0Z
¢
(j = 1, . . . ,m− 1) .

11. Conditional posterior distributions of latent variables

(a) From (7a), (7b) and (9a), p
³fW | h,h,β,A,Γ,y,U,V,Z

´
∝

TY
t=1

©
exp

£
− (ewt − Γzt)0 (ewt − Γzt) /2

¤
·

mX
j=1

"
mY
i=1

I(−∞,wjt] (ewti)

#
·h1/2j exp

h
−h · hj

¡
yt−α0jvt − β0ut

¢2
/2
io
.
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Thus the latent vectors ewt are conditionally independent. This conditional
distribution is managed using the Hastings-Metropolis step described in
the text.

(b) From (7b), est | wt = {j : wtj ≥ wti (i = 1, . . . ,m)}.
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Table 1
Summary of Model Structures

Model Parameter configuration Description
A q = 1, k > 1, p = 1 Fixed mixture of disturbances in regression
B q = 1, k = 1, p > 1 Fixed mixture of linear regressions
C q > 1, k = 1 , p = 1 Smooth mixture of normal distributions
D q > 1, k > 1, p = 1, ut = zt Smooth mixture of disturbances in regression
E q > 1, k = 1, p > 1, vt = zt Smooth mixture of linear regressions

Table 2
Modified Cross-Validated Log Score

Models for Earnings

Model specification
m La Lb A B C D E
2 2 1 -527.9 -525.8 -587.5 -524.7 -526.6
2 3 1 -528.0 -523.3 -586.9 -527.2 -522.6
2 4 2 -525.3 -521.7 -586.2 -523.6 -521.1
3 2 1 -526.6 -520.2 -546.9 -525.3 -519.1
3 3 1 -525.9 -518.3 -547.3 -525.0 -520.2
3 4 2 -523.9 -516.3 -540.7 -521.1 -516.1
3 5 3 -524.4 -519.5 -540.6 -523.3 -523.5
4 2 1 -526.0 -516.4 -534.8 -523.3 -517.2
4 3 1 -525.5 -520.8 -534.5 -524.2 -518.3
4 4 2 -523.7 -517.6 -534.8 -521.0 -519.1
4 5 3 -526.3 -518.0 -534.0 -524.6 -518.0
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Table 3
Modified Cross-Validated Log Score
Models for S&P 500 Returns

Panel A: Model specification and m
(La = Lb = 2, g = 0.95, κ = 1.0)

m = 2 m = 3 m = 4
A -647.1 -645.1 -645.1
B -650.4 -625.9 -611.1
C -618.9 -609.2 -609.4
D -618.8 -610.5 -608.6
E -617.2 -613.2 -607.1

Panel B: Polynomial orders
(Model C, m = 3, g = 0.95, κ = 1.0)

Lb = 1 Lb = 2 Lb = 3
La = 1 -612.9 -610.7 -611.1
La = 2 -610.9 -609.2 -609.2
La = 3 -610.5 -610.4 -611.3

Panel C: Volatility specification
(La = Lb = 2, Model C, m = 3)

k = 0.7 k = 1.0 k = 1.5
g = 0.90 -619.7 -612.2 -613.4
g = 0.95 -609.4 -609.2 -610.0
g = 0.98 -609.6 -610.4 -610.4

Table 4
Out of sample model comparisons

Model Predictive likelihood Recursive ML
SMR -1602.0

t-GARCH(1,1) -1625.5 -1624.7
Threshold EGARCH(1,1) -1637.5

GARCH(1,1) -1660.5
Normal iid -1848.5
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Figure 1: Some normal mixture densities (red lines), with component normal densities
multiplied by probabilities pi (blue lines).
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Figure 2: Distribution of the covariates in the earnings data
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Figure 3: Quantiles of the posterior conditional distribution of earnings for model E,
m = 3 components, polynomial orders La = 4 and Lb = 2, PSID illustration.
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Figure 4: Quantiles of the posterior conditional distribution of earnings for model E,
m = 3 components, polynomial orders La = 4 and Lb = 2, PSID illustration.
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Figure 5: Quantiles of the posterior conditional distribution of earnings for model B,
m = 3 components, polynomial orders La = 4 and Lb = 2, PSID illustration.
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Figure 6: Quantiles of the posterior conditional distribution of earnings for model E,
m = 3 components, polynomial orders La = 2 and Lb = 1, PSID illustration.
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Figure 7: Aspects of the dispersion of the posterior conditional distribution of earn-
ings, PSID illustration
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Figure 8: Four random draws from the posterior distribution of the population 10%
quantile of the conditional distribution of earnings, PSID illustration
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Figure 9: Sample distribution of a and b, S&P 500 returns illustration
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Figure 10: Posterior means of four population conditional moments, S&P 500 example
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Figure 11: Posterior standard deviations of four population conditional moments,
S&P 500 illustration
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Figure 12: Quantiles of the posterior conditional distribution of returns, S&P 500
illustration
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Figure 13: Quantiles of the posterior conditional distribution of returns, S&P 500
illustration
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Figure 14: Aspects of the dispersion of the posterior conditional distribution of re-
turns, S&P 500 illustration
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Figure 15: Four random draws from the posterior distribution of the population 5%
quantile of the conditional distribution of returns, S&P 500 illustration
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