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Abstract: I examine the effect of labor income taxation in a very simple life-cycle model 
where work experience builds human capital. There are four key findings: First, contrary to 
conventional wisdom, in such a model permanent tax changes can have larger effects on 
labor supply than temporary tax changes. Second, even with small returns to work 
experience, conventional methods of estimating the inter-temporal elasticity of substitution 
will be very seriously biased towards zero. (This includes methods that rely on exogenous 
changes in tax regimes). Third, for plausible parameter values, both compensated and  
uncompensated labor supply elasticities are likely to be quite a bit larger than (conventional) 
estimates of the inter-temporal elasticity of substitution (despite the fact that the latter is  
typically viewed as an upper bound on the former). Fourth, for plausible parameter values, 
large welfare losses from proportional income taxation are quite consistent with existing 
(small) estimates of labor supply elasticities. 
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I. Introduction 
 This paper examines the effect of income taxation in a very simple life-cycle model 

where work experience builds human capital. In such a model the wage rate is no longer 

equivalent to the opportunity cost of time. This has important implications for how workers 

respond to tax changes, and for the estimation and interpretation of wage elasticities of labor 

supply. In particular, I will show that, in this simple context, permanent tax changes can have 

larger effects on current labor supply than transitory tax changes. This result, which holds at 

quite reasonable parameter values, contradicts the widespread presumption that transitory tax 

(or wage) changes should have larger effects.      

The introduction of human capital into the life-cycle model also has important 

implications for the intertemporal elasticity of substitution in labor supply (Frisch elasticity), 

as shown by Imai and Keane (2004). For instance, say we calibrate our simple life-cycle 

model so the true intertemporal elasticity is large (e.g., 2 or 4). Then, using data generated 

from the model, we can calculate the intertemporal elasticity, using conventional empirical 

methods. These methods involve regressing hours changes on wage changes and ignoring 

human capital. Consistent with the existing labor supply literature, this procedure gives small 

values for the intertemporal elasticity (much smaller than the true value). And I show this is 

true even if returns to experience are very “small” (in a sense made precise below).  

I then go further and show how failure to account for human capital may also lead to 

misleading conclusions regarding Marshallian and Hicks elasticities. The Frisch elasticity is 

an upper bound on these elasticities.1 Thus, the low estimates of the Frisch elasticity typically 

obtained in the literature have contributed to the broad consensus that Marshallian and Hicks 

elasticities are also small. However, in the model presented here, I show that both permanent 

and transitory tax changes can have much larger effects on labor supply than the (incorrectly 

estimated) Frisch elasticity would suggest. This contradicts the notion that the Frisch 

elasticity – as conventionally calculated – gives an upper bound on tax effects. 

Of course, we are also interested in how labor supply effects of wages and/or taxes are 

decomposed into income and substitution effects. This affects the welfare loss from the tax. 

The calculations here suggest that the compensated substitution effect of a permanent tax 

change may be much greater than the conventionally measured intertemporal substitution 

effect. Hence, the small Frisch elasticities obtained in prior work (ignoring human capital) 

should not be viewed as an upper bound on plausible compensated substitution effects. 
                                                 
1 In a model with assets but no human capital it is well known that the intertemporal elasticity of substitution 
(Frisch) is an upper bound on the compensated elasticity (Hicks) which in turn is an upper bound on the total 
(Marshallian) elasticity. See, e.g., Blundell and MaCurdy (1999).    
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These findings about labor supply behavior in models that include human capital are 

in sharp contrast to the consensus of the existing literature, which is based almost entirely on  

either static models or dynamic models that include savings but not human capital.2 The 

consensus is summed up nicely in a recent survey by Saez, Slemrod and Giertz (2009), who 

state: “… optimal progressivity of the tax-transfer system, as well as the optimal size of the 

public sector, depend (inversely) on the compensated elasticity of labor supply …. With some 

exceptions, the profession has settled on a value for this elasticity close to zero… In models 

with only a labor-leisure choice, this implies that the efficiency cost of taxing labor income 

… is bound to be low as well.”3, 4 The results presented here challenge this consensus view, 

by showing that, in a model with human capital, conventional econometric methods 

(designed for models without human capital) will tend to seriously understate labor supply 

elasticities, and hence the welfare costs of income taxation.  

Section II presents a very simple two period version of the basic life-cycle labor 

supply model that has played a major role in empirical work over the past 30 years. Section 

III discusses the extension of this model to include human capital. Section IV presents a 

series of simulations that show how the introduction of human capital radically alters the 

behavior of the model, such that a very small Frisch elasticity (as conventionally measured) is 

consistent with large responses to tax changes, and large welfare losses from labor income 

taxation. Section V concludes.    
 
II. A Simple Life-Cycle Model without Human Capital 

 I start by presenting a simple model of life-cycle labor supply of the type that has 

strongly influenced economists’ thinking on the subject since the pioneering work by 

MaCurdy (1981). In order to make the points I wish to make, I do not need all the features of 

MaCurdy’s model. In particular, it will be sufficient to have two periods, and I abstract from 

uncertainty about future wages. The period utility function is given by: 
 

(1)   
1 1

1,2 0, 0
1 1

t t
t

C hU t
η γ

β η
η γ

+ +
= − = ≤ ≥

+ +
γ

                                                

 

 
Here Ct is consumption in period t and ht is hours of labor supplied in period t. The present 

 
2 Two notable exceptions are Imai and Keane (2004) and the pioneering early work by Heckman (1973). 
3 Inclusion of this quote is not meant a criticism of Saez, Slemrod and Giertz (2009). They are simply making a 
statement of fact. I quote them only because they state the consensus and its implications so succinctly.   
4 As Ballard and Fullerton (1992) note, if a wage tax is used to finance compensating lump sum transfers (as in 
the Harberger approach), the welfare cost depends only on the compensated elasticity. But if it is used to finance 
a public good (that has no impact on labor supply) it is the uncompensated elasticity that matters. Saez (2001) 
presents optimal tax rate formulas for a Mirrlees (1971) model (with both transfers and government spending on 
a public good) and shows that, in general, both elasticities matter for optimal tax rates (see, e.g., his equation 9).    
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value of lifetime utility is given by: 
 

(2) 
1 11 1

1 1 1 1 2 2 2 2[ (1 ) ] [ (1 ) (1 )]
1 1 1

h hw h b w h b rV
1

γ γη ητ τβ ρ β
η γ η

+ ++ +

γ

⎧ ⎫− + − − +⎪ ⎪= − + −⎨ ⎬+ + + +⎪ ⎪⎩ ⎭
 

Here w1 and w2 are wage rates in periods 1 and 2, while τ1 and τ2 are tax rates on labor 

earnings in periods 1 and 2, respectively. People are free to borrow or lend across periods at 

the interest rate r. The quantity b is net borrowing in period 1, while b(1+r) is the net 

repayment in period 2. Parameter ρ is the discount factor. (I assume there is no non-labor 

income. This simplifies the subsequent analysis while not changing any of the results).   

 In the standard life cycle model, there is no human capital accumulation via returns to 

work experience. That is, hours of work in period 1 do not affect the wage rate in period 2. 

Thus, the consumer treats the wage path {w1, w2} as exogenously given, and the first order 

conditions for his/her optimization problem are simply: 
 

(3) [ ]1 1 1 1 1 1
1

(1 ) (1 ) 0V w h b w h
h

η γτ τ β∂
= − + − −

∂
=     

 

(4) [ ]2 2 2 2 2 2
2

(1 ) (1 ) (1 ) 0V w h b r w h
h

η γτ τ∂
= − − + − −

∂
β =  

 

(5) [ ] [ ]1 1 1 2 2 2(1 ) (1 ) (1 ) (1 ) 0V w h b w h b r r
b

η ητ ρ τ∂
= − + − − − + +

∂
=  

 
Equation (5) can be simplified to read [ ]1 2[ ] (1 )C C rη η ρ= + , which is the classic inter-

temporal optimality condition that requires one to set the borrowing level b so as to equate 

the ratio of the marginal utilities of consumption in the two periods to ρ(1+r). Utilizing this 

condition, we can divide (4) by (3) obtain: 
 

(6) 2 2 2

1 1 1

(1 ) 1
(1 ) (1 )

h w
h w r

γ
τ
τ ρ

⎛ ⎞ −
=⎜ ⎟ − +⎝ ⎠

    

 
Taking logs we obtain: 
 

(7) 2 2 2

1 1 1

(1 )1ln ln ln ln (1 )
(1 )

h w r
h w

τ ρ
γ τ

⎛ ⎞ ⎧ ⎫−
= + − +⎨ ⎬⎜ ⎟ −⎝ ⎠ ⎩ ⎭

 

 
From (7) we obtain: 
 
(8) 2 1

2 1

ln( / ) 1
ln( / )

h h
w w γ

∂
=

∂
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Thus, the intertemporal (or Frisch) elasticity of substitution, the rate at which a worker shifts 

hours of work from period 1 to period 2 as the relative wage increases in period 2, is simply 

1/γ. The elasticity with respect to a change in the tax ratio (1-τ2)/(1-τ1) is identical. 

 Notice that we could rearrange (7) to obtain: 

 ( ) { }2 2 2 1 1
1ln ln (1 ) ln (1 ) ln (1 ) lnh w w rτ τ ρ
γ

= − − − − + − 1h  

We would then obtain that 2

2 2

ln ln1
ln ln

h
w wγ

∂ ∂
= −

∂ ∂
1h . The second term is a negative income effect 

on period 1 labor supply that arises because an increase in w2 increases lifetime wealth.     

Before solving (4)-(5) to obtain the labor supply functions for h1 and h2, it is useful to 

first look at the static case, which would arise if (i) there is only one period, (ii) there is no 

borrowing and lending across periods, or (iii) people are myopic. Then the utility function in 

(1) would generate the labor supply function: 

(9) 1 1ln ln lnh wη β
γ η γ η

+
= −

− −
    

Thus, 1 η
γ η

+
−

is the Marshallian (or uncompensated or total) labor supply elasticity. As η<0, 

we see that the Frisch elasticity must exceed the Marshallian. The two approach each other as 

η → 0 (the case of utility linear in consumption, so there are no income effects). 

 Next, we use the Slutsky equation to find the income and compensated substitution 

effects in the static model. Writing the Slutsky equation in elasticity form we have: 
 

(10) 
u

w h w h wh N h
h w h w N h N

∂ ∂
= +

∂ ∂ ∂
∂  

 
where N represents non-labor income. The two terms on the right are the compensated 

substitution (Hicks) elasticity and the income effect. Using (9), we can easily verify that the 

income effect (evaluated at N=0) is equal to  η
γ η−

. Thus, we have that the compensated 

substitution (or Hicks) elasticity is simply 1
γ η−

. As η < 0, we see that this is smaller than 

the Frisch elasticity but larger than the Marshallian.    

 Now return to the dynamic model with saving. In what follows I will assume that 

ρ(1+r)=1, so that (5) requires the consumer to equate the marginal utility of consumption in 

both periods. Furthermore, as the simple model in (1) contains no changing preferences over 
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time, this is equivalent to equalizing consumption in the two periods. None of the points I 

wish to make hinge on this assumption, and it simplifies the analysis considerably.    

 From (3) we have that: 
 

(11) 1
1 1

1
(1 )

h
w

C

γ

η
β

τ= −    

 
where C1=w1h1+b is consumption in period 1. This is the familiar within-period optimality 

condition which says to set the ratio of the marginal utility of leisure to the marginal utility of 

consumption equal to the opportunity cost of time, which in this case is just the after tax wage 

rate. Given our assumption that ρ(1+r)=1, we just have C1=C2=C, and C is just the present 

value of earnings times the factor (1+r)/(2+r): 
 
(12) 1 1 1 2 2 2{ (1 ) (1 ) (1 ) }/(2 )C w h r w h rτ τ= − + + − +  
 
Now we use equation (6), with ρ(1+r)=1, to substitute out for h2 in (12), obtaining: 
 

(13)  
1

2 2
1 1 1 2 2 1

1 1

(1 ){ (1 ) (1 ) (1 ) }/(2 )
(1 )

wC w h r w h r
w

γ
ττ τ
τ

⎡ ⎤−
= − + + − +⎢ ⎥−⎣ ⎦

 

 
It is convenient to factor out h1 and rewrite this as: 
 

(13’) 
1

* 2 2
1 1 1 1 2 2

1 1

(1 ){ (1 )(1 ) (1 ) }/(2 )
(1 )

wC h C h w r w r
w

γ
ττ τ
τ

⎡ ⎤−
= = − + + − +⎢ ⎥−⎣ ⎦

 

 
Here C* contains all the factors that govern lifetime wealth. We can now write (11) as: 
 

(14) { }*
1 1 1

1ln ln (1 ) ln lnh w τ β η
γ η

= − − +
−

C  

 
Notice that ∂ln h1/∂ln w1, holding C* fixed, is 1/(γ-η), the compensated substitution effect, 

while ∂ln h1/∂ln C* = η/(γ-η) is the income effect.  

 We are now in a position to consider effects of permanent vs. temporary changes in 

tax rates. Via some tedious algebra we can obtain the effect of a tax reduction in period 1: 
 

 (15) 
(1 )

1 1

1 2

ln (1 )1 1 1 (1 )
ln(1 ) 1 (1 )

h wwhere x r
x w

1

2

γ γ
τη η γ

τ γ η γ η γ τ

+
⎡ ⎤⎡ ⎤ ⎡ ⎤∂ −+ +

= − ≡ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ − − − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
+   

 
Notice that the first term on the right is the Marshallian elasticity. The second term is positive 

because η<0, so the elasticity with respect to a temporary tax change exceeds the Marshallian. 
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If w1=w2 and τ1=τ2 then the second term in (15) takes on a simple form. We just get: 
 

(16) 1

1

ln 1 1
ln(1 ) 2

h
r

η η γ
τ γ η γ η γ

⎡ ⎤ ⎡∂ + +
= −⎢ ⎥ ⎢∂ − − − +⎣ ⎦ ⎣

1 ⎤
⎥
⎦

 

 
Notice that if the term (1+γ)/γ(2+r) exceeds one then the elasticity in (16) will even exceed 

the Hicks elasticity. This will be true if 0 < γ < (1+r)-1. In a 2 period model where each period 

corresponds to roughly 20 years of a working life, a plausible value for 1+r is about (1+.03)20 

≈ 1.806, or (1+r)-1 ≈ 0.554. So (16) will exceed the Hicks elasticity if the Frisch elasticity 

(1/γ) is at least (.554)-1=1.8. 

 Now consider a permanent tax change. We assume that τ1 = τ2 = τ, and look at the 

effect of a change in (1- τ). With τ1 = τ2 = τ equation (13’) becomes: 

(13’’) 

1

** 2
1 1 1 2

1
(1 ) (1 ) (1 ) /(2 )wC h C h w r w r

w

γ

τ τ
⎧ ⎫⎡ ⎤⎪ ⎪= − = − + + +⎨ ⎬⎢ ⎥

⎣ ⎦⎪ ⎪⎩ ⎭

 

And we can rewrite (14) as: 
 

(17) { }**
1 1

1ln ln (1 ) ln ln(1 )h w τ β η τ
γ η

= − − + −
−

C  

 
It is then clear that: 
 

(18) 1ln 1
ln(1 )

h η
τ γ η

∂ +
=

∂ − −
 

 
which is just the Marshallian elasticity. So, comparing (16) and (18), we have the well known 

result that the labor supply elasticity with respect to a temporary tax change is greater than 

that with respect to a permanent change in the standard life-cycle model. In (18) the extra 

term 1 1
2 r

η γ
γ η γ

+
−

− +
 is the inter-temporal substitution effect (i.e., the extra effect of a 

wage or tax change that is only temporary). As noted above, it is positive (as η<0) and 

increasing in the parameter (1/γ) > 0, which governs people’s willingness to substitute labor 

inter-temporally. Also note that as η becomes a larger negative number (making income 

effects grow larger) the inter-temporal substitution effect grows stronger. 

 The result that transitory changes in taxes (or after tax wages) should have a greater 

effect on labor supply than permanent changes is firmly entrenched as the conventional 

wisdom in the profession. For example, Saez, Slemrod and Giertz (2009) state: “The labor 

supply literature … developed a dynamic framework to distinguish between responses to 
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temporary changes vs. permanent changes in wage rates.… Because of inter-temporal 

substitution, and barring adjustment costs, responses to temporary changes will be larger than 

responses to permanent changes.” The interesting thing about this statement is its generality. 

The only qualification is that “adjustment costs” (e.g., restrictions on hours) might make it 

difficult for workers to react to temporary wage/tax changes as much as they would like.  

In the next two sections I will show how introduction of human capital into the 

standard labor supply model undermines this conventional wisdom, such that permanent tax 

changes can have larger effects than temporary changes (for a wide range of reasonable 

parameter values). I begin in Section III.A by introducing human capital into a simple model 

with no borrowing or lending. This makes the impact of human capital clear. Then in Section 

III.B I present a model that includes both human capital and borrowing/lending. 
 
III. Incorporating Human Capital in the Life-Cycle Model 

III.A. A Life-Cycle Model with Human Capital and Borrowing Constraints      

 Next I will assume that the wage in period 2, rather than being exogenously fixed, is 

an increasing function of hours of work in period 1. Specifically, I assume that: 
  
(19) 2 1 1(1 )w w hα= +  
 
where α is the percentage growth in the wage per unit of work. Given a two period model 

with each period corresponding to 20 years, it is plausible in light of existing estimates that 

αh1, the percentage growth in the wage rate over 20 years, is on the order of 1/3 to 1/2. For 

instance, using the PSID, Geweke and Keane (2000) estimate that for men with a high school 

degree, average earnings growth from age 25 to 45 is 33%. For men with a college degree 

they estimate a rate of 52%. They also estimate that earnings growth essentially ceases after 

about age 45. At least for figures on the low end of the growth range, the approximation 

2 1ln lnW W 1hα≈ +  would not be bad. Thus, (19) is similar to a conventional earnings 

function, but without the usual quadratic in hours. I will introduce that in the simulation 

section, but for purposes of obtaining analytical results (19) is much more convenient. 

In a model with human capital but no borrowing or lending, equation (2) is replaced 

by:  

(20) 
1 11 1

1 1 1 1 1 1 2 2 2[ (1 )] [ (1 ) (1 )]
1 1 1

h hw h w h hV
1

γ γη ητ α τβ ρ β
η γ η

+ ++ +

γ

⎧ ⎫− + −⎪ ⎪= − + −⎨ ⎬+ + + +⎪ ⎪⎩ ⎭
 

and the first order conditions (3)-(5) are replaced by: 
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(21) [ ] [ ]1 1 1 1 1 1 1 2 2 1 2 21
1

(1 ) (1 ) (1 ) (1 ) (1 ) 0V w h w h w h h w h
h

η ηγτ τ β ρ α τ α τ∂
= − − − + + − −

∂
=     

 

(22) [ ]1 1 2 2 1 1 2 2
2

(1 ) (1 ) (1 )(1 ) 0V w h h w h h
h

η γα τ α τ β∂
= + − + − − =

∂
 

 
It is useful to rewrite (21) in the form: 
 

(23) { }1 2
1 1 1 2 2

1 1
(1 ) (1 )

h C
w w h

C C

γ η

η η
β

τ ρ α
⎡ ⎤

= − + −⎢ ⎥
⎢ ⎥⎣ ⎦

τ  

 
where C1=w1h1(1-τ1) and C2=w1(1+αh1)h2(1-τ2) are consumption in periods 1 and 2. The main 

point of this paper can be seen simply by comparing equations (11) and (23). Each equates 

the marginal rate of substitution between consumption and leisure to the opportunity cost of 

time. But in the standard life-cycle model (11) this is simply the after tax wage rate w1(1-τ1). 

The human capital model adds the additional term { 1 2 22 1 (1 )C C w hη η }ρ α τ⎡ ⎤ −⎣ ⎦ , which is the 

human capital investment component of the opportunity cost of time.  

To understand this extra term, notice that dw2/dw1 = w1α is the increment to the period 

2 wage for each additional unit of work hours in period 1. This is multiplied by h2 to obtain 

the corresponding increment in earnings, and further multiplied by (1-τ2) to obtain after tax 

earnings. Of course, it is also discounted back to period 1, and multiplied by the ratio of 

marginal utilities of consumption in each period, to accommodate that an extra unit of 

consumption at t=2 may be valued differently from that at t=1 (we have not yet introduced 

borrowing into the model). 

Now, a key point is that a temporary tax change in period 1 affects only (1- τ1), and 

hence it only affects the first component of the opportunity cost of time (the current wage 

rate). In contrast, a permanent tax change also affects both (1- τ1) and (1-τ2), shifting both 

components of the opportunity cost of time. As we will see, this means that in the model with 

human capital and no borrowing/lending a permanent tax change will have a larger impact on 

time t labor supply than would a temporary tax change that is in effect only at time t.      

 To solve the model for h1 we use (22) to solve for h2 and substitute this into (21). This 

gives the following implicit function for h1: 
 
(24) [ ] [ ]

21 1 (1 ) ( )(1 ) ( ) (1 2 ) ( )
1 1 1 1 1 2 1(1 ) (1 ) (1 )h w h w hη η η γ ηγ η η γ η η γηβ τ ραβ τ α+ + + + −− + − + + −= − + − + γ η  
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As it is not possible to isolate h1, we totally differentiate and obtain the elasticity of hours in 

period 1 with respect to (1-τ1): 
 

 (25) 
0 3 2

1
1 1 1 1

1 2
1 1 1 1 1 1 2 1 1

ln (1 )[ (1 )]
ln(1 ) [ (1 )] [ (1 )] (1 )

h w h
h w h w h

η η

γ η η
η τ

τ γβ η τ ρα τ β α

+

Γ −Γ Γ+

∂ + −
=

∂ − − − − − Γ +
 

  
where Γ0 ≡ (1+η)(1+γ)/(γ-η), Γ1 ≡ (1+2η+γη)/(γ-η), Γ2 ≡ (1+3η+γη-γ)/(γ-η), Γ3 ≡ (1+η)/(γ-η). 

Obviously this expression simplifies to the Marshallian elasticity (1+η)/(γ-η) if α=0 (i.e., the 

case of no human capital accumulation), because the third term in the denominator vanishes.  

This third term captures substitution and income effects of the wage change at t=2 

induced by changes in the tax rate at time t=1. To the extent this t=1 tax change raises hours 

of work at t=1, it will raise the wage rate at t=2 (substitution effect). But it also increases 

income at t=2 (income effect). Thus, the sign of the third term in the denominator of (25) is 

ambiguous. It is determined by the sign of Γ1 = (1+2η+γη).  

Note that if  η = -1 we have log (C) utility and income effects are so strong that they 

completely counteract substitution effects, rendering the Marshallian elasticity zero. In this 

case Γ1 = -1-γ < 0, so the third term increases the denominator. Of course this is irrelevant 

because the numerator is zero, but for somewhat larger values of η we see that the human 

capital effect will render the elasticity in (25) – i.e., that with respect to temporary tax/wage 

changes – smaller than the Marshallian. 

At the other extreme is the case where η = 0, so utility is linear in C and there are no 

income effects. This case is adopted in almost all of the structural literature on dynamic 

models of human capital formation (see, e.g., Eckstein and Wolpin (1989), Keane and 

Wolpin (1997)) in order to avoid having to also model saving (as, with η = 0, the human 

capital investment and consumption/savings decisions separate). In this case Γ1 = 1, and the 

third term must reduce the denominator. Thus, the elasticity with respect to temporary 

wage/tax changes given by (25) must exceed the Marshallian. 

Indeed, for any value of η in the -1 to -.5 range the elasticity in (25) must be less than 

the Marshallian. The critical value of η is -.5. For values closer to zero it is possible to find 

values of γ small enough that the substitution effect dominates and (25) is larger than the 

Marshallian elasticity. Strikingly, the change occurs radically. For of η slightly larger than -.5 

a nearly infinite Frisch elasticity of substitution (1/γ) is necessary for the substitution effect to 

dominate. But for of η = -0.40 all we need is γ < .50, or 1/γ > 2. These are the sort of values 

typically used in calibrating real business cycle models (see Prescott (1986, 2006)).   
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Now consider the effect of a permanent tax increase. To simplify the analysis I will 

assume that τ1 = τ2 = τ. This modifies (20)-(24) so that τ replaces that τ1 and τ2. As a result, 

when we totally differentiate (24), we get the new term: 
 

(26) 3 1

(1 2 )

1 1
(1 )(1 ) [ (1 )] (1 ) (1 )w w d

η γη
γ ηη γραβ τ τ α

γ η

+ −
−Γ

1h Γ−
⎧ ⎫+ +⎪ ⎪− −⎨ ⎬−⎪ ⎪⎩ ⎭

+  

 
This term captures the fact that the tax cut at t=2, by increasing the fraction of earnings that a 

worker gets to keep at t=2, increases the return to human capital investment (and hence the 

opportunity cost of time) at t=1.   

As a result of the new term in (26), equation (25) is replaced by: 
 

(27)  
31

0 32

(1 )(1 )
1

1 1 1 1
1

1 2
1 1 1 1 1 1

(1 )(1 )(1 )[ (1 )] [ (1 )] (1 )
ln

ln(1 ) [ (1 )] [ (1 )] (1 )

w h w h
h

h w h w h

η γ
η η γ η

γ η η

η γη τ ρα τ α β
γ η

τ γβ η τ ρα τ α β

+ +
−ΓΓ+ −

Γ −ΓΓ+

+ +
+ − + − +

∂ −=
∂ − − − − − Γ +

 

 
Note that the denominators of (25) and (27) are identical. The only difference is the 

additional human capital term in the numerator. The sign of this second term depends on the 

term (1+η)(1+γ)/(γ-η). Notice that (1+γ) must be positive, as γ>0. Thus, the sign of the second 

term depends on that of (1+η)/(γ-η), the Marshallian elasticity itself. Thus, as long as the 

Marshallian elasticity is positive (i.e., the income effect does not dominate the substitution 

effect), the labor supply elasticity with respect to a permanent tax change (27) will exceed 

that with respect to a temporary tax change (25). 

 In summary, we have now seen that in the model with borrowing but no human 

capital, there is an intertemporal substitution effect that tends to make the response to a 

temporary tax change greater than that to a permanent tax change. In the model with human 

capital and no borrowing, the human capital effect leads to the opposite outcome. In the next 

Section we present a model with both human capital and borrowing/saving. Not surprisingly, 

we will find that whether permanent or temporary tax cuts have a larger effect will depend on 

the relative strength of these human capital and intertemporal substitution effects. 
 
III.B. A Life-Cycle Model with both Human Capital and Saving/Borrowing  

In the model with both human capital and saving/borrowing equation (2) is replaced 

by:  

(28) 
1 11 1

1 1 1 1 1 1 2 2 2[ (1 ) ] [ (1 ) (1 ) (1 )]
1 1 1

h hw h b w h h b rV
1

γ γη ητ α τβ ρ β
η γ η

+ ++ +

γ

⎧ ⎫− + + − − +⎪ ⎪= − + −⎨ ⎬+ + + +⎪ ⎪⎩ ⎭
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and the first order conditions for the problem are: 
 

(29) 
[ ]

[ ]

1 1 1 1 1 1
1

1 1 2 2 1 2 2

(1 ) (1 )

(1 ) (1 ) (1 ) (1 ) 0

V w h b w h
h

w h h b r w h

η γ

η

τ τ β

ρ α τ α τ

∂
= − + − −

∂

+ + − − + − =

    

 

(30) [ ]1 1 2 2 1 1 2 2
2

(1 ) (1 ) (1 ) (1 )(1 ) 0V w h h b r w h h
h

η γα τ α τ β∂
= + − − + + − − =

∂
 

 

(31) [ ] [ ]1 1 1 1 1 2 2(1 ) (1 ) (1 ) (1 ) (1 ) 0V w h b w h h b r r
b

η ητ ρ α τ∂
= − + − + − − + +

∂
=  

 
Equation (31) can be simplified to read [ ]1 2[ ] (1 )C C rη η ρ= + . As before, we will assume 

ρ(1+r)=1, to simplify the analysis. In that case C1=C2=C, and (29) can be rewritten: 
 

(32) 1
1 1 1 2 2(1 ) (1 )

h
w w h

C

γ

η
β

τ ρα τ= − + −  

 
It is useful to compare this to (11), which is the MRS condition for the model without human 

capital. Here the opportunity cost of time is augmented by the term ραw1h2(1-τ2), which 

captures the effect of an hour of work at t=1 on the present value of earnings at t=2.  

 Now, continuing to assume ρ(1+r)=1, we can divide (30) by (29) to obtain: 
 

(33) 2 1 1 2 2 2

1 1 1 1 2 2 1 1 1 2

(1 )(1 ) (1 )
(1 ) (1 ) (1 ) (1 )

h w h w
h w w h w w h 2

γ
α τ τ

τ ρα τ τ ρα τ
⎛ ⎞ + − −

= =⎜ ⎟ − + − − + −⎝ ⎠
    

 
Taking logs we obtain: 

(34) 2 2 2

1 1 1 1 2

(1 )1ln ln
(1 ) (1 )

h w
h w w h

τ
γ τ ρα

⎛ ⎞ ⎡ −
=⎜ ⎟

2τ
⎤

⎢ ⎥− + −⎝ ⎠ ⎣ ⎦
 

 
This equation illustrates clearly why the conventional procedure of regressing hours growth 

on wage growth leads to underestimates of the Frisch elasticity 1/γ, and overestimates of the 

key utility function parameter γ. The effective wage rate at t=1 is understated by failure to 

account for the term ραw1h2(1-τ2) that appears in the denominator.  

We can get a better sense of the magnitude of the problem if we simplify by assuming   

τ1 = τ2 = τ. Then we can rewrite (34) as:  
 

(35) 2 2 2 2
2 2

1 1 2 1 1

1 1 1 1 1ln ln ln ln(1 ) ln
(1 )

h w w wh h
h w h w w

ρα ρ
γ ρα γ γ γ

⎛ ⎞ ⎧ ⎫ ⎧ ⎫
= = − + ≈⎨ ⎬ ⎨ ⎬⎜ ⎟ +⎝ ⎠ ⎩ ⎭ ⎩ ⎭

α−  
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If we solve this for 1/γ we obtain:5

 

(36) 2 2 2 2
2

1 1 2 1 1

1 ln ln ln ln ln(1 )
(1 )

h w h w h
h w h h w

ρα
γ ρα

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ÷ = ÷ − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
Thus, wage growth from t=1 to t=2 would have to be adjusted downward by a factor of 

roughly ραh2 percent in order to correct for the missing human capital term (obtaining a valid 

estimate of the growth of the opportunity cost of time).  

As we noted earlier, a reasonable estimate of αh1 is about 33%. For illustration, let’s 

suppose that h2 is 20% greater than h1, so that αh2 is roughly 40%. As we also noted earlier, a 

reasonable value for ρ is 0.554, giving ραh2 = 22%. Hence, for these values, the growth in the 

opportunity cost of time is only 1 – 22/33 or 1/3 of the observed growth in wages. If we had 

used observed wage growth to calculate 1/γ we would obtain 20/33 ≈ .60 for the Frisch 

elasticity. But the correct value is ln(1.20)/ln[1.33/1.22] ≈ 2.1. Thus, for reasonable parameter 

values, the downward bias in estimates of the Frisch elasticity due to ignoring human capital 

will tend to be substantial.6  

Now consider the impact of permanent vs. temporary wage/tax changes in this model. 

First, solve (30) for h2 to obtain:  
 
(37) [ ]11

2 1 1 2(1 )(1 )h w h γ Cγ η γβ α τ−= + −  

 
Substituting this into (29) we obtain:       
 
(38) (1 )1 1 (1 )

1 1 1 21 1(1 ) (1 ) (1 )h w C w h Cγ γ (1 )γ η γ γ γ γ η γβ τ ραβ α τ+− + += − + + − γ  
 
Next we must substitute out for C. Given our assumption that ρ(1+r)=1, we just have 

C1=C2=C, and C is just the present value of earnings times the factor (1+r)/(2+r): 
 
(39) 1 1 1 2 2 2{ (1 ) (1 ) (1 ) }/(2 )C w h r w h rτ τ= − + + − +  
 
In the model without human capital we were able to substitute for h2 in this equation using 

the intertemporal optimization condition (equation (6)), obtaining an equation for C only in 

                                                 
5 The 3rd and 4th terms on the right hand side of (35) play no role in the subsequent exposition. I include them 
only because they suggest a possible approach to estimating (1/γ), i.e., including h2 on the right hand side of a 
conventional hours growth specification and then finding appropriate instruments for both (w2/w1) and h2. I 
believe this would be difficult, but further examination of this issue is tangential to the purpose of this paper.     
6 If we assume that hours grow by 10% rather then 20%, the conventional approach to measuring the Frisch 
elasticity would give 10/33 ≈.30, while the correct calculation is ln(1.10)/ln[1.33/(1+(.554)(.33)(1.10)] ≈ 
ln(1.10)/ln[1.33/1.20] ≈ 0.93 
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terms of h1 (equation (13)). We were then able to substitute this into the first order condition 

for h1 to obtain an explicit function for h1 (equation (14)) that was fairly easy to differentiate. 

Things are much more difficult here, because the intertemporal optimization condition (33) 

cannot be solved explicitly for h2 in terms of h1. Instead, we use (37) to substitute for h2. 

However, this only delivers an implicit function for C: 
 
(40) [ ](1 ) 1

1 1 1 1 2 2{ (1 ) (1 ) (1 )(1 ) }/(2 )C w h r w C rγ γ γ η γτ τ τ β+ −= − + + − − +  

 
We are now in a position to calculate labor supply elasticities of h1 with respect to temporary 

tax changes, using the two equation system (38) and (40). First, we implicitly differentiate 

(40) to obtain an expression for dC/d(1-τ1) that will involve dh1/d(1-τ1). Then we implicitly 

differentiate (38) to obtain an expression for dh1/d(1-τ1) that involves dC/d(1-τ1). Finally, we 

substitute the former expression into the latter, group terms, and convert to elasticity form to 

obtain: 

(41)   

1

1

2
1 1

1 1

ln
ln(1 )

1

/ 1 11
1 1

h

A D EC A B D

h hA B D EC A B D EC
h h

η
γ

η η
γ γ

τ

γ η γη
γ γ

α γ αγ η γ γγ η
α γ γ γ

∂
=

∂ −

⎡ ⎤⎛ ⎞ ⎡ ⎤− +⎢ ⎥+ + +⎜ ⎟ ⎢ ⎥⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤ ⎛ ⎞− + +⎢ ⎥ ⎢ ⎥+ + + − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦ α

 

 
where: 
 
 1 1(1 )A w Cητ≡ −  

[ ](1 )1 1
1 2 1(1 ) (1 )B w h Cγ γ (1 )γ γ η γ γραβ τ α+− +≡ − +  

1 1 1(1 )(1 )D w h rτ≡ − +  

[ ](1 )1 (
1 2 1(1 ) (1 )E w hγ γ 1 )γ γ γβ τ α+− +≡ − +  

 
The term B is the human capital affect that arises because an increase in h1 increases income 

at t+2 (holding h2 fixed). It is exactly the second term on the right hand side of (38). The term 

( ) /ECη γ γ η γ− is the standard income effect of the higher after tax wage in period t=1. The 

term ( ) 1
1

(1 )
(1 )

hEC h
η γ αγ

γ α
+ ⎛⎜ +⎝ ⎠

⎞⎟  is a special income effect that arises because an 

increase in h1 increases the wage rate at t=2.  

 13



 It can be verified via cumbersome algebra that (41) reduces to (15) – the elasticity of 

hours with respect to a temporary tax cut in the standard life-cycle model without human 

capital – if we set α = 0. The simulations in Section IV.C will reveal that (41) is strongly 

decreasing in α (for given η and γ). This is intuitive: as human capital becomes more 

important, a temporary tax hits a smaller and smaller part of the opportunity cost of time.  

 We can now look at the effect of a permanent tax increase by setting τ1 = τ2 = τ in (38) 

and (40), and following the same solution procedure as above. This leads to the result: 
 

(42)   

1

2
1

1

ln
ln(1 )

1 1

/ 1 11
1

h

A B D EC A B D EC

hA B D EC A B D EC
h

η η
γ γ

η η
γ γ

τ

γ γ η γ γη
γ γ γ γ

α γ γ η γ γγ η
α γ γ γ

∂
=

∂ −

⎡ ⎤⎡ ⎤ ⎧ ⎫⎡ ⎤⎧ ⎫ ⎛ ⎞ ⎡ ⎤ ⎛ ⎞+ − + +⎪ ⎪⎢ ⎥⎢ ⎥+ + + + +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎩ ⎭ ⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎪ ⎪⎣ ⎦ ⎩ ⎭⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤ ⎛ ⎞− + +⎢ ⎥ ⎢ ⎥+ + + − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥+ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1

1

11
h

h
α

α+

 

 
This expression reduces to the Marshallian elasticity (18) if we set α = 0. Compared to 

equation (41), equation (42) has two new terms, both of which appear in curly brackets in the 

numerator. The first is 1B γ
γ

⎧ ⎫+
⎨ ⎬
⎩ ⎭

 which is an additional human capital effect. It captures that 

a lower tax rate in period t=2 provides an additional incentive to accumulate human capital at 

t=1. The second is 1EC
η
γ γ

γ

⎧ ⎫⎛ ⎞+⎪
⎨ ⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭

⎪
⎬  which captures an additional income effect (i.e., the lower 

tax in period 2 leads to higher lifetime income holding labor supply fixed).  

 Whether a permanent or a temporary tax change has a larger effect on labor supply 

depends on which of these two effects dominates. A permanent tax change will have the 

larger effect if the following condition holds:  
 

 1 1B D EC A B EC
η η
γ γ 1γ γ η γ γη

γ γ γ

⎡ ⎤ ⎧⎧ ⎫ ⎛ ⎞ ⎡ ⎤ ⎛+ − +
γ

⎫⎞+⎪ ⎪⎢ ⎥+ > +⎨ ⎬ ⎨⎜ ⎟ ⎜⎢ ⎥⎢ ⎥⎩ ⎭ ⎝ ⎠ ⎣ ⎦ ⎝
⎬⎟

⎠⎪ ⎪⎣ ⎦ ⎩ ⎭
 

 
Some tedious algebra reveals that this condition is equivalent to a bound on the parameter α, 

which governs how work experience in period 1 affects the wage in period 2. The bound is: 
 

(43) 
( )

( )
1

1 1 1

0
(2 )

h C

r C h h C

γ η

γ η

η β
α

ρ η β

−

−

−
> >

+ +
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Note that the numerator of (43) is obviously positive, as η<0, and the next two terms are the 

marginal utilities of leisure and consumption respectively, which are both positive. But the 

sign of the denominator appears ambiguous, as the first term is positive while the second is 

negative. However, we can show it is positive as follows: 

 Utilizing the fact that ρ(1+r)=1, so that ρ(2+r)=(1+ρ), we can see that, in order for the 

denominator to be positive, we must have: 

(44) 
( )1

11

h
C h

C

γ

η

βη
ρ

−
>

+
 

Now recall from equation (32) that 1
1 1 2(1 ) (1 )

h
w w h

C

γ

η
β

τ ρα τ= − + − . Thus we have that: 

(45) [ ]1 1 1 2 1 1 1 1 2
1(1 ) (1 ) (1 ) ( ) (1 )

1 1 1
C h w w h w h h w h

r
η ητ ρα τ τ α τ
ρ ρ

− − ⎡ ⎤> − + − = − + −⎢ ⎥+ + +⎣ ⎦
 

 
where in the second term on the right we have substituted ρ(1+r)=1. Of course we have that 

the present value of lifetime consumption equals that of lifetime income:  
 

(46) 1 1 1 2
2 1(1 ) (1 )(1 )
1 1

r C w h w h h
r r

τ α+ ⎧ ⎫= − + + −⎨ ⎬+ +⎩ ⎭
2τ  

Thus, the term in the square brackets in (45) is 1 2
2 1 (1 )
1 1

r C w h
r r

τ+
− −

+ +
, which is lifetime 

income minus a part of period 2 earnings. So we can rewrite (45) as: 
 

(47) 1 2 1 2
2 1 1(1 ) (1 )

1 1/(1 ) 1 1 2
rC C w h C w

r r r r
η hτ η τ− +⎡ ⎤ ⎡> − − = − −⎢ ⎥ ⎢+ + + + +⎣ ⎦ ⎣

⎤− ⎥⎦
 

 
As long as η > -1 (i.e., substitution effects dominate income effects) this inequality must hold. 

The right hand side takes on its greatest value when η = -1, and then (47) just says that C is 

greater than a fraction of C. 

 Thus, equation (43) gives a positive lower bound that the human capital effect α must 

exceed in order for permanent tax changes to have a larger effect than temporary tax changes 

in the model with human capital and saving. Repeating (43) for convenience:    

(43) 
( )

( )
1

1 1 1

0
(2 )

h C

r C h h C

γ η

γ η

η β
α

ρ η β

−

−

−
> >

+ +
 

 
we see that, while this expression is difficult to further simplify, it is intuitive that the lower 

bound for α is increasing in (-η). As η approaches -1 (i.e., log(C) utility, stronger income 

 15



effects) the numerator of (43) increases while the denominator decreases. It is also obvious 

that when utility is linear in consumption (no income effects) (43) reduces to α > 0. In the 

simulations of Section IV.C we will see clearly how the lower bound for α increases in (-η).  

 If we make the approximation that α2 ≈ 0, which is reasonable given that, as noted 

earlier, a plausible value for αh1 is about .33, we can obtain the more intuitive expression: 

(48) 1

1 1 1

(1 )
11 (1 ) (1 )

1

w

w h w h
r

τηα
η τ τ

⎡ ⎤ −
> − ⎢ ⎥+⎣ ⎦ − + −

+ 2

                                                

 

which makes clear that the bound for α gets higher as income effects grow stronger. 
 
IV. Simulations of the Model 

IV.A. Model Calibration 

  Given that we have a two period model we can think of each period as 20 years of a 

40 year working life (e.g., 25 to 44 and 45 to 64). I assume a real annual interest rate of 3%. 

Note that 1/(1+.03)20 = 0.554. This implies a 20 year interest rate of r = .806. Thus, I will 

assume the discount factor ρ = 1/(1+r) = 0.554. I set the initial tax rates τ1 = τ2 = .40.  

I will examine how the model behaves for a range of values of the key utility function 

parameters η and γ. I know of only two studies that estimate life-cycle models that include 

both savings and human capital investment, and that also assume CRRA utility. These are 

Keane and Wolpin (2001) and Imai and Keane (2004).7 Keane-Wolpin estimate that η ≈ -.5 

while Imai-Keane estimate that η ≈ -.75. Goeree, Holt and Palfrey (2003) present extensive 

experimental evidence, as well as evidence from field auction data, in favor of η ≈ -.4 to -.5. 

Bajari and Hortacsu (2005) estimate η ≈ -.75 from auction data. Thus, I will consider values 

of -.25, -.50 and -.75 for η, with most of the emphasis on the -.50 and -.75 cases. 8

Of course, the value of γ has been the subject of great controversy in the literature. As 

discussed by Imai and Keane (2004), almost all the estimates of the intertemporal elasticity of 

substitution (1/γ) reported in the literature are quite small. Two rare exceptions are French 

(2005), who obtains a value of 1.33 for 60 year olds in the PSID, and Heckman and MaCurdy 

(1980), who obtain a value of 1.8 for married women in the PSID. Aside from this, estimates 

 
7 I believe that Shaw (1989) was the first to estimate a dynamic model that included both human capital and 
saving. But she assumed a translog utility function so the estimates are not very useful for calibrating (1).  
8 The value of η ≈ -.50 obtained by Keane and Wolpin (2001) implies less curvature in consumption (i.e., higher 
willingness to substitute inter-temporally) than much of the prior literature. But their model includes liquidity 
constraints that limit the maximum amount of uncollateralized borrowing. Keane and Wolpin (2001, p. 1078) 
discuss how the failure of prior work to accommodate liquidity constraints will have led to downward bias in η. 
Specifically, in the absence of constraints on uncollateralized borrowing, one needs a large negative η to 
rationalize why youth with steep age-earnings profiles don’t borrow heavily in anticipation of higher earnings in 
later life. Notably, their model fits the empirical distribution of assets for young men quite well. 
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of (1/γ) are generally in the 0 to .50 range. At the same time, many macro economists have 

argued that values of (1/γ) of 2 or greater are needed to explain business cycle fluctuations 

using standard models (see Prescott (1986, 2006)).  

But Imai and Keane (2004) is a major exception to the prior literature, as they 

estimate that γ ≈ .25. Theirs’ is the only paper in this literature to include human capital, and 

they argue, for reasons similar to those discussed here, that failure to do so will have led prior 

work to severely underestimate (1/γ). It is notable that French (2005), who also obtained a 

reasonably high value of (1/γ), did so for 60 year olds. As both Shaw (1989) and Imai and 

Keane (2004) note, human capital investment is not so important for people late in the life-

cycle. For them, the wage will be close to the opportunity cost of time, and the bias that 

results from ignoring human capital will be much less severe.  

Given the controversy over γ, I will examine the behavior of the model for a wide 

range of values. Specifically, I look at γ = {0, 0.25, 0.50, 1, 2, 4}. But I will often focus on γ 

= 0.50. I consider this value plausible in light of Imai and Keane (2004) and results in Section 

III.B that prior estimates (ignoring human capital) are likely to be severely biased upward.  

Next consider β. This is just a scaling parameter that depends on the units for hours 

and consumption, and has no bearing on the substantive behavior of the model. Thus, in each 

simulation, I set β so that optimal hours would be 100 in a static model. The initial wage w1 is 

also set to 100. These values were chosen purely for ease of interpreting the results.  

Finally, consider the wage function. In contrast to the simple function assumed for 

analytical convenience in Sections II-III, here I assume the more realistic function: 
 
(49) ( )2

2 1 1 1exp( 100 )w w h hα κ δ= − −  

 
This corresponds more closely to a conventional Mincer log earnings specification: 
 
(50) ( )2

2 1 1 1ln ln 100w w h hα φ δ= + − −  

 
where w1 plays the role of the initial skill endowment, and there is a quadratic in hours. 

However, I have also included the depreciation term δ which will cause earnings to fall if the 

person does not work sufficient hours in period one (see Keane and Wolpin (1997)).   

Given that β is chosen so hours will be close to 100 in period one,9 let’s think of 100 

as corresponding roughly to full-time work and 50 as corresponding to part-time work. I 

decided to calibrate the model so that (i) the person must work at least part-time in order to 

                                                 
9 Actually, agents will typically supply somewhat more than 100 units of labor when α>0, due to the incentives 
to acquire human capital in the dynamic model.  
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have the wage stay constant at 100 in period two, and (ii) that the return to additional work 

falls to zero at 200 units of work. Given these constraints, the wage function reduces to:        
 

(51) ( )2
2 1 1 1

175exp 100
4 4

w w h hαα α⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

 
Thus, the single parameter α determines how work experience maps into human capital. I will 

calibrate α so that it is roughly consistent with the 33% to 50% wage growth for men from 

age 25 to 45 discussed earlier. As we’ll see below, this requires α in the .008 to .010 range.  

However, I will also consider a range of other α values, to learn about how the behavior of 

the model changes when human capital is more or less important.  

IV.B. Baseline Simulation        

 Table 1 reports baseline simulations of the model with η = -.75, η = -.50 and η = -.25. 

It reports units of work in periods 1 and 2 as well as the wage rate in period 2. Recall that the 

wage rate in period 1 is normalized to 100, so we can read off the amount of wage growth 

directly from the table. Results are reported for values of α ranging from 0 to .012. Recall 

also that β is normalized in all models so that hours = 100 in the static case. Thus, it is to be 

expected that the overall level of hours is rising as we move down the rows of the table and 

the return to human capital investment increases.    

 Consider first the models with η = -.50. Notice that with α = .007 the amount of wage 

growth from t=1 to t=2 ranges from 26% when γ = 4 to 37% when γ = 0, including a value of 

32% for my preferred value of γ = .50. These are plausible values, but a bit low compared to 

the 33% to 52% values that Geweke and Keane (2000) estimated from the PSID. At α = .008 

the amount of wage growth ranges from 31% when γ = 4 to 46% when γ = 0, including a 

value of 39% for my preferred value of γ = .50. These values are solidly in the range of the 

values that Geweke and Keane (2000) estimated from the PSID. At α = .010 the amount of 

wage growth ranges from 41% when γ = 4 to 66% when γ = 0, including a value of 54% for 

my preferred value of γ = .50. This brings us to the upper end of the range of values that 

Geweke and Keane (2000) estimated. Based on these simulation results, I would conclude 

that values of α in the .008 to .010 range are reasonable (when η = -.50). 

A notable feature of the results in Table 1 is that the rate of wage growth is not very 

sensitive to the setting of η, although it gets slightly greater as η approaches zero (i.e., income 

effects become weaker). For instance, comparing η = -.75 vs. -.50 vs. -.25, and looking only 

at the γ = .50 column, for α = .008 we see wage growth of 35%, 39% and 44%, respectively. 

Thus, α = .008 appears to be a reasonable setting regardless of the value of η. However, if we 
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look at α = .010, η = -.25, γ = .50 we get wage growth of 64%, which is a bit high. Thus, for η 

= -.25 the plausible range for α = .008 is more like .007 to .009.  

 The other thing we see in Table 1 is hours of work at t=1 and t=2. If we look at 

McGrattan and Rogerson (1998) we see that in 1990 the typical married male in the 25 to 44 

age range worked 40 hours per week, while the typical married male in the 45 to 64 age range 

worked 34 hours per week. Thus, there was a 15% decline in hours between the two periods. 

None of the models in Table 1 matches this pattern, as all imply that hours increase, albeit 

modestly, from t=1 to t=2. For instance, the model with α = .008, η = -.50, and γ = .50 gives 

an increase in units of work from 121 to 133, or 10%. 

 There are two possible reactions to this. First, one could view this as a failure of the 

model. Second, one could accept that this is a very simple stylized model designed to clarify 

some issues about (i) how taxes affect labor supply in models with both human capital and 

saving and (ii) the misleading nature of conventional labor supply elasticity estimates in such 

models. In order to capture the decline in hours that occurs at later ages – ages 55 to 64 in 

particular – one would have to account for the factors that motivate retirement such as 

declining tastes for work with age, pensions, health, etc.. The simple model here abstracts 

from these issues entirely. (But see below for a qualification of this statement).    

Perhaps more relevant for our purposes is that hours do follow a hump shape over the 

life cycle; as Imai and Keane (2004) note, for men in the PSID average annual hours rise 

from 2042 at age 25 to 2294 at age 35, a 12% increase. They then plateau before beginning to 

fall with retirement. Thus, our model with α = .008, η = -.50, and γ = .50, which generates 

10% hours growth, can be charitably interpreted as successfully capturing the modest growth 

in hours that occurs over the life cycle prior to the onset of the forces that drive retirement.  

Using this “modest” hours growth criterion (i.e., the model should generate hours 

growth in the 10%-15% range), we see that some specifications in Table 1 can be ruled out. 

In particular, if we look at α values in the plausible .007 to .010 range, we see that models 

with γ = 0 generate implausibly large increases in labor supply (e.g., 236/140 = 69% in the α 

= .008, η = -.50 case).  If η = -.25 then the γ = .25 models can be ruled out as well. 

Table 2 reports of the same set of baseline model simulations, except for the model of 

Section III.A, where no borrowing or lending is allowed. The first striking finding here is that 

levels of period 1 hours, and hence period 2 wages, are almost identical to those in the model 

with borrowing. For example, in the model with η = -.50 and α = .008, the amount of wage 

growth ranges from 31% when γ = 4 to 48% when γ = 0. Recall that in the model with 

borrowing the range was an essentially identical 31% to 46%.  
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The other striking finding is that hours growth is actually negative in the models with 

η = -.75 or -.50. For example, in the model with η = -.50, α = .008 and γ = .50, hours decline 

from 124 units in period 1 to 118 units in period 2, or 5%. If η = -.75 the decline is even 

greater (from 118 to 106, or 10%). In models with η = -.25 hours still increase, but more 

modestly than before. For example, with α = .007, hours increased from 130 to 148, or 14% 

in the model with borrowing, but only from 131 to 137, or 5%, in the model without. 

There are two reasons why an hours decline occurs in the model with borrowing 

constraints. The first reason was also operative in the model with borrowing and lending. 

That is, the component of the opportunity cost of time that arises because of the return to 

human capital investment (i.e., the second term in equation (23) or (32)) vanishes in period 2, 

as there is no future. This force, which drives down the opportunity cost of time as people 

age, is in fact one factor that drives retirement behavior. 

The second reason is the income effect that arises because wages are higher in period 

two than in period one. The inability to smooth consumption over time means this income 

effect is much stronger in the model with borrowing constraints. Clearly, the human capital 

effect alone is not sufficient to cause hours to fall in period two, but the human capital effect 

combined with the income effect is.           

 In summary, the results of this section suggest that human capital effects in the α = 

.008 to .010 range are plausible for the η = -.75 to -.50 models, and that α in the .007 to .009 

range is plausible for the η = -.25 model. The value γ = 0 does not appear plausible in the η = 

-.75 to -.50 models, while γ = 0 or .25 both appear implausible in the η = -.25 model 

(although less so with borrowing constraints).  

IV.C. Simulation of Effects of Tax Rate Changes 

 In this Section I use the simple models of Sections III.A and III.B to simulate effects 

of temporary and permanent tax changes. Tables 3-5 present the results for the models with 

unconstrained borrowing and lending. Table 3 presents results for models with η = -.75. The 

left panel of the table shows elasticities with respect to temporary tax changes in period one. 

The right panel shows elasticities with respect to permanent tax changes (i.e., changes that 

take effect in both periods one and two). The first three rows show results for α = 0, the case 

of no human capital accumulation.  

Consider the case with γ = .50, which is a commonly assumed value in calibrating real 

business cycle models. Then, the Marshallian elasticity is (1+η)/(γ-η) = (1-.75)/(0.50+0.75) = 

0.20. The compensated substitution (or Hicks) elasticity is 1/(γ-η) = 1/(0.50+0.75) = 0.80. 

The Frisch elasticity is 1/γ = 2. As we see in the first three rows of Table 3, these theoretical 
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elasticities correspond almost exactly to the simulated values of the total and compensated 

elasticities to permanent tax cuts (which apply in both periods), and to the Frisch elasticity for 

a temporary tax cut (which applies only in period 1). The latter is calculated as the percentage 

increase in labor supply from period t=1 to t=2 (-2%) divided by the after-tax wage increase 

from t=1 to t=2 (-1%). The simulated values for three elasticities reported in the first three 

rows of Table 3 differ slightly from the theoretical values only because we are taking finite 

difference derivatives (i.e., we increase (1-τ) by 1%, from .600 to .606, and simulate the 

corresponding change in labor supply)).     

 Given that in the baseline (i.e., prior to the tax cut experiments) we have w1=w2=100 

and τ1 = τ2 =.40, we can use equation (16) to obtain the theoretical value of the labor supply 

elasticity with respect to a temporary tax change at t=1 in the model with no human capital: 
  

 1

1

ln 1 .75 ( .75) 1 .50 1 0.20 0.64 0.84
ln(1 ) 0.50 .75 .50 ( .75) .50 2 .806

h
τ
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This aligns closely with the value of 0.835 obtained in the simulation. Finally, I also report a 

compensated elasticity with respect to a temporary tax cut of 1.222. 

 It is necessary to take a detour to explain how the compensated elasticities in Tables 3 

to 5 are calculated. There is no direct equivalent to the Slutsky equation in the dynamic case. 

Thus, I have defined the compensated elasticity as the effect of a wage/tax change holding the 

optimized value function fixed. In order to determine the amount of initial assets a consumer 

must be given to compensate for a tax change, I solve the equation: 
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where 1τ ′ and 2τ ′  denote the tax rates after the tax change. Giving people the initial asset level 

defined by A in (52) equates the initial value function 1 2( , ,0)V τ τ and the post-tax change 

value function 1 2( , , )V Aτ τ′ ′ to a very high degree of accuracy. 

 The second panel of Table 3 presents results when the human capital effect α is set at 

the very weak level of .001. Strikingly, even this very small human capital effect renders the 

conventional method of estimating the Frisch elasticity – i.e., taking the ratio of hours growth 

to wage growth – completely unreliable.10 With α = .001, in the baseline model, the wage rate 

                                                 
10 Of course, econometric studies that estimate the Frisch elasticity by regressing percentage hours changes on 
percentage wage changes use more complex instrumental variables techniques, designed to deal with 
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increases by only a little over 3% between period 1 and period 2 for all values of γ. For 

instance, if γ = 0.50 the wage increases by 3.25%. At the same time, hours increase from 

101.43 to 102.16, or 0.72%. Thus, taking the ratio we would incorrectly infer that the Frisch 

elasticity was only 0.72/3.25 = 0.221, and that γ was 4.5 (compared to the true value of 0.50).  

 One might surmise that the reason the conventional method of calculating the Frisch 

elasticity is so severely downward biased in this case is that the wage change from t=1 to t=2 

in the baseline model is entirely endogenous. That is, it results entirely from human capital 

investment. There is no source of exogenous variation in the after-tax wage, such as an 

exogenous tax change or a change in the rental rate on human capital (e.g., a labor demand 

shift). One might further surmise that if the data contained an event such as a temporary tax 

cut that shifted the wage path exogenously, one could infer γ more reliably. 

 Surprisingly, it turns out that this intuitive logic is fundamentally flawed. The left 

panel of Table 3 reports Frisch elasticities calculated in the conventional manner in a regime   

with a temporary 1% tax cut in t=1. Looking at the γ = 0.50 case, we see the estimate is -.478, 

which is not even the correct sign. What happens in this case is that the human capital effect 

causes labor supply to increase to 102.18 in period 1, which increases the wage in period 2 to 

103.29. But despite this wage increase, labor supply actually declines in period 2 (to 101.11). 

This is an illustration of how the wage is no longer the opportunity cost of time in the life-

cycle model with human capital. Even though the wage is higher at t=2 the opportunity cost 

of time is lower, because the human capital investment return component is removed.  

 Another way to look at this is that there is no such thing as a strictly exogenous shift 

in the wage path in the life-cycle model with human capital. For instance, a higher after-tax 

wage at t=1 causes hours to increase, but this raises the wage at t=2 via the human capital 

effect. Thus, a t=1 tax change does not induce an exogenous change in the wage profile, as 

the wage at t=2 is altered by the behavioral response. This has fundamental implications for 

the estimation of wage elasticities. That is, if work experience alters wages, methods that rely 

on exogenous variation in wages will not work. One must model the joint wage/labor supply 

process, and determine how labor supply responds to the opportunity cost of time. 

 Next consider the case of α = .008, which we determined in Section IV.B generates 

wage growth roughly consistent with observations. Given this value of α, labor supply at t=1 

is 113.94, about 14% higher than in the α = 0 case, because the human capital effect raises the 

                                                                                                                                                        
measurement error in wages, heterogeneity in tastes for work, and the fact that part of any wage change may 
have been unanticipated. We do not have any of those problems here, so the appropriate estimator boils down to 
just taking the ratio of the percentage hours change to the percentage wage change.     
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opportunity cost of time. This generates 35.24% wage growth. Labor supply at t=2 is now 

121.04, which is a 6.23% increase. Thus, using the baseline data, and using conventional 

methods, we would estimate the Frisch elasticity as only 6.23/35.25 = 0.177. If, instead of the 

baseline, we use the data that includes a tax cut in period t=1, we would obtain 0.198.  

It is interesting that for α = .001 conventional methods produce estimates of the Frisch 

elasticity that differ greatly (depending on whether or not the data contain a tax change), 

while for more plausible larger values like α = .008 the estimates are quite close. This is 

because at larger values of α wage growth from period t=1 to t=2 is much greater, and this 

insures that the opportunity cost of time does increase, despite the fact that (i) the human 

capital component of the opportunity cost vanishes at t=2 and (ii) the tax rate rises. 

Next we examine total and compensated labor supply elasticities, focussing first on 

the η=-.75, α=.008, γ=.50 case in Table 3. The first thing to note is that both these elasticities 

drop substantially when human capital is included in the model. Specifically, they fall from 

.835 and 1.222 in the no human capital case to .312 and .606 in the α=.008 case, more than a 

factor of two. Thus, even if we knew the true value of γ, ignoring human capital would lead 

us to a downward biased estimate of η (i.e., to understate the inter-temporal substitution in 

consumption). This pattern of human capital leading to reduced total and compensated 

elasticities holds for all values of γ, and, as we will see in Tables 4-5, it holds for a range of 

values of η. As I noted in Section III.B, this pattern is intuitive: as human capital becomes 

more important, a temporary tax hits a smaller part of the opportunity cost of time. 

Next, compare elasticities with respect to temporary vs. permanent tax cuts. The total 

elasticity of labor supply at t=1 with respect to a temporary increase in (1-τ1) is 0.312, while 

that with respect to a permanent increase in (1-τ) is 0.176. This appears consistent with the 

conventional wisdom that temporary tax changes have larger effects than permanent changes 

due to inter-temporal substitution. However, it turns out this is not the case. The compensated 

elasticity of labor supply at t=1 with respect to a temporary tax cut is 0.606, while that with 

respect to a permanent tax cut is greater, 0.698. Thus, the total elasticity with respect to the 

permanent tax cut is smaller than that for the temporary tax cut not because of substitution 

effects, but rather because the income effect of the permanent tax cut is greater. Also, recall 

from equation (48) that the hurdle that α must exceed for permanent tax cuts to have larger 

effects is increasing in (-η). When we move to Tables 4-5 we’ll see this hurdle being met.   

Another key point is that the Frisch elasticity – as conventionally measured – is a 

factor of 3 to 4 times smaller than the compensated substitution elasticity for both permanent 

and temporary tax changes. This illustrates a key point: the generally low estimates of the 
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Frisch elasticity in the literature should not be viewed as an upper bound on compensated 

substitution elasticities. In fact, the Frisch elasticities do not even give an upper bound on the 

total elasticities (e.g., the two methods of calculating the Frisch elasticity produce values of 

0.177 and 0.198, while the total elasticity for a t=1 tax cut is 0.312).       

   Next I turn to Table 4, which presents results for models with η = -.50. Focus again 

on the γ = 0.50 case. In the model without human capital in the first three rows, we see that 

the total elasticity with respect to a temporary tax reduction in period one is almost exactly 

twice as large as that with respect to a permanent tax cut (1.03 vs. 0.50).11 But if we look at 

the case of α = .008, we see that the total elasticity with respect to a permanent tax cut is now 

greater than that with respect to a temporary tax cut in period one (0.445 vs. 0.420). If we 

move up to the α=.010 case, which is towards the higher end of the plausible range for the 

human capital effect, the difference grows even larger (0.424 vs. 0.327).  

 These results illustrate a key point: for plausible parameter values – indeed for what I 

have argued in Section IV.A are the preferred range of values for α, η and γ – labor supply 

effects of permanent tax cuts can exceed those of temporary tax changes in the life-cycle 

model with borrowing/lending and human capital. 

 The result is even clearer if we look at compensated elasticities. In the α = .008 case 

the compensated elasticity with respect to a permanent tax cut is 0.884, while that with 

respect to a temporary tax cut is 0.661. (And recall that in Table 3, where η = -.75, we also 

found that the compensated elasticity was greater in the permanent case).  

 Finally, note that in the α=.008 case the conventional method of calculating the Frisch 

elasticity produces values of .304 and .256 (for cases where the data do or do not contain a 

temporary tax cut, respectively). These estimates, typical of the low values in prior empirical 

work, imply values of γ of 3.3 to 3.9. Yet we know the true value is γ=0.50. Strikingly, even 

the larger (conventional) estimate of the Frisch elasticity is smaller than the Marshallian 

elasticity with respect to a permanent tax cut (.445) and much smaller than the compensated 

elasticity (.884).  

This illustrates a second key point: the low estimates of the Frisch elasticity obtained 

in prior literature are consistent not only with low values of γ, but also with quite large values 

for compensated and uncompensated substitution elasticities. Existing estimates of the Frisch 

elasticity that ignore human capital should not be viewed as upper bounds on either 

compensated or uncompensated elasticities.   
                                                 
11 Recall from equation (16) that 1

1

ln 1 .50 ( .50) 1 .50 1 0.50 0.53 1.03
ln(1 ) 0.50 .50 .50 ( .50) .50 2 .806

h
τ
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.  
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 Table 5 reports results for η = -.25. In light of the existing literature this is a low value 

for the degree of curvature of the utility function in consumption. Using this low value 

magnifies the results from Tables 3 and 4. For instance, if we look at the α = .008 case, the  

total elasticity with respect to a permanent tax cut is now much greater than that with respect 

to a temporary tax cut in period one (0.836 vs. 0.557). And the compensated elasticity is 

much greater as well (1.110 vs. 0.700). In the α=.008, γ=.50 case the (conventional) estimates 

of the Frisch elasticity are again smaller than compensated and uncompensated elasticities.  

And the compensated and uncompensated elasticities with respect to temporary tax cuts are 

again at least a factor of two below their values in the model without human capital.     

 Table 6 reports results for the model with borrowing constraints. I only report results 

for the η = -.50 case. This is because Keane and Wolpin (2001) estimated a model with both 

human capital and liquidity constraints and obtained an estimate of η = -.50.12 Note that they 

estimated the extent of liquidity constraints (rather than assuming their existence) and their 

estimates implied rather tight limits on uncollateralized borrowing. 

Of course with no borrowing or lending the inter-temporal substitution mechanism is 

completely shut down. If taxes are temporarily lowered in the first period it is no longer 

possible to “make hay while the sun the shins” (Heywood (1547)) and save part of the 

earnings for the second period. Hence, the Frisch elasticity properly defined does not exist.   

 It still makes sense, however, to ask what values one would obtain for the Frisch 

elasticity (and hence what one would infer about γ) if one applied conventional methods in an 

environment with liquidity constraints. As we see in the first three rows of Table 6, for the 

case of no human capital (α = 0) one just obtains the Marshallian elasticity. But when human 

capital is included one typically obtains negative values. For example, if α = .008 and γ = 0.5 

the “Frisch” elasticity appears to be -.189 or -.119, depending on whether one uses the data 

that do or do not contain a temporary tax cut, respectively.        

 As we saw in Section III.A, in a model with human capital but no borrowing/lending 

(so the inter-temporal substitution mechanism is shut down), the labor supply response to 

permanent tax changes must exceed that to temporary tax changes. We see this clearly in 

Table 6. For instance, in the α = .008 and γ = 0.5 case, the total elasticity with respect to a 

temporary tax change is 0.345 while that with respect to a permanent tax change is 0.469. 
                                                 
12 While the Keane and Wolpin (2001) model had strict limits on uncollateralized borrowing it did allow saving. 
But here we rule out saving as well. However, in the simple two period model of the present paper, given wage 
growth due to human capital, agents will essentially always want to borrow in period one (unless wage growth is 
trivially small). Thus, in this simple model, eliminating borrowing/lending completely is for all practical 
purposes equivalent to having tight bounds on uncollateralized borrowing. Hence, the model here can be viewed 
as a very simple version of the Keane and Wolpin (2001) model. 
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  Finally, we consider compensated elasticities. We can no longer use equation (52) to 

determine the (net) amount of assets to give an agent to compensate him/her for a tax change, 

because now consumption, and hence the marginal utility of consumption, differs in the two 

periods. Thus, to compensate for a permanent tax change, I find the asset level A that solves: 
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 in each period. To compensate for a temporary tax change in 

period 1, I find the asset level A that solves: 
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and give the agent A in period 1.  

   Now, looking again at the α = .008 and γ = 0.5 case, we see that the compensated 

elasticity with respect to a temporary tax change is 0.687 while that with respect to a 

permanent tax change is 0.958.  

In summary, comparing Tables 4 and 6, we see that with borrowing total elasticities 

of labor supply to permanent tax cuts exceed those for temporary tax cuts once α ≥ .008, and 

this is true for all values of γ. Compensated elasticities for permanent tax cuts begin to be 

higher (for some values of γ) for values of α as low as .005, and are consistently higher for all 

values of γ once α ≥ .006. As I argued in Section IV.B, α = .008 is at the low end of the 

plausible range for α, so the cases where elasticities with respect to permanent tax changes 

exceed those for temporary changes are quite plausible. With borrowing constraints, both 

total and compensated elasticities to permanent tax changes always exceed those for 

temporary tax changes, and the size of the difference grows with the importance of human 

capital effects. The models with and without borrowing restrictions are polar cases, with the 

“truth” presumably somewhere in between. If borrowing constraints are in fact important, it 

becomes more likely that permanent tax changes have larger effects than temporary ones.            

 
V. “Optimal” Income Tax Rates and the Welfare Losses from Taxation 

 In this Section I consider how introducing human capital into the life-cycle model 

affects the (second best) optimal proportional income tax rate, and the welfare losses from 

distortionary taxes on labor income. Throughout this section I assume a flat rate income tax 

that is equal in both periods (τ1 = τ2 = τ). In order to talk about optimal taxation it is necessary 
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to specify that the government provides a public good from which workers derive utility.13 

Let the quantity of the public good be denoted by P, and assume that the government 

provides the same level of P in each period. Then the government budget constraint is: 
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Solving (55) for P we obtain: 
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Next we modify the value function in equation (28) to include a public good: 
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where λf(P) is the utility that consumers derive from the public good.   

Given (57), the first order conditions (29)-(31) are modified to become: 
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where, given the new wage equation (49) we now have 2 1 1/dw dh hα α= − , and so: 
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There is also a new first order condition describing the problem of the government: 
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13 As we have a representative agent model, the redistributive motive for taxation that is central to work in the 
tradition of Mirrlees (1971), Sheshinski (1972) and Stern (1976) is not relevant here.   
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which we can write in more detail as: 
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As before I assume ρ(1+r)=1 in order to simplify the problem and focus on the key issues. In 

this case, and with no constraints on borrowing and lending, we get that C1 = C2 = C. Then, 

equation (61) and (62) reduce to: 
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And, as ∂P/∂τ = -∂C/∂τ, we just have that: 
 
(63) ( )f P Cηλ ′ =  
 
This says that the benevolent government (or social planner) sets the tax rate so as to equate 

the marginal utility of private consumption to that of consumption of the public good. 

 To complete the model we must specify the functional form for f(P). Obviously, the 

choice of f(P) will have a great impact on the results. Thus I consider three alternative 

functional forms: f(P) = log(P),  f(P) = 2P P

.5 and  f(P) = P. This allows for three very different 

degrees of curvature in f(P). The scaling parameter λ is set so the optimal tax rate is 40% 

when there is no human capital accumulation (i.e., when α = 0).   

 I also consider two variants on the model of equations (58)-(61). Those equations 

describe a social planner version of the model in which workers, when deciding on hours of 

work, consider how increased labor supply will lead to increased provision of the public 

good. We could also consider a “free rider” version of the model where there are many 

representative workers each solving a problem like (58)-(60), but where each worker assumes 

that his/her own actions will have a trivial impact on provision of the public good (dP/dh =0). 

In that case the first term in equations (58)-(59) drops out, and these revert back to being the 

same as (29)-(30). I also consider a version of the model with borrowing constraints. In that 

case simply set b=0 in (58)-(59) and drop equation (60). In this model, I still assume that the 

government can borrow and lend across periods, so (55)-(56) still hold.       

 Tables 7-10 show how optimal income tax rates vary with the importance of human 

capital investment (α). As noted earlier, all models are calibrated so that when α=0 the 

optimal tax rate is 40%. In Table 7, I assume that f(P) = log(P). Thus, the curvature of the sub 
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utility function for the public good is greater than that for the private good. In this case, it is 

clear that the optimal tax rate falls as α increases. This effect is stronger in the versions of the 

model where γ is smaller (i.e., intertemporal substitution is greater). It is also stronger in the 

(perhaps more plausible) free-rider version of the model. For instance, in the α=.008, γ=.50 

case, the optimal tax rate falls from 40% to 33.9%. If we move closer to the high end of the 

plausible range for human capital effects (α=.010), and adopt the Imai and Keane (2004) 

estimate that γ = .25, the optimal tax rate falls further to 29.4%. 

 The bottom panel of Table 7 reports results for the version of the model that does not 

allow borrowing. The most striking feature of the results is that they differ only slightly from 

those in the top panel. With no borrowing, optimal tax rates are (very) slightly higher.  

Table 8 reports results for the model where f(P) = 2PP

.5 and η = -.50. In this case (63) 

is simply λP-0.5
P =C-0.5. The curvature of the sub utility functions for public and private 

consumption are identical. As C=I(1-τ) and P=Iτ, where I is (1+r)/(2+r) times the present 

value of lifetime income, we have that P/C = τ/(1-τ). This implies that λ2=τ/(1-τ) or that τ= λ2 

/(1+ λ2). Thus the optimal tax rate is a constant, independent of the level of lifetime income.  

As we see in the top panel of Table 8, the optimal tax rate is also independent of the 

parameter γ that alters labor supply elasticities (Indeed, it is independent of labor supply 

elasticities in general). However, as we will see below, while the optimal tax rate is invariant 

to α and (1/γ), the welfare cost of a distortionary proportional tax is increasing in both. 

The bottom of Table 8 reports results for the model with no borrowing. Here, the 

above logic for why the optimal tax rate is constant does not hold, because consumption is no 

longer equal in both periods. But the result that the optimal proportional income tax rate is a 

constant still holds to a very close approximation, as is evident from the figures in the table. 

Table 9 reports results for the model where f(P) = PP

 and η = -.50. In this case (63) 

reduces to just λ = Cη. That is, the government sets the tax rate so as to keep the marginal 

utility of private consumption constant. In this (perhaps implausible) case, the marginal utility 

of public good consumption is constant as P increases, while that of private consumption is 

diminishing. As α increases people become wealthier, as their t=2 wage is higher. As a result, 

the government raises τ to keep private consumption constant. This leads to high tax rates at 

high levels of α. For example, when α=.008 and γ=.50, the optimal tax rate is 68% in the 

social planner version of the model and 51.9% in the free-rider version.  

Again, results are little different in the borrowing constrained case. Here, however, 

results differ noticeably between the social planner and free-rider versions of the model. This 

is because, in the free-rider version, agents, knowing they will be subject to a high rate of tax 
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on human capital investment (and not accounting for how their collective actions will 

increase public good provision) decide to acquire much less human capital.  

Finally, Tables 10-12 examine the welfare costs of proportional income taxation, and 

how this is influenced by parameters that govern labor supply elasticities (γ and η) and the 

importance of human capital (α). I only report results for the free-rider version of the model 

with no borrowing constraints.  

I report two measures of the welfare loss from the proportional income tax. To obtain 

these measures, I have also solved a version of the model in which a lump sum tax is used to 

finance the public good. The lump sum tax is set to the level that would fund the same level 

of the public good that is obtained in the solution to the free-rider proportional tax version of 

the model. The first measure of welfare loss, denoted C* in the tables, is the amount of extra 

consumption that consumers in the proportional tax world must be given to enable them to 

attain the same utility level (more precisely, the same level of the optimized value function) 

they enjoy in the lump sum tax world, expressed as a fraction of consumption in the 

proportional tax world. The second measure, C**, is the loss in consumption in the lump sum 

tax world that would bring the consumer down to the utility level he/she has in the 

proportional tax world, expressed as a fraction of consumption in the lump sum tax world.           

Table 10 reports results for the f(P)=log(P) case. The top panel reports results for the  

 η = -.75 case and the bottom panel reports results for η = -.50. Each panel gives results for γ 

ranging from 0.25 to 4 and for α from 0 to 0.012. I also report the total labor supply elasticity 

(in the α=0 case) e=(1+η)/(γ-η), because it helps to interpret the results, and because of the 

important role it plays in the literature on welfare losses from taxation and optimal tax rates. 

For instance, in a static model without human capital, and abstracting from income effects, 

Saez et al (2009) give the simple formula that for a flat rate tax the marginal excess burden 

is (/ 1e )eτ τ τ− − − .14, 15 Thus, the utility cost of taxation is increasing in e in that framework. 

One thing that is evident in both the top and bottom panels is that welfare losses from 

the proportional tax are strongly inversely related to γ. When γ is large, so that labor supply 

elasticities are small, welfare losses from the tax are quite small. For example, when γ = 4, so 

that e=.11 or .05 for η = -.75 and η = -.50, respectively, welfare losses are less than 4% for 

both the C* and C** measures. But as we reduce γ the welfare losses become much more 
                                                 
14 That is, for each extra dollar of tax collected, the utility cost to consumers in dollar terms is ( )/ 1e eτ τ τ− − − . 
For example, if τ=0.40 and e=0.50 this gives 0.50, meaning the cost is 50 cents for each dollar raised.  
15 Similarly, Saez (2001) shows that, in general, optimal tax rates in the Mirrlees (1971) model depend on both 
compensated and uncompensated elasticities, but his equation (9) shows that only the uncompensated elasticity, 
and government tastes for redistribution, matter for the optimal flat rate tax (i.e., set the Pareto parameter a=1). 
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substantial. For instance, consider the case of γ = 0.5. If η = -.75 this implies e=0.20, and in 

the no human capital case (α=0) the welfare loss is 9 to 11%, depending on the measure. If 

instead η = -.50 then e=0.50 and the welfare loss is 11 to 16% depending on the measure.  

A second striking aspect of the results in Table 10 is that, for η = -.75, welfare losses 

from the tax are roughly invariant to the level of α. For instance, when α = .008 and γ = 0.5 

the welfare losses are still 9 to 11%, depending on the measure, just as I noted for the no 

human capital case above. It is also worth noting that, as saw back in Table 3, labor supply 

elasticities with respect to permanent tax or wage changes do not change very much as we 

alter α in the η = -.75 case. The total elasticity only changes from .20 when α = 0 to .176 

when α = .008. (In contrast we found that the elasticities with respect to temporary tax 

changes declined sharply as human capital became more important).    

In contrast, for η = -.50, the welfare cost of the tax, which starts out higher, is falling 

as α increases. In fact, by the time α reaches the plausible value of .008, the welfare losses are 

very similar in the η = -.75 and η = -.50 cases. This is not explained by any difference in the 

behavior of labor supply elasticities. Looking back at Table 4, we see that in the η = -.50 case, 

just as in the η = -.75 case, elasticities do not fall very much as α increases. If γ = 0.5 then the 

total elasticity only falls from .50 in the α = 0 case to .445 in the α = .008 case.   

 The real explanation for why the welfare cost of the tax is decreasing in α in the η =    

-.50 case is as follows: when η = -.50, there is less curvature in the sub utility function for 

private consumption. Hence, the desired ratio of private to public good consumption 

increases more strongly as α increases. This in turn, causes the optimal tax rate to fall more 

rapidly. For instance, at γ = 0.5, as α goes from 0 to .008 the optimal tax rate falls from 40% 

to 33.9% in the η = -.50 case (reported in Table 7). But it only falls from 40% to the 38.1% in 

the η = -.75 case (not reported in Table 7).  

In summary, the reason the welfare loss from proportional taxes falls as α increases in 

the η = -.50 case is not that greater importance of human capital reduces the welfare cost of 

income taxes. In fact, it is just the reverse – as human capital becomes more important the 

optimal tax rate falls. With a lower tax the welfare cost of the tax is also reduced.  

Now consider Table 11, which reports results for the case where f(P) = 2PP

.5. As we 

discussed earlier, if η = -.50 then the degree of curvature in the sub utility functions for the 

public and private good are identical, and hence the optimal tax rate is constant at 40%. But 

with η = -.75 the degree of curvature in the sub utility function for the private good is slightly 

less than that for the public good. Thus, as α increases, making people wealthier, the optimal 

tax rate increases. However, this effect is very weak for all values of γ. For example, when γ 
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= 0.5 the optimal tax rate increases to only 42.7% when α increases to .008. Overall, for both    

η = -.75 and η = -.50, we see that the welfare cost of the proportional tax is increasing as 

human capital becomes more important. The increase is more pronounced when η = -.75 (the 

case where taxes are increasing).  

But the main result in Table 11 is that same as that of Table 10; namely, that the 

welfare cost of the proportional income tax can be quite substantial even at fairly modest 

values of γ and e. For example, consider the case of η = -.75 and γ = 2. In this case the Frisch 

elasticity is only 1/2 and the Marshallian is only 0.09, yet the welfare loss from the tax is 7 to 

8% of consumption. If we reduce γ to 1/2 (which I argued in Section IV.A. is a much more 

plausible value) then, according to Table 3, the total labor supply elasticity is still a modest 

0.176. Yet the welfare loss from the tax is 12 to 15% of consumption, depending on the 

measure used. Thus, quite modest values of the total labor supply elasticity can be consistent 

with large welfare losses from proportional taxes.16

Note that welfare losses from the income tax would be even greater if the lump sum 

tax were chosen optimally (achieving the 1st best). For example, in the η = -.50, γ = 1/2, α = 

.008 case, welfare losses are 12-18% when compared to the constrained lump sum tax (that 

raises the same revenue), but 17-25% when the optimal lump sum tax is used.   

 Finally, Table 12 reports results for f(P) = P. As I discussed earlier, in this case the 

optimal tax rate rises with α because as people become wealthier they demand more of the 

public good. For example, if γ = 1/2 then when α increases from 0 to .008 the optimal tax rate 

increases from 40% to 51.9% (see Table 9). Note also that the welfare losses from income 

taxation become quite substantial in this case. For example, when α = .008, η = -.75 and γ = 

1/2, the welfare loss is 19 to 28% of consumption, depending on the measure used. 
 
VI. Conclusion 

When human capital is added to the standard life-cycle labor supply model, the wage 

rate is no longer the opportunity cost of time. Rather, the opportunity cost becomes the wage 

plus a term representing the return on human capital investment. In this paper I have argued 

that this fact has important (and in my view under appreciated) implications for how workers 

respond to tax changes, and for the estimation and interpretation of wage elasticities of labor 

supply. One key result is that permanent tax changes can have larger effects on current labor 

supply than transitory tax changes. This result, which holds at quite reasonable parameter 

values, contradicts the widespread presumption that transitory tax (or wage) changes should 

                                                 
16 According to Table 3, the compensated elasticities are .361 and .698 in the two cases I have discussed here. 
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have larger effects. The intuition is that a transitory tax change alters only the current after-

tax wage (and hence only part of the opportunity cost of time), while a permanent tax change 

shifts the return on human capital investment as well. For the same reason, elasticities with 

respect to temporary tax changes decrease as human capital becomes more important.   

The second key result is that even a “small” return on human capital investment (in a 

sense made precise in the paper) can lead to severe downward bias in estimates of the inter-

temporal elasticity of substitution in labor supply (the Frisch elasticity). Given plausible 

values for the return to human capital investment, existing evidence is consistent with a 

Frisch elasticity of 2 or more. This has additional consequences. In the standard life-cycle 

model, the Frisch elasticity is an upper bound on Marshallian and Hicks elasticities. Thus, 

severely downward biased estimates of the Frisch elasticity induced by failure to account for 

human capital may lead us to incorrectly conclude that uncompensated and compensated 

elasticities are smaller than they actually are.     

Indeed, using simulations of a very simple life-cycle model augmented to include 

human capital investment, I showed that both permanent and transitory tax changes can have 

much larger effects on labor supply than the (incorrectly estimated) Frisch elasticity would 

suggest. The simulations presented here suggest that the compensated substitution effect of a 

permanent tax change may be several times greater than the conventionally measured 

intertemporal substitution effect. Hence, the small Frisch elasticities obtained in prior work 

(ignoring human capital) should not be viewed as an upper bound on plausible compensated 

substitution effects. Nor are they a bound on uncompensated elasticities.  

I also showed that the use of variation in wage rates induced by exogenous tax regime 

changes to identify labor supply elasticities does not resolve this problem, and can even make 

the bias greater. The point is that, in a model with human capital, any tax change will induce 

changes in the incentive to acquire human capital. Thus, any change in the time path of after-

tax wages induced by exogenous changes in tax rates will nevertheless be endogenous – as it 

is contaminated by changes in human capital investment decisions. The only solution to this 

problem is to model how labor supply responds to changes in the opportunity cost of time 

(not just the wage), as in Heckman (1973) and Imai and Keane (2004). 

I went on to use the simple life-cycle labor supply model with human capital 

investment to study both optimal proportional tax rates on labor income and the welfare 

effects of income taxation. The results are summarized in Table 13. The table presents 

welfare losses from a proportional flat rate income tax, expressed as a fraction of 

consumption, under a number of parameterizations of the model. The return to work 
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experience is set such that the wage rate grows by roughly 1/3 over the first 20 years of the 

working life. The benevolent government sets the tax rate optimally to equate marginal utility 

of consumption of the public and private goods. The top panel presents results with the 

CRRA curvature parameter for consumption (η) set at -.075, the value estimated by Imai and 

Keane (2004), while the bottom presents results for the value of -0.50 estimated by Keane 

and Wolpin (2001).17 Results are presented for several values of the CRRA curvature 

parameter in hours (γ), from a value of 4, which implies little inter-temporal substitution in 

leisure, up to a value of 0.25, which implies an inter-temporal elasticity of substitution of 

labor supply of 4, close to the Imai and Keane (2004) estimate. 

Under the column labeled “uncompensated elasticity” the table reports simulated total 

labor supply elasticities to permanent tax changes.18 Note that very high values of the Frisch 

elasticity (1/γ) are consistent with very modest uncompensated elasticities. For example, in 

the η = -.075, γ = 0.25 case, which corresponds to the Imai and Keane (2004) estimates, the 

simulated uncompensated elasticity is a modest 0.205. But the welfare cost of proportional 

income taxation is still substantial – i.e., 13% to 35%, depending on the measure.  

The welfare cost of income taxation is calculated for three cases: one where utility is 

log(P), where P is the amount of the private good, one where it is 2PP

                                                

.5, and one where it is 

linear in P. This covers a range of degrees of curvature in consumers’ utility from the public 

good, ranging from more than that for the private good to less. The welfare losses in the three 

cases are equivalent to 13%, 19% and 35% of consumption, respectively.  

Even if we reduce (1/γ) to the much more modest value of 1, in which case the 

uncompensated elasticity is only 0.133, the welfare losses in the three cases are 9%, 11% and 

19% of consumption, respectively. It appears that large welfare losses from income taxation 

are quite consistent with existing (small) estimates of labor supply elasticities. 

Historically, Mirrlees (1971) expressed surprise that optimal tax rates were so low 

(about 20 to 30%) in his model, but Stern (1976) noted that that optimal tax rates would be 

much higher (i.e., well over 50%) if utility parameters were set to values that implied much 

less elastic labor supply. He argued this was more consistent with existing empirical work. 

But, given the downward bias in elasticity estimates induced by failure to account for human 

capital, the very low elasticity estimates used by Stern may be suspect, while the higher 

elasticities in Mirrlees’ original paper may be more plausible.     
 

17 These are two structural models that include both labor supply and asset accumulation. 
18 It is important to note that the compensated and uncompensated elasticities reported in Table 13 are not the 
traditional Marshallian and Hicks elastictities. Instead they are generalizations of these formulas that apply for 
the dynamic case with human capital, as given by equations (42) and (52). 
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Table 1: Baseline Simulation 
 

  η = -.75 η = -.5 η = -.25 
α γ 0 0.25 0.5 1 2 4 0 0.25 0.5 1 2 4 0 0.25 0.5 1 2 4 
0 h1  100 100 100 100 100  100 100 100 100 100  100 100 100 100 100 
 h2  100 100 100 100 100  100 100 100 100 100  100 100 100 100 100 
 w2  100 100 100 100 100  100 100 100 100 100  100 100 100 100 100 

0.001 h1 99 102 101 101 101 100 101 103 102 101 101 100 105 105 103 102 101 101 
 h2 109 103 102 101 101 100 113 104 103 102 101 101 127 107 104 102 101 101 
 w2 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 

0.003 h1 104 105 105 103 102 101 109 109 107 105 103 102 130 116 111 106 104 102 
 h2 120 110 107 104 103 101 135 115 110 106 103 102 211 127 115 108 104 102 
 w2 111 111 111 110 110 110 111 111 111 111 110 110 114 112 112 111 110 110 

0.005 h1 110 109 108 106 104 102 120 116 112 108 105 103 158 130 120 111 106 103 
 h2 132 117 112 108 105 103 166 128 118 110 106 103 390 157 129 115 107 104 
 w2 120 120 119 119 118 118 122 121 120 119 118 118 130 125 122 120 119 118 

0.006 h1 113 112 110 107 105 103 127 120 115 110 106 103 168 138 125 114 108 104 
 h2 139 121 115 109 106 103 186 136 123 113 107 104 518 178 138 118 109 104 
 w2 125 125 124 123 122 122 129 127 126 124 123 122 138 132 129 126 123 122 

0.007 h1 116 114 112 109 106 103 133 124 118 112 107 104 175 146 130 117 109 105 
 h2 147 126 118 111 106 104 209 145 128 116 108 104 670 202 148 122 111 105 
 w2 131 130 129 128 127 126 137 134 132 129 127 126 147 141 136 132 128 126 

0.008 h1 120 117 114 110 107 104 140 128 121 114 108 105 181 153 136 120 111 106 
 h2 155 130 121 113 108 104 236 155 133 118 110 105 849 229 160 127 112 106 
 w2 138 137 135 133 132 130 146 141 139 135 133 131 156 150 144 138 134 131 

0.010 h1 127 122 118 113 109 105 152 138 128 119 111 106 188 166 147 127 114 107 
 h2 174 141 128 117 110 105 299 178 146 125 113 106 1306 295 187 137 116 108 
 w2 154 151 149 145 142 140 166 159 154 149 144 141 175 170 164 154 146 142 

0.012 h1 135 128 123 117 111 106 162 147 136 124 114 107 192 175 158 135 118 109 
 h2 196 152 135 121 112 106 372 206 161 132 116 108 1937 374 220 150 121 109 
 w2 173 168 165 160 155 151 188 180 174 165 157 152 196 193 186 173 161 153 
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Table 2: Baseline Simulation, Borrowing Constraint 
 

  η = -.75 η = -.5 η = -.25 
α γ 0 0.25 0.5 1 2 4 0 0.25 0.5 1 2 4 0 0.25 0.5 1 2 4 
0 h1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
 h2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
 w2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

0.001 h1 104 103 102 102 101 101 106 104 103 102 101 101 112 106 104 102 101 101 
 h2 101 101 101 100 100 100 103 102 102 101 101 100 112 105 103 102 101 101 
 w2 103 103 103 103 103 103 103 103 103 103 103 103 104 103 103 103 103 103 

0.003 h1 111 108 107 105 103 102 117 112 109 106 103 102 138 118 112 107 104 102 
 h2 104 103 102 101 101 101 112 108 105 103 102 101 152 120 112 106 103 102 
 w2 112 111 111 111 110 110 112 112 111 111 110 110 115 113 112 111 110 110 

0.005 h1 119 114 111 108 105 103 130 120 115 110 106 103 163 133 121 112 107 103 
 h2 107 105 104 103 102 101 125 114 110 106 103 102 221 140 123 112 106 103 
 w2 122 121 120 119 118 118 125 122 121 120 119 118 130 125 123 120 119 118 

0.006 h1 122 117 113 109 106 103 136 124 118 112 107 104 171 140 126 115 108 104 
 h2 109 106 105 103 102 101 132 118 113 108 104 102 265 153 129 115 107 104 
 w2 128 126 125 124 123 122 132 128 127 125 123 122 138 133 129 126 123 122 

0.007 h1 126 119 116 111 107 104 141 128 121 114 108 104 178 147 131 118 110 105 
 h2 110 107 106 104 102 101 140 122 115 109 105 103 318 168 137 118 109 104 
 w2 135 132 131 129 127 126 140 135 133 130 128 126 147 141 137 132 129 127 

0.008 h1 129 122 118 113 108 105 147 132 124 116 109 105 183 154 137 121 111 106 
 h2 112 109 106 104 103 101 148 127 118 111 106 103 379 185 145 122 110 105 
 w2 142 139 137 135 132 131 148 143 140 136 133 131 156 150 145 138 134 131 

0.010 h1 136 128 122 116 110 106 157 140 131 120 112 106 190 166 147 128 115 107 
 h2 117 111 109 106 103 102 167 137 125 114 108 104 537 223 164 130 114 106 
 w2 158 154 151 147 143 140 167 161 156 150 144 141 175 171 164 154 146 142 

0.012 h1 142 133 126 119 112 107 165 148 137 125 114 108 194 175 157 135 118 109 
 h2 121 114 111 107 104 102 189 149 132 118 110 105 755 268 186 139 117 108 
 w2 178 171 167 161 156 151 189 181 174 166 158 152 196 193 186 173 161 153 
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Table 3: Labor Supply Response to Tax Change, η = -.75 
 

  Tax reduction in period 1 Tax reduction in both periods 
α γ 0 0.25 0.5 1 2 4 0 0.25 0.5 1 2 4 
0 Total elas.  1.570 0.835 0.445 0.235 0.122  0.249 0.199 0.142 0.090 0.052 
 Comp. elas.  2.059 1.222 0.721 0.410 0.223  0.990 0.792 0.566 0.361 0.209 
 Frisch elas.  4.060 2.010 1.000 0.499 0.249  4.060 2.010 1.000 0.499 0.249 

0.001 Total elas. 7.784 1.278 0.733 0.408 0.220 0.116 0.212 0.236 0.194 0.140 0.090 0.052 
 Comp. elas. 8.192 1.731 1.104 0.675 0.392 0.215 0.841 0.935 0.770 0.558 0.358 0.208 
 Frisch elas. -5.203 -0.839 -0.478 -0.263 -0.141 -0.074 3.200 0.430 0.221 0.109 0.053 0.025 

0.003 Total elas. 2.267 0.891 0.572 0.341 0.192 0.103 0.223 0.220 0.186 0.137 0.089 0.052 
 Comp. elas. 2.663 1.297 0.917 0.596 0.357 0.200 0.883 0.874 0.739 0.546 0.354 0.207 
 Frisch elas. 0.814 0.197 0.086 0.027 0.003 -0.002 1.404 0.390 0.208 0.099 0.045 0.020 

0.005 Total elas. 1.185 0.645 0.450 0.285 0.166 0.091 0.231 0.213 0.181 0.135 0.088 0.052 
 Comp. elas. 1.571 1.020 0.773 0.528 0.326 0.185 0.913 0.843 0.719 0.538 0.352 0.206 
 Frisch elas. 0.874 0.314 0.162 0.065 0.020 0.005 1.019 0.359 0.195 0.090 0.038 0.015 

0.006 Total elas. 0.912 0.552 0.399 0.259 0.154 0.085 0.233 0.210 0.179 0.135 0.088 0.052 
 Comp. elas. 1.289 0.913 0.713 0.498 0.311 0.178 0.920 0.832 0.712 0.535 0.351 0.206 
 Frisch elas. 0.846 0.336 0.179 0.074 0.023 0.005 0.915 0.345 0.189 0.086 0.035 0.013 

0.007 Total elas. 0.714 0.473 0.353 0.236 0.142 0.079 0.234 0.208 0.178 0.134 0.088 0.052 
 Comp. elas. 1.079 0.820 0.657 0.469 0.297 0.171 0.920 0.822 0.705 0.532 0.350 0.206 
 Frisch elas. 0.817 0.350 0.190 0.079 0.024 0.005 0.836 0.332 0.183 0.082 0.032 0.011 

0.008 Total elas. 0.565 0.405 0.312 0.214 0.131 0.074 0.232 0.205 0.176 0.133 0.088 0.052 
 Comp. elas. 0.913 0.738 0.606 0.441 0.283 0.164 0.911 0.811 0.698 0.530 0.350 0.206 
 Frisch elas. 0.791 0.358 0.198 0.083 0.025 0.004 0.774 0.319 0.177 0.079 0.029 0.009 

0.010 Total elas. 0.358 0.295 0.241 0.174 0.111 0.064 0.221 0.198 0.173 0.132 0.088 0.052 
 Comp. elas. 0.663 0.597 0.515 0.391 0.257 0.151 0.865 0.783 0.683 0.525 0.349 0.206 
 Frisch elas. 0.752 0.370 0.210 0.088 0.024 0.002 0.682 0.296 0.165 0.072 0.024 0.006 

0.012 Total elas. 0.229 0.211 0.183 0.139 0.092 0.054 0.200 0.188 0.168 0.131 0.088 0.052 
 Comp. elas. 0.479 0.478 0.434 0.344 0.233 0.139 0.784 0.741 0.663 0.520 0.349 0.207 
 Frisch elas. 0.727 0.380 0.220 0.091 0.023 -0.001 0.615 0.276 0.154 0.065 0.019 0.003 
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Table 4: Labor Supply Response to Tax Change, η = -.5 
 

  Tax reduction in period 1 Tax reduction in both periods 
α γ 0 0.25 0.5 1 2 4 0 0.25 0.5 1 2 4 
0 Total elas.  1.844 1.030 0.568 0.305 0.160  0.666 0.499 0.332 0.199 0.111 
 Comp. elas.  2.279 1.353 0.783 0.434 0.231  1.326 0.994 0.663 0.398 0.221 
 Frisch elas.  4.060 2.010 1.000 0.499 0.249  4.060 2.010 1.000 0.499 0.249 

0.001 Total elas. 7.854 1.518 0.915 0.526 0.289 0.153 0.650 0.634 0.487 0.329 0.198 0.110 
 Comp. elas. 8.265 1.923 1.226 0.735 0.415 0.223 1.289 1.262 0.971 0.656 0.396 0.220 
 Frisch elas. -3.734 -0.713 -0.431 -0.249 -0.138 -0.073 3.865 0.480 0.238 0.114 0.054 0.026 

0.003 Total elas. 2.306 1.083 0.732 0.451 0.257 0.139 0.700 0.599 0.472 0.324 0.197 0.110 
 Comp. elas. 2.703 1.447 1.022 0.651 0.379 0.207 1.384 1.191 0.940 0.646 0.393 0.220 
 Frisch elas. 1.502 0.346 0.147 0.046 0.009 -0.001 2.064 0.503 0.251 0.112 0.048 0.021 

0.005 Total elas. 1.176 0.795 0.589 0.386 0.228 0.125 0.710 0.579 0.462 0.321 0.196 0.110 
 Comp. elas. 1.541 1.127 0.861 0.578 0.347 0.192 1.399 1.149 0.920 0.640 0.392 0.220 
 Frisch elas. 1.438 0.493 0.242 0.092 0.028 0.006 1.686 0.509 0.256 0.110 0.043 0.016 

0.006 Total elas. 0.876 0.682 0.528 0.357 0.215 0.119 0.686 0.567 0.458 0.320 0.196 0.110 
 Comp. elas. 1.208 0.997 0.790 0.545 0.331 0.185 1.351 1.125 0.910 0.638 0.392 0.220 
 Frisch elas. 1.381 0.528 0.267 0.104 0.032 0.007 1.595 0.508 0.257 0.109 0.041 0.014 

0.007 Total elas. 0.654 0.583 0.472 0.329 0.202 0.113 0.641 0.552 0.452 0.319 0.196 0.110 
 Comp. elas. 0.945 0.878 0.724 0.513 0.316 0.177 1.259 1.095 0.898 0.635 0.392 0.220 
 Frisch elas. 1.334 0.553 0.287 0.114 0.034 0.007 1.536 0.507 0.257 0.107 0.038 0.013 

0.008 Total elas. 0.489 0.495 0.420 0.303 0.189 0.107 0.578 0.532 0.445 0.318 0.197 0.110 
 Comp. elas. 0.732 0.768 0.661 0.482 0.302 0.171 1.134 1.054 0.884 0.633 0.392 0.220 
 Frisch elas. 1.297 0.574 0.304 0.121 0.036 0.007 1.500 0.505 0.256 0.105 0.036 0.011 

0.010 Total elas. 0.275 0.349 0.327 0.254 0.165 0.095 0.436 0.475 0.424 0.315 0.197 0.111 
 Comp. elas. 0.431 0.570 0.541 0.423 0.274 0.157 0.854 0.938 0.841 0.626 0.393 0.221 
 Frisch elas. 1.246 0.610 0.334 0.134 0.038 0.005 1.470 0.502 0.254 0.102 0.032 0.008 

0.012 Total elas. 0.162 0.240 0.249 0.210 0.143 0.084 0.315 0.400 0.390 0.309 0.197 0.111 
 Comp. elas. 0.255 0.407 0.431 0.367 0.248 0.144 0.618 0.789 0.774 0.614 0.393 0.222 
 Frisch elas. 1.213 0.642 0.362 0.145 0.039 0.003 1.470 0.501 0.251 0.098 0.029 0.005 
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Table 5: Labor Supply Response to Tax Change, η = -.25 
 

  Tax reduction in period 1 Tax reduction in both periods 
α γ 0 0.25 0.5 1 2 4 0 0.25 0.5 1 2 4 
0 Total elas.  2.393 1.356 0.741 0.391 0.202  1.504 1.000 0.599 0.332 0.176 
 Comp. elas.  2.721 1.572 0.870 0.463 0.240  2.002 1.332 0.798 0.443 0.234 
 Frisch elas.  4.060 2.010 1.000 0.499 0.249  4.060 2.010 1.000 0.499 0.249 

0.001 Total elas. 8.040 2.006 1.222 0.693 0.373 0.194 2.058 1.450 0.985 0.595 0.331 0.176 
 Comp. elas. 8.454 2.314 1.431 0.819 0.443 0.231 2.726 1.929 1.311 0.793 0.442 0.234 
 Frisch elas. 0.191 -0.474 -0.356 -0.230 -0.133 -0.072 5.927 0.580 0.268 0.121 0.055 0.026 

0.003 Total elas. 2.163 1.460 1.003 0.608 0.338 0.179 2.043 1.381 0.965 0.591 0.331 0.176 
 Comp. elas. 2.493 1.734 1.199 0.729 0.406 0.215 2.687 1.835 1.285 0.788 0.441 0.234 
 Frisch elas. 3.121 0.632 0.246 0.073 0.015 0.000 4.464 0.734 0.324 0.131 0.052 0.022 

0.005 Total elas. 0.707 1.033 0.816 0.532 0.306 0.164 1.139 1.259 0.941 0.590 0.332 0.176 
 Comp. elas. 0.844 1.261 0.997 0.649 0.372 0.200 1.492 1.669 1.251 0.786 0.442 0.234 
 Frisch elas. 2.672 0.841 0.374 0.130 0.037 0.008 4.983 0.839 0.362 0.138 0.049 0.018 

0.006 Total elas. 0.414 0.840 0.728 0.496 0.290 0.157 0.776 1.148 0.919 0.589 0.332 0.176 
 Comp. elas. 0.491 1.036 0.899 0.610 0.356 0.192 1.017 1.520 1.221 0.784 0.443 0.235 
 Frisch elas. 2.506 0.904 0.416 0.148 0.042 0.010 5.476 0.888 0.377 0.141 0.048 0.016 

0.007 Total elas. 0.254 0.665 0.642 0.461 0.276 0.150 0.538 1.006 0.884 0.587 0.333 0.177 
 Comp. elas. 0.299 0.826 0.800 0.572 0.340 0.185 0.706 1.331 1.175 0.781 0.444 0.235 
 Frisch elas. 2.363 0.955 0.453 0.163 0.046 0.010 6.030 0.939 0.391 0.143 0.047 0.015 

0.008 Total elas. 0.164 0.515 0.557 0.427 0.261 0.144 0.385 0.852 0.836 0.583 0.334 0.177 
 Comp. elas. 0.190 0.642 0.700 0.535 0.325 0.178 0.505 1.126 1.110 0.776 0.445 0.236 
 Frisch elas. 2.237 0.999 0.487 0.176 0.049 0.010 6.626 0.992 0.405 0.144 0.045 0.013 

0.010 Total elas. 0.075 0.303 0.401 0.360 0.233 0.131 0.213 0.575 0.703 0.567 0.336 0.178 
 Comp. elas. 0.085 0.375 0.510 0.459 0.295 0.164 0.280 0.760 0.932 0.754 0.447 0.237 
 Frisch elas. 2.025 1.068 0.552 0.202 0.054 0.009 7.935 1.106 0.431 0.147 0.043 0.010 

0.012 Total elas. 0.038 0.181 0.276 0.295 0.207 0.119 0.127 0.381 0.550 0.536 0.337 0.179 
 Comp. elas. 0.041 0.220 0.352 0.382 0.266 0.151 0.167 0.504 0.729 0.712 0.448 0.239 
 Frisch elas. 1.857 1.113 0.614 0.228 0.059 0.008 9.440 1.222 0.460 0.149 0.041 0.008 
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Table 6: Labor Supply Response to Tax Change, η = -.5, Borrowing Constraint 
 

  Tax reduction in period 1 Tax reduction in both periods 
α γ 0 0.25 0.5 1 2 4 0 0.25 0.5 1 2 4 
0 Total elas. 1.000 0.666 0.499 0.332 0.199 0.111 1.000 0.666 0.499 0.332 0.199 0.111 
 Comp. elas. 1.990 1.326 0.994 0.663 0.398 0.221 1.990 1.326 0.994 0.663 0.398 0.221 
 Frisch elas. 1.000 0.666 0.499 0.332 0.199 0.111 1.000 0.666 0.499 0.332 0.199 0.111 

0.001 Total elas. 0.943 0.635 0.478 0.320 0.193 0.107 0.996 0.665 0.498 0.332 0.199 0.111 
 Comp. elas. 1.877 1.265 0.954 0.639 0.385 0.214 1.985 1.328 0.998 0.666 0.400 0.222 
 Frisch elas. -1.248 -0.906 -0.709 -0.493 -0.306 -0.174 -0.597 -0.433 -0.338 -0.235 -0.146 -0.083 

0.003 Total elas. 0.823 0.575 0.439 0.298 0.181 0.101 0.959 0.656 0.496 0.332 0.199 0.111 
 Comp. elas. 1.636 1.145 0.876 0.594 0.361 0.202 1.926 1.321 1.000 0.671 0.404 0.224 
 Frisch elas. -0.498 -0.433 -0.367 -0.275 -0.180 -0.106 -0.337 -0.300 -0.257 -0.195 -0.129 -0.076 

0.005 Total elas. 0.690 0.513 0.401 0.277 0.169 0.095 0.879 0.636 0.489 0.331 0.199 0.111 
 Comp. elas. 1.372 1.023 0.800 0.552 0.338 0.190 1.777 1.289 0.993 0.673 0.407 0.226 
 Frisch elas. -0.243 -0.293 -0.276 -0.226 -0.157 -0.096 -0.159 -0.201 -0.193 -0.161 -0.114 -0.071 

0.006 Total elas. 0.621 0.482 0.383 0.266 0.164 0.092 0.823 0.621 0.484 0.330 0.200 0.111 
 Comp. elas. 1.235 0.960 0.763 0.532 0.327 0.184 1.670 1.262 0.985 0.673 0.408 0.227 
 Frisch elas. -0.146 -0.241 -0.244 -0.210 -0.150 -0.094 -0.090 -0.160 -0.166 -0.146 -0.108 -0.068 

0.007 Total elas. 0.553 0.450 0.364 0.256 0.159 0.090 0.760 0.602 0.477 0.329 0.200 0.111 
 Comp. elas. 1.101 0.897 0.725 0.512 0.317 0.179 1.548 1.226 0.974 0.672 0.409 0.228 
 Frisch elas. -0.059 -0.194 -0.215 -0.196 -0.145 -0.092 -0.031 -0.124 -0.141 -0.132 -0.101 -0.065 

0.008 Total elas. 0.489 0.418 0.345 0.247 0.154 0.087 0.693 0.579 0.469 0.327 0.200 0.111 
 Comp. elas. 0.973 0.833 0.687 0.492 0.307 0.174 1.419 1.183 0.958 0.670 0.410 0.229 
 Frisch elas. 0.019 -0.151 -0.189 -0.183 -0.141 -0.091 0.020 -0.092 -0.119 -0.120 -0.095 -0.063 

0.010 Total elas. 0.376 0.354 0.307 0.227 0.144 0.082 0.562 0.524 0.447 0.323 0.200 0.111 
 Comp. elas. 0.749 0.706 0.612 0.454 0.288 0.164 1.163 1.076 0.916 0.663 0.411 0.230 
 Frisch elas. 0.156 -0.072 -0.141 -0.161 -0.133 -0.089 0.102 -0.039 -0.081 -0.097 -0.084 -0.058 

0.012 Total elas. 0.287 0.295 0.269 0.208 0.135 0.077 0.448 0.462 0.418 0.317 0.199 0.112 
 Comp. elas. 0.573 0.588 0.537 0.416 0.270 0.155 0.940 0.953 0.859 0.651 0.410 0.230 
 Frisch elas. 0.273 0.001 -0.096 -0.141 -0.127 -0.088 0.166 0.003 -0.050 -0.077 -0.074 -0.054 
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Table 7: Optimal Tax Rates: f(P) = log(P), η = -.5 
 

Borrowing/lending α 
γ  0 0.001 0.003 0.005 0.006 0.007 0.008 0.01 0.012 

0.25 Social planner 0.400 0.396 0.386 0.374 0.368 0.361 0.354 0.337 0.318
 Free-rider 0.400 0.392 0.374 0.354 0.343 0.331 0.319 0.294 0.270
           

0.5 Social planner 0.400 0.396 0.388 0.379 0.373 0.368 0.362 0.349 0.335
 Free-rider 0.400 0.394 0.381 0.365 0.357 0.348 0.339 0.320 0.300
           

1 Social planner 0.400 0.397 0.390 0.383 0.379 0.375 0.370 0.361 0.350
 Free-rider 0.400 0.396 0.386 0.375 0.370 0.363 0.357 0.344 0.329
           

2 Social planner 0.400 0.397 0.392 0.386 0.383 0.380 0.377 0.369 0.362
 Free-rider 0.400 0.397 0.390 0.382 0.378 0.374 0.370 0.360 0.351
           

4 Social planner 0.400 0.398 0.393 0.388 0.386 0.383 0.381 0.375 0.369
 Free-rider 0.400 0.397 0.392 0.386 0.383 0.380 0.377 0.371 0.363
           

No borrowing lending α 
γ  0 0.001 0.003 0.005 0.006 0.007 0.008 0.01 0.012 

0.25 Social planner 0.400 0.396 0.386 0.376 0.371 0.365 0.360 0.347 0.334
 Free-rider 0.400 0.392 0.376 0.359 0.350 0.341 0.333 0.316 0.300
           

0.5 Social planner 0.400 0.396 0.388 0.380 0.375 0.371 0.366 0.356 0.345
 Free-rider 0.400 0.394 0.381 0.368 0.361 0.354 0.347 0.332 0.318
           

1 Social planner 0.400 0.397 0.390 0.384 0.380 0.376 0.372 0.365 0.356
 Free-rider 0.400 0.396 0.386 0.376 0.371 0.366 0.361 0.350 0.338
           

2 Social planner 0.400 0.397 0.392 0.387 0.384 0.381 0.378 0.372 0.365
 Free-rider 0.400 0.397 0.390 0.383 0.379 0.375 0.372 0.364 0.355
           

4 Social planner 0.400 0.398 0.393 0.389 0.386 0.384 0.382 0.377 0.371
 Free-rider 0.400 0.397 0.392 0.387 0.384 0.381 0.378 0.372 0.366
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     Table 8: Optimal Tax Rates: f(P) = 2PP

.5 , η = -.5 
 

Borrowing/lending α 
γ  0 0.001 0.003 0.005 0.006 0.007 0.008 0.01 0.012 

0.25 Social planner 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 
 Free-rider 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 
           

0.5 Social planner 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 
 Free-rider 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 
           

1 Social planner 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 
 Free-rider 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 
           

2 Social planner 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 
 Free-rider 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 
           

4 Social planner 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 
 Free-rider 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 
           

No borrowing lending α 
γ  0 0.001 0.003 0.005 0.006 0.007 0.008 0.01 0.012 

0.25 Social planner 0.4000 0.4000 0.4003 0.4009 0.4013 0.4019 0.4027 0.4049 0.408 
 Free-rider 0.4000 0.4000 0.4001 0.4003 0.4006 0.4009 0.4014 0.4029 0.4051
           

0.5 Social planner 0.4000 0.4000 0.4002 0.4007 0.401 0.4014 0.402 0.4035 0.4056
 Free-rider 0.4000 0.4000 0.4001 0.4003 0.4005 0.4008 0.4012 0.4022 0.4039
           

1 Social planner 0.4000 0.4000 0.4002 0.4005 0.4008 0.4011 0.4015 0.4025 0.4039
 Free-rider 0.4000 0.4000 0.4001 0.4003 0.4005 0.4007 0.401 0.4018 0.403 
           

2 Social planner 0.4000 0.4000 0.4001 0.4004 0.4006 0.4009 0.4012 0.4019 0.4029
 Free-rider 0.4000 0.4000 0.4001 0.4003 0.4005 0.4007 0.4009 0.4016 0.4024
           

4 Social planner 0.4000 0.4000 0.4001 0.4004 0.4006 0.4008 0.401 0.4017 0.4025
 Free-rider 0.4000 0.4000 0.4001 0.4003 0.4005 0.4007 0.4009 0.4015 0.4022
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Table 9: Optimal Tax Rates: f(P) = P, η = -.5 
 

Borrowing/lending α 
γ  0 0.001 0.003 0.005 0.006 0.007 0.008 0.01 0.012

0.25 Social planner 0.400 0.460 0.584 0.704 0.758 0.805 0.844 0.904  
 Free-rider 0.400 0.415 0.447 0.480 0.497 0.514 0.532 0.566 0.601
           

0.5 Social planner 0.400 0.433 0.502 0.574 0.610 0.646 0.680 0.746 0.803
 Free-rider 0.400 0.414 0.443 0.473 0.488 0.503 0.519 0.550 0.582
           

1 Social planner 0.400 0.420 0.461 0.504 0.526 0.548 0.571 0.616 0.661
 Free-rider 0.400 0.412 0.437 0.463 0.476 0.489 0.503 0.530 0.558
           

2 Social planner 0.400 0.413 0.441 0.469 0.484 0.498 0.513 0.543 0.574
 Free-rider 0.400 0.410 0.432 0.453 0.465 0.476 0.487 0.510 0.534
           

4 Social planner 0.400 0.410 0.431 0.452 0.462 0.473 0.484 0.506 0.529
 Free-rider 0.400 0.409 0.427 0.446 0.455 0.465 0.475 0.494 0.514
           

No borrowing lending α 
γ  0 0.001 0.003 0.005 0.006 0.007 0.008 0.01 0.012

0.25 Social planner 0.400 0.459 0.579 0.702 0.762 0.816 0.861 0.925 0.945
 Free-rider 0.400 0.415 0.446 0.476 0.491 0.506 0.521 0.551 0.580
           

0.5 Social planner 0.400 0.433 0.501 0.572 0.608 0.645 0.682 0.753 0.816
 Free-rider 0.400 0.414 0.442 0.469 0.483 0.497 0.511 0.539 0.567
           

1 Social planner 0.400 0.420 0.461 0.504 0.526 0.548 0.571 0.617 0.664
 Free-rider 0.400 0.412 0.436 0.461 0.474 0.486 0.499 0.524 0.550
           

2 Social planner 0.400 0.413 0.441 0.469 0.484 0.499 0.514 0.545 0.577
 Free-rider 0.400 0.410 0.431 0.453 0.463 0.474 0.485 0.508 0.530
           

4 Social planner 0.400 0.410 0.431 0.452 0.463 0.474 0.486 0.509 0.533
 Free-rider 0.400 0.409 0.427 0.446 0.455 0.465 0.474 0.494 0.514
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Table 10: Welfare Losses from Proportional Income Tax, f(P) = log(P) 

 
            

η = -.75   
  α 

γ 
ηγ
η

−
+1

  0 0.001 0.003 0.005 0.006 0.007 0.008 0.01 0.012

0.25 0.25 C* 13.40 13.39 13.46 13.51 13.49 13.45 13.35 13.03 12.50
  C** -10.66 -10.65 -10.68 -10.69 -10.67 -10.63 -10.56 -10.33 -9.97 
            

0.5 0.20 C* 11.25 11.27 11.34 11.41 11.43 11.44 11.42 11.31 11.07
  C** -9.26 -9.27 -9.31 -9.34 -9.35 -9.35 -9.33 -9.24 -9.06 
            

1 0.14 C* 8.56 8.60 8.69 8.79 8.84 8.89 8.92 8.97 8.97 
  C** -7.35 -7.38 -7.45 -7.52 -7.55 -7.58 -7.60 -7.63 -7.61 
            

2 0.09 C* 5.81 5.86 5.95 6.06 6.11 6.16 6.22 6.32 6.42 
  C** -5.23 -5.27 -5.34 -5.42 -5.47 -5.51 -5.55 -5.63 -5.70 
            

4 0.05 C* 3.56 3.59 3.66 3.74 3.78 3.83 3.87 3.96 4.05 
  C** -3.33 -3.36 -3.42 -3.49 -3.53 -3.56 -3.60 -3.68 -3.75 
            

            

η = -.5   
  α 

γ 
ηγ
η

−
+1

  0 0.001 0.003 0.005 0.006 0.007 0.008 0.01 0.012

0.25 0.67 C* 20.02 19.23 17.66 15.73 14.61 13.40 12.16 9.77 7.74 
  C** -12.63 -12.26 -11.47 -10.47 -9.87 -9.22 -8.54 -7.15 -5.89 
            

0.5 0.50 C* 15.56 15.16 14.32 13.33 12.74 12.09 11.38 9.83 8.25 
  C** -10.74 -10.51 -10.03 -9.44 -9.10 -8.71 -8.29 -7.35 -6.34 
            

1 0.33 C* 10.83 10.69 10.38 10.02 9.81 9.57 9.30 8.68 7.92 
  C** -8.28 -8.17 -7.96 -7.70 -7.55 -7.39 -7.21 -6.78 -6.26 
            

2 0.20 C* 6.79 6.75 6.68 6.60 6.55 6.49 6.43 6.28 6.09 
  C** -5.69 -5.66 -5.60 -5.52 -5.48 -5.43 -5.38 -5.26 -5.10 
            

4 0.11 C* 3.90 3.90 3.90 3.89 3.89 3.89 3.88 3.87 3.85 
  C** -3.51 -3.51 -3.51 -3.50 -3.49 -3.49 -3.48 -3.46 -3.44 
            

 
 

Note: C* = consumption gain needed to compensate for tax distortion (starting from proportional tax world) 
          C** = equivalent consumption loss (moving from lump sum tax to distorting tax world) 
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Table 11: Welfare Losses from Proportional Income Tax, f(P) = 2PP

.5  
 

            

η = -.75   
  α 

γ 
ηγ
η

−
+1

  0 0.001 0.003 0.005 0.006 0.007 0.008 0.01 0.012 

0.25 0.25 C* 13.40 13.88 15.09 16.54 17.33 18.16 19.03 20.83 22.70 
  C** -10.66 -10.98 -11.75 -12.65 -13.13 -13.63 -14.14 -15.18 -16.23
            

0.5 0.20 C* 11.25 11.63 12.54 13.60 14.19 14.81 15.47 16.86 18.34 
  C** -9.26 -9.53 -10.14 -10.86 -11.24 -11.65 -12.06 -12.94 -13.85
            

1 0.14 C* 8.56 8.83 9.46 10.18 10.58 11.01 11.46 12.43 13.50 
  C** -7.35 -7.56 -8.03 -8.56 -8.84 -9.15 -9.47 -10.14 -10.87
            

2 0.09 C* 5.81 5.99 6.38 6.83 7.08 7.34 7.62 8.23 8.91 
  C** -5.23 -5.38 -5.70 -6.06 -6.26 -6.46 -6.68 -7.15 -7.67 
            

4 0.05 C* 3.56 3.66 3.89 4.14 4.28 4.43 4.59 4.93 5.31 
  C** -3.33 -3.42 -3.62 -3.84 -3.96 -4.09 -4.23 -4.52 -4.84 
            

            

η = -.5   
  α 

γ 
ηγ
η

−
+1

  0 0.001 0.003 0.005 0.006 0.007 0.008 0.01 0.012 

0.25 0.67 C* 20.02 20.36 21.31 22.27 22.65 22.93 23.08 23.01 22.57 
  C** -12.63 -12.79 -13.19 -13.58 -13.74 -13.85 -13.92 -13.90 -13.73
            

0.5 0.50 C* 15.56 15.84 16.51 17.23 17.56 17.86 18.11 18.41 18.40 
  C** -10.74 -10.88 -11.21 -11.55 -11.71 -11.86 -11.98 -12.12 -12.13
            

1 0.33 C* 10.83 11.04 11.51 12.03 12.30 12.57 12.83 13.32 13.72 
  C** -8.28 -8.40 -8.67 -8.97 -9.12 -9.27 -9.42 -9.69 -9.91 
            

2 0.20 C* 6.79 6.92 7.21 7.53 7.71 7.89 8.07 8.46 8.87 
  C** -5.69 -5.79 -5.99 -6.21 -6.33 -6.45 -6.58 -6.83 -7.09 
            

4 0.11 C* 3.90 3.97 4.14 4.32 4.41 4.51 4.62 4.84 5.08 
  C** -3.51 -3.57 -3.70 -3.85 -3.92 -4.00 -4.09 -4.26 -4.45 
            

 
Note: C* = consumption gain needed to compensate for tax distortion (starting from proportional tax world) 
          C** = equivalent consumption loss (moving from lump sum tax to distorting tax world) 
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Table 12: Welfare Losses from Proportional Income Tax, f(P) = P 
 

            

η = -.75   
  α 

γ 
ηγ
η

−
+1

  0 0.001 0.003 0.005 0.006 0.007 0.008 0.01 0.012 

0.25 0.25 C* 13.40 15.06 19.21 24.56 27.76 31.33 35.33 44.70 56.16 
  C** -10.66 -11.75 -14.31 -17.33 -18.99 -20.75 -22.60 -26.53 -30.69 
            

0.5 0.20 C* 11.25 12.55 15.68 19.66 22.01 24.64 27.57 34.41 42.76 
  C** -9.26 -10.16 -12.25 -14.71 -16.08 -17.54 -19.09 -22.43 -26.05 
            

1 0.14 C* 8.56 9.45 11.57 14.21 15.75 17.46 19.36 23.79 29.17 
  C** -7.35 -8.03 -9.58 -11.40 -12.43 -13.52 -14.70 -17.28 -20.15 
            

2 0.09 C* 5.81 6.36 7.63 9.19 10.09 11.08 12.18 14.72 17.79 
  C** -5.23 -5.68 -6.71 -7.92 -8.60 -9.33 -10.12 -11.88 -13.89 
            

4 0.05 C* 3.56 3.86 4.56 5.40 5.88 6.40 6.98 8.31 9.89 
  C** -3.33 -3.60 -4.21 -4.93 -5.33 -5.77 -6.24 -7.30 -8.53 
            

            

η = -.5   
  α 

γ 
ηγ
η

−
+1

  0 0.001 0.003 0.005 0.006 0.007 0.008 0.01 0.012 

0.25 0.67 C* 20.02 22.71 29.73 39.23 45.06 51.71 59.27 77.46 100.47
  C** -12.63 -13.86 -16.71 -19.98 -21.75 -23.58 -25.47 -29.36 -33.33 
            

0.5 0.50 C* 15.56 17.49 22.30 28.61 32.42 36.74 41.62 53.27 67.86 
  C** -10.74 -11.75 -14.08 -16.78 -18.26 -19.82 -21.46 -24.92 -28.57 
            

1 0.33 C* 10.83 12.05 14.98 18.71 20.93 23.43 26.23 32.87 41.14 
  C** -8.28 -9.03 -10.75 -12.76 -13.88 -15.07 -16.34 -19.09 -22.11 
            

2 0.20 C* 6.79 7.46 9.05 11.02 12.18 13.47 14.90 18.27 22.43 
  C** -5.69 -6.18 -7.30 -8.62 -9.36 -10.16 -11.02 -12.92 -15.07 
            

4 0.11 C* 3.90 4.25 5.05 6.02 6.58 7.20 7.88 9.46 11.38 
  C** -3.51 -3.80 -4.45 -5.22 -5.65 -6.12 -6.62 -7.75 -9.06 
            

 
Note: C* = consumption gain needed to compensate for tax distortion (starting from proportional tax world) 
          C** = equivalent consumption loss (moving from lump sum tax to distorting tax world) 
 

 48



 49

Table 13: Summary Results for Welfare Losses From Proportional Income Taxes 
 

  
 

Uncompensated Compensated  Welfare loss (C*)  

 γ elasticity elasticity f(P) = log(P) f(P) = 2P.5 f(P) = P
       
       

η = -.75 0.25 0.205 0.811 13.35 19.03 35.33 
 0.5 0.176 0.698 11.42 15.47 27.57 
 1 0.133 0.530 8.92 11.46 19.36 
 2 0.088 0.350 6.22 7.62 12.18 
 4 0.052 0.206 3.87 4.59 6.98 
       
       

η = -.5 0.25 0.532 1.054 12.16 23.08 59.27 
 0.5 0.445 0.884 11.38 18.11 41.62 
 1 0.318 0.633 9.30 12.83 26.23 
 2 0.197 0.392 6.43 8.07 14.90 
 4 0.110 0.220 3.88 4.62 7.88 
       

 
Note: All results are for α = .008. C* = percentage consumption gain needed to compensate for tax distortion (starting 
from proportional tax world). 

 
 

 
 


